1#ifndef _LINUX_BYTEORDER_GENERIC_H
2#define _LINUX_BYTEORDER_GENERIC_H
3
4/*
5 * linux/byteorder/generic.h
6 * Generic Byte-reordering support
7 *
8 * The "... p" macros, like le64_to_cpup, can be used with pointers
9 * to unaligned data, but there will be a performance penalty on
10 * some architectures.  Use get_unaligned for unaligned data.
11 *
12 * Francois-Rene Rideau <fare@tunes.org> 19970707
13 *    gathered all the good ideas from all asm-foo/byteorder.h into one file,
14 *    cleaned them up.
15 *    I hope it is compliant with non-GCC compilers.
16 *    I decided to put __BYTEORDER_HAS_U64__ in byteorder.h,
17 *    because I wasn't sure it would be ok to put it in types.h
18 *    Upgraded it to 2.1.43
19 * Francois-Rene Rideau <fare@tunes.org> 19971012
20 *    Upgraded it to 2.1.57
21 *    to please Linus T., replaced huge #ifdef's between little/big endian
22 *    by nestedly #include'd files.
23 * Francois-Rene Rideau <fare@tunes.org> 19971205
24 *    Made it to 2.1.71; now a facelift:
25 *    Put files under include/linux/byteorder/
26 *    Split swab from generic support.
27 *
28 * TODO:
29 *   = Regular kernel maintainers could also replace all these manual
30 *    byteswap macros that remain, disseminated among drivers,
31 *    after some grep or the sources...
32 *   = Linus might want to rename all these macros and files to fit his taste,
33 *    to fit his personal naming scheme.
34 *   = it seems that a few drivers would also appreciate
35 *    nybble swapping support...
36 *   = every architecture could add their byteswap macro in asm/byteorder.h
37 *    see how some architectures already do (i386, alpha, ppc, etc)
38 *   = cpu_to_beXX and beXX_to_cpu might some day need to be well
39 *    distinguished throughout the kernel. This is not the case currently,
40 *    since little endian, big endian, and pdp endian machines needn't it.
41 *    But this might be the case for, say, a port of Linux to 20/21 bit
42 *    architectures (and F21 Linux addict around?).
43 */
44
45/*
46 * The following macros are to be defined by <asm/byteorder.h>:
47 *
48 * Conversion of long and short int between network and host format
49 *	ntohl(__u32 x)
50 *	ntohs(__u16 x)
51 *	htonl(__u32 x)
52 *	htons(__u16 x)
53 * It seems that some programs (which? where? or perhaps a standard? POSIX?)
54 * might like the above to be functions, not macros (why?).
55 * if that's true, then detect them, and take measures.
56 * Anyway, the measure is: define only ___ntohl as a macro instead,
57 * and in a separate file, have
58 * unsigned long inline ntohl(x){return ___ntohl(x);}
59 *
60 * The same for constant arguments
61 *	__constant_ntohl(__u32 x)
62 *	__constant_ntohs(__u16 x)
63 *	__constant_htonl(__u32 x)
64 *	__constant_htons(__u16 x)
65 *
66 * Conversion of XX-bit integers (16- 32- or 64-)
67 * between native CPU format and little/big endian format
68 * 64-bit stuff only defined for proper architectures
69 *	cpu_to_[bl]eXX(__uXX x)
70 *	[bl]eXX_to_cpu(__uXX x)
71 *
72 * The same, but takes a pointer to the value to convert
73 *	cpu_to_[bl]eXXp(__uXX x)
74 *	[bl]eXX_to_cpup(__uXX x)
75 *
76 * The same, but change in situ
77 *	cpu_to_[bl]eXXs(__uXX x)
78 *	[bl]eXX_to_cpus(__uXX x)
79 *
80 * See asm-foo/byteorder.h for examples of how to provide
81 * architecture-optimized versions
82 *
83 */
84
85#define cpu_to_le64 __cpu_to_le64
86#define le64_to_cpu __le64_to_cpu
87#define cpu_to_le32 __cpu_to_le32
88#define le32_to_cpu __le32_to_cpu
89#define cpu_to_le16 __cpu_to_le16
90#define le16_to_cpu __le16_to_cpu
91#define cpu_to_be64 __cpu_to_be64
92#define be64_to_cpu __be64_to_cpu
93#define cpu_to_be32 __cpu_to_be32
94#define be32_to_cpu __be32_to_cpu
95#define cpu_to_be16 __cpu_to_be16
96#define be16_to_cpu __be16_to_cpu
97#define cpu_to_le64p __cpu_to_le64p
98#define le64_to_cpup __le64_to_cpup
99#define cpu_to_le32p __cpu_to_le32p
100#define le32_to_cpup __le32_to_cpup
101#define cpu_to_le16p __cpu_to_le16p
102#define le16_to_cpup __le16_to_cpup
103#define cpu_to_be64p __cpu_to_be64p
104#define be64_to_cpup __be64_to_cpup
105#define cpu_to_be32p __cpu_to_be32p
106#define be32_to_cpup __be32_to_cpup
107#define cpu_to_be16p __cpu_to_be16p
108#define be16_to_cpup __be16_to_cpup
109#define cpu_to_le64s __cpu_to_le64s
110#define le64_to_cpus __le64_to_cpus
111#define cpu_to_le32s __cpu_to_le32s
112#define le32_to_cpus __le32_to_cpus
113#define cpu_to_le16s __cpu_to_le16s
114#define le16_to_cpus __le16_to_cpus
115#define cpu_to_be64s __cpu_to_be64s
116#define be64_to_cpus __be64_to_cpus
117#define cpu_to_be32s __cpu_to_be32s
118#define be32_to_cpus __be32_to_cpus
119#define cpu_to_be16s __cpu_to_be16s
120#define be16_to_cpus __be16_to_cpus
121
122/*
123 * They have to be macros in order to do the constant folding
124 * correctly - if the argument passed into a inline function
125 * it is no longer constant according to gcc..
126 */
127
128#undef ntohl
129#undef ntohs
130#undef htonl
131#undef htons
132
133#define ___htonl(x) __cpu_to_be32(x)
134#define ___htons(x) __cpu_to_be16(x)
135#define ___ntohl(x) __be32_to_cpu(x)
136#define ___ntohs(x) __be16_to_cpu(x)
137
138#define htonl(x) ___htonl(x)
139#define ntohl(x) ___ntohl(x)
140#define htons(x) ___htons(x)
141#define ntohs(x) ___ntohs(x)
142
143static inline void le16_add_cpu(__le16 *var, u16 val)
144{
145	*var = cpu_to_le16(le16_to_cpu(*var) + val);
146}
147
148static inline void le32_add_cpu(__le32 *var, u32 val)
149{
150	*var = cpu_to_le32(le32_to_cpu(*var) + val);
151}
152
153static inline void le64_add_cpu(__le64 *var, u64 val)
154{
155	*var = cpu_to_le64(le64_to_cpu(*var) + val);
156}
157
158static inline void be16_add_cpu(__be16 *var, u16 val)
159{
160	*var = cpu_to_be16(be16_to_cpu(*var) + val);
161}
162
163static inline void be32_add_cpu(__be32 *var, u32 val)
164{
165	*var = cpu_to_be32(be32_to_cpu(*var) + val);
166}
167
168static inline void be64_add_cpu(__be64 *var, u64 val)
169{
170	*var = cpu_to_be64(be64_to_cpu(*var) + val);
171}
172
173#endif /* _LINUX_BYTEORDER_GENERIC_H */
174