1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Definitions for the Interfaces handler.
7 *
8 * Version:	@(#)dev.h	1.0.10	08/12/93
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13 *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 *		Bjorn Ekwall. <bj0rn@blox.se>
16 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 *		This program is free software; you can redistribute it and/or
19 *		modify it under the terms of the GNU General Public License
20 *		as published by the Free Software Foundation; either version
21 *		2 of the License, or (at your option) any later version.
22 *
23 *		Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/timer.h>
29#include <linux/bug.h>
30#include <linux/delay.h>
31#include <linux/atomic.h>
32#include <linux/prefetch.h>
33#include <asm/cache.h>
34#include <asm/byteorder.h>
35
36#include <linux/percpu.h>
37#include <linux/rculist.h>
38#include <linux/dmaengine.h>
39#include <linux/workqueue.h>
40#include <linux/dynamic_queue_limits.h>
41
42#include <linux/ethtool.h>
43#include <net/net_namespace.h>
44#include <net/dsa.h>
45#ifdef CONFIG_DCB
46#include <net/dcbnl.h>
47#endif
48#include <net/netprio_cgroup.h>
49
50#include <linux/netdev_features.h>
51#include <linux/neighbour.h>
52#include <uapi/linux/netdevice.h>
53#include <uapi/linux/if_bonding.h>
54
55struct netpoll_info;
56struct device;
57struct phy_device;
58/* 802.11 specific */
59struct wireless_dev;
60/* 802.15.4 specific */
61struct wpan_dev;
62struct mpls_dev;
63
64void netdev_set_default_ethtool_ops(struct net_device *dev,
65				    const struct ethtool_ops *ops);
66
67/* Backlog congestion levels */
68#define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69#define NET_RX_DROP		1	/* packet dropped */
70
71/*
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
74 *
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
78 *
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
86 */
87
88/* qdisc ->enqueue() return codes. */
89#define NET_XMIT_SUCCESS	0x00
90#define NET_XMIT_DROP		0x01	/* skb dropped			*/
91#define NET_XMIT_CN		0x02	/* congestion notification	*/
92#define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93#define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94
95/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98#define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99#define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100
101/* Driver transmit return codes */
102#define NETDEV_TX_MASK		0xf0
103
104enum netdev_tx {
105	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109};
110typedef enum netdev_tx netdev_tx_t;
111
112/*
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115 */
116static inline bool dev_xmit_complete(int rc)
117{
118	/*
119	 * Positive cases with an skb consumed by a driver:
120	 * - successful transmission (rc == NETDEV_TX_OK)
121	 * - error while transmitting (rc < 0)
122	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123	 */
124	if (likely(rc < NET_XMIT_MASK))
125		return true;
126
127	return false;
128}
129
130/*
131 *	Compute the worst case header length according to the protocols
132 *	used.
133 */
134
135#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136# if defined(CONFIG_MAC80211_MESH)
137#  define LL_MAX_HEADER 128
138# else
139#  define LL_MAX_HEADER 96
140# endif
141#else
142# define LL_MAX_HEADER 32
143#endif
144
145#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147#define MAX_HEADER LL_MAX_HEADER
148#else
149#define MAX_HEADER (LL_MAX_HEADER + 48)
150#endif
151
152/*
153 *	Old network device statistics. Fields are native words
154 *	(unsigned long) so they can be read and written atomically.
155 */
156
157struct net_device_stats {
158	unsigned long	rx_packets;
159	unsigned long	tx_packets;
160	unsigned long	rx_bytes;
161	unsigned long	tx_bytes;
162	unsigned long	rx_errors;
163	unsigned long	tx_errors;
164	unsigned long	rx_dropped;
165	unsigned long	tx_dropped;
166	unsigned long	multicast;
167	unsigned long	collisions;
168	unsigned long	rx_length_errors;
169	unsigned long	rx_over_errors;
170	unsigned long	rx_crc_errors;
171	unsigned long	rx_frame_errors;
172	unsigned long	rx_fifo_errors;
173	unsigned long	rx_missed_errors;
174	unsigned long	tx_aborted_errors;
175	unsigned long	tx_carrier_errors;
176	unsigned long	tx_fifo_errors;
177	unsigned long	tx_heartbeat_errors;
178	unsigned long	tx_window_errors;
179	unsigned long	rx_compressed;
180	unsigned long	tx_compressed;
181};
182
183
184#include <linux/cache.h>
185#include <linux/skbuff.h>
186
187#ifdef CONFIG_RPS
188#include <linux/static_key.h>
189extern struct static_key rps_needed;
190#endif
191
192struct neighbour;
193struct neigh_parms;
194struct sk_buff;
195
196struct netdev_hw_addr {
197	struct list_head	list;
198	unsigned char		addr[MAX_ADDR_LEN];
199	unsigned char		type;
200#define NETDEV_HW_ADDR_T_LAN		1
201#define NETDEV_HW_ADDR_T_SAN		2
202#define NETDEV_HW_ADDR_T_SLAVE		3
203#define NETDEV_HW_ADDR_T_UNICAST	4
204#define NETDEV_HW_ADDR_T_MULTICAST	5
205	bool			global_use;
206	int			sync_cnt;
207	int			refcount;
208	int			synced;
209	struct rcu_head		rcu_head;
210};
211
212struct netdev_hw_addr_list {
213	struct list_head	list;
214	int			count;
215};
216
217#define netdev_hw_addr_list_count(l) ((l)->count)
218#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219#define netdev_hw_addr_list_for_each(ha, l) \
220	list_for_each_entry(ha, &(l)->list, list)
221
222#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224#define netdev_for_each_uc_addr(ha, dev) \
225	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226
227#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229#define netdev_for_each_mc_addr(ha, dev) \
230	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231
232struct hh_cache {
233	u16		hh_len;
234	u16		__pad;
235	seqlock_t	hh_lock;
236
237	/* cached hardware header; allow for machine alignment needs.        */
238#define HH_DATA_MOD	16
239#define HH_DATA_OFF(__len) \
240	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241#define HH_DATA_ALIGN(__len) \
242	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244};
245
246/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247 * Alternative is:
248 *   dev->hard_header_len ? (dev->hard_header_len +
249 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250 *
251 * We could use other alignment values, but we must maintain the
252 * relationship HH alignment <= LL alignment.
253 */
254#define LL_RESERVED_SPACE(dev) \
255	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258
259struct header_ops {
260	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261			   unsigned short type, const void *daddr,
262			   const void *saddr, unsigned int len);
263	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265	void	(*cache_update)(struct hh_cache *hh,
266				const struct net_device *dev,
267				const unsigned char *haddr);
268};
269
270/* These flag bits are private to the generic network queueing
271 * layer, they may not be explicitly referenced by any other
272 * code.
273 */
274
275enum netdev_state_t {
276	__LINK_STATE_START,
277	__LINK_STATE_PRESENT,
278	__LINK_STATE_NOCARRIER,
279	__LINK_STATE_LINKWATCH_PENDING,
280	__LINK_STATE_DORMANT,
281};
282
283
284/*
285 * This structure holds at boot time configured netdevice settings. They
286 * are then used in the device probing.
287 */
288struct netdev_boot_setup {
289	char name[IFNAMSIZ];
290	struct ifmap map;
291};
292#define NETDEV_BOOT_SETUP_MAX 8
293
294int __init netdev_boot_setup(char *str);
295
296/*
297 * Structure for NAPI scheduling similar to tasklet but with weighting
298 */
299struct napi_struct {
300	/* The poll_list must only be managed by the entity which
301	 * changes the state of the NAPI_STATE_SCHED bit.  This means
302	 * whoever atomically sets that bit can add this napi_struct
303	 * to the per-cpu poll_list, and whoever clears that bit
304	 * can remove from the list right before clearing the bit.
305	 */
306	struct list_head	poll_list;
307
308	unsigned long		state;
309	int			weight;
310	unsigned int		gro_count;
311	int			(*poll)(struct napi_struct *, int);
312#ifdef CONFIG_NETPOLL
313	spinlock_t		poll_lock;
314	int			poll_owner;
315#endif
316	struct net_device	*dev;
317	struct sk_buff		*gro_list;
318	struct sk_buff		*skb;
319	struct hrtimer		timer;
320	struct list_head	dev_list;
321	struct hlist_node	napi_hash_node;
322	unsigned int		napi_id;
323};
324
325enum {
326	NAPI_STATE_SCHED,	/* Poll is scheduled */
327	NAPI_STATE_DISABLE,	/* Disable pending */
328	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329	NAPI_STATE_HASHED,	/* In NAPI hash */
330};
331
332enum gro_result {
333	GRO_MERGED,
334	GRO_MERGED_FREE,
335	GRO_HELD,
336	GRO_NORMAL,
337	GRO_DROP,
338};
339typedef enum gro_result gro_result_t;
340
341/*
342 * enum rx_handler_result - Possible return values for rx_handlers.
343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344 * further.
345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346 * case skb->dev was changed by rx_handler.
347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349 *
350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
351 * special processing of the skb, prior to delivery to protocol handlers.
352 *
353 * Currently, a net_device can only have a single rx_handler registered. Trying
354 * to register a second rx_handler will return -EBUSY.
355 *
356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357 * To unregister a rx_handler on a net_device, use
358 * netdev_rx_handler_unregister().
359 *
360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361 * do with the skb.
362 *
363 * If the rx_handler consumed to skb in some way, it should return
364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365 * the skb to be delivered in some other ways.
366 *
367 * If the rx_handler changed skb->dev, to divert the skb to another
368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369 * new device will be called if it exists.
370 *
371 * If the rx_handler consider the skb should be ignored, it should return
372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373 * are registered on exact device (ptype->dev == skb->dev).
374 *
375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376 * delivered, it should return RX_HANDLER_PASS.
377 *
378 * A device without a registered rx_handler will behave as if rx_handler
379 * returned RX_HANDLER_PASS.
380 */
381
382enum rx_handler_result {
383	RX_HANDLER_CONSUMED,
384	RX_HANDLER_ANOTHER,
385	RX_HANDLER_EXACT,
386	RX_HANDLER_PASS,
387};
388typedef enum rx_handler_result rx_handler_result_t;
389typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390
391void __napi_schedule(struct napi_struct *n);
392void __napi_schedule_irqoff(struct napi_struct *n);
393
394static inline bool napi_disable_pending(struct napi_struct *n)
395{
396	return test_bit(NAPI_STATE_DISABLE, &n->state);
397}
398
399/**
400 *	napi_schedule_prep - check if napi can be scheduled
401 *	@n: napi context
402 *
403 * Test if NAPI routine is already running, and if not mark
404 * it as running.  This is used as a condition variable
405 * insure only one NAPI poll instance runs.  We also make
406 * sure there is no pending NAPI disable.
407 */
408static inline bool napi_schedule_prep(struct napi_struct *n)
409{
410	return !napi_disable_pending(n) &&
411		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412}
413
414/**
415 *	napi_schedule - schedule NAPI poll
416 *	@n: napi context
417 *
418 * Schedule NAPI poll routine to be called if it is not already
419 * running.
420 */
421static inline void napi_schedule(struct napi_struct *n)
422{
423	if (napi_schedule_prep(n))
424		__napi_schedule(n);
425}
426
427/**
428 *	napi_schedule_irqoff - schedule NAPI poll
429 *	@n: napi context
430 *
431 * Variant of napi_schedule(), assuming hard irqs are masked.
432 */
433static inline void napi_schedule_irqoff(struct napi_struct *n)
434{
435	if (napi_schedule_prep(n))
436		__napi_schedule_irqoff(n);
437}
438
439/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440static inline bool napi_reschedule(struct napi_struct *napi)
441{
442	if (napi_schedule_prep(napi)) {
443		__napi_schedule(napi);
444		return true;
445	}
446	return false;
447}
448
449void __napi_complete(struct napi_struct *n);
450void napi_complete_done(struct napi_struct *n, int work_done);
451/**
452 *	napi_complete - NAPI processing complete
453 *	@n: napi context
454 *
455 * Mark NAPI processing as complete.
456 * Consider using napi_complete_done() instead.
457 */
458static inline void napi_complete(struct napi_struct *n)
459{
460	return napi_complete_done(n, 0);
461}
462
463/**
464 *	napi_by_id - lookup a NAPI by napi_id
465 *	@napi_id: hashed napi_id
466 *
467 * lookup @napi_id in napi_hash table
468 * must be called under rcu_read_lock()
469 */
470struct napi_struct *napi_by_id(unsigned int napi_id);
471
472/**
473 *	napi_hash_add - add a NAPI to global hashtable
474 *	@napi: napi context
475 *
476 * generate a new napi_id and store a @napi under it in napi_hash
477 */
478void napi_hash_add(struct napi_struct *napi);
479
480/**
481 *	napi_hash_del - remove a NAPI from global table
482 *	@napi: napi context
483 *
484 * Warning: caller must observe rcu grace period
485 * before freeing memory containing @napi
486 */
487void napi_hash_del(struct napi_struct *napi);
488
489/**
490 *	napi_disable - prevent NAPI from scheduling
491 *	@n: napi context
492 *
493 * Stop NAPI from being scheduled on this context.
494 * Waits till any outstanding processing completes.
495 */
496void napi_disable(struct napi_struct *n);
497
498/**
499 *	napi_enable - enable NAPI scheduling
500 *	@n: napi context
501 *
502 * Resume NAPI from being scheduled on this context.
503 * Must be paired with napi_disable.
504 */
505static inline void napi_enable(struct napi_struct *n)
506{
507	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508	smp_mb__before_atomic();
509	clear_bit(NAPI_STATE_SCHED, &n->state);
510}
511
512#ifdef CONFIG_SMP
513/**
514 *	napi_synchronize - wait until NAPI is not running
515 *	@n: napi context
516 *
517 * Wait until NAPI is done being scheduled on this context.
518 * Waits till any outstanding processing completes but
519 * does not disable future activations.
520 */
521static inline void napi_synchronize(const struct napi_struct *n)
522{
523	while (test_bit(NAPI_STATE_SCHED, &n->state))
524		msleep(1);
525}
526#else
527# define napi_synchronize(n)	barrier()
528#endif
529
530enum netdev_queue_state_t {
531	__QUEUE_STATE_DRV_XOFF,
532	__QUEUE_STATE_STACK_XOFF,
533	__QUEUE_STATE_FROZEN,
534};
535
536#define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
537#define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
538#define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
539
540#define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542					QUEUE_STATE_FROZEN)
543#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544					QUEUE_STATE_FROZEN)
545
546/*
547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
548 * netif_tx_* functions below are used to manipulate this flag.  The
549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550 * queue independently.  The netif_xmit_*stopped functions below are called
551 * to check if the queue has been stopped by the driver or stack (either
552 * of the XOFF bits are set in the state).  Drivers should not need to call
553 * netif_xmit*stopped functions, they should only be using netif_tx_*.
554 */
555
556struct netdev_queue {
557/*
558 * read mostly part
559 */
560	struct net_device	*dev;
561	struct Qdisc __rcu	*qdisc;
562	struct Qdisc		*qdisc_sleeping;
563#ifdef CONFIG_SYSFS
564	struct kobject		kobj;
565#endif
566#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567	int			numa_node;
568#endif
569/*
570 * write mostly part
571 */
572	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
573	int			xmit_lock_owner;
574	/*
575	 * please use this field instead of dev->trans_start
576	 */
577	unsigned long		trans_start;
578
579	/*
580	 * Number of TX timeouts for this queue
581	 * (/sys/class/net/DEV/Q/trans_timeout)
582	 */
583	unsigned long		trans_timeout;
584
585	unsigned long		state;
586
587#ifdef CONFIG_BQL
588	struct dql		dql;
589#endif
590	unsigned long		tx_maxrate;
591} ____cacheline_aligned_in_smp;
592
593static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
594{
595#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596	return q->numa_node;
597#else
598	return NUMA_NO_NODE;
599#endif
600}
601
602static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
603{
604#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605	q->numa_node = node;
606#endif
607}
608
609#ifdef CONFIG_RPS
610/*
611 * This structure holds an RPS map which can be of variable length.  The
612 * map is an array of CPUs.
613 */
614struct rps_map {
615	unsigned int len;
616	struct rcu_head rcu;
617	u16 cpus[0];
618};
619#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
620
621/*
622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623 * tail pointer for that CPU's input queue at the time of last enqueue, and
624 * a hardware filter index.
625 */
626struct rps_dev_flow {
627	u16 cpu;
628	u16 filter;
629	unsigned int last_qtail;
630};
631#define RPS_NO_FILTER 0xffff
632
633/*
634 * The rps_dev_flow_table structure contains a table of flow mappings.
635 */
636struct rps_dev_flow_table {
637	unsigned int mask;
638	struct rcu_head rcu;
639	struct rps_dev_flow flows[0];
640};
641#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642    ((_num) * sizeof(struct rps_dev_flow)))
643
644/*
645 * The rps_sock_flow_table contains mappings of flows to the last CPU
646 * on which they were processed by the application (set in recvmsg).
647 * Each entry is a 32bit value. Upper part is the high order bits
648 * of flow hash, lower part is cpu number.
649 * rps_cpu_mask is used to partition the space, depending on number of
650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652 * meaning we use 32-6=26 bits for the hash.
653 */
654struct rps_sock_flow_table {
655	u32	mask;
656
657	u32	ents[0] ____cacheline_aligned_in_smp;
658};
659#define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
660
661#define RPS_NO_CPU 0xffff
662
663extern u32 rps_cpu_mask;
664extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665
666static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667					u32 hash)
668{
669	if (table && hash) {
670		unsigned int index = hash & table->mask;
671		u32 val = hash & ~rps_cpu_mask;
672
673		/* We only give a hint, preemption can change cpu under us */
674		val |= raw_smp_processor_id();
675
676		if (table->ents[index] != val)
677			table->ents[index] = val;
678	}
679}
680
681#ifdef CONFIG_RFS_ACCEL
682bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683			 u16 filter_id);
684#endif
685#endif /* CONFIG_RPS */
686
687/* This structure contains an instance of an RX queue. */
688struct netdev_rx_queue {
689#ifdef CONFIG_RPS
690	struct rps_map __rcu		*rps_map;
691	struct rps_dev_flow_table __rcu	*rps_flow_table;
692#endif
693	struct kobject			kobj;
694	struct net_device		*dev;
695} ____cacheline_aligned_in_smp;
696
697/*
698 * RX queue sysfs structures and functions.
699 */
700struct rx_queue_attribute {
701	struct attribute attr;
702	ssize_t (*show)(struct netdev_rx_queue *queue,
703	    struct rx_queue_attribute *attr, char *buf);
704	ssize_t (*store)(struct netdev_rx_queue *queue,
705	    struct rx_queue_attribute *attr, const char *buf, size_t len);
706};
707
708#ifdef CONFIG_XPS
709/*
710 * This structure holds an XPS map which can be of variable length.  The
711 * map is an array of queues.
712 */
713struct xps_map {
714	unsigned int len;
715	unsigned int alloc_len;
716	struct rcu_head rcu;
717	u16 queues[0];
718};
719#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
721    / sizeof(u16))
722
723/*
724 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
725 */
726struct xps_dev_maps {
727	struct rcu_head rcu;
728	struct xps_map __rcu *cpu_map[0];
729};
730#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
731    (nr_cpu_ids * sizeof(struct xps_map *)))
732#endif /* CONFIG_XPS */
733
734#define TC_MAX_QUEUE	16
735#define TC_BITMASK	15
736/* HW offloaded queuing disciplines txq count and offset maps */
737struct netdev_tc_txq {
738	u16 count;
739	u16 offset;
740};
741
742#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
743/*
744 * This structure is to hold information about the device
745 * configured to run FCoE protocol stack.
746 */
747struct netdev_fcoe_hbainfo {
748	char	manufacturer[64];
749	char	serial_number[64];
750	char	hardware_version[64];
751	char	driver_version[64];
752	char	optionrom_version[64];
753	char	firmware_version[64];
754	char	model[256];
755	char	model_description[256];
756};
757#endif
758
759#define MAX_PHYS_ITEM_ID_LEN 32
760
761/* This structure holds a unique identifier to identify some
762 * physical item (port for example) used by a netdevice.
763 */
764struct netdev_phys_item_id {
765	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766	unsigned char id_len;
767};
768
769typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770				       struct sk_buff *skb);
771
772/*
773 * This structure defines the management hooks for network devices.
774 * The following hooks can be defined; unless noted otherwise, they are
775 * optional and can be filled with a null pointer.
776 *
777 * int (*ndo_init)(struct net_device *dev);
778 *     This function is called once when network device is registered.
779 *     The network device can use this to any late stage initializaton
780 *     or semantic validattion. It can fail with an error code which will
781 *     be propogated back to register_netdev
782 *
783 * void (*ndo_uninit)(struct net_device *dev);
784 *     This function is called when device is unregistered or when registration
785 *     fails. It is not called if init fails.
786 *
787 * int (*ndo_open)(struct net_device *dev);
788 *     This function is called when network device transistions to the up
789 *     state.
790 *
791 * int (*ndo_stop)(struct net_device *dev);
792 *     This function is called when network device transistions to the down
793 *     state.
794 *
795 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
796 *                               struct net_device *dev);
797 *	Called when a packet needs to be transmitted.
798 *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
799 *	the queue before that can happen; it's for obsolete devices and weird
800 *	corner cases, but the stack really does a non-trivial amount
801 *	of useless work if you return NETDEV_TX_BUSY.
802 *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
803 *	Required can not be NULL.
804 *
805 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
806 *                         void *accel_priv, select_queue_fallback_t fallback);
807 *	Called to decide which queue to when device supports multiple
808 *	transmit queues.
809 *
810 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
811 *	This function is called to allow device receiver to make
812 *	changes to configuration when multicast or promiscious is enabled.
813 *
814 * void (*ndo_set_rx_mode)(struct net_device *dev);
815 *	This function is called device changes address list filtering.
816 *	If driver handles unicast address filtering, it should set
817 *	IFF_UNICAST_FLT to its priv_flags.
818 *
819 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
820 *	This function  is called when the Media Access Control address
821 *	needs to be changed. If this interface is not defined, the
822 *	mac address can not be changed.
823 *
824 * int (*ndo_validate_addr)(struct net_device *dev);
825 *	Test if Media Access Control address is valid for the device.
826 *
827 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
828 *	Called when a user request an ioctl which can't be handled by
829 *	the generic interface code. If not defined ioctl's return
830 *	not supported error code.
831 *
832 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
833 *	Used to set network devices bus interface parameters. This interface
834 *	is retained for legacy reason, new devices should use the bus
835 *	interface (PCI) for low level management.
836 *
837 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
838 *	Called when a user wants to change the Maximum Transfer Unit
839 *	of a device. If not defined, any request to change MTU will
840 *	will return an error.
841 *
842 * void (*ndo_tx_timeout)(struct net_device *dev);
843 *	Callback uses when the transmitter has not made any progress
844 *	for dev->watchdog ticks.
845 *
846 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
847 *                      struct rtnl_link_stats64 *storage);
848 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
849 *	Called when a user wants to get the network device usage
850 *	statistics. Drivers must do one of the following:
851 *	1. Define @ndo_get_stats64 to fill in a zero-initialised
852 *	   rtnl_link_stats64 structure passed by the caller.
853 *	2. Define @ndo_get_stats to update a net_device_stats structure
854 *	   (which should normally be dev->stats) and return a pointer to
855 *	   it. The structure may be changed asynchronously only if each
856 *	   field is written atomically.
857 *	3. Update dev->stats asynchronously and atomically, and define
858 *	   neither operation.
859 *
860 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
861 *	If device support VLAN filtering this function is called when a
862 *	VLAN id is registered.
863 *
864 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
865 *	If device support VLAN filtering this function is called when a
866 *	VLAN id is unregistered.
867 *
868 * void (*ndo_poll_controller)(struct net_device *dev);
869 *
870 *	SR-IOV management functions.
871 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
872 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
873 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
874 *			  int max_tx_rate);
875 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
876 * int (*ndo_get_vf_config)(struct net_device *dev,
877 *			    int vf, struct ifla_vf_info *ivf);
878 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
879 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
880 *			  struct nlattr *port[]);
881 *
882 *      Enable or disable the VF ability to query its RSS Redirection Table and
883 *      Hash Key. This is needed since on some devices VF share this information
884 *      with PF and querying it may adduce a theoretical security risk.
885 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
886 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
887 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
888 * 	Called to setup 'tc' number of traffic classes in the net device. This
889 * 	is always called from the stack with the rtnl lock held and netif tx
890 * 	queues stopped. This allows the netdevice to perform queue management
891 * 	safely.
892 *
893 *	Fiber Channel over Ethernet (FCoE) offload functions.
894 * int (*ndo_fcoe_enable)(struct net_device *dev);
895 *	Called when the FCoE protocol stack wants to start using LLD for FCoE
896 *	so the underlying device can perform whatever needed configuration or
897 *	initialization to support acceleration of FCoE traffic.
898 *
899 * int (*ndo_fcoe_disable)(struct net_device *dev);
900 *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
901 *	so the underlying device can perform whatever needed clean-ups to
902 *	stop supporting acceleration of FCoE traffic.
903 *
904 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
905 *			     struct scatterlist *sgl, unsigned int sgc);
906 *	Called when the FCoE Initiator wants to initialize an I/O that
907 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
908 *	perform necessary setup and returns 1 to indicate the device is set up
909 *	successfully to perform DDP on this I/O, otherwise this returns 0.
910 *
911 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
912 *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
913 *	indicated by the FC exchange id 'xid', so the underlying device can
914 *	clean up and reuse resources for later DDP requests.
915 *
916 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
917 *			      struct scatterlist *sgl, unsigned int sgc);
918 *	Called when the FCoE Target wants to initialize an I/O that
919 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
920 *	perform necessary setup and returns 1 to indicate the device is set up
921 *	successfully to perform DDP on this I/O, otherwise this returns 0.
922 *
923 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
924 *			       struct netdev_fcoe_hbainfo *hbainfo);
925 *	Called when the FCoE Protocol stack wants information on the underlying
926 *	device. This information is utilized by the FCoE protocol stack to
927 *	register attributes with Fiber Channel management service as per the
928 *	FC-GS Fabric Device Management Information(FDMI) specification.
929 *
930 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
931 *	Called when the underlying device wants to override default World Wide
932 *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
933 *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
934 *	protocol stack to use.
935 *
936 *	RFS acceleration.
937 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
938 *			    u16 rxq_index, u32 flow_id);
939 *	Set hardware filter for RFS.  rxq_index is the target queue index;
940 *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
941 *	Return the filter ID on success, or a negative error code.
942 *
943 *	Slave management functions (for bridge, bonding, etc).
944 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
945 *	Called to make another netdev an underling.
946 *
947 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
948 *	Called to release previously enslaved netdev.
949 *
950 *      Feature/offload setting functions.
951 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
952 *		netdev_features_t features);
953 *	Adjusts the requested feature flags according to device-specific
954 *	constraints, and returns the resulting flags. Must not modify
955 *	the device state.
956 *
957 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
958 *	Called to update device configuration to new features. Passed
959 *	feature set might be less than what was returned by ndo_fix_features()).
960 *	Must return >0 or -errno if it changed dev->features itself.
961 *
962 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
963 *		      struct net_device *dev,
964 *		      const unsigned char *addr, u16 vid, u16 flags)
965 *	Adds an FDB entry to dev for addr.
966 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
967 *		      struct net_device *dev,
968 *		      const unsigned char *addr, u16 vid)
969 *	Deletes the FDB entry from dev coresponding to addr.
970 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
971 *		       struct net_device *dev, struct net_device *filter_dev,
972 *		       int idx)
973 *	Used to add FDB entries to dump requests. Implementers should add
974 *	entries to skb and update idx with the number of entries.
975 *
976 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
977 *			     u16 flags)
978 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
979 *			     struct net_device *dev, u32 filter_mask,
980 *			     int nlflags)
981 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
982 *			     u16 flags);
983 *
984 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
985 *	Called to change device carrier. Soft-devices (like dummy, team, etc)
986 *	which do not represent real hardware may define this to allow their
987 *	userspace components to manage their virtual carrier state. Devices
988 *	that determine carrier state from physical hardware properties (eg
989 *	network cables) or protocol-dependent mechanisms (eg
990 *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
991 *
992 * int (*ndo_get_phys_port_id)(struct net_device *dev,
993 *			       struct netdev_phys_item_id *ppid);
994 *	Called to get ID of physical port of this device. If driver does
995 *	not implement this, it is assumed that the hw is not able to have
996 *	multiple net devices on single physical port.
997 *
998 * void (*ndo_add_vxlan_port)(struct  net_device *dev,
999 *			      sa_family_t sa_family, __be16 port);
1000 *	Called by vxlan to notiy a driver about the UDP port and socket
1001 *	address family that vxlan is listnening to. It is called only when
1002 *	a new port starts listening. The operation is protected by the
1003 *	vxlan_net->sock_lock.
1004 *
1005 * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1006 *			      sa_family_t sa_family, __be16 port);
1007 *	Called by vxlan to notify the driver about a UDP port and socket
1008 *	address family that vxlan is not listening to anymore. The operation
1009 *	is protected by the vxlan_net->sock_lock.
1010 *
1011 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1012 *				 struct net_device *dev)
1013 *	Called by upper layer devices to accelerate switching or other
1014 *	station functionality into hardware. 'pdev is the lowerdev
1015 *	to use for the offload and 'dev' is the net device that will
1016 *	back the offload. Returns a pointer to the private structure
1017 *	the upper layer will maintain.
1018 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1019 *	Called by upper layer device to delete the station created
1020 *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1021 *	the station and priv is the structure returned by the add
1022 *	operation.
1023 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1024 *				      struct net_device *dev,
1025 *				      void *priv);
1026 *	Callback to use for xmit over the accelerated station. This
1027 *	is used in place of ndo_start_xmit on accelerated net
1028 *	devices.
1029 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1030 *					    struct net_device *dev
1031 *					    netdev_features_t features);
1032 *	Called by core transmit path to determine if device is capable of
1033 *	performing offload operations on a given packet. This is to give
1034 *	the device an opportunity to implement any restrictions that cannot
1035 *	be otherwise expressed by feature flags. The check is called with
1036 *	the set of features that the stack has calculated and it returns
1037 *	those the driver believes to be appropriate.
1038 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1039 *			     int queue_index, u32 maxrate);
1040 *	Called when a user wants to set a max-rate limitation of specific
1041 *	TX queue.
1042 * int (*ndo_get_iflink)(const struct net_device *dev);
1043 *	Called to get the iflink value of this device.
1044 */
1045struct net_device_ops {
1046	int			(*ndo_init)(struct net_device *dev);
1047	void			(*ndo_uninit)(struct net_device *dev);
1048	int			(*ndo_open)(struct net_device *dev);
1049	int			(*ndo_stop)(struct net_device *dev);
1050	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1051						   struct net_device *dev);
1052	u16			(*ndo_select_queue)(struct net_device *dev,
1053						    struct sk_buff *skb,
1054						    void *accel_priv,
1055						    select_queue_fallback_t fallback);
1056	void			(*ndo_change_rx_flags)(struct net_device *dev,
1057						       int flags);
1058	void			(*ndo_set_rx_mode)(struct net_device *dev);
1059	int			(*ndo_set_mac_address)(struct net_device *dev,
1060						       void *addr);
1061	int			(*ndo_validate_addr)(struct net_device *dev);
1062	int			(*ndo_do_ioctl)(struct net_device *dev,
1063					        struct ifreq *ifr, int cmd);
1064	int			(*ndo_set_config)(struct net_device *dev,
1065					          struct ifmap *map);
1066	int			(*ndo_change_mtu)(struct net_device *dev,
1067						  int new_mtu);
1068	int			(*ndo_neigh_setup)(struct net_device *dev,
1069						   struct neigh_parms *);
1070	void			(*ndo_tx_timeout) (struct net_device *dev);
1071
1072	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1073						     struct rtnl_link_stats64 *storage);
1074	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1075
1076	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1077						       __be16 proto, u16 vid);
1078	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1079						        __be16 proto, u16 vid);
1080#ifdef CONFIG_NET_POLL_CONTROLLER
1081	void                    (*ndo_poll_controller)(struct net_device *dev);
1082	int			(*ndo_netpoll_setup)(struct net_device *dev,
1083						     struct netpoll_info *info);
1084	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1085#endif
1086#ifdef CONFIG_NET_RX_BUSY_POLL
1087	int			(*ndo_busy_poll)(struct napi_struct *dev);
1088#endif
1089	int			(*ndo_set_vf_mac)(struct net_device *dev,
1090						  int queue, u8 *mac);
1091	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1092						   int queue, u16 vlan, u8 qos);
1093	int			(*ndo_set_vf_rate)(struct net_device *dev,
1094						   int vf, int min_tx_rate,
1095						   int max_tx_rate);
1096	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1097						       int vf, bool setting);
1098	int			(*ndo_get_vf_config)(struct net_device *dev,
1099						     int vf,
1100						     struct ifla_vf_info *ivf);
1101	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1102							 int vf, int link_state);
1103	int			(*ndo_set_vf_port)(struct net_device *dev,
1104						   int vf,
1105						   struct nlattr *port[]);
1106	int			(*ndo_get_vf_port)(struct net_device *dev,
1107						   int vf, struct sk_buff *skb);
1108	int			(*ndo_set_vf_rss_query_en)(
1109						   struct net_device *dev,
1110						   int vf, bool setting);
1111	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1112#if IS_ENABLED(CONFIG_FCOE)
1113	int			(*ndo_fcoe_enable)(struct net_device *dev);
1114	int			(*ndo_fcoe_disable)(struct net_device *dev);
1115	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1116						      u16 xid,
1117						      struct scatterlist *sgl,
1118						      unsigned int sgc);
1119	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1120						     u16 xid);
1121	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1122						       u16 xid,
1123						       struct scatterlist *sgl,
1124						       unsigned int sgc);
1125	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1126							struct netdev_fcoe_hbainfo *hbainfo);
1127#endif
1128
1129#if IS_ENABLED(CONFIG_LIBFCOE)
1130#define NETDEV_FCOE_WWNN 0
1131#define NETDEV_FCOE_WWPN 1
1132	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1133						    u64 *wwn, int type);
1134#endif
1135
1136#ifdef CONFIG_RFS_ACCEL
1137	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1138						     const struct sk_buff *skb,
1139						     u16 rxq_index,
1140						     u32 flow_id);
1141#endif
1142	int			(*ndo_add_slave)(struct net_device *dev,
1143						 struct net_device *slave_dev);
1144	int			(*ndo_del_slave)(struct net_device *dev,
1145						 struct net_device *slave_dev);
1146	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1147						    netdev_features_t features);
1148	int			(*ndo_set_features)(struct net_device *dev,
1149						    netdev_features_t features);
1150	int			(*ndo_neigh_construct)(struct neighbour *n);
1151	void			(*ndo_neigh_destroy)(struct neighbour *n);
1152
1153	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1154					       struct nlattr *tb[],
1155					       struct net_device *dev,
1156					       const unsigned char *addr,
1157					       u16 vid,
1158					       u16 flags);
1159	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1160					       struct nlattr *tb[],
1161					       struct net_device *dev,
1162					       const unsigned char *addr,
1163					       u16 vid);
1164	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1165						struct netlink_callback *cb,
1166						struct net_device *dev,
1167						struct net_device *filter_dev,
1168						int idx);
1169
1170	int			(*ndo_bridge_setlink)(struct net_device *dev,
1171						      struct nlmsghdr *nlh,
1172						      u16 flags);
1173	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1174						      u32 pid, u32 seq,
1175						      struct net_device *dev,
1176						      u32 filter_mask,
1177						      int nlflags);
1178	int			(*ndo_bridge_dellink)(struct net_device *dev,
1179						      struct nlmsghdr *nlh,
1180						      u16 flags);
1181	int			(*ndo_change_carrier)(struct net_device *dev,
1182						      bool new_carrier);
1183	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1184							struct netdev_phys_item_id *ppid);
1185	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1186							  char *name, size_t len);
1187	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1188						      sa_family_t sa_family,
1189						      __be16 port);
1190	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1191						      sa_family_t sa_family,
1192						      __be16 port);
1193
1194	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1195							struct net_device *dev);
1196	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1197							void *priv);
1198
1199	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1200							struct net_device *dev,
1201							void *priv);
1202	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1203	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1204						       struct net_device *dev,
1205						       netdev_features_t features);
1206	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1207						      int queue_index,
1208						      u32 maxrate);
1209	int			(*ndo_get_iflink)(const struct net_device *dev);
1210};
1211
1212/**
1213 * enum net_device_priv_flags - &struct net_device priv_flags
1214 *
1215 * These are the &struct net_device, they are only set internally
1216 * by drivers and used in the kernel. These flags are invisible to
1217 * userspace, this means that the order of these flags can change
1218 * during any kernel release.
1219 *
1220 * You should have a pretty good reason to be extending these flags.
1221 *
1222 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1223 * @IFF_EBRIDGE: Ethernet bridging device
1224 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1225 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1226 * @IFF_MASTER_ALB: bonding master, balance-alb
1227 * @IFF_BONDING: bonding master or slave
1228 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1229 * @IFF_ISATAP: ISATAP interface (RFC4214)
1230 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1231 * @IFF_WAN_HDLC: WAN HDLC device
1232 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1233 *	release skb->dst
1234 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1235 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1236 * @IFF_MACVLAN_PORT: device used as macvlan port
1237 * @IFF_BRIDGE_PORT: device used as bridge port
1238 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1239 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1240 * @IFF_UNICAST_FLT: Supports unicast filtering
1241 * @IFF_TEAM_PORT: device used as team port
1242 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1243 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1244 *	change when it's running
1245 * @IFF_MACVLAN: Macvlan device
1246 */
1247enum netdev_priv_flags {
1248	IFF_802_1Q_VLAN			= 1<<0,
1249	IFF_EBRIDGE			= 1<<1,
1250	IFF_SLAVE_INACTIVE		= 1<<2,
1251	IFF_MASTER_8023AD		= 1<<3,
1252	IFF_MASTER_ALB			= 1<<4,
1253	IFF_BONDING			= 1<<5,
1254	IFF_SLAVE_NEEDARP		= 1<<6,
1255	IFF_ISATAP			= 1<<7,
1256	IFF_MASTER_ARPMON		= 1<<8,
1257	IFF_WAN_HDLC			= 1<<9,
1258	IFF_XMIT_DST_RELEASE		= 1<<10,
1259	IFF_DONT_BRIDGE			= 1<<11,
1260	IFF_DISABLE_NETPOLL		= 1<<12,
1261	IFF_MACVLAN_PORT		= 1<<13,
1262	IFF_BRIDGE_PORT			= 1<<14,
1263	IFF_OVS_DATAPATH		= 1<<15,
1264	IFF_TX_SKB_SHARING		= 1<<16,
1265	IFF_UNICAST_FLT			= 1<<17,
1266	IFF_TEAM_PORT			= 1<<18,
1267	IFF_SUPP_NOFCS			= 1<<19,
1268	IFF_LIVE_ADDR_CHANGE		= 1<<20,
1269	IFF_MACVLAN			= 1<<21,
1270	IFF_XMIT_DST_RELEASE_PERM	= 1<<22,
1271	IFF_IPVLAN_MASTER		= 1<<23,
1272	IFF_IPVLAN_SLAVE		= 1<<24,
1273};
1274
1275#define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1276#define IFF_EBRIDGE			IFF_EBRIDGE
1277#define IFF_SLAVE_INACTIVE		IFF_SLAVE_INACTIVE
1278#define IFF_MASTER_8023AD		IFF_MASTER_8023AD
1279#define IFF_MASTER_ALB			IFF_MASTER_ALB
1280#define IFF_BONDING			IFF_BONDING
1281#define IFF_SLAVE_NEEDARP		IFF_SLAVE_NEEDARP
1282#define IFF_ISATAP			IFF_ISATAP
1283#define IFF_MASTER_ARPMON		IFF_MASTER_ARPMON
1284#define IFF_WAN_HDLC			IFF_WAN_HDLC
1285#define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1286#define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1287#define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1288#define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1289#define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1290#define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1291#define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1292#define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1293#define IFF_TEAM_PORT			IFF_TEAM_PORT
1294#define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1295#define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1296#define IFF_MACVLAN			IFF_MACVLAN
1297#define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1298#define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1299#define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1300
1301/**
1302 *	struct net_device - The DEVICE structure.
1303 *		Actually, this whole structure is a big mistake.  It mixes I/O
1304 *		data with strictly "high-level" data, and it has to know about
1305 *		almost every data structure used in the INET module.
1306 *
1307 *	@name:	This is the first field of the "visible" part of this structure
1308 *		(i.e. as seen by users in the "Space.c" file).  It is the name
1309 *	 	of the interface.
1310 *
1311 *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1312 *	@ifalias:	SNMP alias
1313 *	@mem_end:	Shared memory end
1314 *	@mem_start:	Shared memory start
1315 *	@base_addr:	Device I/O address
1316 *	@irq:		Device IRQ number
1317 *
1318 *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1319 *
1320 *	@state:		Generic network queuing layer state, see netdev_state_t
1321 *	@dev_list:	The global list of network devices
1322 *	@napi_list:	List entry, that is used for polling napi devices
1323 *	@unreg_list:	List entry, that is used, when we are unregistering the
1324 *			device, see the function unregister_netdev
1325 *	@close_list:	List entry, that is used, when we are closing the device
1326 *
1327 *	@adj_list:	Directly linked devices, like slaves for bonding
1328 *	@all_adj_list:	All linked devices, *including* neighbours
1329 *	@features:	Currently active device features
1330 *	@hw_features:	User-changeable features
1331 *
1332 *	@wanted_features:	User-requested features
1333 *	@vlan_features:		Mask of features inheritable by VLAN devices
1334 *
1335 *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1336 *				This field indicates what encapsulation
1337 *				offloads the hardware is capable of doing,
1338 *				and drivers will need to set them appropriately.
1339 *
1340 *	@mpls_features:	Mask of features inheritable by MPLS
1341 *
1342 *	@ifindex:	interface index
1343 *	@group:		The group, that the device belongs to
1344 *
1345 *	@stats:		Statistics struct, which was left as a legacy, use
1346 *			rtnl_link_stats64 instead
1347 *
1348 *	@rx_dropped:	Dropped packets by core network,
1349 *			do not use this in drivers
1350 *	@tx_dropped:	Dropped packets by core network,
1351 *			do not use this in drivers
1352 *
1353 *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1354 *				instead of ioctl,
1355 *				see <net/iw_handler.h> for details.
1356 *	@wireless_data:	Instance data managed by the core of wireless extensions
1357 *
1358 *	@netdev_ops:	Includes several pointers to callbacks,
1359 *			if one wants to override the ndo_*() functions
1360 *	@ethtool_ops:	Management operations
1361 *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1362 *			of Layer 2 headers.
1363 *
1364 *	@flags:		Interface flags (a la BSD)
1365 *	@priv_flags:	Like 'flags' but invisible to userspace,
1366 *			see if.h for the definitions
1367 *	@gflags:	Global flags ( kept as legacy )
1368 *	@padded:	How much padding added by alloc_netdev()
1369 *	@operstate:	RFC2863 operstate
1370 *	@link_mode:	Mapping policy to operstate
1371 *	@if_port:	Selectable AUI, TP, ...
1372 *	@dma:		DMA channel
1373 *	@mtu:		Interface MTU value
1374 *	@type:		Interface hardware type
1375 *	@hard_header_len: Hardware header length
1376 *
1377 *	@needed_headroom: Extra headroom the hardware may need, but not in all
1378 *			  cases can this be guaranteed
1379 *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1380 *			  cases can this be guaranteed. Some cases also use
1381 *			  LL_MAX_HEADER instead to allocate the skb
1382 *
1383 *	interface address info:
1384 *
1385 * 	@perm_addr:		Permanent hw address
1386 * 	@addr_assign_type:	Hw address assignment type
1387 * 	@addr_len:		Hardware address length
1388 * 	@neigh_priv_len;	Used in neigh_alloc(),
1389 * 				initialized only in atm/clip.c
1390 * 	@dev_id:		Used to differentiate devices that share
1391 * 				the same link layer address
1392 * 	@dev_port:		Used to differentiate devices that share
1393 * 				the same function
1394 *	@addr_list_lock:	XXX: need comments on this one
1395 *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1396 *				has been enabled due to the need to listen to
1397 *				additional unicast addresses in a device that
1398 *				does not implement ndo_set_rx_mode()
1399 *	@uc:			unicast mac addresses
1400 *	@mc:			multicast mac addresses
1401 *	@dev_addrs:		list of device hw addresses
1402 *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1403 *	@promiscuity:		Number of times, the NIC is told to work in
1404 *				Promiscuous mode, if it becomes 0 the NIC will
1405 *				exit from working in Promiscuous mode
1406 *	@allmulti:		Counter, enables or disables allmulticast mode
1407 *
1408 *	@vlan_info:	VLAN info
1409 *	@dsa_ptr:	dsa specific data
1410 *	@tipc_ptr:	TIPC specific data
1411 *	@atalk_ptr:	AppleTalk link
1412 *	@ip_ptr:	IPv4 specific data
1413 *	@dn_ptr:	DECnet specific data
1414 *	@ip6_ptr:	IPv6 specific data
1415 *	@ax25_ptr:	AX.25 specific data
1416 *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1417 *
1418 *	@last_rx:	Time of last Rx
1419 *	@dev_addr:	Hw address (before bcast,
1420 *			because most packets are unicast)
1421 *
1422 *	@_rx:			Array of RX queues
1423 *	@num_rx_queues:		Number of RX queues
1424 *				allocated at register_netdev() time
1425 *	@real_num_rx_queues: 	Number of RX queues currently active in device
1426 *
1427 *	@rx_handler:		handler for received packets
1428 *	@rx_handler_data: 	XXX: need comments on this one
1429 *	@ingress_queue:		XXX: need comments on this one
1430 *	@broadcast:		hw bcast address
1431 *
1432 *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1433 *			indexed by RX queue number. Assigned by driver.
1434 *			This must only be set if the ndo_rx_flow_steer
1435 *			operation is defined
1436 *	@index_hlist:		Device index hash chain
1437 *
1438 *	@_tx:			Array of TX queues
1439 *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1440 *	@real_num_tx_queues: 	Number of TX queues currently active in device
1441 *	@qdisc:			Root qdisc from userspace point of view
1442 *	@tx_queue_len:		Max frames per queue allowed
1443 *	@tx_global_lock: 	XXX: need comments on this one
1444 *
1445 *	@xps_maps:	XXX: need comments on this one
1446 *
1447 *	@trans_start:		Time (in jiffies) of last Tx
1448 *	@watchdog_timeo:	Represents the timeout that is used by
1449 *				the watchdog ( see dev_watchdog() )
1450 *	@watchdog_timer:	List of timers
1451 *
1452 *	@pcpu_refcnt:		Number of references to this device
1453 *	@todo_list:		Delayed register/unregister
1454 *	@link_watch_list:	XXX: need comments on this one
1455 *
1456 *	@reg_state:		Register/unregister state machine
1457 *	@dismantle:		Device is going to be freed
1458 *	@rtnl_link_state:	This enum represents the phases of creating
1459 *				a new link
1460 *
1461 *	@destructor:		Called from unregister,
1462 *				can be used to call free_netdev
1463 *	@npinfo:		XXX: need comments on this one
1464 * 	@nd_net:		Network namespace this network device is inside
1465 *
1466 * 	@ml_priv:	Mid-layer private
1467 * 	@lstats:	Loopback statistics
1468 * 	@tstats:	Tunnel statistics
1469 * 	@dstats:	Dummy statistics
1470 * 	@vstats:	Virtual ethernet statistics
1471 *
1472 *	@garp_port:	GARP
1473 *	@mrp_port:	MRP
1474 *
1475 *	@dev:		Class/net/name entry
1476 *	@sysfs_groups:	Space for optional device, statistics and wireless
1477 *			sysfs groups
1478 *
1479 *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1480 *	@rtnl_link_ops:	Rtnl_link_ops
1481 *
1482 *	@gso_max_size:	Maximum size of generic segmentation offload
1483 *	@gso_max_segs:	Maximum number of segments that can be passed to the
1484 *			NIC for GSO
1485 *	@gso_min_segs:	Minimum number of segments that can be passed to the
1486 *			NIC for GSO
1487 *
1488 *	@dcbnl_ops:	Data Center Bridging netlink ops
1489 *	@num_tc:	Number of traffic classes in the net device
1490 *	@tc_to_txq:	XXX: need comments on this one
1491 *	@prio_tc_map	XXX: need comments on this one
1492 *
1493 *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1494 *
1495 *	@priomap:	XXX: need comments on this one
1496 *	@phydev:	Physical device may attach itself
1497 *			for hardware timestamping
1498 *
1499 *	@qdisc_tx_busylock:	XXX: need comments on this one
1500 *
1501 *	FIXME: cleanup struct net_device such that network protocol info
1502 *	moves out.
1503 */
1504
1505struct net_device {
1506	char			name[IFNAMSIZ];
1507	struct hlist_node	name_hlist;
1508	char 			*ifalias;
1509	/*
1510	 *	I/O specific fields
1511	 *	FIXME: Merge these and struct ifmap into one
1512	 */
1513	unsigned long		mem_end;
1514	unsigned long		mem_start;
1515	unsigned long		base_addr;
1516	int			irq;
1517
1518	atomic_t		carrier_changes;
1519
1520	/*
1521	 *	Some hardware also needs these fields (state,dev_list,
1522	 *	napi_list,unreg_list,close_list) but they are not
1523	 *	part of the usual set specified in Space.c.
1524	 */
1525
1526	unsigned long		state;
1527
1528	struct list_head	dev_list;
1529	struct list_head	napi_list;
1530	struct list_head	unreg_list;
1531	struct list_head	close_list;
1532	struct list_head	ptype_all;
1533	struct list_head	ptype_specific;
1534
1535	struct {
1536		struct list_head upper;
1537		struct list_head lower;
1538	} adj_list;
1539
1540	struct {
1541		struct list_head upper;
1542		struct list_head lower;
1543	} all_adj_list;
1544
1545	netdev_features_t	features;
1546	netdev_features_t	hw_features;
1547	netdev_features_t	wanted_features;
1548	netdev_features_t	vlan_features;
1549	netdev_features_t	hw_enc_features;
1550	netdev_features_t	mpls_features;
1551
1552	int			ifindex;
1553	int			group;
1554
1555	struct net_device_stats	stats;
1556
1557	atomic_long_t		rx_dropped;
1558	atomic_long_t		tx_dropped;
1559
1560#ifdef CONFIG_WIRELESS_EXT
1561	const struct iw_handler_def *	wireless_handlers;
1562	struct iw_public_data *	wireless_data;
1563#endif
1564	const struct net_device_ops *netdev_ops;
1565	const struct ethtool_ops *ethtool_ops;
1566#ifdef CONFIG_NET_SWITCHDEV
1567	const struct swdev_ops *swdev_ops;
1568#endif
1569
1570	const struct header_ops *header_ops;
1571
1572	unsigned int		flags;
1573	unsigned int		priv_flags;
1574
1575	unsigned short		gflags;
1576	unsigned short		padded;
1577
1578	unsigned char		operstate;
1579	unsigned char		link_mode;
1580
1581	unsigned char		if_port;
1582	unsigned char		dma;
1583
1584	unsigned int		mtu;
1585	unsigned short		type;
1586	unsigned short		hard_header_len;
1587
1588	unsigned short		needed_headroom;
1589	unsigned short		needed_tailroom;
1590
1591	/* Interface address info. */
1592	unsigned char		perm_addr[MAX_ADDR_LEN];
1593	unsigned char		addr_assign_type;
1594	unsigned char		addr_len;
1595	unsigned short		neigh_priv_len;
1596	unsigned short          dev_id;
1597	unsigned short          dev_port;
1598	spinlock_t		addr_list_lock;
1599	unsigned char		name_assign_type;
1600	bool			uc_promisc;
1601	struct netdev_hw_addr_list	uc;
1602	struct netdev_hw_addr_list	mc;
1603	struct netdev_hw_addr_list	dev_addrs;
1604
1605#ifdef CONFIG_SYSFS
1606	struct kset		*queues_kset;
1607#endif
1608	unsigned int		promiscuity;
1609	unsigned int		allmulti;
1610
1611
1612	/* Protocol specific pointers */
1613
1614#if IS_ENABLED(CONFIG_VLAN_8021Q)
1615	struct vlan_info __rcu	*vlan_info;
1616#endif
1617#if IS_ENABLED(CONFIG_NET_DSA)
1618	struct dsa_switch_tree	*dsa_ptr;
1619#endif
1620#if IS_ENABLED(CONFIG_TIPC)
1621	struct tipc_bearer __rcu *tipc_ptr;
1622#endif
1623	void 			*atalk_ptr;
1624	struct in_device __rcu	*ip_ptr;
1625	struct dn_dev __rcu     *dn_ptr;
1626	struct inet6_dev __rcu	*ip6_ptr;
1627	void			*ax25_ptr;
1628	struct wireless_dev	*ieee80211_ptr;
1629	struct wpan_dev		*ieee802154_ptr;
1630#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1631	struct mpls_dev __rcu	*mpls_ptr;
1632#endif
1633
1634/*
1635 * Cache lines mostly used on receive path (including eth_type_trans())
1636 */
1637	unsigned long		last_rx;
1638
1639	/* Interface address info used in eth_type_trans() */
1640	unsigned char		*dev_addr;
1641
1642
1643#ifdef CONFIG_SYSFS
1644	struct netdev_rx_queue	*_rx;
1645
1646	unsigned int		num_rx_queues;
1647	unsigned int		real_num_rx_queues;
1648
1649#endif
1650
1651	unsigned long		gro_flush_timeout;
1652	rx_handler_func_t __rcu	*rx_handler;
1653	void __rcu		*rx_handler_data;
1654
1655	struct netdev_queue __rcu *ingress_queue;
1656	unsigned char		broadcast[MAX_ADDR_LEN];
1657#ifdef CONFIG_RFS_ACCEL
1658	struct cpu_rmap		*rx_cpu_rmap;
1659#endif
1660	struct hlist_node	index_hlist;
1661
1662/*
1663 * Cache lines mostly used on transmit path
1664 */
1665	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1666	unsigned int		num_tx_queues;
1667	unsigned int		real_num_tx_queues;
1668	struct Qdisc		*qdisc;
1669	unsigned long		tx_queue_len;
1670	spinlock_t		tx_global_lock;
1671	int			watchdog_timeo;
1672
1673#ifdef CONFIG_XPS
1674	struct xps_dev_maps __rcu *xps_maps;
1675#endif
1676
1677	/* These may be needed for future network-power-down code. */
1678
1679	/*
1680	 * trans_start here is expensive for high speed devices on SMP,
1681	 * please use netdev_queue->trans_start instead.
1682	 */
1683	unsigned long		trans_start;
1684
1685	struct timer_list	watchdog_timer;
1686
1687	int __percpu		*pcpu_refcnt;
1688	struct list_head	todo_list;
1689
1690	struct list_head	link_watch_list;
1691
1692	enum { NETREG_UNINITIALIZED=0,
1693	       NETREG_REGISTERED,	/* completed register_netdevice */
1694	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1695	       NETREG_UNREGISTERED,	/* completed unregister todo */
1696	       NETREG_RELEASED,		/* called free_netdev */
1697	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1698	} reg_state:8;
1699
1700	bool dismantle;
1701
1702	enum {
1703		RTNL_LINK_INITIALIZED,
1704		RTNL_LINK_INITIALIZING,
1705	} rtnl_link_state:16;
1706
1707	void (*destructor)(struct net_device *dev);
1708
1709#ifdef CONFIG_NETPOLL
1710	struct netpoll_info __rcu	*npinfo;
1711#endif
1712
1713	possible_net_t			nd_net;
1714
1715	/* mid-layer private */
1716	union {
1717		void					*ml_priv;
1718		struct pcpu_lstats __percpu		*lstats;
1719		struct pcpu_sw_netstats __percpu	*tstats;
1720		struct pcpu_dstats __percpu		*dstats;
1721		struct pcpu_vstats __percpu		*vstats;
1722	};
1723
1724	struct garp_port __rcu	*garp_port;
1725	struct mrp_port __rcu	*mrp_port;
1726
1727	struct device	dev;
1728	const struct attribute_group *sysfs_groups[4];
1729	const struct attribute_group *sysfs_rx_queue_group;
1730
1731	const struct rtnl_link_ops *rtnl_link_ops;
1732
1733	/* for setting kernel sock attribute on TCP connection setup */
1734#define GSO_MAX_SIZE		65536
1735	unsigned int		gso_max_size;
1736#define GSO_MAX_SEGS		65535
1737	u16			gso_max_segs;
1738	u16			gso_min_segs;
1739#ifdef CONFIG_DCB
1740	const struct dcbnl_rtnl_ops *dcbnl_ops;
1741#endif
1742	u8 num_tc;
1743	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1744	u8 prio_tc_map[TC_BITMASK + 1];
1745
1746#if IS_ENABLED(CONFIG_FCOE)
1747	unsigned int		fcoe_ddp_xid;
1748#endif
1749#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1750	struct netprio_map __rcu *priomap;
1751#endif
1752	struct phy_device *phydev;
1753	struct lock_class_key *qdisc_tx_busylock;
1754};
1755#define to_net_dev(d) container_of(d, struct net_device, dev)
1756
1757#define	NETDEV_ALIGN		32
1758
1759static inline
1760int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1761{
1762	return dev->prio_tc_map[prio & TC_BITMASK];
1763}
1764
1765static inline
1766int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1767{
1768	if (tc >= dev->num_tc)
1769		return -EINVAL;
1770
1771	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1772	return 0;
1773}
1774
1775static inline
1776void netdev_reset_tc(struct net_device *dev)
1777{
1778	dev->num_tc = 0;
1779	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1780	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1781}
1782
1783static inline
1784int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1785{
1786	if (tc >= dev->num_tc)
1787		return -EINVAL;
1788
1789	dev->tc_to_txq[tc].count = count;
1790	dev->tc_to_txq[tc].offset = offset;
1791	return 0;
1792}
1793
1794static inline
1795int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1796{
1797	if (num_tc > TC_MAX_QUEUE)
1798		return -EINVAL;
1799
1800	dev->num_tc = num_tc;
1801	return 0;
1802}
1803
1804static inline
1805int netdev_get_num_tc(struct net_device *dev)
1806{
1807	return dev->num_tc;
1808}
1809
1810static inline
1811struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1812					 unsigned int index)
1813{
1814	return &dev->_tx[index];
1815}
1816
1817static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1818						    const struct sk_buff *skb)
1819{
1820	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1821}
1822
1823static inline void netdev_for_each_tx_queue(struct net_device *dev,
1824					    void (*f)(struct net_device *,
1825						      struct netdev_queue *,
1826						      void *),
1827					    void *arg)
1828{
1829	unsigned int i;
1830
1831	for (i = 0; i < dev->num_tx_queues; i++)
1832		f(dev, &dev->_tx[i], arg);
1833}
1834
1835struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1836				    struct sk_buff *skb,
1837				    void *accel_priv);
1838
1839/*
1840 * Net namespace inlines
1841 */
1842static inline
1843struct net *dev_net(const struct net_device *dev)
1844{
1845	return read_pnet(&dev->nd_net);
1846}
1847
1848static inline
1849void dev_net_set(struct net_device *dev, struct net *net)
1850{
1851	write_pnet(&dev->nd_net, net);
1852}
1853
1854static inline bool netdev_uses_dsa(struct net_device *dev)
1855{
1856#if IS_ENABLED(CONFIG_NET_DSA)
1857	if (dev->dsa_ptr != NULL)
1858		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1859#endif
1860	return false;
1861}
1862
1863/**
1864 *	netdev_priv - access network device private data
1865 *	@dev: network device
1866 *
1867 * Get network device private data
1868 */
1869static inline void *netdev_priv(const struct net_device *dev)
1870{
1871	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1872}
1873
1874/* Set the sysfs physical device reference for the network logical device
1875 * if set prior to registration will cause a symlink during initialization.
1876 */
1877#define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1878
1879/* Set the sysfs device type for the network logical device to allow
1880 * fine-grained identification of different network device types. For
1881 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1882 */
1883#define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1884
1885/* Default NAPI poll() weight
1886 * Device drivers are strongly advised to not use bigger value
1887 */
1888#define NAPI_POLL_WEIGHT 64
1889
1890/**
1891 *	netif_napi_add - initialize a napi context
1892 *	@dev:  network device
1893 *	@napi: napi context
1894 *	@poll: polling function
1895 *	@weight: default weight
1896 *
1897 * netif_napi_add() must be used to initialize a napi context prior to calling
1898 * *any* of the other napi related functions.
1899 */
1900void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1901		    int (*poll)(struct napi_struct *, int), int weight);
1902
1903/**
1904 *  netif_napi_del - remove a napi context
1905 *  @napi: napi context
1906 *
1907 *  netif_napi_del() removes a napi context from the network device napi list
1908 */
1909void netif_napi_del(struct napi_struct *napi);
1910
1911struct napi_gro_cb {
1912	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1913	void *frag0;
1914
1915	/* Length of frag0. */
1916	unsigned int frag0_len;
1917
1918	/* This indicates where we are processing relative to skb->data. */
1919	int data_offset;
1920
1921	/* This is non-zero if the packet cannot be merged with the new skb. */
1922	u16	flush;
1923
1924	/* Save the IP ID here and check when we get to the transport layer */
1925	u16	flush_id;
1926
1927	/* Number of segments aggregated. */
1928	u16	count;
1929
1930	/* Start offset for remote checksum offload */
1931	u16	gro_remcsum_start;
1932
1933	/* jiffies when first packet was created/queued */
1934	unsigned long age;
1935
1936	/* Used in ipv6_gro_receive() and foo-over-udp */
1937	u16	proto;
1938
1939	/* This is non-zero if the packet may be of the same flow. */
1940	u8	same_flow:1;
1941
1942	/* Used in udp_gro_receive */
1943	u8	udp_mark:1;
1944
1945	/* GRO checksum is valid */
1946	u8	csum_valid:1;
1947
1948	/* Number of checksums via CHECKSUM_UNNECESSARY */
1949	u8	csum_cnt:3;
1950
1951	/* Free the skb? */
1952	u8	free:2;
1953#define NAPI_GRO_FREE		  1
1954#define NAPI_GRO_FREE_STOLEN_HEAD 2
1955
1956	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1957	u8	is_ipv6:1;
1958
1959	/* 7 bit hole */
1960
1961	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1962	__wsum	csum;
1963
1964	/* used in skb_gro_receive() slow path */
1965	struct sk_buff *last;
1966};
1967
1968#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1969
1970struct packet_type {
1971	__be16			type;	/* This is really htons(ether_type). */
1972	struct net_device	*dev;	/* NULL is wildcarded here	     */
1973	int			(*func) (struct sk_buff *,
1974					 struct net_device *,
1975					 struct packet_type *,
1976					 struct net_device *);
1977	bool			(*id_match)(struct packet_type *ptype,
1978					    struct sock *sk);
1979	void			*af_packet_priv;
1980	struct list_head	list;
1981};
1982
1983struct offload_callbacks {
1984	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1985						netdev_features_t features);
1986	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1987						 struct sk_buff *skb);
1988	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
1989};
1990
1991struct packet_offload {
1992	__be16			 type;	/* This is really htons(ether_type). */
1993	struct offload_callbacks callbacks;
1994	struct list_head	 list;
1995};
1996
1997struct udp_offload;
1998
1999struct udp_offload_callbacks {
2000	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2001						 struct sk_buff *skb,
2002						 struct udp_offload *uoff);
2003	int			(*gro_complete)(struct sk_buff *skb,
2004						int nhoff,
2005						struct udp_offload *uoff);
2006};
2007
2008struct udp_offload {
2009	__be16			 port;
2010	u8			 ipproto;
2011	struct udp_offload_callbacks callbacks;
2012};
2013
2014/* often modified stats are per cpu, other are shared (netdev->stats) */
2015struct pcpu_sw_netstats {
2016	u64     rx_packets;
2017	u64     rx_bytes;
2018	u64     tx_packets;
2019	u64     tx_bytes;
2020	struct u64_stats_sync   syncp;
2021};
2022
2023#define netdev_alloc_pcpu_stats(type)				\
2024({								\
2025	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2026	if (pcpu_stats)	{					\
2027		int __cpu;					\
2028		for_each_possible_cpu(__cpu) {			\
2029			typeof(type) *stat;			\
2030			stat = per_cpu_ptr(pcpu_stats, __cpu);	\
2031			u64_stats_init(&stat->syncp);		\
2032		}						\
2033	}							\
2034	pcpu_stats;						\
2035})
2036
2037#include <linux/notifier.h>
2038
2039/* netdevice notifier chain. Please remember to update the rtnetlink
2040 * notification exclusion list in rtnetlink_event() when adding new
2041 * types.
2042 */
2043#define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2044#define NETDEV_DOWN	0x0002
2045#define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2046				   detected a hardware crash and restarted
2047				   - we can use this eg to kick tcp sessions
2048				   once done */
2049#define NETDEV_CHANGE	0x0004	/* Notify device state change */
2050#define NETDEV_REGISTER 0x0005
2051#define NETDEV_UNREGISTER	0x0006
2052#define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2053#define NETDEV_CHANGEADDR	0x0008
2054#define NETDEV_GOING_DOWN	0x0009
2055#define NETDEV_CHANGENAME	0x000A
2056#define NETDEV_FEAT_CHANGE	0x000B
2057#define NETDEV_BONDING_FAILOVER 0x000C
2058#define NETDEV_PRE_UP		0x000D
2059#define NETDEV_PRE_TYPE_CHANGE	0x000E
2060#define NETDEV_POST_TYPE_CHANGE	0x000F
2061#define NETDEV_POST_INIT	0x0010
2062#define NETDEV_UNREGISTER_FINAL 0x0011
2063#define NETDEV_RELEASE		0x0012
2064#define NETDEV_NOTIFY_PEERS	0x0013
2065#define NETDEV_JOIN		0x0014
2066#define NETDEV_CHANGEUPPER	0x0015
2067#define NETDEV_RESEND_IGMP	0x0016
2068#define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2069#define NETDEV_CHANGEINFODATA	0x0018
2070#define NETDEV_BONDING_INFO	0x0019
2071
2072int register_netdevice_notifier(struct notifier_block *nb);
2073int unregister_netdevice_notifier(struct notifier_block *nb);
2074
2075struct netdev_notifier_info {
2076	struct net_device *dev;
2077};
2078
2079struct netdev_notifier_change_info {
2080	struct netdev_notifier_info info; /* must be first */
2081	unsigned int flags_changed;
2082};
2083
2084static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2085					     struct net_device *dev)
2086{
2087	info->dev = dev;
2088}
2089
2090static inline struct net_device *
2091netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2092{
2093	return info->dev;
2094}
2095
2096int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2097
2098
2099extern rwlock_t				dev_base_lock;		/* Device list lock */
2100
2101#define for_each_netdev(net, d)		\
2102		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2103#define for_each_netdev_reverse(net, d)	\
2104		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2105#define for_each_netdev_rcu(net, d)		\
2106		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2107#define for_each_netdev_safe(net, d, n)	\
2108		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2109#define for_each_netdev_continue(net, d)		\
2110		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2111#define for_each_netdev_continue_rcu(net, d)		\
2112	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2113#define for_each_netdev_in_bond_rcu(bond, slave)	\
2114		for_each_netdev_rcu(&init_net, slave)	\
2115			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2116#define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2117
2118static inline struct net_device *next_net_device(struct net_device *dev)
2119{
2120	struct list_head *lh;
2121	struct net *net;
2122
2123	net = dev_net(dev);
2124	lh = dev->dev_list.next;
2125	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2126}
2127
2128static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2129{
2130	struct list_head *lh;
2131	struct net *net;
2132
2133	net = dev_net(dev);
2134	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2135	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2136}
2137
2138static inline struct net_device *first_net_device(struct net *net)
2139{
2140	return list_empty(&net->dev_base_head) ? NULL :
2141		net_device_entry(net->dev_base_head.next);
2142}
2143
2144static inline struct net_device *first_net_device_rcu(struct net *net)
2145{
2146	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2147
2148	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2149}
2150
2151int netdev_boot_setup_check(struct net_device *dev);
2152unsigned long netdev_boot_base(const char *prefix, int unit);
2153struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2154				       const char *hwaddr);
2155struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2156struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2157void dev_add_pack(struct packet_type *pt);
2158void dev_remove_pack(struct packet_type *pt);
2159void __dev_remove_pack(struct packet_type *pt);
2160void dev_add_offload(struct packet_offload *po);
2161void dev_remove_offload(struct packet_offload *po);
2162
2163int dev_get_iflink(const struct net_device *dev);
2164struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2165				      unsigned short mask);
2166struct net_device *dev_get_by_name(struct net *net, const char *name);
2167struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2168struct net_device *__dev_get_by_name(struct net *net, const char *name);
2169int dev_alloc_name(struct net_device *dev, const char *name);
2170int dev_open(struct net_device *dev);
2171int dev_close(struct net_device *dev);
2172int dev_close_many(struct list_head *head, bool unlink);
2173void dev_disable_lro(struct net_device *dev);
2174int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2175int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2176static inline int dev_queue_xmit(struct sk_buff *skb)
2177{
2178	return dev_queue_xmit_sk(skb->sk, skb);
2179}
2180int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2181int register_netdevice(struct net_device *dev);
2182void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2183void unregister_netdevice_many(struct list_head *head);
2184static inline void unregister_netdevice(struct net_device *dev)
2185{
2186	unregister_netdevice_queue(dev, NULL);
2187}
2188
2189int netdev_refcnt_read(const struct net_device *dev);
2190void free_netdev(struct net_device *dev);
2191void netdev_freemem(struct net_device *dev);
2192void synchronize_net(void);
2193int init_dummy_netdev(struct net_device *dev);
2194
2195DECLARE_PER_CPU(int, xmit_recursion);
2196static inline int dev_recursion_level(void)
2197{
2198	return this_cpu_read(xmit_recursion);
2199}
2200
2201struct net_device *dev_get_by_index(struct net *net, int ifindex);
2202struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2203struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2204int netdev_get_name(struct net *net, char *name, int ifindex);
2205int dev_restart(struct net_device *dev);
2206int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2207
2208static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2209{
2210	return NAPI_GRO_CB(skb)->data_offset;
2211}
2212
2213static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2214{
2215	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2216}
2217
2218static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2219{
2220	NAPI_GRO_CB(skb)->data_offset += len;
2221}
2222
2223static inline void *skb_gro_header_fast(struct sk_buff *skb,
2224					unsigned int offset)
2225{
2226	return NAPI_GRO_CB(skb)->frag0 + offset;
2227}
2228
2229static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2230{
2231	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2232}
2233
2234static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2235					unsigned int offset)
2236{
2237	if (!pskb_may_pull(skb, hlen))
2238		return NULL;
2239
2240	NAPI_GRO_CB(skb)->frag0 = NULL;
2241	NAPI_GRO_CB(skb)->frag0_len = 0;
2242	return skb->data + offset;
2243}
2244
2245static inline void *skb_gro_network_header(struct sk_buff *skb)
2246{
2247	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2248	       skb_network_offset(skb);
2249}
2250
2251static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2252					const void *start, unsigned int len)
2253{
2254	if (NAPI_GRO_CB(skb)->csum_valid)
2255		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2256						  csum_partial(start, len, 0));
2257}
2258
2259/* GRO checksum functions. These are logical equivalents of the normal
2260 * checksum functions (in skbuff.h) except that they operate on the GRO
2261 * offsets and fields in sk_buff.
2262 */
2263
2264__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2265
2266static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2267{
2268	return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2269		skb_gro_offset(skb));
2270}
2271
2272static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2273						      bool zero_okay,
2274						      __sum16 check)
2275{
2276	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2277		skb_checksum_start_offset(skb) <
2278		 skb_gro_offset(skb)) &&
2279		!skb_at_gro_remcsum_start(skb) &&
2280		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2281		(!zero_okay || check));
2282}
2283
2284static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2285							   __wsum psum)
2286{
2287	if (NAPI_GRO_CB(skb)->csum_valid &&
2288	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2289		return 0;
2290
2291	NAPI_GRO_CB(skb)->csum = psum;
2292
2293	return __skb_gro_checksum_complete(skb);
2294}
2295
2296static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2297{
2298	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2299		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2300		NAPI_GRO_CB(skb)->csum_cnt--;
2301	} else {
2302		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2303		 * verified a new top level checksum or an encapsulated one
2304		 * during GRO. This saves work if we fallback to normal path.
2305		 */
2306		__skb_incr_checksum_unnecessary(skb);
2307	}
2308}
2309
2310#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2311				    compute_pseudo)			\
2312({									\
2313	__sum16 __ret = 0;						\
2314	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2315		__ret = __skb_gro_checksum_validate_complete(skb,	\
2316				compute_pseudo(skb, proto));		\
2317	if (__ret)							\
2318		__skb_mark_checksum_bad(skb);				\
2319	else								\
2320		skb_gro_incr_csum_unnecessary(skb);			\
2321	__ret;								\
2322})
2323
2324#define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2325	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2326
2327#define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2328					     compute_pseudo)		\
2329	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2330
2331#define skb_gro_checksum_simple_validate(skb)				\
2332	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2333
2334static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2335{
2336	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2337		!NAPI_GRO_CB(skb)->csum_valid);
2338}
2339
2340static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2341					      __sum16 check, __wsum pseudo)
2342{
2343	NAPI_GRO_CB(skb)->csum = ~pseudo;
2344	NAPI_GRO_CB(skb)->csum_valid = 1;
2345}
2346
2347#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2348do {									\
2349	if (__skb_gro_checksum_convert_check(skb))			\
2350		__skb_gro_checksum_convert(skb, check,			\
2351					   compute_pseudo(skb, proto));	\
2352} while (0)
2353
2354struct gro_remcsum {
2355	int offset;
2356	__wsum delta;
2357};
2358
2359static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2360{
2361	grc->offset = 0;
2362	grc->delta = 0;
2363}
2364
2365static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2366					   int start, int offset,
2367					   struct gro_remcsum *grc,
2368					   bool nopartial)
2369{
2370	__wsum delta;
2371
2372	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2373
2374	if (!nopartial) {
2375		NAPI_GRO_CB(skb)->gro_remcsum_start =
2376		    ((unsigned char *)ptr + start) - skb->head;
2377		return;
2378	}
2379
2380	delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2381
2382	/* Adjust skb->csum since we changed the packet */
2383	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2384
2385	grc->offset = (ptr + offset) - (void *)skb->head;
2386	grc->delta = delta;
2387}
2388
2389static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2390					   struct gro_remcsum *grc)
2391{
2392	if (!grc->delta)
2393		return;
2394
2395	remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2396}
2397
2398static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2399				  unsigned short type,
2400				  const void *daddr, const void *saddr,
2401				  unsigned int len)
2402{
2403	if (!dev->header_ops || !dev->header_ops->create)
2404		return 0;
2405
2406	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2407}
2408
2409static inline int dev_parse_header(const struct sk_buff *skb,
2410				   unsigned char *haddr)
2411{
2412	const struct net_device *dev = skb->dev;
2413
2414	if (!dev->header_ops || !dev->header_ops->parse)
2415		return 0;
2416	return dev->header_ops->parse(skb, haddr);
2417}
2418
2419typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2420int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2421static inline int unregister_gifconf(unsigned int family)
2422{
2423	return register_gifconf(family, NULL);
2424}
2425
2426#ifdef CONFIG_NET_FLOW_LIMIT
2427#define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2428struct sd_flow_limit {
2429	u64			count;
2430	unsigned int		num_buckets;
2431	unsigned int		history_head;
2432	u16			history[FLOW_LIMIT_HISTORY];
2433	u8			buckets[];
2434};
2435
2436extern int netdev_flow_limit_table_len;
2437#endif /* CONFIG_NET_FLOW_LIMIT */
2438
2439/*
2440 * Incoming packets are placed on per-cpu queues
2441 */
2442struct softnet_data {
2443	struct list_head	poll_list;
2444	struct sk_buff_head	process_queue;
2445
2446	/* stats */
2447	unsigned int		processed;
2448	unsigned int		time_squeeze;
2449	unsigned int		cpu_collision;
2450	unsigned int		received_rps;
2451#ifdef CONFIG_RPS
2452	struct softnet_data	*rps_ipi_list;
2453#endif
2454#ifdef CONFIG_NET_FLOW_LIMIT
2455	struct sd_flow_limit __rcu *flow_limit;
2456#endif
2457	struct Qdisc		*output_queue;
2458	struct Qdisc		**output_queue_tailp;
2459	struct sk_buff		*completion_queue;
2460
2461#ifdef CONFIG_RPS
2462	/* Elements below can be accessed between CPUs for RPS */
2463	struct call_single_data	csd ____cacheline_aligned_in_smp;
2464	struct softnet_data	*rps_ipi_next;
2465	unsigned int		cpu;
2466	unsigned int		input_queue_head;
2467	unsigned int		input_queue_tail;
2468#endif
2469	unsigned int		dropped;
2470	struct sk_buff_head	input_pkt_queue;
2471	struct napi_struct	backlog;
2472
2473};
2474
2475static inline void input_queue_head_incr(struct softnet_data *sd)
2476{
2477#ifdef CONFIG_RPS
2478	sd->input_queue_head++;
2479#endif
2480}
2481
2482static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2483					      unsigned int *qtail)
2484{
2485#ifdef CONFIG_RPS
2486	*qtail = ++sd->input_queue_tail;
2487#endif
2488}
2489
2490DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2491
2492void __netif_schedule(struct Qdisc *q);
2493void netif_schedule_queue(struct netdev_queue *txq);
2494
2495static inline void netif_tx_schedule_all(struct net_device *dev)
2496{
2497	unsigned int i;
2498
2499	for (i = 0; i < dev->num_tx_queues; i++)
2500		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2501}
2502
2503static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2504{
2505	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2506}
2507
2508/**
2509 *	netif_start_queue - allow transmit
2510 *	@dev: network device
2511 *
2512 *	Allow upper layers to call the device hard_start_xmit routine.
2513 */
2514static inline void netif_start_queue(struct net_device *dev)
2515{
2516	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2517}
2518
2519static inline void netif_tx_start_all_queues(struct net_device *dev)
2520{
2521	unsigned int i;
2522
2523	for (i = 0; i < dev->num_tx_queues; i++) {
2524		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2525		netif_tx_start_queue(txq);
2526	}
2527}
2528
2529void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2530
2531/**
2532 *	netif_wake_queue - restart transmit
2533 *	@dev: network device
2534 *
2535 *	Allow upper layers to call the device hard_start_xmit routine.
2536 *	Used for flow control when transmit resources are available.
2537 */
2538static inline void netif_wake_queue(struct net_device *dev)
2539{
2540	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2541}
2542
2543static inline void netif_tx_wake_all_queues(struct net_device *dev)
2544{
2545	unsigned int i;
2546
2547	for (i = 0; i < dev->num_tx_queues; i++) {
2548		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2549		netif_tx_wake_queue(txq);
2550	}
2551}
2552
2553static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2554{
2555	if (WARN_ON(!dev_queue)) {
2556		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2557		return;
2558	}
2559	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2560}
2561
2562/**
2563 *	netif_stop_queue - stop transmitted packets
2564 *	@dev: network device
2565 *
2566 *	Stop upper layers calling the device hard_start_xmit routine.
2567 *	Used for flow control when transmit resources are unavailable.
2568 */
2569static inline void netif_stop_queue(struct net_device *dev)
2570{
2571	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2572}
2573
2574static inline void netif_tx_stop_all_queues(struct net_device *dev)
2575{
2576	unsigned int i;
2577
2578	for (i = 0; i < dev->num_tx_queues; i++) {
2579		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2580		netif_tx_stop_queue(txq);
2581	}
2582}
2583
2584static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2585{
2586	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2587}
2588
2589/**
2590 *	netif_queue_stopped - test if transmit queue is flowblocked
2591 *	@dev: network device
2592 *
2593 *	Test if transmit queue on device is currently unable to send.
2594 */
2595static inline bool netif_queue_stopped(const struct net_device *dev)
2596{
2597	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2598}
2599
2600static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2601{
2602	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2603}
2604
2605static inline bool
2606netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2607{
2608	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2609}
2610
2611static inline bool
2612netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2613{
2614	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2615}
2616
2617/**
2618 *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2619 *	@dev_queue: pointer to transmit queue
2620 *
2621 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2622 * to give appropriate hint to the cpu.
2623 */
2624static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2625{
2626#ifdef CONFIG_BQL
2627	prefetchw(&dev_queue->dql.num_queued);
2628#endif
2629}
2630
2631/**
2632 *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2633 *	@dev_queue: pointer to transmit queue
2634 *
2635 * BQL enabled drivers might use this helper in their TX completion path,
2636 * to give appropriate hint to the cpu.
2637 */
2638static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2639{
2640#ifdef CONFIG_BQL
2641	prefetchw(&dev_queue->dql.limit);
2642#endif
2643}
2644
2645static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2646					unsigned int bytes)
2647{
2648#ifdef CONFIG_BQL
2649	dql_queued(&dev_queue->dql, bytes);
2650
2651	if (likely(dql_avail(&dev_queue->dql) >= 0))
2652		return;
2653
2654	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2655
2656	/*
2657	 * The XOFF flag must be set before checking the dql_avail below,
2658	 * because in netdev_tx_completed_queue we update the dql_completed
2659	 * before checking the XOFF flag.
2660	 */
2661	smp_mb();
2662
2663	/* check again in case another CPU has just made room avail */
2664	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2665		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2666#endif
2667}
2668
2669/**
2670 * 	netdev_sent_queue - report the number of bytes queued to hardware
2671 * 	@dev: network device
2672 * 	@bytes: number of bytes queued to the hardware device queue
2673 *
2674 * 	Report the number of bytes queued for sending/completion to the network
2675 * 	device hardware queue. @bytes should be a good approximation and should
2676 * 	exactly match netdev_completed_queue() @bytes
2677 */
2678static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2679{
2680	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2681}
2682
2683static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2684					     unsigned int pkts, unsigned int bytes)
2685{
2686#ifdef CONFIG_BQL
2687	if (unlikely(!bytes))
2688		return;
2689
2690	dql_completed(&dev_queue->dql, bytes);
2691
2692	/*
2693	 * Without the memory barrier there is a small possiblity that
2694	 * netdev_tx_sent_queue will miss the update and cause the queue to
2695	 * be stopped forever
2696	 */
2697	smp_mb();
2698
2699	if (dql_avail(&dev_queue->dql) < 0)
2700		return;
2701
2702	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2703		netif_schedule_queue(dev_queue);
2704#endif
2705}
2706
2707/**
2708 * 	netdev_completed_queue - report bytes and packets completed by device
2709 * 	@dev: network device
2710 * 	@pkts: actual number of packets sent over the medium
2711 * 	@bytes: actual number of bytes sent over the medium
2712 *
2713 * 	Report the number of bytes and packets transmitted by the network device
2714 * 	hardware queue over the physical medium, @bytes must exactly match the
2715 * 	@bytes amount passed to netdev_sent_queue()
2716 */
2717static inline void netdev_completed_queue(struct net_device *dev,
2718					  unsigned int pkts, unsigned int bytes)
2719{
2720	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2721}
2722
2723static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2724{
2725#ifdef CONFIG_BQL
2726	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2727	dql_reset(&q->dql);
2728#endif
2729}
2730
2731/**
2732 * 	netdev_reset_queue - reset the packets and bytes count of a network device
2733 * 	@dev_queue: network device
2734 *
2735 * 	Reset the bytes and packet count of a network device and clear the
2736 * 	software flow control OFF bit for this network device
2737 */
2738static inline void netdev_reset_queue(struct net_device *dev_queue)
2739{
2740	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2741}
2742
2743/**
2744 * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2745 * 	@dev: network device
2746 * 	@queue_index: given tx queue index
2747 *
2748 * 	Returns 0 if given tx queue index >= number of device tx queues,
2749 * 	otherwise returns the originally passed tx queue index.
2750 */
2751static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2752{
2753	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2754		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2755				     dev->name, queue_index,
2756				     dev->real_num_tx_queues);
2757		return 0;
2758	}
2759
2760	return queue_index;
2761}
2762
2763/**
2764 *	netif_running - test if up
2765 *	@dev: network device
2766 *
2767 *	Test if the device has been brought up.
2768 */
2769static inline bool netif_running(const struct net_device *dev)
2770{
2771	return test_bit(__LINK_STATE_START, &dev->state);
2772}
2773
2774/*
2775 * Routines to manage the subqueues on a device.  We only need start
2776 * stop, and a check if it's stopped.  All other device management is
2777 * done at the overall netdevice level.
2778 * Also test the device if we're multiqueue.
2779 */
2780
2781/**
2782 *	netif_start_subqueue - allow sending packets on subqueue
2783 *	@dev: network device
2784 *	@queue_index: sub queue index
2785 *
2786 * Start individual transmit queue of a device with multiple transmit queues.
2787 */
2788static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2789{
2790	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2791
2792	netif_tx_start_queue(txq);
2793}
2794
2795/**
2796 *	netif_stop_subqueue - stop sending packets on subqueue
2797 *	@dev: network device
2798 *	@queue_index: sub queue index
2799 *
2800 * Stop individual transmit queue of a device with multiple transmit queues.
2801 */
2802static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2803{
2804	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2805	netif_tx_stop_queue(txq);
2806}
2807
2808/**
2809 *	netif_subqueue_stopped - test status of subqueue
2810 *	@dev: network device
2811 *	@queue_index: sub queue index
2812 *
2813 * Check individual transmit queue of a device with multiple transmit queues.
2814 */
2815static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2816					    u16 queue_index)
2817{
2818	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2819
2820	return netif_tx_queue_stopped(txq);
2821}
2822
2823static inline bool netif_subqueue_stopped(const struct net_device *dev,
2824					  struct sk_buff *skb)
2825{
2826	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2827}
2828
2829void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2830
2831#ifdef CONFIG_XPS
2832int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2833			u16 index);
2834#else
2835static inline int netif_set_xps_queue(struct net_device *dev,
2836				      const struct cpumask *mask,
2837				      u16 index)
2838{
2839	return 0;
2840}
2841#endif
2842
2843/*
2844 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2845 * as a distribution range limit for the returned value.
2846 */
2847static inline u16 skb_tx_hash(const struct net_device *dev,
2848			      struct sk_buff *skb)
2849{
2850	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2851}
2852
2853/**
2854 *	netif_is_multiqueue - test if device has multiple transmit queues
2855 *	@dev: network device
2856 *
2857 * Check if device has multiple transmit queues
2858 */
2859static inline bool netif_is_multiqueue(const struct net_device *dev)
2860{
2861	return dev->num_tx_queues > 1;
2862}
2863
2864int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2865
2866#ifdef CONFIG_SYSFS
2867int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2868#else
2869static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2870						unsigned int rxq)
2871{
2872	return 0;
2873}
2874#endif
2875
2876#ifdef CONFIG_SYSFS
2877static inline unsigned int get_netdev_rx_queue_index(
2878		struct netdev_rx_queue *queue)
2879{
2880	struct net_device *dev = queue->dev;
2881	int index = queue - dev->_rx;
2882
2883	BUG_ON(index >= dev->num_rx_queues);
2884	return index;
2885}
2886#endif
2887
2888#define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2889int netif_get_num_default_rss_queues(void);
2890
2891enum skb_free_reason {
2892	SKB_REASON_CONSUMED,
2893	SKB_REASON_DROPPED,
2894};
2895
2896void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2897void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2898
2899/*
2900 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2901 * interrupt context or with hardware interrupts being disabled.
2902 * (in_irq() || irqs_disabled())
2903 *
2904 * We provide four helpers that can be used in following contexts :
2905 *
2906 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2907 *  replacing kfree_skb(skb)
2908 *
2909 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2910 *  Typically used in place of consume_skb(skb) in TX completion path
2911 *
2912 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2913 *  replacing kfree_skb(skb)
2914 *
2915 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2916 *  and consumed a packet. Used in place of consume_skb(skb)
2917 */
2918static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2919{
2920	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2921}
2922
2923static inline void dev_consume_skb_irq(struct sk_buff *skb)
2924{
2925	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2926}
2927
2928static inline void dev_kfree_skb_any(struct sk_buff *skb)
2929{
2930	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2931}
2932
2933static inline void dev_consume_skb_any(struct sk_buff *skb)
2934{
2935	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2936}
2937
2938int netif_rx(struct sk_buff *skb);
2939int netif_rx_ni(struct sk_buff *skb);
2940int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2941static inline int netif_receive_skb(struct sk_buff *skb)
2942{
2943	return netif_receive_skb_sk(skb->sk, skb);
2944}
2945gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2946void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2947struct sk_buff *napi_get_frags(struct napi_struct *napi);
2948gro_result_t napi_gro_frags(struct napi_struct *napi);
2949struct packet_offload *gro_find_receive_by_type(__be16 type);
2950struct packet_offload *gro_find_complete_by_type(__be16 type);
2951
2952static inline void napi_free_frags(struct napi_struct *napi)
2953{
2954	kfree_skb(napi->skb);
2955	napi->skb = NULL;
2956}
2957
2958int netdev_rx_handler_register(struct net_device *dev,
2959			       rx_handler_func_t *rx_handler,
2960			       void *rx_handler_data);
2961void netdev_rx_handler_unregister(struct net_device *dev);
2962
2963bool dev_valid_name(const char *name);
2964int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2965int dev_ethtool(struct net *net, struct ifreq *);
2966unsigned int dev_get_flags(const struct net_device *);
2967int __dev_change_flags(struct net_device *, unsigned int flags);
2968int dev_change_flags(struct net_device *, unsigned int);
2969void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2970			unsigned int gchanges);
2971int dev_change_name(struct net_device *, const char *);
2972int dev_set_alias(struct net_device *, const char *, size_t);
2973int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2974int dev_set_mtu(struct net_device *, int);
2975void dev_set_group(struct net_device *, int);
2976int dev_set_mac_address(struct net_device *, struct sockaddr *);
2977int dev_change_carrier(struct net_device *, bool new_carrier);
2978int dev_get_phys_port_id(struct net_device *dev,
2979			 struct netdev_phys_item_id *ppid);
2980int dev_get_phys_port_name(struct net_device *dev,
2981			   char *name, size_t len);
2982struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2983struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2984				    struct netdev_queue *txq, int *ret);
2985int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2986int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2987bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2988
2989extern int		netdev_budget;
2990
2991/* Called by rtnetlink.c:rtnl_unlock() */
2992void netdev_run_todo(void);
2993
2994/**
2995 *	dev_put - release reference to device
2996 *	@dev: network device
2997 *
2998 * Release reference to device to allow it to be freed.
2999 */
3000static inline void dev_put(struct net_device *dev)
3001{
3002	this_cpu_dec(*dev->pcpu_refcnt);
3003}
3004
3005/**
3006 *	dev_hold - get reference to device
3007 *	@dev: network device
3008 *
3009 * Hold reference to device to keep it from being freed.
3010 */
3011static inline void dev_hold(struct net_device *dev)
3012{
3013	this_cpu_inc(*dev->pcpu_refcnt);
3014}
3015
3016/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3017 * and _off may be called from IRQ context, but it is caller
3018 * who is responsible for serialization of these calls.
3019 *
3020 * The name carrier is inappropriate, these functions should really be
3021 * called netif_lowerlayer_*() because they represent the state of any
3022 * kind of lower layer not just hardware media.
3023 */
3024
3025void linkwatch_init_dev(struct net_device *dev);
3026void linkwatch_fire_event(struct net_device *dev);
3027void linkwatch_forget_dev(struct net_device *dev);
3028
3029/**
3030 *	netif_carrier_ok - test if carrier present
3031 *	@dev: network device
3032 *
3033 * Check if carrier is present on device
3034 */
3035static inline bool netif_carrier_ok(const struct net_device *dev)
3036{
3037	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3038}
3039
3040unsigned long dev_trans_start(struct net_device *dev);
3041
3042void __netdev_watchdog_up(struct net_device *dev);
3043
3044void netif_carrier_on(struct net_device *dev);
3045
3046void netif_carrier_off(struct net_device *dev);
3047
3048/**
3049 *	netif_dormant_on - mark device as dormant.
3050 *	@dev: network device
3051 *
3052 * Mark device as dormant (as per RFC2863).
3053 *
3054 * The dormant state indicates that the relevant interface is not
3055 * actually in a condition to pass packets (i.e., it is not 'up') but is
3056 * in a "pending" state, waiting for some external event.  For "on-
3057 * demand" interfaces, this new state identifies the situation where the
3058 * interface is waiting for events to place it in the up state.
3059 *
3060 */
3061static inline void netif_dormant_on(struct net_device *dev)
3062{
3063	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3064		linkwatch_fire_event(dev);
3065}
3066
3067/**
3068 *	netif_dormant_off - set device as not dormant.
3069 *	@dev: network device
3070 *
3071 * Device is not in dormant state.
3072 */
3073static inline void netif_dormant_off(struct net_device *dev)
3074{
3075	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3076		linkwatch_fire_event(dev);
3077}
3078
3079/**
3080 *	netif_dormant - test if carrier present
3081 *	@dev: network device
3082 *
3083 * Check if carrier is present on device
3084 */
3085static inline bool netif_dormant(const struct net_device *dev)
3086{
3087	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3088}
3089
3090
3091/**
3092 *	netif_oper_up - test if device is operational
3093 *	@dev: network device
3094 *
3095 * Check if carrier is operational
3096 */
3097static inline bool netif_oper_up(const struct net_device *dev)
3098{
3099	return (dev->operstate == IF_OPER_UP ||
3100		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3101}
3102
3103/**
3104 *	netif_device_present - is device available or removed
3105 *	@dev: network device
3106 *
3107 * Check if device has not been removed from system.
3108 */
3109static inline bool netif_device_present(struct net_device *dev)
3110{
3111	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3112}
3113
3114void netif_device_detach(struct net_device *dev);
3115
3116void netif_device_attach(struct net_device *dev);
3117
3118/*
3119 * Network interface message level settings
3120 */
3121
3122enum {
3123	NETIF_MSG_DRV		= 0x0001,
3124	NETIF_MSG_PROBE		= 0x0002,
3125	NETIF_MSG_LINK		= 0x0004,
3126	NETIF_MSG_TIMER		= 0x0008,
3127	NETIF_MSG_IFDOWN	= 0x0010,
3128	NETIF_MSG_IFUP		= 0x0020,
3129	NETIF_MSG_RX_ERR	= 0x0040,
3130	NETIF_MSG_TX_ERR	= 0x0080,
3131	NETIF_MSG_TX_QUEUED	= 0x0100,
3132	NETIF_MSG_INTR		= 0x0200,
3133	NETIF_MSG_TX_DONE	= 0x0400,
3134	NETIF_MSG_RX_STATUS	= 0x0800,
3135	NETIF_MSG_PKTDATA	= 0x1000,
3136	NETIF_MSG_HW		= 0x2000,
3137	NETIF_MSG_WOL		= 0x4000,
3138};
3139
3140#define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3141#define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3142#define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3143#define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3144#define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3145#define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3146#define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3147#define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3148#define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3149#define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3150#define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3151#define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3152#define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3153#define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3154#define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3155
3156static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3157{
3158	/* use default */
3159	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3160		return default_msg_enable_bits;
3161	if (debug_value == 0)	/* no output */
3162		return 0;
3163	/* set low N bits */
3164	return (1 << debug_value) - 1;
3165}
3166
3167static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3168{
3169	spin_lock(&txq->_xmit_lock);
3170	txq->xmit_lock_owner = cpu;
3171}
3172
3173static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3174{
3175	spin_lock_bh(&txq->_xmit_lock);
3176	txq->xmit_lock_owner = smp_processor_id();
3177}
3178
3179static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3180{
3181	bool ok = spin_trylock(&txq->_xmit_lock);
3182	if (likely(ok))
3183		txq->xmit_lock_owner = smp_processor_id();
3184	return ok;
3185}
3186
3187static inline void __netif_tx_unlock(struct netdev_queue *txq)
3188{
3189	txq->xmit_lock_owner = -1;
3190	spin_unlock(&txq->_xmit_lock);
3191}
3192
3193static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3194{
3195	txq->xmit_lock_owner = -1;
3196	spin_unlock_bh(&txq->_xmit_lock);
3197}
3198
3199static inline void txq_trans_update(struct netdev_queue *txq)
3200{
3201	if (txq->xmit_lock_owner != -1)
3202		txq->trans_start = jiffies;
3203}
3204
3205/**
3206 *	netif_tx_lock - grab network device transmit lock
3207 *	@dev: network device
3208 *
3209 * Get network device transmit lock
3210 */
3211static inline void netif_tx_lock(struct net_device *dev)
3212{
3213	unsigned int i;
3214	int cpu;
3215
3216	spin_lock(&dev->tx_global_lock);
3217	cpu = smp_processor_id();
3218	for (i = 0; i < dev->num_tx_queues; i++) {
3219		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3220
3221		/* We are the only thread of execution doing a
3222		 * freeze, but we have to grab the _xmit_lock in
3223		 * order to synchronize with threads which are in
3224		 * the ->hard_start_xmit() handler and already
3225		 * checked the frozen bit.
3226		 */
3227		__netif_tx_lock(txq, cpu);
3228		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3229		__netif_tx_unlock(txq);
3230	}
3231}
3232
3233static inline void netif_tx_lock_bh(struct net_device *dev)
3234{
3235	local_bh_disable();
3236	netif_tx_lock(dev);
3237}
3238
3239static inline void netif_tx_unlock(struct net_device *dev)
3240{
3241	unsigned int i;
3242
3243	for (i = 0; i < dev->num_tx_queues; i++) {
3244		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3245
3246		/* No need to grab the _xmit_lock here.  If the
3247		 * queue is not stopped for another reason, we
3248		 * force a schedule.
3249		 */
3250		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3251		netif_schedule_queue(txq);
3252	}
3253	spin_unlock(&dev->tx_global_lock);
3254}
3255
3256static inline void netif_tx_unlock_bh(struct net_device *dev)
3257{
3258	netif_tx_unlock(dev);
3259	local_bh_enable();
3260}
3261
3262#define HARD_TX_LOCK(dev, txq, cpu) {			\
3263	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3264		__netif_tx_lock(txq, cpu);		\
3265	}						\
3266}
3267
3268#define HARD_TX_TRYLOCK(dev, txq)			\
3269	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3270		__netif_tx_trylock(txq) :		\
3271		true )
3272
3273#define HARD_TX_UNLOCK(dev, txq) {			\
3274	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3275		__netif_tx_unlock(txq);			\
3276	}						\
3277}
3278
3279static inline void netif_tx_disable(struct net_device *dev)
3280{
3281	unsigned int i;
3282	int cpu;
3283
3284	local_bh_disable();
3285	cpu = smp_processor_id();
3286	for (i = 0; i < dev->num_tx_queues; i++) {
3287		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3288
3289		__netif_tx_lock(txq, cpu);
3290		netif_tx_stop_queue(txq);
3291		__netif_tx_unlock(txq);
3292	}
3293	local_bh_enable();
3294}
3295
3296static inline void netif_addr_lock(struct net_device *dev)
3297{
3298	spin_lock(&dev->addr_list_lock);
3299}
3300
3301static inline void netif_addr_lock_nested(struct net_device *dev)
3302{
3303	int subclass = SINGLE_DEPTH_NESTING;
3304
3305	if (dev->netdev_ops->ndo_get_lock_subclass)
3306		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3307
3308	spin_lock_nested(&dev->addr_list_lock, subclass);
3309}
3310
3311static inline void netif_addr_lock_bh(struct net_device *dev)
3312{
3313	spin_lock_bh(&dev->addr_list_lock);
3314}
3315
3316static inline void netif_addr_unlock(struct net_device *dev)
3317{
3318	spin_unlock(&dev->addr_list_lock);
3319}
3320
3321static inline void netif_addr_unlock_bh(struct net_device *dev)
3322{
3323	spin_unlock_bh(&dev->addr_list_lock);
3324}
3325
3326/*
3327 * dev_addrs walker. Should be used only for read access. Call with
3328 * rcu_read_lock held.
3329 */
3330#define for_each_dev_addr(dev, ha) \
3331		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3332
3333/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3334
3335void ether_setup(struct net_device *dev);
3336
3337/* Support for loadable net-drivers */
3338struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3339				    unsigned char name_assign_type,
3340				    void (*setup)(struct net_device *),
3341				    unsigned int txqs, unsigned int rxqs);
3342#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3343	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3344
3345#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3346	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3347			 count)
3348
3349int register_netdev(struct net_device *dev);
3350void unregister_netdev(struct net_device *dev);
3351
3352/* General hardware address lists handling functions */
3353int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3354		   struct netdev_hw_addr_list *from_list, int addr_len);
3355void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3356		      struct netdev_hw_addr_list *from_list, int addr_len);
3357int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3358		       struct net_device *dev,
3359		       int (*sync)(struct net_device *, const unsigned char *),
3360		       int (*unsync)(struct net_device *,
3361				     const unsigned char *));
3362void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3363			  struct net_device *dev,
3364			  int (*unsync)(struct net_device *,
3365					const unsigned char *));
3366void __hw_addr_init(struct netdev_hw_addr_list *list);
3367
3368/* Functions used for device addresses handling */
3369int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3370		 unsigned char addr_type);
3371int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3372		 unsigned char addr_type);
3373void dev_addr_flush(struct net_device *dev);
3374int dev_addr_init(struct net_device *dev);
3375
3376/* Functions used for unicast addresses handling */
3377int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3378int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3379int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3380int dev_uc_sync(struct net_device *to, struct net_device *from);
3381int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3382void dev_uc_unsync(struct net_device *to, struct net_device *from);
3383void dev_uc_flush(struct net_device *dev);
3384void dev_uc_init(struct net_device *dev);
3385
3386/**
3387 *  __dev_uc_sync - Synchonize device's unicast list
3388 *  @dev:  device to sync
3389 *  @sync: function to call if address should be added
3390 *  @unsync: function to call if address should be removed
3391 *
3392 *  Add newly added addresses to the interface, and release
3393 *  addresses that have been deleted.
3394 **/
3395static inline int __dev_uc_sync(struct net_device *dev,
3396				int (*sync)(struct net_device *,
3397					    const unsigned char *),
3398				int (*unsync)(struct net_device *,
3399					      const unsigned char *))
3400{
3401	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3402}
3403
3404/**
3405 *  __dev_uc_unsync - Remove synchronized addresses from device
3406 *  @dev:  device to sync
3407 *  @unsync: function to call if address should be removed
3408 *
3409 *  Remove all addresses that were added to the device by dev_uc_sync().
3410 **/
3411static inline void __dev_uc_unsync(struct net_device *dev,
3412				   int (*unsync)(struct net_device *,
3413						 const unsigned char *))
3414{
3415	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3416}
3417
3418/* Functions used for multicast addresses handling */
3419int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3420int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3421int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3422int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3423int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3424int dev_mc_sync(struct net_device *to, struct net_device *from);
3425int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3426void dev_mc_unsync(struct net_device *to, struct net_device *from);
3427void dev_mc_flush(struct net_device *dev);
3428void dev_mc_init(struct net_device *dev);
3429
3430/**
3431 *  __dev_mc_sync - Synchonize device's multicast list
3432 *  @dev:  device to sync
3433 *  @sync: function to call if address should be added
3434 *  @unsync: function to call if address should be removed
3435 *
3436 *  Add newly added addresses to the interface, and release
3437 *  addresses that have been deleted.
3438 **/
3439static inline int __dev_mc_sync(struct net_device *dev,
3440				int (*sync)(struct net_device *,
3441					    const unsigned char *),
3442				int (*unsync)(struct net_device *,
3443					      const unsigned char *))
3444{
3445	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3446}
3447
3448/**
3449 *  __dev_mc_unsync - Remove synchronized addresses from device
3450 *  @dev:  device to sync
3451 *  @unsync: function to call if address should be removed
3452 *
3453 *  Remove all addresses that were added to the device by dev_mc_sync().
3454 **/
3455static inline void __dev_mc_unsync(struct net_device *dev,
3456				   int (*unsync)(struct net_device *,
3457						 const unsigned char *))
3458{
3459	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3460}
3461
3462/* Functions used for secondary unicast and multicast support */
3463void dev_set_rx_mode(struct net_device *dev);
3464void __dev_set_rx_mode(struct net_device *dev);
3465int dev_set_promiscuity(struct net_device *dev, int inc);
3466int dev_set_allmulti(struct net_device *dev, int inc);
3467void netdev_state_change(struct net_device *dev);
3468void netdev_notify_peers(struct net_device *dev);
3469void netdev_features_change(struct net_device *dev);
3470/* Load a device via the kmod */
3471void dev_load(struct net *net, const char *name);
3472struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3473					struct rtnl_link_stats64 *storage);
3474void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3475			     const struct net_device_stats *netdev_stats);
3476
3477extern int		netdev_max_backlog;
3478extern int		netdev_tstamp_prequeue;
3479extern int		weight_p;
3480extern int		bpf_jit_enable;
3481
3482bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3483struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3484						     struct list_head **iter);
3485struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3486						     struct list_head **iter);
3487
3488/* iterate through upper list, must be called under RCU read lock */
3489#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3490	for (iter = &(dev)->adj_list.upper, \
3491	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3492	     updev; \
3493	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3494
3495/* iterate through upper list, must be called under RCU read lock */
3496#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3497	for (iter = &(dev)->all_adj_list.upper, \
3498	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3499	     updev; \
3500	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3501
3502void *netdev_lower_get_next_private(struct net_device *dev,
3503				    struct list_head **iter);
3504void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3505					struct list_head **iter);
3506
3507#define netdev_for_each_lower_private(dev, priv, iter) \
3508	for (iter = (dev)->adj_list.lower.next, \
3509	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3510	     priv; \
3511	     priv = netdev_lower_get_next_private(dev, &(iter)))
3512
3513#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3514	for (iter = &(dev)->adj_list.lower, \
3515	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3516	     priv; \
3517	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3518
3519void *netdev_lower_get_next(struct net_device *dev,
3520				struct list_head **iter);
3521#define netdev_for_each_lower_dev(dev, ldev, iter) \
3522	for (iter = &(dev)->adj_list.lower, \
3523	     ldev = netdev_lower_get_next(dev, &(iter)); \
3524	     ldev; \
3525	     ldev = netdev_lower_get_next(dev, &(iter)))
3526
3527void *netdev_adjacent_get_private(struct list_head *adj_list);
3528void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3529struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3530struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3531int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3532int netdev_master_upper_dev_link(struct net_device *dev,
3533				 struct net_device *upper_dev);
3534int netdev_master_upper_dev_link_private(struct net_device *dev,
3535					 struct net_device *upper_dev,
3536					 void *private);
3537void netdev_upper_dev_unlink(struct net_device *dev,
3538			     struct net_device *upper_dev);
3539void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3540void *netdev_lower_dev_get_private(struct net_device *dev,
3541				   struct net_device *lower_dev);
3542
3543/* RSS keys are 40 or 52 bytes long */
3544#define NETDEV_RSS_KEY_LEN 52
3545extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3546void netdev_rss_key_fill(void *buffer, size_t len);
3547
3548int dev_get_nest_level(struct net_device *dev,
3549		       bool (*type_check)(struct net_device *dev));
3550int skb_checksum_help(struct sk_buff *skb);
3551struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3552				  netdev_features_t features, bool tx_path);
3553struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3554				    netdev_features_t features);
3555
3556struct netdev_bonding_info {
3557	ifslave	slave;
3558	ifbond	master;
3559};
3560
3561struct netdev_notifier_bonding_info {
3562	struct netdev_notifier_info info; /* must be first */
3563	struct netdev_bonding_info  bonding_info;
3564};
3565
3566void netdev_bonding_info_change(struct net_device *dev,
3567				struct netdev_bonding_info *bonding_info);
3568
3569static inline
3570struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3571{
3572	return __skb_gso_segment(skb, features, true);
3573}
3574__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3575
3576static inline bool can_checksum_protocol(netdev_features_t features,
3577					 __be16 protocol)
3578{
3579	return ((features & NETIF_F_GEN_CSUM) ||
3580		((features & NETIF_F_V4_CSUM) &&
3581		 protocol == htons(ETH_P_IP)) ||
3582		((features & NETIF_F_V6_CSUM) &&
3583		 protocol == htons(ETH_P_IPV6)) ||
3584		((features & NETIF_F_FCOE_CRC) &&
3585		 protocol == htons(ETH_P_FCOE)));
3586}
3587
3588#ifdef CONFIG_BUG
3589void netdev_rx_csum_fault(struct net_device *dev);
3590#else
3591static inline void netdev_rx_csum_fault(struct net_device *dev)
3592{
3593}
3594#endif
3595/* rx skb timestamps */
3596void net_enable_timestamp(void);
3597void net_disable_timestamp(void);
3598
3599#ifdef CONFIG_PROC_FS
3600int __init dev_proc_init(void);
3601#else
3602#define dev_proc_init() 0
3603#endif
3604
3605static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3606					      struct sk_buff *skb, struct net_device *dev,
3607					      bool more)
3608{
3609	skb->xmit_more = more ? 1 : 0;
3610	return ops->ndo_start_xmit(skb, dev);
3611}
3612
3613static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3614					    struct netdev_queue *txq, bool more)
3615{
3616	const struct net_device_ops *ops = dev->netdev_ops;
3617	int rc;
3618
3619	rc = __netdev_start_xmit(ops, skb, dev, more);
3620	if (rc == NETDEV_TX_OK)
3621		txq_trans_update(txq);
3622
3623	return rc;
3624}
3625
3626int netdev_class_create_file_ns(struct class_attribute *class_attr,
3627				const void *ns);
3628void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3629				 const void *ns);
3630
3631static inline int netdev_class_create_file(struct class_attribute *class_attr)
3632{
3633	return netdev_class_create_file_ns(class_attr, NULL);
3634}
3635
3636static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3637{
3638	netdev_class_remove_file_ns(class_attr, NULL);
3639}
3640
3641extern struct kobj_ns_type_operations net_ns_type_operations;
3642
3643const char *netdev_drivername(const struct net_device *dev);
3644
3645void linkwatch_run_queue(void);
3646
3647static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3648							  netdev_features_t f2)
3649{
3650	if (f1 & NETIF_F_GEN_CSUM)
3651		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3652	if (f2 & NETIF_F_GEN_CSUM)
3653		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3654	f1 &= f2;
3655	if (f1 & NETIF_F_GEN_CSUM)
3656		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3657
3658	return f1;
3659}
3660
3661static inline netdev_features_t netdev_get_wanted_features(
3662	struct net_device *dev)
3663{
3664	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3665}
3666netdev_features_t netdev_increment_features(netdev_features_t all,
3667	netdev_features_t one, netdev_features_t mask);
3668
3669/* Allow TSO being used on stacked device :
3670 * Performing the GSO segmentation before last device
3671 * is a performance improvement.
3672 */
3673static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3674							netdev_features_t mask)
3675{
3676	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3677}
3678
3679int __netdev_update_features(struct net_device *dev);
3680void netdev_update_features(struct net_device *dev);
3681void netdev_change_features(struct net_device *dev);
3682
3683void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3684					struct net_device *dev);
3685
3686netdev_features_t passthru_features_check(struct sk_buff *skb,
3687					  struct net_device *dev,
3688					  netdev_features_t features);
3689netdev_features_t netif_skb_features(struct sk_buff *skb);
3690
3691static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3692{
3693	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3694
3695	/* check flags correspondence */
3696	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3697	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3698	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3699	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3700	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3701	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3702	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3703	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3704	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3705	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3706	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3707	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3708	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3709
3710	return (features & feature) == feature;
3711}
3712
3713static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3714{
3715	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3716	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3717}
3718
3719static inline bool netif_needs_gso(struct sk_buff *skb,
3720				   netdev_features_t features)
3721{
3722	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3723		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3724			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3725}
3726
3727static inline void netif_set_gso_max_size(struct net_device *dev,
3728					  unsigned int size)
3729{
3730	dev->gso_max_size = size;
3731}
3732
3733static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3734					int pulled_hlen, u16 mac_offset,
3735					int mac_len)
3736{
3737	skb->protocol = protocol;
3738	skb->encapsulation = 1;
3739	skb_push(skb, pulled_hlen);
3740	skb_reset_transport_header(skb);
3741	skb->mac_header = mac_offset;
3742	skb->network_header = skb->mac_header + mac_len;
3743	skb->mac_len = mac_len;
3744}
3745
3746static inline bool netif_is_macvlan(struct net_device *dev)
3747{
3748	return dev->priv_flags & IFF_MACVLAN;
3749}
3750
3751static inline bool netif_is_macvlan_port(struct net_device *dev)
3752{
3753	return dev->priv_flags & IFF_MACVLAN_PORT;
3754}
3755
3756static inline bool netif_is_ipvlan(struct net_device *dev)
3757{
3758	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3759}
3760
3761static inline bool netif_is_ipvlan_port(struct net_device *dev)
3762{
3763	return dev->priv_flags & IFF_IPVLAN_MASTER;
3764}
3765
3766static inline bool netif_is_bond_master(struct net_device *dev)
3767{
3768	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3769}
3770
3771static inline bool netif_is_bond_slave(struct net_device *dev)
3772{
3773	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3774}
3775
3776static inline bool netif_supports_nofcs(struct net_device *dev)
3777{
3778	return dev->priv_flags & IFF_SUPP_NOFCS;
3779}
3780
3781/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3782static inline void netif_keep_dst(struct net_device *dev)
3783{
3784	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3785}
3786
3787extern struct pernet_operations __net_initdata loopback_net_ops;
3788
3789/* Logging, debugging and troubleshooting/diagnostic helpers. */
3790
3791/* netdev_printk helpers, similar to dev_printk */
3792
3793static inline const char *netdev_name(const struct net_device *dev)
3794{
3795	if (!dev->name[0] || strchr(dev->name, '%'))
3796		return "(unnamed net_device)";
3797	return dev->name;
3798}
3799
3800static inline const char *netdev_reg_state(const struct net_device *dev)
3801{
3802	switch (dev->reg_state) {
3803	case NETREG_UNINITIALIZED: return " (uninitialized)";
3804	case NETREG_REGISTERED: return "";
3805	case NETREG_UNREGISTERING: return " (unregistering)";
3806	case NETREG_UNREGISTERED: return " (unregistered)";
3807	case NETREG_RELEASED: return " (released)";
3808	case NETREG_DUMMY: return " (dummy)";
3809	}
3810
3811	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3812	return " (unknown)";
3813}
3814
3815__printf(3, 4)
3816void netdev_printk(const char *level, const struct net_device *dev,
3817		   const char *format, ...);
3818__printf(2, 3)
3819void netdev_emerg(const struct net_device *dev, const char *format, ...);
3820__printf(2, 3)
3821void netdev_alert(const struct net_device *dev, const char *format, ...);
3822__printf(2, 3)
3823void netdev_crit(const struct net_device *dev, const char *format, ...);
3824__printf(2, 3)
3825void netdev_err(const struct net_device *dev, const char *format, ...);
3826__printf(2, 3)
3827void netdev_warn(const struct net_device *dev, const char *format, ...);
3828__printf(2, 3)
3829void netdev_notice(const struct net_device *dev, const char *format, ...);
3830__printf(2, 3)
3831void netdev_info(const struct net_device *dev, const char *format, ...);
3832
3833#define MODULE_ALIAS_NETDEV(device) \
3834	MODULE_ALIAS("netdev-" device)
3835
3836#if defined(CONFIG_DYNAMIC_DEBUG)
3837#define netdev_dbg(__dev, format, args...)			\
3838do {								\
3839	dynamic_netdev_dbg(__dev, format, ##args);		\
3840} while (0)
3841#elif defined(DEBUG)
3842#define netdev_dbg(__dev, format, args...)			\
3843	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3844#else
3845#define netdev_dbg(__dev, format, args...)			\
3846({								\
3847	if (0)							\
3848		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3849})
3850#endif
3851
3852#if defined(VERBOSE_DEBUG)
3853#define netdev_vdbg	netdev_dbg
3854#else
3855
3856#define netdev_vdbg(dev, format, args...)			\
3857({								\
3858	if (0)							\
3859		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3860	0;							\
3861})
3862#endif
3863
3864/*
3865 * netdev_WARN() acts like dev_printk(), but with the key difference
3866 * of using a WARN/WARN_ON to get the message out, including the
3867 * file/line information and a backtrace.
3868 */
3869#define netdev_WARN(dev, format, args...)			\
3870	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3871	     netdev_reg_state(dev), ##args)
3872
3873/* netif printk helpers, similar to netdev_printk */
3874
3875#define netif_printk(priv, type, level, dev, fmt, args...)	\
3876do {					  			\
3877	if (netif_msg_##type(priv))				\
3878		netdev_printk(level, (dev), fmt, ##args);	\
3879} while (0)
3880
3881#define netif_level(level, priv, type, dev, fmt, args...)	\
3882do {								\
3883	if (netif_msg_##type(priv))				\
3884		netdev_##level(dev, fmt, ##args);		\
3885} while (0)
3886
3887#define netif_emerg(priv, type, dev, fmt, args...)		\
3888	netif_level(emerg, priv, type, dev, fmt, ##args)
3889#define netif_alert(priv, type, dev, fmt, args...)		\
3890	netif_level(alert, priv, type, dev, fmt, ##args)
3891#define netif_crit(priv, type, dev, fmt, args...)		\
3892	netif_level(crit, priv, type, dev, fmt, ##args)
3893#define netif_err(priv, type, dev, fmt, args...)		\
3894	netif_level(err, priv, type, dev, fmt, ##args)
3895#define netif_warn(priv, type, dev, fmt, args...)		\
3896	netif_level(warn, priv, type, dev, fmt, ##args)
3897#define netif_notice(priv, type, dev, fmt, args...)		\
3898	netif_level(notice, priv, type, dev, fmt, ##args)
3899#define netif_info(priv, type, dev, fmt, args...)		\
3900	netif_level(info, priv, type, dev, fmt, ##args)
3901
3902#if defined(CONFIG_DYNAMIC_DEBUG)
3903#define netif_dbg(priv, type, netdev, format, args...)		\
3904do {								\
3905	if (netif_msg_##type(priv))				\
3906		dynamic_netdev_dbg(netdev, format, ##args);	\
3907} while (0)
3908#elif defined(DEBUG)
3909#define netif_dbg(priv, type, dev, format, args...)		\
3910	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3911#else
3912#define netif_dbg(priv, type, dev, format, args...)			\
3913({									\
3914	if (0)								\
3915		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3916	0;								\
3917})
3918#endif
3919
3920#if defined(VERBOSE_DEBUG)
3921#define netif_vdbg	netif_dbg
3922#else
3923#define netif_vdbg(priv, type, dev, format, args...)		\
3924({								\
3925	if (0)							\
3926		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3927	0;							\
3928})
3929#endif
3930
3931/*
3932 *	The list of packet types we will receive (as opposed to discard)
3933 *	and the routines to invoke.
3934 *
3935 *	Why 16. Because with 16 the only overlap we get on a hash of the
3936 *	low nibble of the protocol value is RARP/SNAP/X.25.
3937 *
3938 *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3939 *             sure which should go first, but I bet it won't make much
3940 *             difference if we are running VLANs.  The good news is that
3941 *             this protocol won't be in the list unless compiled in, so
3942 *             the average user (w/out VLANs) will not be adversely affected.
3943 *             --BLG
3944 *
3945 *		0800	IP
3946 *		8100    802.1Q VLAN
3947 *		0001	802.3
3948 *		0002	AX.25
3949 *		0004	802.2
3950 *		8035	RARP
3951 *		0005	SNAP
3952 *		0805	X.25
3953 *		0806	ARP
3954 *		8137	IPX
3955 *		0009	Localtalk
3956 *		86DD	IPv6
3957 */
3958#define PTYPE_HASH_SIZE	(16)
3959#define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3960
3961#endif	/* _LINUX_NETDEVICE_H */
3962