1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_da_format.h"
28#include "xfs_da_btree.h"
29#include "xfs_inode.h"
30#include "xfs_dir2.h"
31#include "xfs_ialloc.h"
32#include "xfs_alloc.h"
33#include "xfs_rtalloc.h"
34#include "xfs_bmap.h"
35#include "xfs_trans.h"
36#include "xfs_trans_priv.h"
37#include "xfs_log.h"
38#include "xfs_error.h"
39#include "xfs_quota.h"
40#include "xfs_fsops.h"
41#include "xfs_trace.h"
42#include "xfs_icache.h"
43#include "xfs_sysfs.h"
44
45
46static DEFINE_MUTEX(xfs_uuid_table_mutex);
47static int xfs_uuid_table_size;
48static uuid_t *xfs_uuid_table;
49
50/*
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53 */
54STATIC int
55xfs_uuid_mount(
56	struct xfs_mount	*mp)
57{
58	uuid_t			*uuid = &mp->m_sb.sb_uuid;
59	int			hole, i;
60
61	if (mp->m_flags & XFS_MOUNT_NOUUID)
62		return 0;
63
64	if (uuid_is_nil(uuid)) {
65		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
66		return -EINVAL;
67	}
68
69	mutex_lock(&xfs_uuid_table_mutex);
70	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
71		if (uuid_is_nil(&xfs_uuid_table[i])) {
72			hole = i;
73			continue;
74		}
75		if (uuid_equal(uuid, &xfs_uuid_table[i]))
76			goto out_duplicate;
77	}
78
79	if (hole < 0) {
80		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
81			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
82			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
83			KM_SLEEP);
84		hole = xfs_uuid_table_size++;
85	}
86	xfs_uuid_table[hole] = *uuid;
87	mutex_unlock(&xfs_uuid_table_mutex);
88
89	return 0;
90
91 out_duplicate:
92	mutex_unlock(&xfs_uuid_table_mutex);
93	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
94	return -EINVAL;
95}
96
97STATIC void
98xfs_uuid_unmount(
99	struct xfs_mount	*mp)
100{
101	uuid_t			*uuid = &mp->m_sb.sb_uuid;
102	int			i;
103
104	if (mp->m_flags & XFS_MOUNT_NOUUID)
105		return;
106
107	mutex_lock(&xfs_uuid_table_mutex);
108	for (i = 0; i < xfs_uuid_table_size; i++) {
109		if (uuid_is_nil(&xfs_uuid_table[i]))
110			continue;
111		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
112			continue;
113		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
114		break;
115	}
116	ASSERT(i < xfs_uuid_table_size);
117	mutex_unlock(&xfs_uuid_table_mutex);
118}
119
120
121STATIC void
122__xfs_free_perag(
123	struct rcu_head	*head)
124{
125	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
126
127	ASSERT(atomic_read(&pag->pag_ref) == 0);
128	kmem_free(pag);
129}
130
131/*
132 * Free up the per-ag resources associated with the mount structure.
133 */
134STATIC void
135xfs_free_perag(
136	xfs_mount_t	*mp)
137{
138	xfs_agnumber_t	agno;
139	struct xfs_perag *pag;
140
141	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
142		spin_lock(&mp->m_perag_lock);
143		pag = radix_tree_delete(&mp->m_perag_tree, agno);
144		spin_unlock(&mp->m_perag_lock);
145		ASSERT(pag);
146		ASSERT(atomic_read(&pag->pag_ref) == 0);
147		call_rcu(&pag->rcu_head, __xfs_free_perag);
148	}
149}
150
151/*
152 * Check size of device based on the (data/realtime) block count.
153 * Note: this check is used by the growfs code as well as mount.
154 */
155int
156xfs_sb_validate_fsb_count(
157	xfs_sb_t	*sbp,
158	__uint64_t	nblocks)
159{
160	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
161	ASSERT(sbp->sb_blocklog >= BBSHIFT);
162
163	/* Limited by ULONG_MAX of page cache index */
164	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
165		return -EFBIG;
166	return 0;
167}
168
169int
170xfs_initialize_perag(
171	xfs_mount_t	*mp,
172	xfs_agnumber_t	agcount,
173	xfs_agnumber_t	*maxagi)
174{
175	xfs_agnumber_t	index;
176	xfs_agnumber_t	first_initialised = 0;
177	xfs_perag_t	*pag;
178	xfs_agino_t	agino;
179	xfs_ino_t	ino;
180	xfs_sb_t	*sbp = &mp->m_sb;
181	int		error = -ENOMEM;
182
183	/*
184	 * Walk the current per-ag tree so we don't try to initialise AGs
185	 * that already exist (growfs case). Allocate and insert all the
186	 * AGs we don't find ready for initialisation.
187	 */
188	for (index = 0; index < agcount; index++) {
189		pag = xfs_perag_get(mp, index);
190		if (pag) {
191			xfs_perag_put(pag);
192			continue;
193		}
194		if (!first_initialised)
195			first_initialised = index;
196
197		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198		if (!pag)
199			goto out_unwind;
200		pag->pag_agno = index;
201		pag->pag_mount = mp;
202		spin_lock_init(&pag->pag_ici_lock);
203		mutex_init(&pag->pag_ici_reclaim_lock);
204		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
205		spin_lock_init(&pag->pag_buf_lock);
206		pag->pag_buf_tree = RB_ROOT;
207
208		if (radix_tree_preload(GFP_NOFS))
209			goto out_unwind;
210
211		spin_lock(&mp->m_perag_lock);
212		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
213			BUG();
214			spin_unlock(&mp->m_perag_lock);
215			radix_tree_preload_end();
216			error = -EEXIST;
217			goto out_unwind;
218		}
219		spin_unlock(&mp->m_perag_lock);
220		radix_tree_preload_end();
221	}
222
223	/*
224	 * If we mount with the inode64 option, or no inode overflows
225	 * the legacy 32-bit address space clear the inode32 option.
226	 */
227	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
228	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
229
230	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
231		mp->m_flags |= XFS_MOUNT_32BITINODES;
232	else
233		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
234
235	if (mp->m_flags & XFS_MOUNT_32BITINODES)
236		index = xfs_set_inode32(mp, agcount);
237	else
238		index = xfs_set_inode64(mp, agcount);
239
240	if (maxagi)
241		*maxagi = index;
242	return 0;
243
244out_unwind:
245	kmem_free(pag);
246	for (; index > first_initialised; index--) {
247		pag = radix_tree_delete(&mp->m_perag_tree, index);
248		kmem_free(pag);
249	}
250	return error;
251}
252
253/*
254 * xfs_readsb
255 *
256 * Does the initial read of the superblock.
257 */
258int
259xfs_readsb(
260	struct xfs_mount *mp,
261	int		flags)
262{
263	unsigned int	sector_size;
264	struct xfs_buf	*bp;
265	struct xfs_sb	*sbp = &mp->m_sb;
266	int		error;
267	int		loud = !(flags & XFS_MFSI_QUIET);
268	const struct xfs_buf_ops *buf_ops;
269
270	ASSERT(mp->m_sb_bp == NULL);
271	ASSERT(mp->m_ddev_targp != NULL);
272
273	/*
274	 * For the initial read, we must guess at the sector
275	 * size based on the block device.  It's enough to
276	 * get the sb_sectsize out of the superblock and
277	 * then reread with the proper length.
278	 * We don't verify it yet, because it may not be complete.
279	 */
280	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
281	buf_ops = NULL;
282
283	/*
284	 * Allocate a (locked) buffer to hold the superblock.
285	 * This will be kept around at all times to optimize
286	 * access to the superblock.
287	 */
288reread:
289	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
290				   BTOBB(sector_size), 0, &bp, buf_ops);
291	if (error) {
292		if (loud)
293			xfs_warn(mp, "SB validate failed with error %d.", error);
294		/* bad CRC means corrupted metadata */
295		if (error == -EFSBADCRC)
296			error = -EFSCORRUPTED;
297		return error;
298	}
299
300	/*
301	 * Initialize the mount structure from the superblock.
302	 */
303	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
304
305	/*
306	 * If we haven't validated the superblock, do so now before we try
307	 * to check the sector size and reread the superblock appropriately.
308	 */
309	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
310		if (loud)
311			xfs_warn(mp, "Invalid superblock magic number");
312		error = -EINVAL;
313		goto release_buf;
314	}
315
316	/*
317	 * We must be able to do sector-sized and sector-aligned IO.
318	 */
319	if (sector_size > sbp->sb_sectsize) {
320		if (loud)
321			xfs_warn(mp, "device supports %u byte sectors (not %u)",
322				sector_size, sbp->sb_sectsize);
323		error = -ENOSYS;
324		goto release_buf;
325	}
326
327	if (buf_ops == NULL) {
328		/*
329		 * Re-read the superblock so the buffer is correctly sized,
330		 * and properly verified.
331		 */
332		xfs_buf_relse(bp);
333		sector_size = sbp->sb_sectsize;
334		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
335		goto reread;
336	}
337
338	xfs_reinit_percpu_counters(mp);
339
340	/* no need to be quiet anymore, so reset the buf ops */
341	bp->b_ops = &xfs_sb_buf_ops;
342
343	mp->m_sb_bp = bp;
344	xfs_buf_unlock(bp);
345	return 0;
346
347release_buf:
348	xfs_buf_relse(bp);
349	return error;
350}
351
352/*
353 * Update alignment values based on mount options and sb values
354 */
355STATIC int
356xfs_update_alignment(xfs_mount_t *mp)
357{
358	xfs_sb_t	*sbp = &(mp->m_sb);
359
360	if (mp->m_dalign) {
361		/*
362		 * If stripe unit and stripe width are not multiples
363		 * of the fs blocksize turn off alignment.
364		 */
365		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
366		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
367			xfs_warn(mp,
368		"alignment check failed: sunit/swidth vs. blocksize(%d)",
369				sbp->sb_blocksize);
370			return -EINVAL;
371		} else {
372			/*
373			 * Convert the stripe unit and width to FSBs.
374			 */
375			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
376			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
377				xfs_warn(mp,
378			"alignment check failed: sunit/swidth vs. agsize(%d)",
379					 sbp->sb_agblocks);
380				return -EINVAL;
381			} else if (mp->m_dalign) {
382				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
383			} else {
384				xfs_warn(mp,
385			"alignment check failed: sunit(%d) less than bsize(%d)",
386					 mp->m_dalign, sbp->sb_blocksize);
387				return -EINVAL;
388			}
389		}
390
391		/*
392		 * Update superblock with new values
393		 * and log changes
394		 */
395		if (xfs_sb_version_hasdalign(sbp)) {
396			if (sbp->sb_unit != mp->m_dalign) {
397				sbp->sb_unit = mp->m_dalign;
398				mp->m_update_sb = true;
399			}
400			if (sbp->sb_width != mp->m_swidth) {
401				sbp->sb_width = mp->m_swidth;
402				mp->m_update_sb = true;
403			}
404		} else {
405			xfs_warn(mp,
406	"cannot change alignment: superblock does not support data alignment");
407			return -EINVAL;
408		}
409	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
410		    xfs_sb_version_hasdalign(&mp->m_sb)) {
411			mp->m_dalign = sbp->sb_unit;
412			mp->m_swidth = sbp->sb_width;
413	}
414
415	return 0;
416}
417
418/*
419 * Set the maximum inode count for this filesystem
420 */
421STATIC void
422xfs_set_maxicount(xfs_mount_t *mp)
423{
424	xfs_sb_t	*sbp = &(mp->m_sb);
425	__uint64_t	icount;
426
427	if (sbp->sb_imax_pct) {
428		/*
429		 * Make sure the maximum inode count is a multiple
430		 * of the units we allocate inodes in.
431		 */
432		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
433		do_div(icount, 100);
434		do_div(icount, mp->m_ialloc_blks);
435		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
436				   sbp->sb_inopblog;
437	} else {
438		mp->m_maxicount = 0;
439	}
440}
441
442/*
443 * Set the default minimum read and write sizes unless
444 * already specified in a mount option.
445 * We use smaller I/O sizes when the file system
446 * is being used for NFS service (wsync mount option).
447 */
448STATIC void
449xfs_set_rw_sizes(xfs_mount_t *mp)
450{
451	xfs_sb_t	*sbp = &(mp->m_sb);
452	int		readio_log, writeio_log;
453
454	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
455		if (mp->m_flags & XFS_MOUNT_WSYNC) {
456			readio_log = XFS_WSYNC_READIO_LOG;
457			writeio_log = XFS_WSYNC_WRITEIO_LOG;
458		} else {
459			readio_log = XFS_READIO_LOG_LARGE;
460			writeio_log = XFS_WRITEIO_LOG_LARGE;
461		}
462	} else {
463		readio_log = mp->m_readio_log;
464		writeio_log = mp->m_writeio_log;
465	}
466
467	if (sbp->sb_blocklog > readio_log) {
468		mp->m_readio_log = sbp->sb_blocklog;
469	} else {
470		mp->m_readio_log = readio_log;
471	}
472	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
473	if (sbp->sb_blocklog > writeio_log) {
474		mp->m_writeio_log = sbp->sb_blocklog;
475	} else {
476		mp->m_writeio_log = writeio_log;
477	}
478	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
479}
480
481/*
482 * precalculate the low space thresholds for dynamic speculative preallocation.
483 */
484void
485xfs_set_low_space_thresholds(
486	struct xfs_mount	*mp)
487{
488	int i;
489
490	for (i = 0; i < XFS_LOWSP_MAX; i++) {
491		__uint64_t space = mp->m_sb.sb_dblocks;
492
493		do_div(space, 100);
494		mp->m_low_space[i] = space * (i + 1);
495	}
496}
497
498
499/*
500 * Set whether we're using inode alignment.
501 */
502STATIC void
503xfs_set_inoalignment(xfs_mount_t *mp)
504{
505	if (xfs_sb_version_hasalign(&mp->m_sb) &&
506	    mp->m_sb.sb_inoalignmt >=
507	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
508		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
509	else
510		mp->m_inoalign_mask = 0;
511	/*
512	 * If we are using stripe alignment, check whether
513	 * the stripe unit is a multiple of the inode alignment
514	 */
515	if (mp->m_dalign && mp->m_inoalign_mask &&
516	    !(mp->m_dalign & mp->m_inoalign_mask))
517		mp->m_sinoalign = mp->m_dalign;
518	else
519		mp->m_sinoalign = 0;
520}
521
522/*
523 * Check that the data (and log if separate) is an ok size.
524 */
525STATIC int
526xfs_check_sizes(
527	struct xfs_mount *mp)
528{
529	struct xfs_buf	*bp;
530	xfs_daddr_t	d;
531	int		error;
532
533	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
534	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
535		xfs_warn(mp, "filesystem size mismatch detected");
536		return -EFBIG;
537	}
538	error = xfs_buf_read_uncached(mp->m_ddev_targp,
539					d - XFS_FSS_TO_BB(mp, 1),
540					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
541	if (error) {
542		xfs_warn(mp, "last sector read failed");
543		return error;
544	}
545	xfs_buf_relse(bp);
546
547	if (mp->m_logdev_targp == mp->m_ddev_targp)
548		return 0;
549
550	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
551	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
552		xfs_warn(mp, "log size mismatch detected");
553		return -EFBIG;
554	}
555	error = xfs_buf_read_uncached(mp->m_logdev_targp,
556					d - XFS_FSB_TO_BB(mp, 1),
557					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
558	if (error) {
559		xfs_warn(mp, "log device read failed");
560		return error;
561	}
562	xfs_buf_relse(bp);
563	return 0;
564}
565
566/*
567 * Clear the quotaflags in memory and in the superblock.
568 */
569int
570xfs_mount_reset_sbqflags(
571	struct xfs_mount	*mp)
572{
573	mp->m_qflags = 0;
574
575	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
576	if (mp->m_sb.sb_qflags == 0)
577		return 0;
578	spin_lock(&mp->m_sb_lock);
579	mp->m_sb.sb_qflags = 0;
580	spin_unlock(&mp->m_sb_lock);
581
582	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
583		return 0;
584
585	return xfs_sync_sb(mp, false);
586}
587
588__uint64_t
589xfs_default_resblks(xfs_mount_t *mp)
590{
591	__uint64_t resblks;
592
593	/*
594	 * We default to 5% or 8192 fsbs of space reserved, whichever is
595	 * smaller.  This is intended to cover concurrent allocation
596	 * transactions when we initially hit enospc. These each require a 4
597	 * block reservation. Hence by default we cover roughly 2000 concurrent
598	 * allocation reservations.
599	 */
600	resblks = mp->m_sb.sb_dblocks;
601	do_div(resblks, 20);
602	resblks = min_t(__uint64_t, resblks, 8192);
603	return resblks;
604}
605
606/*
607 * This function does the following on an initial mount of a file system:
608 *	- reads the superblock from disk and init the mount struct
609 *	- if we're a 32-bit kernel, do a size check on the superblock
610 *		so we don't mount terabyte filesystems
611 *	- init mount struct realtime fields
612 *	- allocate inode hash table for fs
613 *	- init directory manager
614 *	- perform recovery and init the log manager
615 */
616int
617xfs_mountfs(
618	xfs_mount_t	*mp)
619{
620	xfs_sb_t	*sbp = &(mp->m_sb);
621	xfs_inode_t	*rip;
622	__uint64_t	resblks;
623	uint		quotamount = 0;
624	uint		quotaflags = 0;
625	int		error = 0;
626
627	xfs_sb_mount_common(mp, sbp);
628
629	/*
630	 * Check for a mismatched features2 values.  Older kernels read & wrote
631	 * into the wrong sb offset for sb_features2 on some platforms due to
632	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
633	 * which made older superblock reading/writing routines swap it as a
634	 * 64-bit value.
635	 *
636	 * For backwards compatibility, we make both slots equal.
637	 *
638	 * If we detect a mismatched field, we OR the set bits into the existing
639	 * features2 field in case it has already been modified; we don't want
640	 * to lose any features.  We then update the bad location with the ORed
641	 * value so that older kernels will see any features2 flags. The
642	 * superblock writeback code ensures the new sb_features2 is copied to
643	 * sb_bad_features2 before it is logged or written to disk.
644	 */
645	if (xfs_sb_has_mismatched_features2(sbp)) {
646		xfs_warn(mp, "correcting sb_features alignment problem");
647		sbp->sb_features2 |= sbp->sb_bad_features2;
648		mp->m_update_sb = true;
649
650		/*
651		 * Re-check for ATTR2 in case it was found in bad_features2
652		 * slot.
653		 */
654		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
655		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
656			mp->m_flags |= XFS_MOUNT_ATTR2;
657	}
658
659	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
660	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
661		xfs_sb_version_removeattr2(&mp->m_sb);
662		mp->m_update_sb = true;
663
664		/* update sb_versionnum for the clearing of the morebits */
665		if (!sbp->sb_features2)
666			mp->m_update_sb = true;
667	}
668
669	/* always use v2 inodes by default now */
670	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
671		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
672		mp->m_update_sb = true;
673	}
674
675	/*
676	 * Check if sb_agblocks is aligned at stripe boundary
677	 * If sb_agblocks is NOT aligned turn off m_dalign since
678	 * allocator alignment is within an ag, therefore ag has
679	 * to be aligned at stripe boundary.
680	 */
681	error = xfs_update_alignment(mp);
682	if (error)
683		goto out;
684
685	xfs_alloc_compute_maxlevels(mp);
686	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
687	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
688	xfs_ialloc_compute_maxlevels(mp);
689
690	xfs_set_maxicount(mp);
691
692	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
693	if (error)
694		goto out;
695
696	error = xfs_uuid_mount(mp);
697	if (error)
698		goto out_remove_sysfs;
699
700	/*
701	 * Set the minimum read and write sizes
702	 */
703	xfs_set_rw_sizes(mp);
704
705	/* set the low space thresholds for dynamic preallocation */
706	xfs_set_low_space_thresholds(mp);
707
708	/*
709	 * Set the inode cluster size.
710	 * This may still be overridden by the file system
711	 * block size if it is larger than the chosen cluster size.
712	 *
713	 * For v5 filesystems, scale the cluster size with the inode size to
714	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
715	 * has set the inode alignment value appropriately for larger cluster
716	 * sizes.
717	 */
718	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
719	if (xfs_sb_version_hascrc(&mp->m_sb)) {
720		int	new_size = mp->m_inode_cluster_size;
721
722		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
723		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
724			mp->m_inode_cluster_size = new_size;
725	}
726
727	/*
728	 * Set inode alignment fields
729	 */
730	xfs_set_inoalignment(mp);
731
732	/*
733	 * Check that the data (and log if separate) is an ok size.
734	 */
735	error = xfs_check_sizes(mp);
736	if (error)
737		goto out_remove_uuid;
738
739	/*
740	 * Initialize realtime fields in the mount structure
741	 */
742	error = xfs_rtmount_init(mp);
743	if (error) {
744		xfs_warn(mp, "RT mount failed");
745		goto out_remove_uuid;
746	}
747
748	/*
749	 *  Copies the low order bits of the timestamp and the randomly
750	 *  set "sequence" number out of a UUID.
751	 */
752	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
753
754	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
755
756	error = xfs_da_mount(mp);
757	if (error) {
758		xfs_warn(mp, "Failed dir/attr init: %d", error);
759		goto out_remove_uuid;
760	}
761
762	/*
763	 * Initialize the precomputed transaction reservations values.
764	 */
765	xfs_trans_init(mp);
766
767	/*
768	 * Allocate and initialize the per-ag data.
769	 */
770	spin_lock_init(&mp->m_perag_lock);
771	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
772	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
773	if (error) {
774		xfs_warn(mp, "Failed per-ag init: %d", error);
775		goto out_free_dir;
776	}
777
778	if (!sbp->sb_logblocks) {
779		xfs_warn(mp, "no log defined");
780		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
781		error = -EFSCORRUPTED;
782		goto out_free_perag;
783	}
784
785	/*
786	 * log's mount-time initialization. Perform 1st part recovery if needed
787	 */
788	error = xfs_log_mount(mp, mp->m_logdev_targp,
789			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
790			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
791	if (error) {
792		xfs_warn(mp, "log mount failed");
793		goto out_fail_wait;
794	}
795
796	/*
797	 * Now the log is mounted, we know if it was an unclean shutdown or
798	 * not. If it was, with the first phase of recovery has completed, we
799	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
800	 * but they are recovered transactionally in the second recovery phase
801	 * later.
802	 *
803	 * Hence we can safely re-initialise incore superblock counters from
804	 * the per-ag data. These may not be correct if the filesystem was not
805	 * cleanly unmounted, so we need to wait for recovery to finish before
806	 * doing this.
807	 *
808	 * If the filesystem was cleanly unmounted, then we can trust the
809	 * values in the superblock to be correct and we don't need to do
810	 * anything here.
811	 *
812	 * If we are currently making the filesystem, the initialisation will
813	 * fail as the perag data is in an undefined state.
814	 */
815	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
816	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
817	     !mp->m_sb.sb_inprogress) {
818		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
819		if (error)
820			goto out_log_dealloc;
821	}
822
823	/*
824	 * Get and sanity-check the root inode.
825	 * Save the pointer to it in the mount structure.
826	 */
827	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
828	if (error) {
829		xfs_warn(mp, "failed to read root inode");
830		goto out_log_dealloc;
831	}
832
833	ASSERT(rip != NULL);
834
835	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
836		xfs_warn(mp, "corrupted root inode %llu: not a directory",
837			(unsigned long long)rip->i_ino);
838		xfs_iunlock(rip, XFS_ILOCK_EXCL);
839		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
840				 mp);
841		error = -EFSCORRUPTED;
842		goto out_rele_rip;
843	}
844	mp->m_rootip = rip;	/* save it */
845
846	xfs_iunlock(rip, XFS_ILOCK_EXCL);
847
848	/*
849	 * Initialize realtime inode pointers in the mount structure
850	 */
851	error = xfs_rtmount_inodes(mp);
852	if (error) {
853		/*
854		 * Free up the root inode.
855		 */
856		xfs_warn(mp, "failed to read RT inodes");
857		goto out_rele_rip;
858	}
859
860	/*
861	 * If this is a read-only mount defer the superblock updates until
862	 * the next remount into writeable mode.  Otherwise we would never
863	 * perform the update e.g. for the root filesystem.
864	 */
865	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
866		error = xfs_sync_sb(mp, false);
867		if (error) {
868			xfs_warn(mp, "failed to write sb changes");
869			goto out_rtunmount;
870		}
871	}
872
873	/*
874	 * Initialise the XFS quota management subsystem for this mount
875	 */
876	if (XFS_IS_QUOTA_RUNNING(mp)) {
877		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
878		if (error)
879			goto out_rtunmount;
880	} else {
881		ASSERT(!XFS_IS_QUOTA_ON(mp));
882
883		/*
884		 * If a file system had quotas running earlier, but decided to
885		 * mount without -o uquota/pquota/gquota options, revoke the
886		 * quotachecked license.
887		 */
888		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
889			xfs_notice(mp, "resetting quota flags");
890			error = xfs_mount_reset_sbqflags(mp);
891			if (error)
892				goto out_rtunmount;
893		}
894	}
895
896	/*
897	 * Finish recovering the file system.  This part needed to be
898	 * delayed until after the root and real-time bitmap inodes
899	 * were consistently read in.
900	 */
901	error = xfs_log_mount_finish(mp);
902	if (error) {
903		xfs_warn(mp, "log mount finish failed");
904		goto out_rtunmount;
905	}
906
907	/*
908	 * Complete the quota initialisation, post-log-replay component.
909	 */
910	if (quotamount) {
911		ASSERT(mp->m_qflags == 0);
912		mp->m_qflags = quotaflags;
913
914		xfs_qm_mount_quotas(mp);
915	}
916
917	/*
918	 * Now we are mounted, reserve a small amount of unused space for
919	 * privileged transactions. This is needed so that transaction
920	 * space required for critical operations can dip into this pool
921	 * when at ENOSPC. This is needed for operations like create with
922	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
923	 * are not allowed to use this reserved space.
924	 *
925	 * This may drive us straight to ENOSPC on mount, but that implies
926	 * we were already there on the last unmount. Warn if this occurs.
927	 */
928	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
929		resblks = xfs_default_resblks(mp);
930		error = xfs_reserve_blocks(mp, &resblks, NULL);
931		if (error)
932			xfs_warn(mp,
933	"Unable to allocate reserve blocks. Continuing without reserve pool.");
934	}
935
936	return 0;
937
938 out_rtunmount:
939	xfs_rtunmount_inodes(mp);
940 out_rele_rip:
941	IRELE(rip);
942 out_log_dealloc:
943	xfs_log_unmount(mp);
944 out_fail_wait:
945	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
946		xfs_wait_buftarg(mp->m_logdev_targp);
947	xfs_wait_buftarg(mp->m_ddev_targp);
948 out_free_perag:
949	xfs_free_perag(mp);
950 out_free_dir:
951	xfs_da_unmount(mp);
952 out_remove_uuid:
953	xfs_uuid_unmount(mp);
954 out_remove_sysfs:
955	xfs_sysfs_del(&mp->m_kobj);
956 out:
957	return error;
958}
959
960/*
961 * This flushes out the inodes,dquots and the superblock, unmounts the
962 * log and makes sure that incore structures are freed.
963 */
964void
965xfs_unmountfs(
966	struct xfs_mount	*mp)
967{
968	__uint64_t		resblks;
969	int			error;
970
971	cancel_delayed_work_sync(&mp->m_eofblocks_work);
972
973	xfs_qm_unmount_quotas(mp);
974	xfs_rtunmount_inodes(mp);
975	IRELE(mp->m_rootip);
976
977	/*
978	 * We can potentially deadlock here if we have an inode cluster
979	 * that has been freed has its buffer still pinned in memory because
980	 * the transaction is still sitting in a iclog. The stale inodes
981	 * on that buffer will have their flush locks held until the
982	 * transaction hits the disk and the callbacks run. the inode
983	 * flush takes the flush lock unconditionally and with nothing to
984	 * push out the iclog we will never get that unlocked. hence we
985	 * need to force the log first.
986	 */
987	xfs_log_force(mp, XFS_LOG_SYNC);
988
989	/*
990	 * Flush all pending changes from the AIL.
991	 */
992	xfs_ail_push_all_sync(mp->m_ail);
993
994	/*
995	 * And reclaim all inodes.  At this point there should be no dirty
996	 * inodes and none should be pinned or locked, but use synchronous
997	 * reclaim just to be sure. We can stop background inode reclaim
998	 * here as well if it is still running.
999	 */
1000	cancel_delayed_work_sync(&mp->m_reclaim_work);
1001	xfs_reclaim_inodes(mp, SYNC_WAIT);
1002
1003	xfs_qm_unmount(mp);
1004
1005	/*
1006	 * Unreserve any blocks we have so that when we unmount we don't account
1007	 * the reserved free space as used. This is really only necessary for
1008	 * lazy superblock counting because it trusts the incore superblock
1009	 * counters to be absolutely correct on clean unmount.
1010	 *
1011	 * We don't bother correcting this elsewhere for lazy superblock
1012	 * counting because on mount of an unclean filesystem we reconstruct the
1013	 * correct counter value and this is irrelevant.
1014	 *
1015	 * For non-lazy counter filesystems, this doesn't matter at all because
1016	 * we only every apply deltas to the superblock and hence the incore
1017	 * value does not matter....
1018	 */
1019	resblks = 0;
1020	error = xfs_reserve_blocks(mp, &resblks, NULL);
1021	if (error)
1022		xfs_warn(mp, "Unable to free reserved block pool. "
1023				"Freespace may not be correct on next mount.");
1024
1025	error = xfs_log_sbcount(mp);
1026	if (error)
1027		xfs_warn(mp, "Unable to update superblock counters. "
1028				"Freespace may not be correct on next mount.");
1029
1030	xfs_log_unmount(mp);
1031	xfs_da_unmount(mp);
1032	xfs_uuid_unmount(mp);
1033
1034#if defined(DEBUG)
1035	xfs_errortag_clearall(mp, 0);
1036#endif
1037	xfs_free_perag(mp);
1038
1039	xfs_sysfs_del(&mp->m_kobj);
1040}
1041
1042/*
1043 * Determine whether modifications can proceed. The caller specifies the minimum
1044 * freeze level for which modifications should not be allowed. This allows
1045 * certain operations to proceed while the freeze sequence is in progress, if
1046 * necessary.
1047 */
1048bool
1049xfs_fs_writable(
1050	struct xfs_mount	*mp,
1051	int			level)
1052{
1053	ASSERT(level > SB_UNFROZEN);
1054	if ((mp->m_super->s_writers.frozen >= level) ||
1055	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1056		return false;
1057
1058	return true;
1059}
1060
1061/*
1062 * xfs_log_sbcount
1063 *
1064 * Sync the superblock counters to disk.
1065 *
1066 * Note this code can be called during the process of freezing, so we use the
1067 * transaction allocator that does not block when the transaction subsystem is
1068 * in its frozen state.
1069 */
1070int
1071xfs_log_sbcount(xfs_mount_t *mp)
1072{
1073	/* allow this to proceed during the freeze sequence... */
1074	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1075		return 0;
1076
1077	/*
1078	 * we don't need to do this if we are updating the superblock
1079	 * counters on every modification.
1080	 */
1081	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1082		return 0;
1083
1084	return xfs_sync_sb(mp, true);
1085}
1086
1087/*
1088 * Deltas for the inode count are +/-64, hence we use a large batch size
1089 * of 128 so we don't need to take the counter lock on every update.
1090 */
1091#define XFS_ICOUNT_BATCH	128
1092int
1093xfs_mod_icount(
1094	struct xfs_mount	*mp,
1095	int64_t			delta)
1096{
1097	__percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1098	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1099		ASSERT(0);
1100		percpu_counter_add(&mp->m_icount, -delta);
1101		return -EINVAL;
1102	}
1103	return 0;
1104}
1105
1106int
1107xfs_mod_ifree(
1108	struct xfs_mount	*mp,
1109	int64_t			delta)
1110{
1111	percpu_counter_add(&mp->m_ifree, delta);
1112	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1113		ASSERT(0);
1114		percpu_counter_add(&mp->m_ifree, -delta);
1115		return -EINVAL;
1116	}
1117	return 0;
1118}
1119
1120/*
1121 * Deltas for the block count can vary from 1 to very large, but lock contention
1122 * only occurs on frequent small block count updates such as in the delayed
1123 * allocation path for buffered writes (page a time updates). Hence we set
1124 * a large batch count (1024) to minimise global counter updates except when
1125 * we get near to ENOSPC and we have to be very accurate with our updates.
1126 */
1127#define XFS_FDBLOCKS_BATCH	1024
1128int
1129xfs_mod_fdblocks(
1130	struct xfs_mount	*mp,
1131	int64_t			delta,
1132	bool			rsvd)
1133{
1134	int64_t			lcounter;
1135	long long		res_used;
1136	s32			batch;
1137
1138	if (delta > 0) {
1139		/*
1140		 * If the reserve pool is depleted, put blocks back into it
1141		 * first. Most of the time the pool is full.
1142		 */
1143		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1144			percpu_counter_add(&mp->m_fdblocks, delta);
1145			return 0;
1146		}
1147
1148		spin_lock(&mp->m_sb_lock);
1149		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1150
1151		if (res_used > delta) {
1152			mp->m_resblks_avail += delta;
1153		} else {
1154			delta -= res_used;
1155			mp->m_resblks_avail = mp->m_resblks;
1156			percpu_counter_add(&mp->m_fdblocks, delta);
1157		}
1158		spin_unlock(&mp->m_sb_lock);
1159		return 0;
1160	}
1161
1162	/*
1163	 * Taking blocks away, need to be more accurate the closer we
1164	 * are to zero.
1165	 *
1166	 * If the counter has a value of less than 2 * max batch size,
1167	 * then make everything serialise as we are real close to
1168	 * ENOSPC.
1169	 */
1170	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1171				     XFS_FDBLOCKS_BATCH) < 0)
1172		batch = 1;
1173	else
1174		batch = XFS_FDBLOCKS_BATCH;
1175
1176	__percpu_counter_add(&mp->m_fdblocks, delta, batch);
1177	if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1178				     XFS_FDBLOCKS_BATCH) >= 0) {
1179		/* we had space! */
1180		return 0;
1181	}
1182
1183	/*
1184	 * lock up the sb for dipping into reserves before releasing the space
1185	 * that took us to ENOSPC.
1186	 */
1187	spin_lock(&mp->m_sb_lock);
1188	percpu_counter_add(&mp->m_fdblocks, -delta);
1189	if (!rsvd)
1190		goto fdblocks_enospc;
1191
1192	lcounter = (long long)mp->m_resblks_avail + delta;
1193	if (lcounter >= 0) {
1194		mp->m_resblks_avail = lcounter;
1195		spin_unlock(&mp->m_sb_lock);
1196		return 0;
1197	}
1198	printk_once(KERN_WARNING
1199		"Filesystem \"%s\": reserve blocks depleted! "
1200		"Consider increasing reserve pool size.",
1201		mp->m_fsname);
1202fdblocks_enospc:
1203	spin_unlock(&mp->m_sb_lock);
1204	return -ENOSPC;
1205}
1206
1207int
1208xfs_mod_frextents(
1209	struct xfs_mount	*mp,
1210	int64_t			delta)
1211{
1212	int64_t			lcounter;
1213	int			ret = 0;
1214
1215	spin_lock(&mp->m_sb_lock);
1216	lcounter = mp->m_sb.sb_frextents + delta;
1217	if (lcounter < 0)
1218		ret = -ENOSPC;
1219	else
1220		mp->m_sb.sb_frextents = lcounter;
1221	spin_unlock(&mp->m_sb_lock);
1222	return ret;
1223}
1224
1225/*
1226 * xfs_getsb() is called to obtain the buffer for the superblock.
1227 * The buffer is returned locked and read in from disk.
1228 * The buffer should be released with a call to xfs_brelse().
1229 *
1230 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1231 * the superblock buffer if it can be locked without sleeping.
1232 * If it can't then we'll return NULL.
1233 */
1234struct xfs_buf *
1235xfs_getsb(
1236	struct xfs_mount	*mp,
1237	int			flags)
1238{
1239	struct xfs_buf		*bp = mp->m_sb_bp;
1240
1241	if (!xfs_buf_trylock(bp)) {
1242		if (flags & XBF_TRYLOCK)
1243			return NULL;
1244		xfs_buf_lock(bp);
1245	}
1246
1247	xfs_buf_hold(bp);
1248	ASSERT(XFS_BUF_ISDONE(bp));
1249	return bp;
1250}
1251
1252/*
1253 * Used to free the superblock along various error paths.
1254 */
1255void
1256xfs_freesb(
1257	struct xfs_mount	*mp)
1258{
1259	struct xfs_buf		*bp = mp->m_sb_bp;
1260
1261	xfs_buf_lock(bp);
1262	mp->m_sb_bp = NULL;
1263	xfs_buf_relse(bp);
1264}
1265
1266/*
1267 * If the underlying (data/log/rt) device is readonly, there are some
1268 * operations that cannot proceed.
1269 */
1270int
1271xfs_dev_is_read_only(
1272	struct xfs_mount	*mp,
1273	char			*message)
1274{
1275	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1276	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1277	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1278		xfs_notice(mp, "%s required on read-only device.", message);
1279		xfs_notice(mp, "write access unavailable, cannot proceed.");
1280		return -EROFS;
1281	}
1282	return 0;
1283}
1284