1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/mmdebug.h>
9#include <linux/gfp.h>
10#include <linux/bug.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23
24struct mempolicy;
25struct anon_vma;
26struct anon_vma_chain;
27struct file_ra_state;
28struct user_struct;
29struct writeback_control;
30
31#ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
32extern unsigned long max_mapnr;
33
34static inline void set_max_mapnr(unsigned long limit)
35{
36	max_mapnr = limit;
37}
38#else
39static inline void set_max_mapnr(unsigned long limit) { }
40#endif
41
42extern unsigned long totalram_pages;
43extern void * high_memory;
44extern int page_cluster;
45
46#ifdef CONFIG_SYSCTL
47extern int sysctl_legacy_va_layout;
48#else
49#define sysctl_legacy_va_layout 0
50#endif
51
52#include <asm/page.h>
53#include <asm/pgtable.h>
54#include <asm/processor.h>
55
56#ifndef __pa_symbol
57#define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
58#endif
59
60/*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67#ifndef mm_forbids_zeropage
68#define mm_forbids_zeropage(X)	(0)
69#endif
70
71extern unsigned long sysctl_user_reserve_kbytes;
72extern unsigned long sysctl_admin_reserve_kbytes;
73
74extern int sysctl_overcommit_memory;
75extern int sysctl_overcommit_ratio;
76extern unsigned long sysctl_overcommit_kbytes;
77
78extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79				    size_t *, loff_t *);
80extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81				    size_t *, loff_t *);
82
83#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
85/* to align the pointer to the (next) page boundary */
86#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
88/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89#define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
91/*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
100extern struct kmem_cache *vm_area_cachep;
101
102#ifndef CONFIG_MMU
103extern struct rb_root nommu_region_tree;
104extern struct rw_semaphore nommu_region_sem;
105
106extern unsigned int kobjsize(const void *objp);
107#endif
108
109/*
110 * vm_flags in vm_area_struct, see mm_types.h.
111 */
112#define VM_NONE		0x00000000
113
114#define VM_READ		0x00000001	/* currently active flags */
115#define VM_WRITE	0x00000002
116#define VM_EXEC		0x00000004
117#define VM_SHARED	0x00000008
118
119/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
120#define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
121#define VM_MAYWRITE	0x00000020
122#define VM_MAYEXEC	0x00000040
123#define VM_MAYSHARE	0x00000080
124
125#define VM_GROWSDOWN	0x00000100	/* general info on the segment */
126#define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
127#define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
128
129#define VM_LOCKED	0x00002000
130#define VM_IO           0x00004000	/* Memory mapped I/O or similar */
131
132					/* Used by sys_madvise() */
133#define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
134#define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
135
136#define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
137#define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
138#define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
139#define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
140#define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
141#define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
142#define VM_ARCH_2	0x02000000
143#define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
144
145#ifdef CONFIG_MEM_SOFT_DIRTY
146# define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
147#else
148# define VM_SOFTDIRTY	0
149#endif
150
151#define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
152#define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
153#define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
154#define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
155
156#if defined(CONFIG_X86)
157# define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
158#elif defined(CONFIG_PPC)
159# define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
160#elif defined(CONFIG_PARISC)
161# define VM_GROWSUP	VM_ARCH_1
162#elif defined(CONFIG_METAG)
163# define VM_GROWSUP	VM_ARCH_1
164#elif defined(CONFIG_IA64)
165# define VM_GROWSUP	VM_ARCH_1
166#elif !defined(CONFIG_MMU)
167# define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
168#endif
169
170#if defined(CONFIG_X86)
171/* MPX specific bounds table or bounds directory */
172# define VM_MPX		VM_ARCH_2
173#endif
174
175#ifndef VM_GROWSUP
176# define VM_GROWSUP	VM_NONE
177#endif
178
179/* Bits set in the VMA until the stack is in its final location */
180#define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
181
182#ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
183#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
184#endif
185
186#ifdef CONFIG_STACK_GROWSUP
187#define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
188#else
189#define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
190#endif
191
192/*
193 * Special vmas that are non-mergable, non-mlock()able.
194 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
195 */
196#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
197
198/* This mask defines which mm->def_flags a process can inherit its parent */
199#define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
200
201/*
202 * mapping from the currently active vm_flags protection bits (the
203 * low four bits) to a page protection mask..
204 */
205extern pgprot_t protection_map[16];
206
207#define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
208#define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
209#define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
210#define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
211#define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
212#define FAULT_FLAG_TRIED	0x20	/* Second try */
213#define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
214
215/*
216 * vm_fault is filled by the the pagefault handler and passed to the vma's
217 * ->fault function. The vma's ->fault is responsible for returning a bitmask
218 * of VM_FAULT_xxx flags that give details about how the fault was handled.
219 *
220 * pgoff should be used in favour of virtual_address, if possible.
221 */
222struct vm_fault {
223	unsigned int flags;		/* FAULT_FLAG_xxx flags */
224	pgoff_t pgoff;			/* Logical page offset based on vma */
225	void __user *virtual_address;	/* Faulting virtual address */
226
227	struct page *cow_page;		/* Handler may choose to COW */
228	struct page *page;		/* ->fault handlers should return a
229					 * page here, unless VM_FAULT_NOPAGE
230					 * is set (which is also implied by
231					 * VM_FAULT_ERROR).
232					 */
233	/* for ->map_pages() only */
234	pgoff_t max_pgoff;		/* map pages for offset from pgoff till
235					 * max_pgoff inclusive */
236	pte_t *pte;			/* pte entry associated with ->pgoff */
237};
238
239/*
240 * These are the virtual MM functions - opening of an area, closing and
241 * unmapping it (needed to keep files on disk up-to-date etc), pointer
242 * to the functions called when a no-page or a wp-page exception occurs.
243 */
244struct vm_operations_struct {
245	void (*open)(struct vm_area_struct * area);
246	void (*close)(struct vm_area_struct * area);
247	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
248	void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
249
250	/* notification that a previously read-only page is about to become
251	 * writable, if an error is returned it will cause a SIGBUS */
252	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
253
254	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
255	int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
256
257	/* called by access_process_vm when get_user_pages() fails, typically
258	 * for use by special VMAs that can switch between memory and hardware
259	 */
260	int (*access)(struct vm_area_struct *vma, unsigned long addr,
261		      void *buf, int len, int write);
262
263	/* Called by the /proc/PID/maps code to ask the vma whether it
264	 * has a special name.  Returning non-NULL will also cause this
265	 * vma to be dumped unconditionally. */
266	const char *(*name)(struct vm_area_struct *vma);
267
268#ifdef CONFIG_NUMA
269	/*
270	 * set_policy() op must add a reference to any non-NULL @new mempolicy
271	 * to hold the policy upon return.  Caller should pass NULL @new to
272	 * remove a policy and fall back to surrounding context--i.e. do not
273	 * install a MPOL_DEFAULT policy, nor the task or system default
274	 * mempolicy.
275	 */
276	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
277
278	/*
279	 * get_policy() op must add reference [mpol_get()] to any policy at
280	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
281	 * in mm/mempolicy.c will do this automatically.
282	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
283	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
284	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
285	 * must return NULL--i.e., do not "fallback" to task or system default
286	 * policy.
287	 */
288	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
289					unsigned long addr);
290#endif
291	/*
292	 * Called by vm_normal_page() for special PTEs to find the
293	 * page for @addr.  This is useful if the default behavior
294	 * (using pte_page()) would not find the correct page.
295	 */
296	struct page *(*find_special_page)(struct vm_area_struct *vma,
297					  unsigned long addr);
298};
299
300struct mmu_gather;
301struct inode;
302
303#define page_private(page)		((page)->private)
304#define set_page_private(page, v)	((page)->private = (v))
305
306/* It's valid only if the page is free path or free_list */
307static inline void set_freepage_migratetype(struct page *page, int migratetype)
308{
309	page->index = migratetype;
310}
311
312/* It's valid only if the page is free path or free_list */
313static inline int get_freepage_migratetype(struct page *page)
314{
315	return page->index;
316}
317
318/*
319 * FIXME: take this include out, include page-flags.h in
320 * files which need it (119 of them)
321 */
322#include <linux/page-flags.h>
323#include <linux/huge_mm.h>
324
325/*
326 * Methods to modify the page usage count.
327 *
328 * What counts for a page usage:
329 * - cache mapping   (page->mapping)
330 * - private data    (page->private)
331 * - page mapped in a task's page tables, each mapping
332 *   is counted separately
333 *
334 * Also, many kernel routines increase the page count before a critical
335 * routine so they can be sure the page doesn't go away from under them.
336 */
337
338/*
339 * Drop a ref, return true if the refcount fell to zero (the page has no users)
340 */
341static inline int put_page_testzero(struct page *page)
342{
343	VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
344	return atomic_dec_and_test(&page->_count);
345}
346
347/*
348 * Try to grab a ref unless the page has a refcount of zero, return false if
349 * that is the case.
350 * This can be called when MMU is off so it must not access
351 * any of the virtual mappings.
352 */
353static inline int get_page_unless_zero(struct page *page)
354{
355	return atomic_inc_not_zero(&page->_count);
356}
357
358/*
359 * Try to drop a ref unless the page has a refcount of one, return false if
360 * that is the case.
361 * This is to make sure that the refcount won't become zero after this drop.
362 * This can be called when MMU is off so it must not access
363 * any of the virtual mappings.
364 */
365static inline int put_page_unless_one(struct page *page)
366{
367	return atomic_add_unless(&page->_count, -1, 1);
368}
369
370extern int page_is_ram(unsigned long pfn);
371extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
372
373/* Support for virtually mapped pages */
374struct page *vmalloc_to_page(const void *addr);
375unsigned long vmalloc_to_pfn(const void *addr);
376
377/*
378 * Determine if an address is within the vmalloc range
379 *
380 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
381 * is no special casing required.
382 */
383static inline int is_vmalloc_addr(const void *x)
384{
385#ifdef CONFIG_MMU
386	unsigned long addr = (unsigned long)x;
387
388	return addr >= VMALLOC_START && addr < VMALLOC_END;
389#else
390	return 0;
391#endif
392}
393#ifdef CONFIG_MMU
394extern int is_vmalloc_or_module_addr(const void *x);
395#else
396static inline int is_vmalloc_or_module_addr(const void *x)
397{
398	return 0;
399}
400#endif
401
402extern void kvfree(const void *addr);
403
404static inline void compound_lock(struct page *page)
405{
406#ifdef CONFIG_TRANSPARENT_HUGEPAGE
407	VM_BUG_ON_PAGE(PageSlab(page), page);
408	bit_spin_lock(PG_compound_lock, &page->flags);
409#endif
410}
411
412static inline void compound_unlock(struct page *page)
413{
414#ifdef CONFIG_TRANSPARENT_HUGEPAGE
415	VM_BUG_ON_PAGE(PageSlab(page), page);
416	bit_spin_unlock(PG_compound_lock, &page->flags);
417#endif
418}
419
420static inline unsigned long compound_lock_irqsave(struct page *page)
421{
422	unsigned long uninitialized_var(flags);
423#ifdef CONFIG_TRANSPARENT_HUGEPAGE
424	local_irq_save(flags);
425	compound_lock(page);
426#endif
427	return flags;
428}
429
430static inline void compound_unlock_irqrestore(struct page *page,
431					      unsigned long flags)
432{
433#ifdef CONFIG_TRANSPARENT_HUGEPAGE
434	compound_unlock(page);
435	local_irq_restore(flags);
436#endif
437}
438
439static inline struct page *compound_head_by_tail(struct page *tail)
440{
441	struct page *head = tail->first_page;
442
443	/*
444	 * page->first_page may be a dangling pointer to an old
445	 * compound page, so recheck that it is still a tail
446	 * page before returning.
447	 */
448	smp_rmb();
449	if (likely(PageTail(tail)))
450		return head;
451	return tail;
452}
453
454/*
455 * Since either compound page could be dismantled asynchronously in THP
456 * or we access asynchronously arbitrary positioned struct page, there
457 * would be tail flag race. To handle this race, we should call
458 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
459 */
460static inline struct page *compound_head(struct page *page)
461{
462	if (unlikely(PageTail(page)))
463		return compound_head_by_tail(page);
464	return page;
465}
466
467/*
468 * If we access compound page synchronously such as access to
469 * allocated page, there is no need to handle tail flag race, so we can
470 * check tail flag directly without any synchronization primitive.
471 */
472static inline struct page *compound_head_fast(struct page *page)
473{
474	if (unlikely(PageTail(page)))
475		return page->first_page;
476	return page;
477}
478
479/*
480 * The atomic page->_mapcount, starts from -1: so that transitions
481 * both from it and to it can be tracked, using atomic_inc_and_test
482 * and atomic_add_negative(-1).
483 */
484static inline void page_mapcount_reset(struct page *page)
485{
486	atomic_set(&(page)->_mapcount, -1);
487}
488
489static inline int page_mapcount(struct page *page)
490{
491	VM_BUG_ON_PAGE(PageSlab(page), page);
492	return atomic_read(&page->_mapcount) + 1;
493}
494
495static inline int page_count(struct page *page)
496{
497	return atomic_read(&compound_head(page)->_count);
498}
499
500static inline bool __compound_tail_refcounted(struct page *page)
501{
502	return !PageSlab(page) && !PageHeadHuge(page);
503}
504
505/*
506 * This takes a head page as parameter and tells if the
507 * tail page reference counting can be skipped.
508 *
509 * For this to be safe, PageSlab and PageHeadHuge must remain true on
510 * any given page where they return true here, until all tail pins
511 * have been released.
512 */
513static inline bool compound_tail_refcounted(struct page *page)
514{
515	VM_BUG_ON_PAGE(!PageHead(page), page);
516	return __compound_tail_refcounted(page);
517}
518
519static inline void get_huge_page_tail(struct page *page)
520{
521	/*
522	 * __split_huge_page_refcount() cannot run from under us.
523	 */
524	VM_BUG_ON_PAGE(!PageTail(page), page);
525	VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
526	VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
527	if (compound_tail_refcounted(page->first_page))
528		atomic_inc(&page->_mapcount);
529}
530
531extern bool __get_page_tail(struct page *page);
532
533static inline void get_page(struct page *page)
534{
535	if (unlikely(PageTail(page)))
536		if (likely(__get_page_tail(page)))
537			return;
538	/*
539	 * Getting a normal page or the head of a compound page
540	 * requires to already have an elevated page->_count.
541	 */
542	VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
543	atomic_inc(&page->_count);
544}
545
546static inline struct page *virt_to_head_page(const void *x)
547{
548	struct page *page = virt_to_page(x);
549
550	/*
551	 * We don't need to worry about synchronization of tail flag
552	 * when we call virt_to_head_page() since it is only called for
553	 * already allocated page and this page won't be freed until
554	 * this virt_to_head_page() is finished. So use _fast variant.
555	 */
556	return compound_head_fast(page);
557}
558
559/*
560 * Setup the page count before being freed into the page allocator for
561 * the first time (boot or memory hotplug)
562 */
563static inline void init_page_count(struct page *page)
564{
565	atomic_set(&page->_count, 1);
566}
567
568void put_page(struct page *page);
569void put_pages_list(struct list_head *pages);
570
571void split_page(struct page *page, unsigned int order);
572int split_free_page(struct page *page);
573
574/*
575 * Compound pages have a destructor function.  Provide a
576 * prototype for that function and accessor functions.
577 * These are _only_ valid on the head of a PG_compound page.
578 */
579
580static inline void set_compound_page_dtor(struct page *page,
581						compound_page_dtor *dtor)
582{
583	page[1].compound_dtor = dtor;
584}
585
586static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
587{
588	return page[1].compound_dtor;
589}
590
591static inline unsigned int compound_order(struct page *page)
592{
593	if (!PageHead(page))
594		return 0;
595	return page[1].compound_order;
596}
597
598static inline void set_compound_order(struct page *page, unsigned long order)
599{
600	page[1].compound_order = order;
601}
602
603#ifdef CONFIG_MMU
604/*
605 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
606 * servicing faults for write access.  In the normal case, do always want
607 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
608 * that do not have writing enabled, when used by access_process_vm.
609 */
610static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
611{
612	if (likely(vma->vm_flags & VM_WRITE))
613		pte = pte_mkwrite(pte);
614	return pte;
615}
616
617void do_set_pte(struct vm_area_struct *vma, unsigned long address,
618		struct page *page, pte_t *pte, bool write, bool anon);
619#endif
620
621/*
622 * Multiple processes may "see" the same page. E.g. for untouched
623 * mappings of /dev/null, all processes see the same page full of
624 * zeroes, and text pages of executables and shared libraries have
625 * only one copy in memory, at most, normally.
626 *
627 * For the non-reserved pages, page_count(page) denotes a reference count.
628 *   page_count() == 0 means the page is free. page->lru is then used for
629 *   freelist management in the buddy allocator.
630 *   page_count() > 0  means the page has been allocated.
631 *
632 * Pages are allocated by the slab allocator in order to provide memory
633 * to kmalloc and kmem_cache_alloc. In this case, the management of the
634 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
635 * unless a particular usage is carefully commented. (the responsibility of
636 * freeing the kmalloc memory is the caller's, of course).
637 *
638 * A page may be used by anyone else who does a __get_free_page().
639 * In this case, page_count still tracks the references, and should only
640 * be used through the normal accessor functions. The top bits of page->flags
641 * and page->virtual store page management information, but all other fields
642 * are unused and could be used privately, carefully. The management of this
643 * page is the responsibility of the one who allocated it, and those who have
644 * subsequently been given references to it.
645 *
646 * The other pages (we may call them "pagecache pages") are completely
647 * managed by the Linux memory manager: I/O, buffers, swapping etc.
648 * The following discussion applies only to them.
649 *
650 * A pagecache page contains an opaque `private' member, which belongs to the
651 * page's address_space. Usually, this is the address of a circular list of
652 * the page's disk buffers. PG_private must be set to tell the VM to call
653 * into the filesystem to release these pages.
654 *
655 * A page may belong to an inode's memory mapping. In this case, page->mapping
656 * is the pointer to the inode, and page->index is the file offset of the page,
657 * in units of PAGE_CACHE_SIZE.
658 *
659 * If pagecache pages are not associated with an inode, they are said to be
660 * anonymous pages. These may become associated with the swapcache, and in that
661 * case PG_swapcache is set, and page->private is an offset into the swapcache.
662 *
663 * In either case (swapcache or inode backed), the pagecache itself holds one
664 * reference to the page. Setting PG_private should also increment the
665 * refcount. The each user mapping also has a reference to the page.
666 *
667 * The pagecache pages are stored in a per-mapping radix tree, which is
668 * rooted at mapping->page_tree, and indexed by offset.
669 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
670 * lists, we instead now tag pages as dirty/writeback in the radix tree.
671 *
672 * All pagecache pages may be subject to I/O:
673 * - inode pages may need to be read from disk,
674 * - inode pages which have been modified and are MAP_SHARED may need
675 *   to be written back to the inode on disk,
676 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
677 *   modified may need to be swapped out to swap space and (later) to be read
678 *   back into memory.
679 */
680
681/*
682 * The zone field is never updated after free_area_init_core()
683 * sets it, so none of the operations on it need to be atomic.
684 */
685
686/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
687#define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
688#define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
689#define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
690#define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
691
692/*
693 * Define the bit shifts to access each section.  For non-existent
694 * sections we define the shift as 0; that plus a 0 mask ensures
695 * the compiler will optimise away reference to them.
696 */
697#define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
698#define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
699#define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
700#define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
701
702/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
703#ifdef NODE_NOT_IN_PAGE_FLAGS
704#define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
705#define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
706						SECTIONS_PGOFF : ZONES_PGOFF)
707#else
708#define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
709#define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
710						NODES_PGOFF : ZONES_PGOFF)
711#endif
712
713#define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
714
715#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
716#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
717#endif
718
719#define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
720#define NODES_MASK		((1UL << NODES_WIDTH) - 1)
721#define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
722#define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
723#define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
724
725static inline enum zone_type page_zonenum(const struct page *page)
726{
727	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
728}
729
730#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
731#define SECTION_IN_PAGE_FLAGS
732#endif
733
734/*
735 * The identification function is mainly used by the buddy allocator for
736 * determining if two pages could be buddies. We are not really identifying
737 * the zone since we could be using the section number id if we do not have
738 * node id available in page flags.
739 * We only guarantee that it will return the same value for two combinable
740 * pages in a zone.
741 */
742static inline int page_zone_id(struct page *page)
743{
744	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
745}
746
747static inline int zone_to_nid(struct zone *zone)
748{
749#ifdef CONFIG_NUMA
750	return zone->node;
751#else
752	return 0;
753#endif
754}
755
756#ifdef NODE_NOT_IN_PAGE_FLAGS
757extern int page_to_nid(const struct page *page);
758#else
759static inline int page_to_nid(const struct page *page)
760{
761	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
762}
763#endif
764
765#ifdef CONFIG_NUMA_BALANCING
766static inline int cpu_pid_to_cpupid(int cpu, int pid)
767{
768	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
769}
770
771static inline int cpupid_to_pid(int cpupid)
772{
773	return cpupid & LAST__PID_MASK;
774}
775
776static inline int cpupid_to_cpu(int cpupid)
777{
778	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
779}
780
781static inline int cpupid_to_nid(int cpupid)
782{
783	return cpu_to_node(cpupid_to_cpu(cpupid));
784}
785
786static inline bool cpupid_pid_unset(int cpupid)
787{
788	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
789}
790
791static inline bool cpupid_cpu_unset(int cpupid)
792{
793	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
794}
795
796static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
797{
798	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
799}
800
801#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
802#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
803static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
804{
805	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
806}
807
808static inline int page_cpupid_last(struct page *page)
809{
810	return page->_last_cpupid;
811}
812static inline void page_cpupid_reset_last(struct page *page)
813{
814	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
815}
816#else
817static inline int page_cpupid_last(struct page *page)
818{
819	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
820}
821
822extern int page_cpupid_xchg_last(struct page *page, int cpupid);
823
824static inline void page_cpupid_reset_last(struct page *page)
825{
826	int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
827
828	page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
829	page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
830}
831#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
832#else /* !CONFIG_NUMA_BALANCING */
833static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
834{
835	return page_to_nid(page); /* XXX */
836}
837
838static inline int page_cpupid_last(struct page *page)
839{
840	return page_to_nid(page); /* XXX */
841}
842
843static inline int cpupid_to_nid(int cpupid)
844{
845	return -1;
846}
847
848static inline int cpupid_to_pid(int cpupid)
849{
850	return -1;
851}
852
853static inline int cpupid_to_cpu(int cpupid)
854{
855	return -1;
856}
857
858static inline int cpu_pid_to_cpupid(int nid, int pid)
859{
860	return -1;
861}
862
863static inline bool cpupid_pid_unset(int cpupid)
864{
865	return 1;
866}
867
868static inline void page_cpupid_reset_last(struct page *page)
869{
870}
871
872static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
873{
874	return false;
875}
876#endif /* CONFIG_NUMA_BALANCING */
877
878static inline struct zone *page_zone(const struct page *page)
879{
880	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
881}
882
883#ifdef SECTION_IN_PAGE_FLAGS
884static inline void set_page_section(struct page *page, unsigned long section)
885{
886	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
887	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
888}
889
890static inline unsigned long page_to_section(const struct page *page)
891{
892	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
893}
894#endif
895
896static inline void set_page_zone(struct page *page, enum zone_type zone)
897{
898	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
899	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
900}
901
902static inline void set_page_node(struct page *page, unsigned long node)
903{
904	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
905	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
906}
907
908static inline void set_page_links(struct page *page, enum zone_type zone,
909	unsigned long node, unsigned long pfn)
910{
911	set_page_zone(page, zone);
912	set_page_node(page, node);
913#ifdef SECTION_IN_PAGE_FLAGS
914	set_page_section(page, pfn_to_section_nr(pfn));
915#endif
916}
917
918/*
919 * Some inline functions in vmstat.h depend on page_zone()
920 */
921#include <linux/vmstat.h>
922
923static __always_inline void *lowmem_page_address(const struct page *page)
924{
925	return __va(PFN_PHYS(page_to_pfn(page)));
926}
927
928#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
929#define HASHED_PAGE_VIRTUAL
930#endif
931
932#if defined(WANT_PAGE_VIRTUAL)
933static inline void *page_address(const struct page *page)
934{
935	return page->virtual;
936}
937static inline void set_page_address(struct page *page, void *address)
938{
939	page->virtual = address;
940}
941#define page_address_init()  do { } while(0)
942#endif
943
944#if defined(HASHED_PAGE_VIRTUAL)
945void *page_address(const struct page *page);
946void set_page_address(struct page *page, void *virtual);
947void page_address_init(void);
948#endif
949
950#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
951#define page_address(page) lowmem_page_address(page)
952#define set_page_address(page, address)  do { } while(0)
953#define page_address_init()  do { } while(0)
954#endif
955
956extern void *page_rmapping(struct page *page);
957extern struct anon_vma *page_anon_vma(struct page *page);
958extern struct address_space *page_mapping(struct page *page);
959
960extern struct address_space *__page_file_mapping(struct page *);
961
962static inline
963struct address_space *page_file_mapping(struct page *page)
964{
965	if (unlikely(PageSwapCache(page)))
966		return __page_file_mapping(page);
967
968	return page->mapping;
969}
970
971/*
972 * Return the pagecache index of the passed page.  Regular pagecache pages
973 * use ->index whereas swapcache pages use ->private
974 */
975static inline pgoff_t page_index(struct page *page)
976{
977	if (unlikely(PageSwapCache(page)))
978		return page_private(page);
979	return page->index;
980}
981
982extern pgoff_t __page_file_index(struct page *page);
983
984/*
985 * Return the file index of the page. Regular pagecache pages use ->index
986 * whereas swapcache pages use swp_offset(->private)
987 */
988static inline pgoff_t page_file_index(struct page *page)
989{
990	if (unlikely(PageSwapCache(page)))
991		return __page_file_index(page);
992
993	return page->index;
994}
995
996/*
997 * Return true if this page is mapped into pagetables.
998 */
999static inline int page_mapped(struct page *page)
1000{
1001	return atomic_read(&(page)->_mapcount) >= 0;
1002}
1003
1004/*
1005 * Return true only if the page has been allocated with
1006 * ALLOC_NO_WATERMARKS and the low watermark was not
1007 * met implying that the system is under some pressure.
1008 */
1009static inline bool page_is_pfmemalloc(struct page *page)
1010{
1011	/*
1012	 * Page index cannot be this large so this must be
1013	 * a pfmemalloc page.
1014	 */
1015	return page->index == -1UL;
1016}
1017
1018/*
1019 * Only to be called by the page allocator on a freshly allocated
1020 * page.
1021 */
1022static inline void set_page_pfmemalloc(struct page *page)
1023{
1024	page->index = -1UL;
1025}
1026
1027static inline void clear_page_pfmemalloc(struct page *page)
1028{
1029	page->index = 0;
1030}
1031
1032/*
1033 * Different kinds of faults, as returned by handle_mm_fault().
1034 * Used to decide whether a process gets delivered SIGBUS or
1035 * just gets major/minor fault counters bumped up.
1036 */
1037
1038#define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
1039
1040#define VM_FAULT_OOM	0x0001
1041#define VM_FAULT_SIGBUS	0x0002
1042#define VM_FAULT_MAJOR	0x0004
1043#define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1044#define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1045#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1046#define VM_FAULT_SIGSEGV 0x0040
1047
1048#define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1049#define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1050#define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1051#define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1052
1053#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1054
1055#define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1056			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1057			 VM_FAULT_FALLBACK)
1058
1059/* Encode hstate index for a hwpoisoned large page */
1060#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1061#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1062
1063/*
1064 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1065 */
1066extern void pagefault_out_of_memory(void);
1067
1068#define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1069
1070/*
1071 * Flags passed to show_mem() and show_free_areas() to suppress output in
1072 * various contexts.
1073 */
1074#define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1075
1076extern void show_free_areas(unsigned int flags);
1077extern bool skip_free_areas_node(unsigned int flags, int nid);
1078
1079int shmem_zero_setup(struct vm_area_struct *);
1080#ifdef CONFIG_SHMEM
1081bool shmem_mapping(struct address_space *mapping);
1082#else
1083static inline bool shmem_mapping(struct address_space *mapping)
1084{
1085	return false;
1086}
1087#endif
1088
1089extern int can_do_mlock(void);
1090extern int user_shm_lock(size_t, struct user_struct *);
1091extern void user_shm_unlock(size_t, struct user_struct *);
1092
1093/*
1094 * Parameter block passed down to zap_pte_range in exceptional cases.
1095 */
1096struct zap_details {
1097	struct address_space *check_mapping;	/* Check page->mapping if set */
1098	pgoff_t	first_index;			/* Lowest page->index to unmap */
1099	pgoff_t last_index;			/* Highest page->index to unmap */
1100};
1101
1102struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1103		pte_t pte);
1104
1105int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1106		unsigned long size);
1107void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1108		unsigned long size, struct zap_details *);
1109void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1110		unsigned long start, unsigned long end);
1111
1112/**
1113 * mm_walk - callbacks for walk_page_range
1114 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1115 *	       this handler is required to be able to handle
1116 *	       pmd_trans_huge() pmds.  They may simply choose to
1117 *	       split_huge_page() instead of handling it explicitly.
1118 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1119 * @pte_hole: if set, called for each hole at all levels
1120 * @hugetlb_entry: if set, called for each hugetlb entry
1121 * @test_walk: caller specific callback function to determine whether
1122 *             we walk over the current vma or not. A positive returned
1123 *             value means "do page table walk over the current vma,"
1124 *             and a negative one means "abort current page table walk
1125 *             right now." 0 means "skip the current vma."
1126 * @mm:        mm_struct representing the target process of page table walk
1127 * @vma:       vma currently walked (NULL if walking outside vmas)
1128 * @private:   private data for callbacks' usage
1129 *
1130 * (see the comment on walk_page_range() for more details)
1131 */
1132struct mm_walk {
1133	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1134			 unsigned long next, struct mm_walk *walk);
1135	int (*pte_entry)(pte_t *pte, unsigned long addr,
1136			 unsigned long next, struct mm_walk *walk);
1137	int (*pte_hole)(unsigned long addr, unsigned long next,
1138			struct mm_walk *walk);
1139	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1140			     unsigned long addr, unsigned long next,
1141			     struct mm_walk *walk);
1142	int (*test_walk)(unsigned long addr, unsigned long next,
1143			struct mm_walk *walk);
1144	struct mm_struct *mm;
1145	struct vm_area_struct *vma;
1146	void *private;
1147};
1148
1149int walk_page_range(unsigned long addr, unsigned long end,
1150		struct mm_walk *walk);
1151int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1152void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1153		unsigned long end, unsigned long floor, unsigned long ceiling);
1154int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1155			struct vm_area_struct *vma);
1156void unmap_mapping_range(struct address_space *mapping,
1157		loff_t const holebegin, loff_t const holelen, int even_cows);
1158int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1159	unsigned long *pfn);
1160int follow_phys(struct vm_area_struct *vma, unsigned long address,
1161		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1162int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1163			void *buf, int len, int write);
1164
1165static inline void unmap_shared_mapping_range(struct address_space *mapping,
1166		loff_t const holebegin, loff_t const holelen)
1167{
1168	unmap_mapping_range(mapping, holebegin, holelen, 0);
1169}
1170
1171extern void truncate_pagecache(struct inode *inode, loff_t new);
1172extern void truncate_setsize(struct inode *inode, loff_t newsize);
1173void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1174void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1175int truncate_inode_page(struct address_space *mapping, struct page *page);
1176int generic_error_remove_page(struct address_space *mapping, struct page *page);
1177int invalidate_inode_page(struct page *page);
1178
1179#ifdef CONFIG_MMU
1180extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1181			unsigned long address, unsigned int flags);
1182extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1183			    unsigned long address, unsigned int fault_flags);
1184#else
1185static inline int handle_mm_fault(struct mm_struct *mm,
1186			struct vm_area_struct *vma, unsigned long address,
1187			unsigned int flags)
1188{
1189	/* should never happen if there's no MMU */
1190	BUG();
1191	return VM_FAULT_SIGBUS;
1192}
1193static inline int fixup_user_fault(struct task_struct *tsk,
1194		struct mm_struct *mm, unsigned long address,
1195		unsigned int fault_flags)
1196{
1197	/* should never happen if there's no MMU */
1198	BUG();
1199	return -EFAULT;
1200}
1201#endif
1202
1203extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1204extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1205		void *buf, int len, int write);
1206
1207long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1208		      unsigned long start, unsigned long nr_pages,
1209		      unsigned int foll_flags, struct page **pages,
1210		      struct vm_area_struct **vmas, int *nonblocking);
1211long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1212		    unsigned long start, unsigned long nr_pages,
1213		    int write, int force, struct page **pages,
1214		    struct vm_area_struct **vmas);
1215long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1216		    unsigned long start, unsigned long nr_pages,
1217		    int write, int force, struct page **pages,
1218		    int *locked);
1219long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1220			       unsigned long start, unsigned long nr_pages,
1221			       int write, int force, struct page **pages,
1222			       unsigned int gup_flags);
1223long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1224		    unsigned long start, unsigned long nr_pages,
1225		    int write, int force, struct page **pages);
1226int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1227			struct page **pages);
1228struct kvec;
1229int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1230			struct page **pages);
1231int get_kernel_page(unsigned long start, int write, struct page **pages);
1232struct page *get_dump_page(unsigned long addr);
1233
1234extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1235extern void do_invalidatepage(struct page *page, unsigned int offset,
1236			      unsigned int length);
1237
1238int __set_page_dirty_nobuffers(struct page *page);
1239int __set_page_dirty_no_writeback(struct page *page);
1240int redirty_page_for_writepage(struct writeback_control *wbc,
1241				struct page *page);
1242void account_page_dirtied(struct page *page, struct address_space *mapping);
1243void account_page_cleaned(struct page *page, struct address_space *mapping);
1244int set_page_dirty(struct page *page);
1245int set_page_dirty_lock(struct page *page);
1246int clear_page_dirty_for_io(struct page *page);
1247
1248int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1249
1250/* Is the vma a continuation of the stack vma above it? */
1251static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1252{
1253	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1254}
1255
1256static inline int stack_guard_page_start(struct vm_area_struct *vma,
1257					     unsigned long addr)
1258{
1259	return (vma->vm_flags & VM_GROWSDOWN) &&
1260		(vma->vm_start == addr) &&
1261		!vma_growsdown(vma->vm_prev, addr);
1262}
1263
1264/* Is the vma a continuation of the stack vma below it? */
1265static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1266{
1267	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1268}
1269
1270static inline int stack_guard_page_end(struct vm_area_struct *vma,
1271					   unsigned long addr)
1272{
1273	return (vma->vm_flags & VM_GROWSUP) &&
1274		(vma->vm_end == addr) &&
1275		!vma_growsup(vma->vm_next, addr);
1276}
1277
1278extern struct task_struct *task_of_stack(struct task_struct *task,
1279				struct vm_area_struct *vma, bool in_group);
1280
1281extern unsigned long move_page_tables(struct vm_area_struct *vma,
1282		unsigned long old_addr, struct vm_area_struct *new_vma,
1283		unsigned long new_addr, unsigned long len,
1284		bool need_rmap_locks);
1285extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1286			      unsigned long end, pgprot_t newprot,
1287			      int dirty_accountable, int prot_numa);
1288extern int mprotect_fixup(struct vm_area_struct *vma,
1289			  struct vm_area_struct **pprev, unsigned long start,
1290			  unsigned long end, unsigned long newflags);
1291
1292/*
1293 * doesn't attempt to fault and will return short.
1294 */
1295int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1296			  struct page **pages);
1297/*
1298 * per-process(per-mm_struct) statistics.
1299 */
1300static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1301{
1302	long val = atomic_long_read(&mm->rss_stat.count[member]);
1303
1304#ifdef SPLIT_RSS_COUNTING
1305	/*
1306	 * counter is updated in asynchronous manner and may go to minus.
1307	 * But it's never be expected number for users.
1308	 */
1309	if (val < 0)
1310		val = 0;
1311#endif
1312	return (unsigned long)val;
1313}
1314
1315static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1316{
1317	atomic_long_add(value, &mm->rss_stat.count[member]);
1318}
1319
1320static inline void inc_mm_counter(struct mm_struct *mm, int member)
1321{
1322	atomic_long_inc(&mm->rss_stat.count[member]);
1323}
1324
1325static inline void dec_mm_counter(struct mm_struct *mm, int member)
1326{
1327	atomic_long_dec(&mm->rss_stat.count[member]);
1328}
1329
1330static inline unsigned long get_mm_rss(struct mm_struct *mm)
1331{
1332	return get_mm_counter(mm, MM_FILEPAGES) +
1333		get_mm_counter(mm, MM_ANONPAGES);
1334}
1335
1336static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1337{
1338	return max(mm->hiwater_rss, get_mm_rss(mm));
1339}
1340
1341static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1342{
1343	return max(mm->hiwater_vm, mm->total_vm);
1344}
1345
1346static inline void update_hiwater_rss(struct mm_struct *mm)
1347{
1348	unsigned long _rss = get_mm_rss(mm);
1349
1350	if ((mm)->hiwater_rss < _rss)
1351		(mm)->hiwater_rss = _rss;
1352}
1353
1354static inline void update_hiwater_vm(struct mm_struct *mm)
1355{
1356	if (mm->hiwater_vm < mm->total_vm)
1357		mm->hiwater_vm = mm->total_vm;
1358}
1359
1360static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1361{
1362	mm->hiwater_rss = get_mm_rss(mm);
1363}
1364
1365static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1366					 struct mm_struct *mm)
1367{
1368	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1369
1370	if (*maxrss < hiwater_rss)
1371		*maxrss = hiwater_rss;
1372}
1373
1374#if defined(SPLIT_RSS_COUNTING)
1375void sync_mm_rss(struct mm_struct *mm);
1376#else
1377static inline void sync_mm_rss(struct mm_struct *mm)
1378{
1379}
1380#endif
1381
1382int vma_wants_writenotify(struct vm_area_struct *vma);
1383
1384extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1385			       spinlock_t **ptl);
1386static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1387				    spinlock_t **ptl)
1388{
1389	pte_t *ptep;
1390	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1391	return ptep;
1392}
1393
1394#ifdef __PAGETABLE_PUD_FOLDED
1395static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1396						unsigned long address)
1397{
1398	return 0;
1399}
1400#else
1401int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1402#endif
1403
1404#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1405static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1406						unsigned long address)
1407{
1408	return 0;
1409}
1410
1411static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1412
1413static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1414{
1415	return 0;
1416}
1417
1418static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1419static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1420
1421#else
1422int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1423
1424static inline void mm_nr_pmds_init(struct mm_struct *mm)
1425{
1426	atomic_long_set(&mm->nr_pmds, 0);
1427}
1428
1429static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1430{
1431	return atomic_long_read(&mm->nr_pmds);
1432}
1433
1434static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1435{
1436	atomic_long_inc(&mm->nr_pmds);
1437}
1438
1439static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1440{
1441	atomic_long_dec(&mm->nr_pmds);
1442}
1443#endif
1444
1445int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1446		pmd_t *pmd, unsigned long address);
1447int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1448
1449/*
1450 * The following ifdef needed to get the 4level-fixup.h header to work.
1451 * Remove it when 4level-fixup.h has been removed.
1452 */
1453#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1454static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1455{
1456	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1457		NULL: pud_offset(pgd, address);
1458}
1459
1460static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1461{
1462	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1463		NULL: pmd_offset(pud, address);
1464}
1465#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1466
1467#if USE_SPLIT_PTE_PTLOCKS
1468#if ALLOC_SPLIT_PTLOCKS
1469void __init ptlock_cache_init(void);
1470extern bool ptlock_alloc(struct page *page);
1471extern void ptlock_free(struct page *page);
1472
1473static inline spinlock_t *ptlock_ptr(struct page *page)
1474{
1475	return page->ptl;
1476}
1477#else /* ALLOC_SPLIT_PTLOCKS */
1478static inline void ptlock_cache_init(void)
1479{
1480}
1481
1482static inline bool ptlock_alloc(struct page *page)
1483{
1484	return true;
1485}
1486
1487static inline void ptlock_free(struct page *page)
1488{
1489}
1490
1491static inline spinlock_t *ptlock_ptr(struct page *page)
1492{
1493	return &page->ptl;
1494}
1495#endif /* ALLOC_SPLIT_PTLOCKS */
1496
1497static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1498{
1499	return ptlock_ptr(pmd_page(*pmd));
1500}
1501
1502static inline bool ptlock_init(struct page *page)
1503{
1504	/*
1505	 * prep_new_page() initialize page->private (and therefore page->ptl)
1506	 * with 0. Make sure nobody took it in use in between.
1507	 *
1508	 * It can happen if arch try to use slab for page table allocation:
1509	 * slab code uses page->slab_cache and page->first_page (for tail
1510	 * pages), which share storage with page->ptl.
1511	 */
1512	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1513	if (!ptlock_alloc(page))
1514		return false;
1515	spin_lock_init(ptlock_ptr(page));
1516	return true;
1517}
1518
1519/* Reset page->mapping so free_pages_check won't complain. */
1520static inline void pte_lock_deinit(struct page *page)
1521{
1522	page->mapping = NULL;
1523	ptlock_free(page);
1524}
1525
1526#else	/* !USE_SPLIT_PTE_PTLOCKS */
1527/*
1528 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1529 */
1530static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1531{
1532	return &mm->page_table_lock;
1533}
1534static inline void ptlock_cache_init(void) {}
1535static inline bool ptlock_init(struct page *page) { return true; }
1536static inline void pte_lock_deinit(struct page *page) {}
1537#endif /* USE_SPLIT_PTE_PTLOCKS */
1538
1539static inline void pgtable_init(void)
1540{
1541	ptlock_cache_init();
1542	pgtable_cache_init();
1543}
1544
1545static inline bool pgtable_page_ctor(struct page *page)
1546{
1547	inc_zone_page_state(page, NR_PAGETABLE);
1548	return ptlock_init(page);
1549}
1550
1551static inline void pgtable_page_dtor(struct page *page)
1552{
1553	pte_lock_deinit(page);
1554	dec_zone_page_state(page, NR_PAGETABLE);
1555}
1556
1557#define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1558({							\
1559	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1560	pte_t *__pte = pte_offset_map(pmd, address);	\
1561	*(ptlp) = __ptl;				\
1562	spin_lock(__ptl);				\
1563	__pte;						\
1564})
1565
1566#define pte_unmap_unlock(pte, ptl)	do {		\
1567	spin_unlock(ptl);				\
1568	pte_unmap(pte);					\
1569} while (0)
1570
1571#define pte_alloc_map(mm, vma, pmd, address)				\
1572	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1573							pmd, address))?	\
1574	 NULL: pte_offset_map(pmd, address))
1575
1576#define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1577	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1578							pmd, address))?	\
1579		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1580
1581#define pte_alloc_kernel(pmd, address)			\
1582	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1583		NULL: pte_offset_kernel(pmd, address))
1584
1585#if USE_SPLIT_PMD_PTLOCKS
1586
1587static struct page *pmd_to_page(pmd_t *pmd)
1588{
1589	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1590	return virt_to_page((void *)((unsigned long) pmd & mask));
1591}
1592
1593static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1594{
1595	return ptlock_ptr(pmd_to_page(pmd));
1596}
1597
1598static inline bool pgtable_pmd_page_ctor(struct page *page)
1599{
1600#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1601	page->pmd_huge_pte = NULL;
1602#endif
1603	return ptlock_init(page);
1604}
1605
1606static inline void pgtable_pmd_page_dtor(struct page *page)
1607{
1608#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1609	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1610#endif
1611	ptlock_free(page);
1612}
1613
1614#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1615
1616#else
1617
1618static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1619{
1620	return &mm->page_table_lock;
1621}
1622
1623static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1624static inline void pgtable_pmd_page_dtor(struct page *page) {}
1625
1626#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1627
1628#endif
1629
1630static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1631{
1632	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1633	spin_lock(ptl);
1634	return ptl;
1635}
1636
1637extern void free_area_init(unsigned long * zones_size);
1638extern void free_area_init_node(int nid, unsigned long * zones_size,
1639		unsigned long zone_start_pfn, unsigned long *zholes_size);
1640extern void free_initmem(void);
1641
1642/*
1643 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1644 * into the buddy system. The freed pages will be poisoned with pattern
1645 * "poison" if it's within range [0, UCHAR_MAX].
1646 * Return pages freed into the buddy system.
1647 */
1648extern unsigned long free_reserved_area(void *start, void *end,
1649					int poison, char *s);
1650
1651#ifdef	CONFIG_HIGHMEM
1652/*
1653 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1654 * and totalram_pages.
1655 */
1656extern void free_highmem_page(struct page *page);
1657#endif
1658
1659extern void adjust_managed_page_count(struct page *page, long count);
1660extern void mem_init_print_info(const char *str);
1661
1662/* Free the reserved page into the buddy system, so it gets managed. */
1663static inline void __free_reserved_page(struct page *page)
1664{
1665	ClearPageReserved(page);
1666	init_page_count(page);
1667	__free_page(page);
1668}
1669
1670static inline void free_reserved_page(struct page *page)
1671{
1672	__free_reserved_page(page);
1673	adjust_managed_page_count(page, 1);
1674}
1675
1676static inline void mark_page_reserved(struct page *page)
1677{
1678	SetPageReserved(page);
1679	adjust_managed_page_count(page, -1);
1680}
1681
1682/*
1683 * Default method to free all the __init memory into the buddy system.
1684 * The freed pages will be poisoned with pattern "poison" if it's within
1685 * range [0, UCHAR_MAX].
1686 * Return pages freed into the buddy system.
1687 */
1688static inline unsigned long free_initmem_default(int poison)
1689{
1690	extern char __init_begin[], __init_end[];
1691
1692	return free_reserved_area(&__init_begin, &__init_end,
1693				  poison, "unused kernel");
1694}
1695
1696static inline unsigned long get_num_physpages(void)
1697{
1698	int nid;
1699	unsigned long phys_pages = 0;
1700
1701	for_each_online_node(nid)
1702		phys_pages += node_present_pages(nid);
1703
1704	return phys_pages;
1705}
1706
1707#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1708/*
1709 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1710 * zones, allocate the backing mem_map and account for memory holes in a more
1711 * architecture independent manner. This is a substitute for creating the
1712 * zone_sizes[] and zholes_size[] arrays and passing them to
1713 * free_area_init_node()
1714 *
1715 * An architecture is expected to register range of page frames backed by
1716 * physical memory with memblock_add[_node]() before calling
1717 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1718 * usage, an architecture is expected to do something like
1719 *
1720 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1721 * 							 max_highmem_pfn};
1722 * for_each_valid_physical_page_range()
1723 * 	memblock_add_node(base, size, nid)
1724 * free_area_init_nodes(max_zone_pfns);
1725 *
1726 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1727 * registered physical page range.  Similarly
1728 * sparse_memory_present_with_active_regions() calls memory_present() for
1729 * each range when SPARSEMEM is enabled.
1730 *
1731 * See mm/page_alloc.c for more information on each function exposed by
1732 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1733 */
1734extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1735unsigned long node_map_pfn_alignment(void);
1736unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1737						unsigned long end_pfn);
1738extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1739						unsigned long end_pfn);
1740extern void get_pfn_range_for_nid(unsigned int nid,
1741			unsigned long *start_pfn, unsigned long *end_pfn);
1742extern unsigned long find_min_pfn_with_active_regions(void);
1743extern void free_bootmem_with_active_regions(int nid,
1744						unsigned long max_low_pfn);
1745extern void sparse_memory_present_with_active_regions(int nid);
1746
1747#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1748
1749#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1750    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1751static inline int __early_pfn_to_nid(unsigned long pfn)
1752{
1753	return 0;
1754}
1755#else
1756/* please see mm/page_alloc.c */
1757extern int __meminit early_pfn_to_nid(unsigned long pfn);
1758/* there is a per-arch backend function. */
1759extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1760#endif
1761
1762extern void set_dma_reserve(unsigned long new_dma_reserve);
1763extern void memmap_init_zone(unsigned long, int, unsigned long,
1764				unsigned long, enum memmap_context);
1765extern void setup_per_zone_wmarks(void);
1766extern int __meminit init_per_zone_wmark_min(void);
1767extern void mem_init(void);
1768extern void __init mmap_init(void);
1769extern void show_mem(unsigned int flags);
1770extern void si_meminfo(struct sysinfo * val);
1771extern void si_meminfo_node(struct sysinfo *val, int nid);
1772
1773extern __printf(3, 4)
1774void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1775		const char *fmt, ...);
1776
1777extern void setup_per_cpu_pageset(void);
1778
1779extern void zone_pcp_update(struct zone *zone);
1780extern void zone_pcp_reset(struct zone *zone);
1781
1782/* page_alloc.c */
1783extern int min_free_kbytes;
1784
1785/* nommu.c */
1786extern atomic_long_t mmap_pages_allocated;
1787extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1788
1789/* interval_tree.c */
1790void vma_interval_tree_insert(struct vm_area_struct *node,
1791			      struct rb_root *root);
1792void vma_interval_tree_insert_after(struct vm_area_struct *node,
1793				    struct vm_area_struct *prev,
1794				    struct rb_root *root);
1795void vma_interval_tree_remove(struct vm_area_struct *node,
1796			      struct rb_root *root);
1797struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1798				unsigned long start, unsigned long last);
1799struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1800				unsigned long start, unsigned long last);
1801
1802#define vma_interval_tree_foreach(vma, root, start, last)		\
1803	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1804	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1805
1806void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1807				   struct rb_root *root);
1808void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1809				   struct rb_root *root);
1810struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1811	struct rb_root *root, unsigned long start, unsigned long last);
1812struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1813	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1814#ifdef CONFIG_DEBUG_VM_RB
1815void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1816#endif
1817
1818#define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1819	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1820	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1821
1822/* mmap.c */
1823extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1824extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1825	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1826extern struct vm_area_struct *vma_merge(struct mm_struct *,
1827	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1828	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1829	struct mempolicy *);
1830extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1831extern int split_vma(struct mm_struct *,
1832	struct vm_area_struct *, unsigned long addr, int new_below);
1833extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1834extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1835	struct rb_node **, struct rb_node *);
1836extern void unlink_file_vma(struct vm_area_struct *);
1837extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1838	unsigned long addr, unsigned long len, pgoff_t pgoff,
1839	bool *need_rmap_locks);
1840extern void exit_mmap(struct mm_struct *);
1841
1842static inline int check_data_rlimit(unsigned long rlim,
1843				    unsigned long new,
1844				    unsigned long start,
1845				    unsigned long end_data,
1846				    unsigned long start_data)
1847{
1848	if (rlim < RLIM_INFINITY) {
1849		if (((new - start) + (end_data - start_data)) > rlim)
1850			return -ENOSPC;
1851	}
1852
1853	return 0;
1854}
1855
1856extern int mm_take_all_locks(struct mm_struct *mm);
1857extern void mm_drop_all_locks(struct mm_struct *mm);
1858
1859extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1860extern struct file *get_mm_exe_file(struct mm_struct *mm);
1861
1862extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1863extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1864				   unsigned long addr, unsigned long len,
1865				   unsigned long flags,
1866				   const struct vm_special_mapping *spec);
1867/* This is an obsolete alternative to _install_special_mapping. */
1868extern int install_special_mapping(struct mm_struct *mm,
1869				   unsigned long addr, unsigned long len,
1870				   unsigned long flags, struct page **pages);
1871
1872extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1873
1874extern unsigned long mmap_region(struct file *file, unsigned long addr,
1875	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1876extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1877	unsigned long len, unsigned long prot, unsigned long flags,
1878	unsigned long pgoff, unsigned long *populate);
1879extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1880
1881#ifdef CONFIG_MMU
1882extern int __mm_populate(unsigned long addr, unsigned long len,
1883			 int ignore_errors);
1884static inline void mm_populate(unsigned long addr, unsigned long len)
1885{
1886	/* Ignore errors */
1887	(void) __mm_populate(addr, len, 1);
1888}
1889#else
1890static inline void mm_populate(unsigned long addr, unsigned long len) {}
1891#endif
1892
1893/* These take the mm semaphore themselves */
1894extern unsigned long vm_brk(unsigned long, unsigned long);
1895extern int vm_munmap(unsigned long, size_t);
1896extern unsigned long vm_mmap(struct file *, unsigned long,
1897        unsigned long, unsigned long,
1898        unsigned long, unsigned long);
1899
1900struct vm_unmapped_area_info {
1901#define VM_UNMAPPED_AREA_TOPDOWN 1
1902	unsigned long flags;
1903	unsigned long length;
1904	unsigned long low_limit;
1905	unsigned long high_limit;
1906	unsigned long align_mask;
1907	unsigned long align_offset;
1908};
1909
1910extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1911extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1912
1913/*
1914 * Search for an unmapped address range.
1915 *
1916 * We are looking for a range that:
1917 * - does not intersect with any VMA;
1918 * - is contained within the [low_limit, high_limit) interval;
1919 * - is at least the desired size.
1920 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1921 */
1922static inline unsigned long
1923vm_unmapped_area(struct vm_unmapped_area_info *info)
1924{
1925	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1926		return unmapped_area_topdown(info);
1927	else
1928		return unmapped_area(info);
1929}
1930
1931/* truncate.c */
1932extern void truncate_inode_pages(struct address_space *, loff_t);
1933extern void truncate_inode_pages_range(struct address_space *,
1934				       loff_t lstart, loff_t lend);
1935extern void truncate_inode_pages_final(struct address_space *);
1936
1937/* generic vm_area_ops exported for stackable file systems */
1938extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1939extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1940extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1941
1942/* mm/page-writeback.c */
1943int write_one_page(struct page *page, int wait);
1944void task_dirty_inc(struct task_struct *tsk);
1945
1946/* readahead.c */
1947#define VM_MAX_READAHEAD	128	/* kbytes */
1948#define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1949
1950int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1951			pgoff_t offset, unsigned long nr_to_read);
1952
1953void page_cache_sync_readahead(struct address_space *mapping,
1954			       struct file_ra_state *ra,
1955			       struct file *filp,
1956			       pgoff_t offset,
1957			       unsigned long size);
1958
1959void page_cache_async_readahead(struct address_space *mapping,
1960				struct file_ra_state *ra,
1961				struct file *filp,
1962				struct page *pg,
1963				pgoff_t offset,
1964				unsigned long size);
1965
1966unsigned long max_sane_readahead(unsigned long nr);
1967
1968/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1969extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1970
1971/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1972extern int expand_downwards(struct vm_area_struct *vma,
1973		unsigned long address);
1974#if VM_GROWSUP
1975extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1976#else
1977  #define expand_upwards(vma, address) (0)
1978#endif
1979
1980/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1981extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1982extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1983					     struct vm_area_struct **pprev);
1984
1985/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1986   NULL if none.  Assume start_addr < end_addr. */
1987static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1988{
1989	struct vm_area_struct * vma = find_vma(mm,start_addr);
1990
1991	if (vma && end_addr <= vma->vm_start)
1992		vma = NULL;
1993	return vma;
1994}
1995
1996static inline unsigned long vma_pages(struct vm_area_struct *vma)
1997{
1998	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1999}
2000
2001/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2002static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2003				unsigned long vm_start, unsigned long vm_end)
2004{
2005	struct vm_area_struct *vma = find_vma(mm, vm_start);
2006
2007	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2008		vma = NULL;
2009
2010	return vma;
2011}
2012
2013#ifdef CONFIG_MMU
2014pgprot_t vm_get_page_prot(unsigned long vm_flags);
2015void vma_set_page_prot(struct vm_area_struct *vma);
2016#else
2017static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2018{
2019	return __pgprot(0);
2020}
2021static inline void vma_set_page_prot(struct vm_area_struct *vma)
2022{
2023	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2024}
2025#endif
2026
2027#ifdef CONFIG_NUMA_BALANCING
2028unsigned long change_prot_numa(struct vm_area_struct *vma,
2029			unsigned long start, unsigned long end);
2030#endif
2031
2032struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2033int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2034			unsigned long pfn, unsigned long size, pgprot_t);
2035int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2036int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2037			unsigned long pfn);
2038int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2039			unsigned long pfn);
2040int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2041
2042
2043struct page *follow_page_mask(struct vm_area_struct *vma,
2044			      unsigned long address, unsigned int foll_flags,
2045			      unsigned int *page_mask);
2046
2047static inline struct page *follow_page(struct vm_area_struct *vma,
2048		unsigned long address, unsigned int foll_flags)
2049{
2050	unsigned int unused_page_mask;
2051	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2052}
2053
2054#define FOLL_WRITE	0x01	/* check pte is writable */
2055#define FOLL_TOUCH	0x02	/* mark page accessed */
2056#define FOLL_GET	0x04	/* do get_page on page */
2057#define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2058#define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2059#define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2060				 * and return without waiting upon it */
2061#define FOLL_POPULATE	0x40	/* fault in page */
2062#define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2063#define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2064#define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2065#define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2066#define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2067
2068typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2069			void *data);
2070extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2071			       unsigned long size, pte_fn_t fn, void *data);
2072
2073#ifdef CONFIG_PROC_FS
2074void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2075#else
2076static inline void vm_stat_account(struct mm_struct *mm,
2077			unsigned long flags, struct file *file, long pages)
2078{
2079	mm->total_vm += pages;
2080}
2081#endif /* CONFIG_PROC_FS */
2082
2083#ifdef CONFIG_DEBUG_PAGEALLOC
2084extern bool _debug_pagealloc_enabled;
2085extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2086
2087static inline bool debug_pagealloc_enabled(void)
2088{
2089	return _debug_pagealloc_enabled;
2090}
2091
2092static inline void
2093kernel_map_pages(struct page *page, int numpages, int enable)
2094{
2095	if (!debug_pagealloc_enabled())
2096		return;
2097
2098	__kernel_map_pages(page, numpages, enable);
2099}
2100#ifdef CONFIG_HIBERNATION
2101extern bool kernel_page_present(struct page *page);
2102#endif /* CONFIG_HIBERNATION */
2103#else
2104static inline void
2105kernel_map_pages(struct page *page, int numpages, int enable) {}
2106#ifdef CONFIG_HIBERNATION
2107static inline bool kernel_page_present(struct page *page) { return true; }
2108#endif /* CONFIG_HIBERNATION */
2109#endif
2110
2111#ifdef __HAVE_ARCH_GATE_AREA
2112extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2113extern int in_gate_area_no_mm(unsigned long addr);
2114extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2115#else
2116static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2117{
2118	return NULL;
2119}
2120static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2121static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2122{
2123	return 0;
2124}
2125#endif	/* __HAVE_ARCH_GATE_AREA */
2126
2127#ifdef CONFIG_SYSCTL
2128extern int sysctl_drop_caches;
2129int drop_caches_sysctl_handler(struct ctl_table *, int,
2130					void __user *, size_t *, loff_t *);
2131#endif
2132
2133void drop_slab(void);
2134void drop_slab_node(int nid);
2135
2136#ifndef CONFIG_MMU
2137#define randomize_va_space 0
2138#else
2139extern int randomize_va_space;
2140#endif
2141
2142const char * arch_vma_name(struct vm_area_struct *vma);
2143void print_vma_addr(char *prefix, unsigned long rip);
2144
2145void sparse_mem_maps_populate_node(struct page **map_map,
2146				   unsigned long pnum_begin,
2147				   unsigned long pnum_end,
2148				   unsigned long map_count,
2149				   int nodeid);
2150
2151struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2152pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2153pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2154pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2155pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2156void *vmemmap_alloc_block(unsigned long size, int node);
2157void *vmemmap_alloc_block_buf(unsigned long size, int node);
2158void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2159int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2160			       int node);
2161int vmemmap_populate(unsigned long start, unsigned long end, int node);
2162void vmemmap_populate_print_last(void);
2163#ifdef CONFIG_MEMORY_HOTPLUG
2164void vmemmap_free(unsigned long start, unsigned long end);
2165#endif
2166void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2167				  unsigned long size);
2168
2169enum mf_flags {
2170	MF_COUNT_INCREASED = 1 << 0,
2171	MF_ACTION_REQUIRED = 1 << 1,
2172	MF_MUST_KILL = 1 << 2,
2173	MF_SOFT_OFFLINE = 1 << 3,
2174};
2175extern int memory_failure(unsigned long pfn, int trapno, int flags);
2176extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2177extern int unpoison_memory(unsigned long pfn);
2178extern int sysctl_memory_failure_early_kill;
2179extern int sysctl_memory_failure_recovery;
2180extern void shake_page(struct page *p, int access);
2181extern atomic_long_t num_poisoned_pages;
2182extern int soft_offline_page(struct page *page, int flags);
2183
2184#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2185extern void clear_huge_page(struct page *page,
2186			    unsigned long addr,
2187			    unsigned int pages_per_huge_page);
2188extern void copy_user_huge_page(struct page *dst, struct page *src,
2189				unsigned long addr, struct vm_area_struct *vma,
2190				unsigned int pages_per_huge_page);
2191#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2192
2193extern struct page_ext_operations debug_guardpage_ops;
2194extern struct page_ext_operations page_poisoning_ops;
2195
2196#ifdef CONFIG_DEBUG_PAGEALLOC
2197extern unsigned int _debug_guardpage_minorder;
2198extern bool _debug_guardpage_enabled;
2199
2200static inline unsigned int debug_guardpage_minorder(void)
2201{
2202	return _debug_guardpage_minorder;
2203}
2204
2205static inline bool debug_guardpage_enabled(void)
2206{
2207	return _debug_guardpage_enabled;
2208}
2209
2210static inline bool page_is_guard(struct page *page)
2211{
2212	struct page_ext *page_ext;
2213
2214	if (!debug_guardpage_enabled())
2215		return false;
2216
2217	page_ext = lookup_page_ext(page);
2218	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2219}
2220#else
2221static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2222static inline bool debug_guardpage_enabled(void) { return false; }
2223static inline bool page_is_guard(struct page *page) { return false; }
2224#endif /* CONFIG_DEBUG_PAGEALLOC */
2225
2226#if MAX_NUMNODES > 1
2227void __init setup_nr_node_ids(void);
2228#else
2229static inline void setup_nr_node_ids(void) {}
2230#endif
2231
2232#endif /* __KERNEL__ */
2233#endif /* _LINUX_MM_H */
2234