1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/timer.h> 29#include <linux/bug.h> 30#include <linux/delay.h> 31#include <linux/atomic.h> 32#include <linux/prefetch.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/dmaengine.h> 39#include <linux/workqueue.h> 40#include <linux/dynamic_queue_limits.h> 41 42#include <linux/ethtool.h> 43#include <net/net_namespace.h> 44#include <net/dsa.h> 45#ifdef CONFIG_DCB 46#include <net/dcbnl.h> 47#endif 48#include <net/netprio_cgroup.h> 49 50#include <linux/netdev_features.h> 51#include <linux/neighbour.h> 52#include <uapi/linux/netdevice.h> 53#include <uapi/linux/if_bonding.h> 54 55struct netpoll_info; 56struct device; 57struct phy_device; 58/* 802.11 specific */ 59struct wireless_dev; 60/* 802.15.4 specific */ 61struct wpan_dev; 62struct mpls_dev; 63 64void netdev_set_default_ethtool_ops(struct net_device *dev, 65 const struct ethtool_ops *ops); 66 67/* Backlog congestion levels */ 68#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 69#define NET_RX_DROP 1 /* packet dropped */ 70 71/* 72 * Transmit return codes: transmit return codes originate from three different 73 * namespaces: 74 * 75 * - qdisc return codes 76 * - driver transmit return codes 77 * - errno values 78 * 79 * Drivers are allowed to return any one of those in their hard_start_xmit() 80 * function. Real network devices commonly used with qdiscs should only return 81 * the driver transmit return codes though - when qdiscs are used, the actual 82 * transmission happens asynchronously, so the value is not propagated to 83 * higher layers. Virtual network devices transmit synchronously, in this case 84 * the driver transmit return codes are consumed by dev_queue_xmit(), all 85 * others are propagated to higher layers. 86 */ 87 88/* qdisc ->enqueue() return codes. */ 89#define NET_XMIT_SUCCESS 0x00 90#define NET_XMIT_DROP 0x01 /* skb dropped */ 91#define NET_XMIT_CN 0x02 /* congestion notification */ 92#define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 93#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 94 95/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 96 * indicates that the device will soon be dropping packets, or already drops 97 * some packets of the same priority; prompting us to send less aggressively. */ 98#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 99#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 100 101/* Driver transmit return codes */ 102#define NETDEV_TX_MASK 0xf0 103 104enum netdev_tx { 105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 106 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 109}; 110typedef enum netdev_tx netdev_tx_t; 111 112/* 113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 115 */ 116static inline bool dev_xmit_complete(int rc) 117{ 118 /* 119 * Positive cases with an skb consumed by a driver: 120 * - successful transmission (rc == NETDEV_TX_OK) 121 * - error while transmitting (rc < 0) 122 * - error while queueing to a different device (rc & NET_XMIT_MASK) 123 */ 124 if (likely(rc < NET_XMIT_MASK)) 125 return true; 126 127 return false; 128} 129 130/* 131 * Compute the worst case header length according to the protocols 132 * used. 133 */ 134 135#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 136# if defined(CONFIG_MAC80211_MESH) 137# define LL_MAX_HEADER 128 138# else 139# define LL_MAX_HEADER 96 140# endif 141#else 142# define LL_MAX_HEADER 32 143#endif 144 145#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 147#define MAX_HEADER LL_MAX_HEADER 148#else 149#define MAX_HEADER (LL_MAX_HEADER + 48) 150#endif 151 152/* 153 * Old network device statistics. Fields are native words 154 * (unsigned long) so they can be read and written atomically. 155 */ 156 157struct net_device_stats { 158 unsigned long rx_packets; 159 unsigned long tx_packets; 160 unsigned long rx_bytes; 161 unsigned long tx_bytes; 162 unsigned long rx_errors; 163 unsigned long tx_errors; 164 unsigned long rx_dropped; 165 unsigned long tx_dropped; 166 unsigned long multicast; 167 unsigned long collisions; 168 unsigned long rx_length_errors; 169 unsigned long rx_over_errors; 170 unsigned long rx_crc_errors; 171 unsigned long rx_frame_errors; 172 unsigned long rx_fifo_errors; 173 unsigned long rx_missed_errors; 174 unsigned long tx_aborted_errors; 175 unsigned long tx_carrier_errors; 176 unsigned long tx_fifo_errors; 177 unsigned long tx_heartbeat_errors; 178 unsigned long tx_window_errors; 179 unsigned long rx_compressed; 180 unsigned long tx_compressed; 181}; 182 183 184#include <linux/cache.h> 185#include <linux/skbuff.h> 186 187#ifdef CONFIG_RPS 188#include <linux/static_key.h> 189extern struct static_key rps_needed; 190#endif 191 192struct neighbour; 193struct neigh_parms; 194struct sk_buff; 195 196struct netdev_hw_addr { 197 struct list_head list; 198 unsigned char addr[MAX_ADDR_LEN]; 199 unsigned char type; 200#define NETDEV_HW_ADDR_T_LAN 1 201#define NETDEV_HW_ADDR_T_SAN 2 202#define NETDEV_HW_ADDR_T_SLAVE 3 203#define NETDEV_HW_ADDR_T_UNICAST 4 204#define NETDEV_HW_ADDR_T_MULTICAST 5 205 bool global_use; 206 int sync_cnt; 207 int refcount; 208 int synced; 209 struct rcu_head rcu_head; 210}; 211 212struct netdev_hw_addr_list { 213 struct list_head list; 214 int count; 215}; 216 217#define netdev_hw_addr_list_count(l) ((l)->count) 218#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 219#define netdev_hw_addr_list_for_each(ha, l) \ 220 list_for_each_entry(ha, &(l)->list, list) 221 222#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 223#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 224#define netdev_for_each_uc_addr(ha, dev) \ 225 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 226 227#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 228#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 229#define netdev_for_each_mc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 231 232struct hh_cache { 233 u16 hh_len; 234 u16 __pad; 235 seqlock_t hh_lock; 236 237 /* cached hardware header; allow for machine alignment needs. */ 238#define HH_DATA_MOD 16 239#define HH_DATA_OFF(__len) \ 240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 241#define HH_DATA_ALIGN(__len) \ 242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 244}; 245 246/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 247 * Alternative is: 248 * dev->hard_header_len ? (dev->hard_header_len + 249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 250 * 251 * We could use other alignment values, but we must maintain the 252 * relationship HH alignment <= LL alignment. 253 */ 254#define LL_RESERVED_SPACE(dev) \ 255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 256#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 258 259struct header_ops { 260 int (*create) (struct sk_buff *skb, struct net_device *dev, 261 unsigned short type, const void *daddr, 262 const void *saddr, unsigned int len); 263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 265 void (*cache_update)(struct hh_cache *hh, 266 const struct net_device *dev, 267 const unsigned char *haddr); 268}; 269 270/* These flag bits are private to the generic network queueing 271 * layer, they may not be explicitly referenced by any other 272 * code. 273 */ 274 275enum netdev_state_t { 276 __LINK_STATE_START, 277 __LINK_STATE_PRESENT, 278 __LINK_STATE_NOCARRIER, 279 __LINK_STATE_LINKWATCH_PENDING, 280 __LINK_STATE_DORMANT, 281}; 282 283 284/* 285 * This structure holds at boot time configured netdevice settings. They 286 * are then used in the device probing. 287 */ 288struct netdev_boot_setup { 289 char name[IFNAMSIZ]; 290 struct ifmap map; 291}; 292#define NETDEV_BOOT_SETUP_MAX 8 293 294int __init netdev_boot_setup(char *str); 295 296/* 297 * Structure for NAPI scheduling similar to tasklet but with weighting 298 */ 299struct napi_struct { 300 /* The poll_list must only be managed by the entity which 301 * changes the state of the NAPI_STATE_SCHED bit. This means 302 * whoever atomically sets that bit can add this napi_struct 303 * to the per-cpu poll_list, and whoever clears that bit 304 * can remove from the list right before clearing the bit. 305 */ 306 struct list_head poll_list; 307 308 unsigned long state; 309 int weight; 310 unsigned int gro_count; 311 int (*poll)(struct napi_struct *, int); 312#ifdef CONFIG_NETPOLL 313 spinlock_t poll_lock; 314 int poll_owner; 315#endif 316 struct net_device *dev; 317 struct sk_buff *gro_list; 318 struct sk_buff *skb; 319 struct hrtimer timer; 320 struct list_head dev_list; 321 struct hlist_node napi_hash_node; 322 unsigned int napi_id; 323}; 324 325enum { 326 NAPI_STATE_SCHED, /* Poll is scheduled */ 327 NAPI_STATE_DISABLE, /* Disable pending */ 328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 329 NAPI_STATE_HASHED, /* In NAPI hash */ 330}; 331 332enum gro_result { 333 GRO_MERGED, 334 GRO_MERGED_FREE, 335 GRO_HELD, 336 GRO_NORMAL, 337 GRO_DROP, 338}; 339typedef enum gro_result gro_result_t; 340 341/* 342 * enum rx_handler_result - Possible return values for rx_handlers. 343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 344 * further. 345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 346 * case skb->dev was changed by rx_handler. 347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 349 * 350 * rx_handlers are functions called from inside __netif_receive_skb(), to do 351 * special processing of the skb, prior to delivery to protocol handlers. 352 * 353 * Currently, a net_device can only have a single rx_handler registered. Trying 354 * to register a second rx_handler will return -EBUSY. 355 * 356 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 357 * To unregister a rx_handler on a net_device, use 358 * netdev_rx_handler_unregister(). 359 * 360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 361 * do with the skb. 362 * 363 * If the rx_handler consumed to skb in some way, it should return 364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 365 * the skb to be delivered in some other ways. 366 * 367 * If the rx_handler changed skb->dev, to divert the skb to another 368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 369 * new device will be called if it exists. 370 * 371 * If the rx_handler consider the skb should be ignored, it should return 372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 373 * are registered on exact device (ptype->dev == skb->dev). 374 * 375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 376 * delivered, it should return RX_HANDLER_PASS. 377 * 378 * A device without a registered rx_handler will behave as if rx_handler 379 * returned RX_HANDLER_PASS. 380 */ 381 382enum rx_handler_result { 383 RX_HANDLER_CONSUMED, 384 RX_HANDLER_ANOTHER, 385 RX_HANDLER_EXACT, 386 RX_HANDLER_PASS, 387}; 388typedef enum rx_handler_result rx_handler_result_t; 389typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 390 391void __napi_schedule(struct napi_struct *n); 392void __napi_schedule_irqoff(struct napi_struct *n); 393 394static inline bool napi_disable_pending(struct napi_struct *n) 395{ 396 return test_bit(NAPI_STATE_DISABLE, &n->state); 397} 398 399/** 400 * napi_schedule_prep - check if napi can be scheduled 401 * @n: napi context 402 * 403 * Test if NAPI routine is already running, and if not mark 404 * it as running. This is used as a condition variable 405 * insure only one NAPI poll instance runs. We also make 406 * sure there is no pending NAPI disable. 407 */ 408static inline bool napi_schedule_prep(struct napi_struct *n) 409{ 410 return !napi_disable_pending(n) && 411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 412} 413 414/** 415 * napi_schedule - schedule NAPI poll 416 * @n: napi context 417 * 418 * Schedule NAPI poll routine to be called if it is not already 419 * running. 420 */ 421static inline void napi_schedule(struct napi_struct *n) 422{ 423 if (napi_schedule_prep(n)) 424 __napi_schedule(n); 425} 426 427/** 428 * napi_schedule_irqoff - schedule NAPI poll 429 * @n: napi context 430 * 431 * Variant of napi_schedule(), assuming hard irqs are masked. 432 */ 433static inline void napi_schedule_irqoff(struct napi_struct *n) 434{ 435 if (napi_schedule_prep(n)) 436 __napi_schedule_irqoff(n); 437} 438 439/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 440static inline bool napi_reschedule(struct napi_struct *napi) 441{ 442 if (napi_schedule_prep(napi)) { 443 __napi_schedule(napi); 444 return true; 445 } 446 return false; 447} 448 449void __napi_complete(struct napi_struct *n); 450void napi_complete_done(struct napi_struct *n, int work_done); 451/** 452 * napi_complete - NAPI processing complete 453 * @n: napi context 454 * 455 * Mark NAPI processing as complete. 456 * Consider using napi_complete_done() instead. 457 */ 458static inline void napi_complete(struct napi_struct *n) 459{ 460 return napi_complete_done(n, 0); 461} 462 463/** 464 * napi_by_id - lookup a NAPI by napi_id 465 * @napi_id: hashed napi_id 466 * 467 * lookup @napi_id in napi_hash table 468 * must be called under rcu_read_lock() 469 */ 470struct napi_struct *napi_by_id(unsigned int napi_id); 471 472/** 473 * napi_hash_add - add a NAPI to global hashtable 474 * @napi: napi context 475 * 476 * generate a new napi_id and store a @napi under it in napi_hash 477 */ 478void napi_hash_add(struct napi_struct *napi); 479 480/** 481 * napi_hash_del - remove a NAPI from global table 482 * @napi: napi context 483 * 484 * Warning: caller must observe rcu grace period 485 * before freeing memory containing @napi 486 */ 487void napi_hash_del(struct napi_struct *napi); 488 489/** 490 * napi_disable - prevent NAPI from scheduling 491 * @n: napi context 492 * 493 * Stop NAPI from being scheduled on this context. 494 * Waits till any outstanding processing completes. 495 */ 496void napi_disable(struct napi_struct *n); 497 498/** 499 * napi_enable - enable NAPI scheduling 500 * @n: napi context 501 * 502 * Resume NAPI from being scheduled on this context. 503 * Must be paired with napi_disable. 504 */ 505static inline void napi_enable(struct napi_struct *n) 506{ 507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 508 smp_mb__before_atomic(); 509 clear_bit(NAPI_STATE_SCHED, &n->state); 510} 511 512#ifdef CONFIG_SMP 513/** 514 * napi_synchronize - wait until NAPI is not running 515 * @n: napi context 516 * 517 * Wait until NAPI is done being scheduled on this context. 518 * Waits till any outstanding processing completes but 519 * does not disable future activations. 520 */ 521static inline void napi_synchronize(const struct napi_struct *n) 522{ 523 while (test_bit(NAPI_STATE_SCHED, &n->state)) 524 msleep(1); 525} 526#else 527# define napi_synchronize(n) barrier() 528#endif 529 530enum netdev_queue_state_t { 531 __QUEUE_STATE_DRV_XOFF, 532 __QUEUE_STATE_STACK_XOFF, 533 __QUEUE_STATE_FROZEN, 534}; 535 536#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 537#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 538#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 539 540#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 541#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 542 QUEUE_STATE_FROZEN) 543#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 544 QUEUE_STATE_FROZEN) 545 546/* 547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 548 * netif_tx_* functions below are used to manipulate this flag. The 549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 550 * queue independently. The netif_xmit_*stopped functions below are called 551 * to check if the queue has been stopped by the driver or stack (either 552 * of the XOFF bits are set in the state). Drivers should not need to call 553 * netif_xmit*stopped functions, they should only be using netif_tx_*. 554 */ 555 556struct netdev_queue { 557/* 558 * read mostly part 559 */ 560 struct net_device *dev; 561 struct Qdisc __rcu *qdisc; 562 struct Qdisc *qdisc_sleeping; 563#ifdef CONFIG_SYSFS 564 struct kobject kobj; 565#endif 566#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 567 int numa_node; 568#endif 569/* 570 * write mostly part 571 */ 572 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 573 int xmit_lock_owner; 574 /* 575 * please use this field instead of dev->trans_start 576 */ 577 unsigned long trans_start; 578 579 /* 580 * Number of TX timeouts for this queue 581 * (/sys/class/net/DEV/Q/trans_timeout) 582 */ 583 unsigned long trans_timeout; 584 585 unsigned long state; 586 587#ifdef CONFIG_BQL 588 struct dql dql; 589#endif 590 unsigned long tx_maxrate; 591} ____cacheline_aligned_in_smp; 592 593static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 594{ 595#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 596 return q->numa_node; 597#else 598 return NUMA_NO_NODE; 599#endif 600} 601 602static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 603{ 604#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 605 q->numa_node = node; 606#endif 607} 608 609#ifdef CONFIG_RPS 610/* 611 * This structure holds an RPS map which can be of variable length. The 612 * map is an array of CPUs. 613 */ 614struct rps_map { 615 unsigned int len; 616 struct rcu_head rcu; 617 u16 cpus[0]; 618}; 619#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 620 621/* 622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 623 * tail pointer for that CPU's input queue at the time of last enqueue, and 624 * a hardware filter index. 625 */ 626struct rps_dev_flow { 627 u16 cpu; 628 u16 filter; 629 unsigned int last_qtail; 630}; 631#define RPS_NO_FILTER 0xffff 632 633/* 634 * The rps_dev_flow_table structure contains a table of flow mappings. 635 */ 636struct rps_dev_flow_table { 637 unsigned int mask; 638 struct rcu_head rcu; 639 struct rps_dev_flow flows[0]; 640}; 641#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 642 ((_num) * sizeof(struct rps_dev_flow))) 643 644/* 645 * The rps_sock_flow_table contains mappings of flows to the last CPU 646 * on which they were processed by the application (set in recvmsg). 647 * Each entry is a 32bit value. Upper part is the high order bits 648 * of flow hash, lower part is cpu number. 649 * rps_cpu_mask is used to partition the space, depending on number of 650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f, 652 * meaning we use 32-6=26 bits for the hash. 653 */ 654struct rps_sock_flow_table { 655 u32 mask; 656 657 u32 ents[0] ____cacheline_aligned_in_smp; 658}; 659#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 660 661#define RPS_NO_CPU 0xffff 662 663extern u32 rps_cpu_mask; 664extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 665 666static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 667 u32 hash) 668{ 669 if (table && hash) { 670 unsigned int index = hash & table->mask; 671 u32 val = hash & ~rps_cpu_mask; 672 673 /* We only give a hint, preemption can change cpu under us */ 674 val |= raw_smp_processor_id(); 675 676 if (table->ents[index] != val) 677 table->ents[index] = val; 678 } 679} 680 681#ifdef CONFIG_RFS_ACCEL 682bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 683 u16 filter_id); 684#endif 685#endif /* CONFIG_RPS */ 686 687/* This structure contains an instance of an RX queue. */ 688struct netdev_rx_queue { 689#ifdef CONFIG_RPS 690 struct rps_map __rcu *rps_map; 691 struct rps_dev_flow_table __rcu *rps_flow_table; 692#endif 693 struct kobject kobj; 694 struct net_device *dev; 695} ____cacheline_aligned_in_smp; 696 697/* 698 * RX queue sysfs structures and functions. 699 */ 700struct rx_queue_attribute { 701 struct attribute attr; 702 ssize_t (*show)(struct netdev_rx_queue *queue, 703 struct rx_queue_attribute *attr, char *buf); 704 ssize_t (*store)(struct netdev_rx_queue *queue, 705 struct rx_queue_attribute *attr, const char *buf, size_t len); 706}; 707 708#ifdef CONFIG_XPS 709/* 710 * This structure holds an XPS map which can be of variable length. The 711 * map is an array of queues. 712 */ 713struct xps_map { 714 unsigned int len; 715 unsigned int alloc_len; 716 struct rcu_head rcu; 717 u16 queues[0]; 718}; 719#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 720#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 721 / sizeof(u16)) 722 723/* 724 * This structure holds all XPS maps for device. Maps are indexed by CPU. 725 */ 726struct xps_dev_maps { 727 struct rcu_head rcu; 728 struct xps_map __rcu *cpu_map[0]; 729}; 730#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 731 (nr_cpu_ids * sizeof(struct xps_map *))) 732#endif /* CONFIG_XPS */ 733 734#define TC_MAX_QUEUE 16 735#define TC_BITMASK 15 736/* HW offloaded queuing disciplines txq count and offset maps */ 737struct netdev_tc_txq { 738 u16 count; 739 u16 offset; 740}; 741 742#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 743/* 744 * This structure is to hold information about the device 745 * configured to run FCoE protocol stack. 746 */ 747struct netdev_fcoe_hbainfo { 748 char manufacturer[64]; 749 char serial_number[64]; 750 char hardware_version[64]; 751 char driver_version[64]; 752 char optionrom_version[64]; 753 char firmware_version[64]; 754 char model[256]; 755 char model_description[256]; 756}; 757#endif 758 759#define MAX_PHYS_ITEM_ID_LEN 32 760 761/* This structure holds a unique identifier to identify some 762 * physical item (port for example) used by a netdevice. 763 */ 764struct netdev_phys_item_id { 765 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 766 unsigned char id_len; 767}; 768 769typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 770 struct sk_buff *skb); 771 772/* 773 * This structure defines the management hooks for network devices. 774 * The following hooks can be defined; unless noted otherwise, they are 775 * optional and can be filled with a null pointer. 776 * 777 * int (*ndo_init)(struct net_device *dev); 778 * This function is called once when network device is registered. 779 * The network device can use this to any late stage initializaton 780 * or semantic validattion. It can fail with an error code which will 781 * be propogated back to register_netdev 782 * 783 * void (*ndo_uninit)(struct net_device *dev); 784 * This function is called when device is unregistered or when registration 785 * fails. It is not called if init fails. 786 * 787 * int (*ndo_open)(struct net_device *dev); 788 * This function is called when network device transistions to the up 789 * state. 790 * 791 * int (*ndo_stop)(struct net_device *dev); 792 * This function is called when network device transistions to the down 793 * state. 794 * 795 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 796 * struct net_device *dev); 797 * Called when a packet needs to be transmitted. 798 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 799 * the queue before that can happen; it's for obsolete devices and weird 800 * corner cases, but the stack really does a non-trivial amount 801 * of useless work if you return NETDEV_TX_BUSY. 802 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 803 * Required can not be NULL. 804 * 805 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 806 * void *accel_priv, select_queue_fallback_t fallback); 807 * Called to decide which queue to when device supports multiple 808 * transmit queues. 809 * 810 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 811 * This function is called to allow device receiver to make 812 * changes to configuration when multicast or promiscious is enabled. 813 * 814 * void (*ndo_set_rx_mode)(struct net_device *dev); 815 * This function is called device changes address list filtering. 816 * If driver handles unicast address filtering, it should set 817 * IFF_UNICAST_FLT to its priv_flags. 818 * 819 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 820 * This function is called when the Media Access Control address 821 * needs to be changed. If this interface is not defined, the 822 * mac address can not be changed. 823 * 824 * int (*ndo_validate_addr)(struct net_device *dev); 825 * Test if Media Access Control address is valid for the device. 826 * 827 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 828 * Called when a user request an ioctl which can't be handled by 829 * the generic interface code. If not defined ioctl's return 830 * not supported error code. 831 * 832 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 833 * Used to set network devices bus interface parameters. This interface 834 * is retained for legacy reason, new devices should use the bus 835 * interface (PCI) for low level management. 836 * 837 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 838 * Called when a user wants to change the Maximum Transfer Unit 839 * of a device. If not defined, any request to change MTU will 840 * will return an error. 841 * 842 * void (*ndo_tx_timeout)(struct net_device *dev); 843 * Callback uses when the transmitter has not made any progress 844 * for dev->watchdog ticks. 845 * 846 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 847 * struct rtnl_link_stats64 *storage); 848 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 849 * Called when a user wants to get the network device usage 850 * statistics. Drivers must do one of the following: 851 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 852 * rtnl_link_stats64 structure passed by the caller. 853 * 2. Define @ndo_get_stats to update a net_device_stats structure 854 * (which should normally be dev->stats) and return a pointer to 855 * it. The structure may be changed asynchronously only if each 856 * field is written atomically. 857 * 3. Update dev->stats asynchronously and atomically, and define 858 * neither operation. 859 * 860 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 861 * If device support VLAN filtering this function is called when a 862 * VLAN id is registered. 863 * 864 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 865 * If device support VLAN filtering this function is called when a 866 * VLAN id is unregistered. 867 * 868 * void (*ndo_poll_controller)(struct net_device *dev); 869 * 870 * SR-IOV management functions. 871 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 872 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 873 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 874 * int max_tx_rate); 875 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 876 * int (*ndo_get_vf_config)(struct net_device *dev, 877 * int vf, struct ifla_vf_info *ivf); 878 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 879 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 880 * struct nlattr *port[]); 881 * 882 * Enable or disable the VF ability to query its RSS Redirection Table and 883 * Hash Key. This is needed since on some devices VF share this information 884 * with PF and querying it may adduce a theoretical security risk. 885 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 886 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 887 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 888 * Called to setup 'tc' number of traffic classes in the net device. This 889 * is always called from the stack with the rtnl lock held and netif tx 890 * queues stopped. This allows the netdevice to perform queue management 891 * safely. 892 * 893 * Fiber Channel over Ethernet (FCoE) offload functions. 894 * int (*ndo_fcoe_enable)(struct net_device *dev); 895 * Called when the FCoE protocol stack wants to start using LLD for FCoE 896 * so the underlying device can perform whatever needed configuration or 897 * initialization to support acceleration of FCoE traffic. 898 * 899 * int (*ndo_fcoe_disable)(struct net_device *dev); 900 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 901 * so the underlying device can perform whatever needed clean-ups to 902 * stop supporting acceleration of FCoE traffic. 903 * 904 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 905 * struct scatterlist *sgl, unsigned int sgc); 906 * Called when the FCoE Initiator wants to initialize an I/O that 907 * is a possible candidate for Direct Data Placement (DDP). The LLD can 908 * perform necessary setup and returns 1 to indicate the device is set up 909 * successfully to perform DDP on this I/O, otherwise this returns 0. 910 * 911 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 912 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 913 * indicated by the FC exchange id 'xid', so the underlying device can 914 * clean up and reuse resources for later DDP requests. 915 * 916 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 917 * struct scatterlist *sgl, unsigned int sgc); 918 * Called when the FCoE Target wants to initialize an I/O that 919 * is a possible candidate for Direct Data Placement (DDP). The LLD can 920 * perform necessary setup and returns 1 to indicate the device is set up 921 * successfully to perform DDP on this I/O, otherwise this returns 0. 922 * 923 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 924 * struct netdev_fcoe_hbainfo *hbainfo); 925 * Called when the FCoE Protocol stack wants information on the underlying 926 * device. This information is utilized by the FCoE protocol stack to 927 * register attributes with Fiber Channel management service as per the 928 * FC-GS Fabric Device Management Information(FDMI) specification. 929 * 930 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 931 * Called when the underlying device wants to override default World Wide 932 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 933 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 934 * protocol stack to use. 935 * 936 * RFS acceleration. 937 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 938 * u16 rxq_index, u32 flow_id); 939 * Set hardware filter for RFS. rxq_index is the target queue index; 940 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 941 * Return the filter ID on success, or a negative error code. 942 * 943 * Slave management functions (for bridge, bonding, etc). 944 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 945 * Called to make another netdev an underling. 946 * 947 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 948 * Called to release previously enslaved netdev. 949 * 950 * Feature/offload setting functions. 951 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 952 * netdev_features_t features); 953 * Adjusts the requested feature flags according to device-specific 954 * constraints, and returns the resulting flags. Must not modify 955 * the device state. 956 * 957 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 958 * Called to update device configuration to new features. Passed 959 * feature set might be less than what was returned by ndo_fix_features()). 960 * Must return >0 or -errno if it changed dev->features itself. 961 * 962 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 963 * struct net_device *dev, 964 * const unsigned char *addr, u16 vid, u16 flags) 965 * Adds an FDB entry to dev for addr. 966 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 967 * struct net_device *dev, 968 * const unsigned char *addr, u16 vid) 969 * Deletes the FDB entry from dev coresponding to addr. 970 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 971 * struct net_device *dev, struct net_device *filter_dev, 972 * int idx) 973 * Used to add FDB entries to dump requests. Implementers should add 974 * entries to skb and update idx with the number of entries. 975 * 976 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 977 * u16 flags) 978 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 979 * struct net_device *dev, u32 filter_mask, 980 * int nlflags) 981 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 982 * u16 flags); 983 * 984 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 985 * Called to change device carrier. Soft-devices (like dummy, team, etc) 986 * which do not represent real hardware may define this to allow their 987 * userspace components to manage their virtual carrier state. Devices 988 * that determine carrier state from physical hardware properties (eg 989 * network cables) or protocol-dependent mechanisms (eg 990 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 991 * 992 * int (*ndo_get_phys_port_id)(struct net_device *dev, 993 * struct netdev_phys_item_id *ppid); 994 * Called to get ID of physical port of this device. If driver does 995 * not implement this, it is assumed that the hw is not able to have 996 * multiple net devices on single physical port. 997 * 998 * void (*ndo_add_vxlan_port)(struct net_device *dev, 999 * sa_family_t sa_family, __be16 port); 1000 * Called by vxlan to notiy a driver about the UDP port and socket 1001 * address family that vxlan is listnening to. It is called only when 1002 * a new port starts listening. The operation is protected by the 1003 * vxlan_net->sock_lock. 1004 * 1005 * void (*ndo_del_vxlan_port)(struct net_device *dev, 1006 * sa_family_t sa_family, __be16 port); 1007 * Called by vxlan to notify the driver about a UDP port and socket 1008 * address family that vxlan is not listening to anymore. The operation 1009 * is protected by the vxlan_net->sock_lock. 1010 * 1011 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1012 * struct net_device *dev) 1013 * Called by upper layer devices to accelerate switching or other 1014 * station functionality into hardware. 'pdev is the lowerdev 1015 * to use for the offload and 'dev' is the net device that will 1016 * back the offload. Returns a pointer to the private structure 1017 * the upper layer will maintain. 1018 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1019 * Called by upper layer device to delete the station created 1020 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1021 * the station and priv is the structure returned by the add 1022 * operation. 1023 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1024 * struct net_device *dev, 1025 * void *priv); 1026 * Callback to use for xmit over the accelerated station. This 1027 * is used in place of ndo_start_xmit on accelerated net 1028 * devices. 1029 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1030 * struct net_device *dev 1031 * netdev_features_t features); 1032 * Called by core transmit path to determine if device is capable of 1033 * performing offload operations on a given packet. This is to give 1034 * the device an opportunity to implement any restrictions that cannot 1035 * be otherwise expressed by feature flags. The check is called with 1036 * the set of features that the stack has calculated and it returns 1037 * those the driver believes to be appropriate. 1038 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1039 * int queue_index, u32 maxrate); 1040 * Called when a user wants to set a max-rate limitation of specific 1041 * TX queue. 1042 * int (*ndo_get_iflink)(const struct net_device *dev); 1043 * Called to get the iflink value of this device. 1044 */ 1045struct net_device_ops { 1046 int (*ndo_init)(struct net_device *dev); 1047 void (*ndo_uninit)(struct net_device *dev); 1048 int (*ndo_open)(struct net_device *dev); 1049 int (*ndo_stop)(struct net_device *dev); 1050 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 1051 struct net_device *dev); 1052 u16 (*ndo_select_queue)(struct net_device *dev, 1053 struct sk_buff *skb, 1054 void *accel_priv, 1055 select_queue_fallback_t fallback); 1056 void (*ndo_change_rx_flags)(struct net_device *dev, 1057 int flags); 1058 void (*ndo_set_rx_mode)(struct net_device *dev); 1059 int (*ndo_set_mac_address)(struct net_device *dev, 1060 void *addr); 1061 int (*ndo_validate_addr)(struct net_device *dev); 1062 int (*ndo_do_ioctl)(struct net_device *dev, 1063 struct ifreq *ifr, int cmd); 1064 int (*ndo_set_config)(struct net_device *dev, 1065 struct ifmap *map); 1066 int (*ndo_change_mtu)(struct net_device *dev, 1067 int new_mtu); 1068 int (*ndo_neigh_setup)(struct net_device *dev, 1069 struct neigh_parms *); 1070 void (*ndo_tx_timeout) (struct net_device *dev); 1071 1072 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1073 struct rtnl_link_stats64 *storage); 1074 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1075 1076 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1077 __be16 proto, u16 vid); 1078 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1079 __be16 proto, u16 vid); 1080#ifdef CONFIG_NET_POLL_CONTROLLER 1081 void (*ndo_poll_controller)(struct net_device *dev); 1082 int (*ndo_netpoll_setup)(struct net_device *dev, 1083 struct netpoll_info *info); 1084 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1085#endif 1086#ifdef CONFIG_NET_RX_BUSY_POLL 1087 int (*ndo_busy_poll)(struct napi_struct *dev); 1088#endif 1089 int (*ndo_set_vf_mac)(struct net_device *dev, 1090 int queue, u8 *mac); 1091 int (*ndo_set_vf_vlan)(struct net_device *dev, 1092 int queue, u16 vlan, u8 qos); 1093 int (*ndo_set_vf_rate)(struct net_device *dev, 1094 int vf, int min_tx_rate, 1095 int max_tx_rate); 1096 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1097 int vf, bool setting); 1098 int (*ndo_get_vf_config)(struct net_device *dev, 1099 int vf, 1100 struct ifla_vf_info *ivf); 1101 int (*ndo_set_vf_link_state)(struct net_device *dev, 1102 int vf, int link_state); 1103 int (*ndo_set_vf_port)(struct net_device *dev, 1104 int vf, 1105 struct nlattr *port[]); 1106 int (*ndo_get_vf_port)(struct net_device *dev, 1107 int vf, struct sk_buff *skb); 1108 int (*ndo_set_vf_rss_query_en)( 1109 struct net_device *dev, 1110 int vf, bool setting); 1111 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 1112#if IS_ENABLED(CONFIG_FCOE) 1113 int (*ndo_fcoe_enable)(struct net_device *dev); 1114 int (*ndo_fcoe_disable)(struct net_device *dev); 1115 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1116 u16 xid, 1117 struct scatterlist *sgl, 1118 unsigned int sgc); 1119 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1120 u16 xid); 1121 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1122 u16 xid, 1123 struct scatterlist *sgl, 1124 unsigned int sgc); 1125 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1126 struct netdev_fcoe_hbainfo *hbainfo); 1127#endif 1128 1129#if IS_ENABLED(CONFIG_LIBFCOE) 1130#define NETDEV_FCOE_WWNN 0 1131#define NETDEV_FCOE_WWPN 1 1132 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1133 u64 *wwn, int type); 1134#endif 1135 1136#ifdef CONFIG_RFS_ACCEL 1137 int (*ndo_rx_flow_steer)(struct net_device *dev, 1138 const struct sk_buff *skb, 1139 u16 rxq_index, 1140 u32 flow_id); 1141#endif 1142 int (*ndo_add_slave)(struct net_device *dev, 1143 struct net_device *slave_dev); 1144 int (*ndo_del_slave)(struct net_device *dev, 1145 struct net_device *slave_dev); 1146 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1147 netdev_features_t features); 1148 int (*ndo_set_features)(struct net_device *dev, 1149 netdev_features_t features); 1150 int (*ndo_neigh_construct)(struct neighbour *n); 1151 void (*ndo_neigh_destroy)(struct neighbour *n); 1152 1153 int (*ndo_fdb_add)(struct ndmsg *ndm, 1154 struct nlattr *tb[], 1155 struct net_device *dev, 1156 const unsigned char *addr, 1157 u16 vid, 1158 u16 flags); 1159 int (*ndo_fdb_del)(struct ndmsg *ndm, 1160 struct nlattr *tb[], 1161 struct net_device *dev, 1162 const unsigned char *addr, 1163 u16 vid); 1164 int (*ndo_fdb_dump)(struct sk_buff *skb, 1165 struct netlink_callback *cb, 1166 struct net_device *dev, 1167 struct net_device *filter_dev, 1168 int idx); 1169 1170 int (*ndo_bridge_setlink)(struct net_device *dev, 1171 struct nlmsghdr *nlh, 1172 u16 flags); 1173 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1174 u32 pid, u32 seq, 1175 struct net_device *dev, 1176 u32 filter_mask, 1177 int nlflags); 1178 int (*ndo_bridge_dellink)(struct net_device *dev, 1179 struct nlmsghdr *nlh, 1180 u16 flags); 1181 int (*ndo_change_carrier)(struct net_device *dev, 1182 bool new_carrier); 1183 int (*ndo_get_phys_port_id)(struct net_device *dev, 1184 struct netdev_phys_item_id *ppid); 1185 int (*ndo_get_phys_port_name)(struct net_device *dev, 1186 char *name, size_t len); 1187 void (*ndo_add_vxlan_port)(struct net_device *dev, 1188 sa_family_t sa_family, 1189 __be16 port); 1190 void (*ndo_del_vxlan_port)(struct net_device *dev, 1191 sa_family_t sa_family, 1192 __be16 port); 1193 1194 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1195 struct net_device *dev); 1196 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1197 void *priv); 1198 1199 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1200 struct net_device *dev, 1201 void *priv); 1202 int (*ndo_get_lock_subclass)(struct net_device *dev); 1203 netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1204 struct net_device *dev, 1205 netdev_features_t features); 1206 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1207 int queue_index, 1208 u32 maxrate); 1209 int (*ndo_get_iflink)(const struct net_device *dev); 1210}; 1211 1212/** 1213 * enum net_device_priv_flags - &struct net_device priv_flags 1214 * 1215 * These are the &struct net_device, they are only set internally 1216 * by drivers and used in the kernel. These flags are invisible to 1217 * userspace, this means that the order of these flags can change 1218 * during any kernel release. 1219 * 1220 * You should have a pretty good reason to be extending these flags. 1221 * 1222 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1223 * @IFF_EBRIDGE: Ethernet bridging device 1224 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active 1225 * @IFF_MASTER_8023AD: bonding master, 802.3ad 1226 * @IFF_MASTER_ALB: bonding master, balance-alb 1227 * @IFF_BONDING: bonding master or slave 1228 * @IFF_SLAVE_NEEDARP: need ARPs for validation 1229 * @IFF_ISATAP: ISATAP interface (RFC4214) 1230 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use 1231 * @IFF_WAN_HDLC: WAN HDLC device 1232 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1233 * release skb->dst 1234 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1235 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1236 * @IFF_MACVLAN_PORT: device used as macvlan port 1237 * @IFF_BRIDGE_PORT: device used as bridge port 1238 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1239 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1240 * @IFF_UNICAST_FLT: Supports unicast filtering 1241 * @IFF_TEAM_PORT: device used as team port 1242 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1243 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1244 * change when it's running 1245 * @IFF_MACVLAN: Macvlan device 1246 */ 1247enum netdev_priv_flags { 1248 IFF_802_1Q_VLAN = 1<<0, 1249 IFF_EBRIDGE = 1<<1, 1250 IFF_SLAVE_INACTIVE = 1<<2, 1251 IFF_MASTER_8023AD = 1<<3, 1252 IFF_MASTER_ALB = 1<<4, 1253 IFF_BONDING = 1<<5, 1254 IFF_SLAVE_NEEDARP = 1<<6, 1255 IFF_ISATAP = 1<<7, 1256 IFF_MASTER_ARPMON = 1<<8, 1257 IFF_WAN_HDLC = 1<<9, 1258 IFF_XMIT_DST_RELEASE = 1<<10, 1259 IFF_DONT_BRIDGE = 1<<11, 1260 IFF_DISABLE_NETPOLL = 1<<12, 1261 IFF_MACVLAN_PORT = 1<<13, 1262 IFF_BRIDGE_PORT = 1<<14, 1263 IFF_OVS_DATAPATH = 1<<15, 1264 IFF_TX_SKB_SHARING = 1<<16, 1265 IFF_UNICAST_FLT = 1<<17, 1266 IFF_TEAM_PORT = 1<<18, 1267 IFF_SUPP_NOFCS = 1<<19, 1268 IFF_LIVE_ADDR_CHANGE = 1<<20, 1269 IFF_MACVLAN = 1<<21, 1270 IFF_XMIT_DST_RELEASE_PERM = 1<<22, 1271 IFF_IPVLAN_MASTER = 1<<23, 1272 IFF_IPVLAN_SLAVE = 1<<24, 1273}; 1274 1275#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1276#define IFF_EBRIDGE IFF_EBRIDGE 1277#define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE 1278#define IFF_MASTER_8023AD IFF_MASTER_8023AD 1279#define IFF_MASTER_ALB IFF_MASTER_ALB 1280#define IFF_BONDING IFF_BONDING 1281#define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP 1282#define IFF_ISATAP IFF_ISATAP 1283#define IFF_MASTER_ARPMON IFF_MASTER_ARPMON 1284#define IFF_WAN_HDLC IFF_WAN_HDLC 1285#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1286#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1287#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1288#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1289#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1290#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1291#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1292#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1293#define IFF_TEAM_PORT IFF_TEAM_PORT 1294#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1295#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1296#define IFF_MACVLAN IFF_MACVLAN 1297#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1298#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1299#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1300 1301/** 1302 * struct net_device - The DEVICE structure. 1303 * Actually, this whole structure is a big mistake. It mixes I/O 1304 * data with strictly "high-level" data, and it has to know about 1305 * almost every data structure used in the INET module. 1306 * 1307 * @name: This is the first field of the "visible" part of this structure 1308 * (i.e. as seen by users in the "Space.c" file). It is the name 1309 * of the interface. 1310 * 1311 * @name_hlist: Device name hash chain, please keep it close to name[] 1312 * @ifalias: SNMP alias 1313 * @mem_end: Shared memory end 1314 * @mem_start: Shared memory start 1315 * @base_addr: Device I/O address 1316 * @irq: Device IRQ number 1317 * 1318 * @carrier_changes: Stats to monitor carrier on<->off transitions 1319 * 1320 * @state: Generic network queuing layer state, see netdev_state_t 1321 * @dev_list: The global list of network devices 1322 * @napi_list: List entry, that is used for polling napi devices 1323 * @unreg_list: List entry, that is used, when we are unregistering the 1324 * device, see the function unregister_netdev 1325 * @close_list: List entry, that is used, when we are closing the device 1326 * 1327 * @adj_list: Directly linked devices, like slaves for bonding 1328 * @all_adj_list: All linked devices, *including* neighbours 1329 * @features: Currently active device features 1330 * @hw_features: User-changeable features 1331 * 1332 * @wanted_features: User-requested features 1333 * @vlan_features: Mask of features inheritable by VLAN devices 1334 * 1335 * @hw_enc_features: Mask of features inherited by encapsulating devices 1336 * This field indicates what encapsulation 1337 * offloads the hardware is capable of doing, 1338 * and drivers will need to set them appropriately. 1339 * 1340 * @mpls_features: Mask of features inheritable by MPLS 1341 * 1342 * @ifindex: interface index 1343 * @group: The group, that the device belongs to 1344 * 1345 * @stats: Statistics struct, which was left as a legacy, use 1346 * rtnl_link_stats64 instead 1347 * 1348 * @rx_dropped: Dropped packets by core network, 1349 * do not use this in drivers 1350 * @tx_dropped: Dropped packets by core network, 1351 * do not use this in drivers 1352 * 1353 * @wireless_handlers: List of functions to handle Wireless Extensions, 1354 * instead of ioctl, 1355 * see <net/iw_handler.h> for details. 1356 * @wireless_data: Instance data managed by the core of wireless extensions 1357 * 1358 * @netdev_ops: Includes several pointers to callbacks, 1359 * if one wants to override the ndo_*() functions 1360 * @ethtool_ops: Management operations 1361 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1362 * of Layer 2 headers. 1363 * 1364 * @flags: Interface flags (a la BSD) 1365 * @priv_flags: Like 'flags' but invisible to userspace, 1366 * see if.h for the definitions 1367 * @gflags: Global flags ( kept as legacy ) 1368 * @padded: How much padding added by alloc_netdev() 1369 * @operstate: RFC2863 operstate 1370 * @link_mode: Mapping policy to operstate 1371 * @if_port: Selectable AUI, TP, ... 1372 * @dma: DMA channel 1373 * @mtu: Interface MTU value 1374 * @type: Interface hardware type 1375 * @hard_header_len: Hardware header length 1376 * 1377 * @needed_headroom: Extra headroom the hardware may need, but not in all 1378 * cases can this be guaranteed 1379 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1380 * cases can this be guaranteed. Some cases also use 1381 * LL_MAX_HEADER instead to allocate the skb 1382 * 1383 * interface address info: 1384 * 1385 * @perm_addr: Permanent hw address 1386 * @addr_assign_type: Hw address assignment type 1387 * @addr_len: Hardware address length 1388 * @neigh_priv_len; Used in neigh_alloc(), 1389 * initialized only in atm/clip.c 1390 * @dev_id: Used to differentiate devices that share 1391 * the same link layer address 1392 * @dev_port: Used to differentiate devices that share 1393 * the same function 1394 * @addr_list_lock: XXX: need comments on this one 1395 * @uc_promisc: Counter, that indicates, that promiscuous mode 1396 * has been enabled due to the need to listen to 1397 * additional unicast addresses in a device that 1398 * does not implement ndo_set_rx_mode() 1399 * @uc: unicast mac addresses 1400 * @mc: multicast mac addresses 1401 * @dev_addrs: list of device hw addresses 1402 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1403 * @promiscuity: Number of times, the NIC is told to work in 1404 * Promiscuous mode, if it becomes 0 the NIC will 1405 * exit from working in Promiscuous mode 1406 * @allmulti: Counter, enables or disables allmulticast mode 1407 * 1408 * @vlan_info: VLAN info 1409 * @dsa_ptr: dsa specific data 1410 * @tipc_ptr: TIPC specific data 1411 * @atalk_ptr: AppleTalk link 1412 * @ip_ptr: IPv4 specific data 1413 * @dn_ptr: DECnet specific data 1414 * @ip6_ptr: IPv6 specific data 1415 * @ax25_ptr: AX.25 specific data 1416 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1417 * 1418 * @last_rx: Time of last Rx 1419 * @dev_addr: Hw address (before bcast, 1420 * because most packets are unicast) 1421 * 1422 * @_rx: Array of RX queues 1423 * @num_rx_queues: Number of RX queues 1424 * allocated at register_netdev() time 1425 * @real_num_rx_queues: Number of RX queues currently active in device 1426 * 1427 * @rx_handler: handler for received packets 1428 * @rx_handler_data: XXX: need comments on this one 1429 * @ingress_queue: XXX: need comments on this one 1430 * @broadcast: hw bcast address 1431 * 1432 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1433 * indexed by RX queue number. Assigned by driver. 1434 * This must only be set if the ndo_rx_flow_steer 1435 * operation is defined 1436 * @index_hlist: Device index hash chain 1437 * 1438 * @_tx: Array of TX queues 1439 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1440 * @real_num_tx_queues: Number of TX queues currently active in device 1441 * @qdisc: Root qdisc from userspace point of view 1442 * @tx_queue_len: Max frames per queue allowed 1443 * @tx_global_lock: XXX: need comments on this one 1444 * 1445 * @xps_maps: XXX: need comments on this one 1446 * 1447 * @trans_start: Time (in jiffies) of last Tx 1448 * @watchdog_timeo: Represents the timeout that is used by 1449 * the watchdog ( see dev_watchdog() ) 1450 * @watchdog_timer: List of timers 1451 * 1452 * @pcpu_refcnt: Number of references to this device 1453 * @todo_list: Delayed register/unregister 1454 * @link_watch_list: XXX: need comments on this one 1455 * 1456 * @reg_state: Register/unregister state machine 1457 * @dismantle: Device is going to be freed 1458 * @rtnl_link_state: This enum represents the phases of creating 1459 * a new link 1460 * 1461 * @destructor: Called from unregister, 1462 * can be used to call free_netdev 1463 * @npinfo: XXX: need comments on this one 1464 * @nd_net: Network namespace this network device is inside 1465 * 1466 * @ml_priv: Mid-layer private 1467 * @lstats: Loopback statistics 1468 * @tstats: Tunnel statistics 1469 * @dstats: Dummy statistics 1470 * @vstats: Virtual ethernet statistics 1471 * 1472 * @garp_port: GARP 1473 * @mrp_port: MRP 1474 * 1475 * @dev: Class/net/name entry 1476 * @sysfs_groups: Space for optional device, statistics and wireless 1477 * sysfs groups 1478 * 1479 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1480 * @rtnl_link_ops: Rtnl_link_ops 1481 * 1482 * @gso_max_size: Maximum size of generic segmentation offload 1483 * @gso_max_segs: Maximum number of segments that can be passed to the 1484 * NIC for GSO 1485 * @gso_min_segs: Minimum number of segments that can be passed to the 1486 * NIC for GSO 1487 * 1488 * @dcbnl_ops: Data Center Bridging netlink ops 1489 * @num_tc: Number of traffic classes in the net device 1490 * @tc_to_txq: XXX: need comments on this one 1491 * @prio_tc_map XXX: need comments on this one 1492 * 1493 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1494 * 1495 * @priomap: XXX: need comments on this one 1496 * @phydev: Physical device may attach itself 1497 * for hardware timestamping 1498 * 1499 * @qdisc_tx_busylock: XXX: need comments on this one 1500 * 1501 * FIXME: cleanup struct net_device such that network protocol info 1502 * moves out. 1503 */ 1504 1505struct net_device { 1506 char name[IFNAMSIZ]; 1507 struct hlist_node name_hlist; 1508 char *ifalias; 1509 /* 1510 * I/O specific fields 1511 * FIXME: Merge these and struct ifmap into one 1512 */ 1513 unsigned long mem_end; 1514 unsigned long mem_start; 1515 unsigned long base_addr; 1516 int irq; 1517 1518 atomic_t carrier_changes; 1519 1520 /* 1521 * Some hardware also needs these fields (state,dev_list, 1522 * napi_list,unreg_list,close_list) but they are not 1523 * part of the usual set specified in Space.c. 1524 */ 1525 1526 unsigned long state; 1527 1528 struct list_head dev_list; 1529 struct list_head napi_list; 1530 struct list_head unreg_list; 1531 struct list_head close_list; 1532 struct list_head ptype_all; 1533 struct list_head ptype_specific; 1534 1535 struct { 1536 struct list_head upper; 1537 struct list_head lower; 1538 } adj_list; 1539 1540 struct { 1541 struct list_head upper; 1542 struct list_head lower; 1543 } all_adj_list; 1544 1545 netdev_features_t features; 1546 netdev_features_t hw_features; 1547 netdev_features_t wanted_features; 1548 netdev_features_t vlan_features; 1549 netdev_features_t hw_enc_features; 1550 netdev_features_t mpls_features; 1551 1552 int ifindex; 1553 int group; 1554 1555 struct net_device_stats stats; 1556 1557 atomic_long_t rx_dropped; 1558 atomic_long_t tx_dropped; 1559 1560#ifdef CONFIG_WIRELESS_EXT 1561 const struct iw_handler_def * wireless_handlers; 1562 struct iw_public_data * wireless_data; 1563#endif 1564 const struct net_device_ops *netdev_ops; 1565 const struct ethtool_ops *ethtool_ops; 1566#ifdef CONFIG_NET_SWITCHDEV 1567 const struct swdev_ops *swdev_ops; 1568#endif 1569 1570 const struct header_ops *header_ops; 1571 1572 unsigned int flags; 1573 unsigned int priv_flags; 1574 1575 unsigned short gflags; 1576 unsigned short padded; 1577 1578 unsigned char operstate; 1579 unsigned char link_mode; 1580 1581 unsigned char if_port; 1582 unsigned char dma; 1583 1584 unsigned int mtu; 1585 unsigned short type; 1586 unsigned short hard_header_len; 1587 1588 unsigned short needed_headroom; 1589 unsigned short needed_tailroom; 1590 1591 /* Interface address info. */ 1592 unsigned char perm_addr[MAX_ADDR_LEN]; 1593 unsigned char addr_assign_type; 1594 unsigned char addr_len; 1595 unsigned short neigh_priv_len; 1596 unsigned short dev_id; 1597 unsigned short dev_port; 1598 spinlock_t addr_list_lock; 1599 unsigned char name_assign_type; 1600 bool uc_promisc; 1601 struct netdev_hw_addr_list uc; 1602 struct netdev_hw_addr_list mc; 1603 struct netdev_hw_addr_list dev_addrs; 1604 1605#ifdef CONFIG_SYSFS 1606 struct kset *queues_kset; 1607#endif 1608 unsigned int promiscuity; 1609 unsigned int allmulti; 1610 1611 1612 /* Protocol specific pointers */ 1613 1614#if IS_ENABLED(CONFIG_VLAN_8021Q) 1615 struct vlan_info __rcu *vlan_info; 1616#endif 1617#if IS_ENABLED(CONFIG_NET_DSA) 1618 struct dsa_switch_tree *dsa_ptr; 1619#endif 1620#if IS_ENABLED(CONFIG_TIPC) 1621 struct tipc_bearer __rcu *tipc_ptr; 1622#endif 1623 void *atalk_ptr; 1624 struct in_device __rcu *ip_ptr; 1625 struct dn_dev __rcu *dn_ptr; 1626 struct inet6_dev __rcu *ip6_ptr; 1627 void *ax25_ptr; 1628 struct wireless_dev *ieee80211_ptr; 1629 struct wpan_dev *ieee802154_ptr; 1630#if IS_ENABLED(CONFIG_MPLS_ROUTING) 1631 struct mpls_dev __rcu *mpls_ptr; 1632#endif 1633 1634/* 1635 * Cache lines mostly used on receive path (including eth_type_trans()) 1636 */ 1637 unsigned long last_rx; 1638 1639 /* Interface address info used in eth_type_trans() */ 1640 unsigned char *dev_addr; 1641 1642 1643#ifdef CONFIG_SYSFS 1644 struct netdev_rx_queue *_rx; 1645 1646 unsigned int num_rx_queues; 1647 unsigned int real_num_rx_queues; 1648 1649#endif 1650 1651 unsigned long gro_flush_timeout; 1652 rx_handler_func_t __rcu *rx_handler; 1653 void __rcu *rx_handler_data; 1654 1655 struct netdev_queue __rcu *ingress_queue; 1656 unsigned char broadcast[MAX_ADDR_LEN]; 1657#ifdef CONFIG_RFS_ACCEL 1658 struct cpu_rmap *rx_cpu_rmap; 1659#endif 1660 struct hlist_node index_hlist; 1661 1662/* 1663 * Cache lines mostly used on transmit path 1664 */ 1665 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1666 unsigned int num_tx_queues; 1667 unsigned int real_num_tx_queues; 1668 struct Qdisc *qdisc; 1669 unsigned long tx_queue_len; 1670 spinlock_t tx_global_lock; 1671 int watchdog_timeo; 1672 1673#ifdef CONFIG_XPS 1674 struct xps_dev_maps __rcu *xps_maps; 1675#endif 1676 1677 /* These may be needed for future network-power-down code. */ 1678 1679 /* 1680 * trans_start here is expensive for high speed devices on SMP, 1681 * please use netdev_queue->trans_start instead. 1682 */ 1683 unsigned long trans_start; 1684 1685 struct timer_list watchdog_timer; 1686 1687 int __percpu *pcpu_refcnt; 1688 struct list_head todo_list; 1689 1690 struct list_head link_watch_list; 1691 1692 enum { NETREG_UNINITIALIZED=0, 1693 NETREG_REGISTERED, /* completed register_netdevice */ 1694 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1695 NETREG_UNREGISTERED, /* completed unregister todo */ 1696 NETREG_RELEASED, /* called free_netdev */ 1697 NETREG_DUMMY, /* dummy device for NAPI poll */ 1698 } reg_state:8; 1699 1700 bool dismantle; 1701 1702 enum { 1703 RTNL_LINK_INITIALIZED, 1704 RTNL_LINK_INITIALIZING, 1705 } rtnl_link_state:16; 1706 1707 void (*destructor)(struct net_device *dev); 1708 1709#ifdef CONFIG_NETPOLL 1710 struct netpoll_info __rcu *npinfo; 1711#endif 1712 1713 possible_net_t nd_net; 1714 1715 /* mid-layer private */ 1716 union { 1717 void *ml_priv; 1718 struct pcpu_lstats __percpu *lstats; 1719 struct pcpu_sw_netstats __percpu *tstats; 1720 struct pcpu_dstats __percpu *dstats; 1721 struct pcpu_vstats __percpu *vstats; 1722 }; 1723 1724 struct garp_port __rcu *garp_port; 1725 struct mrp_port __rcu *mrp_port; 1726 1727 struct device dev; 1728 const struct attribute_group *sysfs_groups[4]; 1729 const struct attribute_group *sysfs_rx_queue_group; 1730 1731 const struct rtnl_link_ops *rtnl_link_ops; 1732 1733 /* for setting kernel sock attribute on TCP connection setup */ 1734#define GSO_MAX_SIZE 65536 1735 unsigned int gso_max_size; 1736#define GSO_MAX_SEGS 65535 1737 u16 gso_max_segs; 1738 u16 gso_min_segs; 1739#ifdef CONFIG_DCB 1740 const struct dcbnl_rtnl_ops *dcbnl_ops; 1741#endif 1742 u8 num_tc; 1743 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1744 u8 prio_tc_map[TC_BITMASK + 1]; 1745 1746#if IS_ENABLED(CONFIG_FCOE) 1747 unsigned int fcoe_ddp_xid; 1748#endif 1749#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1750 struct netprio_map __rcu *priomap; 1751#endif 1752 struct phy_device *phydev; 1753 struct lock_class_key *qdisc_tx_busylock; 1754}; 1755#define to_net_dev(d) container_of(d, struct net_device, dev) 1756 1757#define NETDEV_ALIGN 32 1758 1759static inline 1760int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1761{ 1762 return dev->prio_tc_map[prio & TC_BITMASK]; 1763} 1764 1765static inline 1766int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1767{ 1768 if (tc >= dev->num_tc) 1769 return -EINVAL; 1770 1771 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1772 return 0; 1773} 1774 1775static inline 1776void netdev_reset_tc(struct net_device *dev) 1777{ 1778 dev->num_tc = 0; 1779 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1780 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1781} 1782 1783static inline 1784int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1785{ 1786 if (tc >= dev->num_tc) 1787 return -EINVAL; 1788 1789 dev->tc_to_txq[tc].count = count; 1790 dev->tc_to_txq[tc].offset = offset; 1791 return 0; 1792} 1793 1794static inline 1795int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1796{ 1797 if (num_tc > TC_MAX_QUEUE) 1798 return -EINVAL; 1799 1800 dev->num_tc = num_tc; 1801 return 0; 1802} 1803 1804static inline 1805int netdev_get_num_tc(struct net_device *dev) 1806{ 1807 return dev->num_tc; 1808} 1809 1810static inline 1811struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1812 unsigned int index) 1813{ 1814 return &dev->_tx[index]; 1815} 1816 1817static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1818 const struct sk_buff *skb) 1819{ 1820 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1821} 1822 1823static inline void netdev_for_each_tx_queue(struct net_device *dev, 1824 void (*f)(struct net_device *, 1825 struct netdev_queue *, 1826 void *), 1827 void *arg) 1828{ 1829 unsigned int i; 1830 1831 for (i = 0; i < dev->num_tx_queues; i++) 1832 f(dev, &dev->_tx[i], arg); 1833} 1834 1835struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1836 struct sk_buff *skb, 1837 void *accel_priv); 1838 1839/* 1840 * Net namespace inlines 1841 */ 1842static inline 1843struct net *dev_net(const struct net_device *dev) 1844{ 1845 return read_pnet(&dev->nd_net); 1846} 1847 1848static inline 1849void dev_net_set(struct net_device *dev, struct net *net) 1850{ 1851 write_pnet(&dev->nd_net, net); 1852} 1853 1854static inline bool netdev_uses_dsa(struct net_device *dev) 1855{ 1856#if IS_ENABLED(CONFIG_NET_DSA) 1857 if (dev->dsa_ptr != NULL) 1858 return dsa_uses_tagged_protocol(dev->dsa_ptr); 1859#endif 1860 return false; 1861} 1862 1863/** 1864 * netdev_priv - access network device private data 1865 * @dev: network device 1866 * 1867 * Get network device private data 1868 */ 1869static inline void *netdev_priv(const struct net_device *dev) 1870{ 1871 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1872} 1873 1874/* Set the sysfs physical device reference for the network logical device 1875 * if set prior to registration will cause a symlink during initialization. 1876 */ 1877#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1878 1879/* Set the sysfs device type for the network logical device to allow 1880 * fine-grained identification of different network device types. For 1881 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1882 */ 1883#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1884 1885/* Default NAPI poll() weight 1886 * Device drivers are strongly advised to not use bigger value 1887 */ 1888#define NAPI_POLL_WEIGHT 64 1889 1890/** 1891 * netif_napi_add - initialize a napi context 1892 * @dev: network device 1893 * @napi: napi context 1894 * @poll: polling function 1895 * @weight: default weight 1896 * 1897 * netif_napi_add() must be used to initialize a napi context prior to calling 1898 * *any* of the other napi related functions. 1899 */ 1900void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1901 int (*poll)(struct napi_struct *, int), int weight); 1902 1903/** 1904 * netif_napi_del - remove a napi context 1905 * @napi: napi context 1906 * 1907 * netif_napi_del() removes a napi context from the network device napi list 1908 */ 1909void netif_napi_del(struct napi_struct *napi); 1910 1911struct napi_gro_cb { 1912 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1913 void *frag0; 1914 1915 /* Length of frag0. */ 1916 unsigned int frag0_len; 1917 1918 /* This indicates where we are processing relative to skb->data. */ 1919 int data_offset; 1920 1921 /* This is non-zero if the packet cannot be merged with the new skb. */ 1922 u16 flush; 1923 1924 /* Save the IP ID here and check when we get to the transport layer */ 1925 u16 flush_id; 1926 1927 /* Number of segments aggregated. */ 1928 u16 count; 1929 1930 /* Start offset for remote checksum offload */ 1931 u16 gro_remcsum_start; 1932 1933 /* jiffies when first packet was created/queued */ 1934 unsigned long age; 1935 1936 /* Used in ipv6_gro_receive() and foo-over-udp */ 1937 u16 proto; 1938 1939 /* This is non-zero if the packet may be of the same flow. */ 1940 u8 same_flow:1; 1941 1942 /* Used in udp_gro_receive */ 1943 u8 udp_mark:1; 1944 1945 /* GRO checksum is valid */ 1946 u8 csum_valid:1; 1947 1948 /* Number of checksums via CHECKSUM_UNNECESSARY */ 1949 u8 csum_cnt:3; 1950 1951 /* Free the skb? */ 1952 u8 free:2; 1953#define NAPI_GRO_FREE 1 1954#define NAPI_GRO_FREE_STOLEN_HEAD 2 1955 1956 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 1957 u8 is_ipv6:1; 1958 1959 /* 7 bit hole */ 1960 1961 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 1962 __wsum csum; 1963 1964 /* used in skb_gro_receive() slow path */ 1965 struct sk_buff *last; 1966}; 1967 1968#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1969 1970struct packet_type { 1971 __be16 type; /* This is really htons(ether_type). */ 1972 struct net_device *dev; /* NULL is wildcarded here */ 1973 int (*func) (struct sk_buff *, 1974 struct net_device *, 1975 struct packet_type *, 1976 struct net_device *); 1977 bool (*id_match)(struct packet_type *ptype, 1978 struct sock *sk); 1979 void *af_packet_priv; 1980 struct list_head list; 1981}; 1982 1983struct offload_callbacks { 1984 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1985 netdev_features_t features); 1986 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1987 struct sk_buff *skb); 1988 int (*gro_complete)(struct sk_buff *skb, int nhoff); 1989}; 1990 1991struct packet_offload { 1992 __be16 type; /* This is really htons(ether_type). */ 1993 struct offload_callbacks callbacks; 1994 struct list_head list; 1995}; 1996 1997struct udp_offload; 1998 1999struct udp_offload_callbacks { 2000 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2001 struct sk_buff *skb, 2002 struct udp_offload *uoff); 2003 int (*gro_complete)(struct sk_buff *skb, 2004 int nhoff, 2005 struct udp_offload *uoff); 2006}; 2007 2008struct udp_offload { 2009 __be16 port; 2010 u8 ipproto; 2011 struct udp_offload_callbacks callbacks; 2012}; 2013 2014/* often modified stats are per cpu, other are shared (netdev->stats) */ 2015struct pcpu_sw_netstats { 2016 u64 rx_packets; 2017 u64 rx_bytes; 2018 u64 tx_packets; 2019 u64 tx_bytes; 2020 struct u64_stats_sync syncp; 2021}; 2022 2023#define netdev_alloc_pcpu_stats(type) \ 2024({ \ 2025 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \ 2026 if (pcpu_stats) { \ 2027 int __cpu; \ 2028 for_each_possible_cpu(__cpu) { \ 2029 typeof(type) *stat; \ 2030 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2031 u64_stats_init(&stat->syncp); \ 2032 } \ 2033 } \ 2034 pcpu_stats; \ 2035}) 2036 2037#include <linux/notifier.h> 2038 2039/* netdevice notifier chain. Please remember to update the rtnetlink 2040 * notification exclusion list in rtnetlink_event() when adding new 2041 * types. 2042 */ 2043#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2044#define NETDEV_DOWN 0x0002 2045#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2046 detected a hardware crash and restarted 2047 - we can use this eg to kick tcp sessions 2048 once done */ 2049#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2050#define NETDEV_REGISTER 0x0005 2051#define NETDEV_UNREGISTER 0x0006 2052#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2053#define NETDEV_CHANGEADDR 0x0008 2054#define NETDEV_GOING_DOWN 0x0009 2055#define NETDEV_CHANGENAME 0x000A 2056#define NETDEV_FEAT_CHANGE 0x000B 2057#define NETDEV_BONDING_FAILOVER 0x000C 2058#define NETDEV_PRE_UP 0x000D 2059#define NETDEV_PRE_TYPE_CHANGE 0x000E 2060#define NETDEV_POST_TYPE_CHANGE 0x000F 2061#define NETDEV_POST_INIT 0x0010 2062#define NETDEV_UNREGISTER_FINAL 0x0011 2063#define NETDEV_RELEASE 0x0012 2064#define NETDEV_NOTIFY_PEERS 0x0013 2065#define NETDEV_JOIN 0x0014 2066#define NETDEV_CHANGEUPPER 0x0015 2067#define NETDEV_RESEND_IGMP 0x0016 2068#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2069#define NETDEV_CHANGEINFODATA 0x0018 2070#define NETDEV_BONDING_INFO 0x0019 2071 2072int register_netdevice_notifier(struct notifier_block *nb); 2073int unregister_netdevice_notifier(struct notifier_block *nb); 2074 2075struct netdev_notifier_info { 2076 struct net_device *dev; 2077}; 2078 2079struct netdev_notifier_change_info { 2080 struct netdev_notifier_info info; /* must be first */ 2081 unsigned int flags_changed; 2082}; 2083 2084static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2085 struct net_device *dev) 2086{ 2087 info->dev = dev; 2088} 2089 2090static inline struct net_device * 2091netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2092{ 2093 return info->dev; 2094} 2095 2096int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2097 2098 2099extern rwlock_t dev_base_lock; /* Device list lock */ 2100 2101#define for_each_netdev(net, d) \ 2102 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2103#define for_each_netdev_reverse(net, d) \ 2104 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2105#define for_each_netdev_rcu(net, d) \ 2106 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2107#define for_each_netdev_safe(net, d, n) \ 2108 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2109#define for_each_netdev_continue(net, d) \ 2110 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2111#define for_each_netdev_continue_rcu(net, d) \ 2112 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2113#define for_each_netdev_in_bond_rcu(bond, slave) \ 2114 for_each_netdev_rcu(&init_net, slave) \ 2115 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2116#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2117 2118static inline struct net_device *next_net_device(struct net_device *dev) 2119{ 2120 struct list_head *lh; 2121 struct net *net; 2122 2123 net = dev_net(dev); 2124 lh = dev->dev_list.next; 2125 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2126} 2127 2128static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2129{ 2130 struct list_head *lh; 2131 struct net *net; 2132 2133 net = dev_net(dev); 2134 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2135 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2136} 2137 2138static inline struct net_device *first_net_device(struct net *net) 2139{ 2140 return list_empty(&net->dev_base_head) ? NULL : 2141 net_device_entry(net->dev_base_head.next); 2142} 2143 2144static inline struct net_device *first_net_device_rcu(struct net *net) 2145{ 2146 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2147 2148 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2149} 2150 2151int netdev_boot_setup_check(struct net_device *dev); 2152unsigned long netdev_boot_base(const char *prefix, int unit); 2153struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2154 const char *hwaddr); 2155struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2156struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2157void dev_add_pack(struct packet_type *pt); 2158void dev_remove_pack(struct packet_type *pt); 2159void __dev_remove_pack(struct packet_type *pt); 2160void dev_add_offload(struct packet_offload *po); 2161void dev_remove_offload(struct packet_offload *po); 2162 2163int dev_get_iflink(const struct net_device *dev); 2164struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2165 unsigned short mask); 2166struct net_device *dev_get_by_name(struct net *net, const char *name); 2167struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2168struct net_device *__dev_get_by_name(struct net *net, const char *name); 2169int dev_alloc_name(struct net_device *dev, const char *name); 2170int dev_open(struct net_device *dev); 2171int dev_close(struct net_device *dev); 2172int dev_close_many(struct list_head *head, bool unlink); 2173void dev_disable_lro(struct net_device *dev); 2174int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb); 2175int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb); 2176static inline int dev_queue_xmit(struct sk_buff *skb) 2177{ 2178 return dev_queue_xmit_sk(skb->sk, skb); 2179} 2180int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2181int register_netdevice(struct net_device *dev); 2182void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2183void unregister_netdevice_many(struct list_head *head); 2184static inline void unregister_netdevice(struct net_device *dev) 2185{ 2186 unregister_netdevice_queue(dev, NULL); 2187} 2188 2189int netdev_refcnt_read(const struct net_device *dev); 2190void free_netdev(struct net_device *dev); 2191void netdev_freemem(struct net_device *dev); 2192void synchronize_net(void); 2193int init_dummy_netdev(struct net_device *dev); 2194 2195DECLARE_PER_CPU(int, xmit_recursion); 2196static inline int dev_recursion_level(void) 2197{ 2198 return this_cpu_read(xmit_recursion); 2199} 2200 2201struct net_device *dev_get_by_index(struct net *net, int ifindex); 2202struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2203struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2204int netdev_get_name(struct net *net, char *name, int ifindex); 2205int dev_restart(struct net_device *dev); 2206int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2207 2208static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2209{ 2210 return NAPI_GRO_CB(skb)->data_offset; 2211} 2212 2213static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2214{ 2215 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2216} 2217 2218static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2219{ 2220 NAPI_GRO_CB(skb)->data_offset += len; 2221} 2222 2223static inline void *skb_gro_header_fast(struct sk_buff *skb, 2224 unsigned int offset) 2225{ 2226 return NAPI_GRO_CB(skb)->frag0 + offset; 2227} 2228 2229static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2230{ 2231 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2232} 2233 2234static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2235 unsigned int offset) 2236{ 2237 if (!pskb_may_pull(skb, hlen)) 2238 return NULL; 2239 2240 NAPI_GRO_CB(skb)->frag0 = NULL; 2241 NAPI_GRO_CB(skb)->frag0_len = 0; 2242 return skb->data + offset; 2243} 2244 2245static inline void *skb_gro_network_header(struct sk_buff *skb) 2246{ 2247 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2248 skb_network_offset(skb); 2249} 2250 2251static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2252 const void *start, unsigned int len) 2253{ 2254 if (NAPI_GRO_CB(skb)->csum_valid) 2255 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2256 csum_partial(start, len, 0)); 2257} 2258 2259/* GRO checksum functions. These are logical equivalents of the normal 2260 * checksum functions (in skbuff.h) except that they operate on the GRO 2261 * offsets and fields in sk_buff. 2262 */ 2263 2264__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2265 2266static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2267{ 2268 return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) == 2269 skb_gro_offset(skb)); 2270} 2271 2272static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2273 bool zero_okay, 2274 __sum16 check) 2275{ 2276 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2277 skb_checksum_start_offset(skb) < 2278 skb_gro_offset(skb)) && 2279 !skb_at_gro_remcsum_start(skb) && 2280 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2281 (!zero_okay || check)); 2282} 2283 2284static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2285 __wsum psum) 2286{ 2287 if (NAPI_GRO_CB(skb)->csum_valid && 2288 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2289 return 0; 2290 2291 NAPI_GRO_CB(skb)->csum = psum; 2292 2293 return __skb_gro_checksum_complete(skb); 2294} 2295 2296static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2297{ 2298 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2299 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2300 NAPI_GRO_CB(skb)->csum_cnt--; 2301 } else { 2302 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2303 * verified a new top level checksum or an encapsulated one 2304 * during GRO. This saves work if we fallback to normal path. 2305 */ 2306 __skb_incr_checksum_unnecessary(skb); 2307 } 2308} 2309 2310#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2311 compute_pseudo) \ 2312({ \ 2313 __sum16 __ret = 0; \ 2314 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2315 __ret = __skb_gro_checksum_validate_complete(skb, \ 2316 compute_pseudo(skb, proto)); \ 2317 if (__ret) \ 2318 __skb_mark_checksum_bad(skb); \ 2319 else \ 2320 skb_gro_incr_csum_unnecessary(skb); \ 2321 __ret; \ 2322}) 2323 2324#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2325 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2326 2327#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2328 compute_pseudo) \ 2329 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2330 2331#define skb_gro_checksum_simple_validate(skb) \ 2332 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2333 2334static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2335{ 2336 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2337 !NAPI_GRO_CB(skb)->csum_valid); 2338} 2339 2340static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2341 __sum16 check, __wsum pseudo) 2342{ 2343 NAPI_GRO_CB(skb)->csum = ~pseudo; 2344 NAPI_GRO_CB(skb)->csum_valid = 1; 2345} 2346 2347#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2348do { \ 2349 if (__skb_gro_checksum_convert_check(skb)) \ 2350 __skb_gro_checksum_convert(skb, check, \ 2351 compute_pseudo(skb, proto)); \ 2352} while (0) 2353 2354struct gro_remcsum { 2355 int offset; 2356 __wsum delta; 2357}; 2358 2359static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2360{ 2361 grc->offset = 0; 2362 grc->delta = 0; 2363} 2364 2365static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2366 int start, int offset, 2367 struct gro_remcsum *grc, 2368 bool nopartial) 2369{ 2370 __wsum delta; 2371 2372 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2373 2374 if (!nopartial) { 2375 NAPI_GRO_CB(skb)->gro_remcsum_start = 2376 ((unsigned char *)ptr + start) - skb->head; 2377 return; 2378 } 2379 2380 delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset); 2381 2382 /* Adjust skb->csum since we changed the packet */ 2383 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2384 2385 grc->offset = (ptr + offset) - (void *)skb->head; 2386 grc->delta = delta; 2387} 2388 2389static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2390 struct gro_remcsum *grc) 2391{ 2392 if (!grc->delta) 2393 return; 2394 2395 remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta); 2396} 2397 2398static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2399 unsigned short type, 2400 const void *daddr, const void *saddr, 2401 unsigned int len) 2402{ 2403 if (!dev->header_ops || !dev->header_ops->create) 2404 return 0; 2405 2406 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2407} 2408 2409static inline int dev_parse_header(const struct sk_buff *skb, 2410 unsigned char *haddr) 2411{ 2412 const struct net_device *dev = skb->dev; 2413 2414 if (!dev->header_ops || !dev->header_ops->parse) 2415 return 0; 2416 return dev->header_ops->parse(skb, haddr); 2417} 2418 2419typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2420int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2421static inline int unregister_gifconf(unsigned int family) 2422{ 2423 return register_gifconf(family, NULL); 2424} 2425 2426#ifdef CONFIG_NET_FLOW_LIMIT 2427#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2428struct sd_flow_limit { 2429 u64 count; 2430 unsigned int num_buckets; 2431 unsigned int history_head; 2432 u16 history[FLOW_LIMIT_HISTORY]; 2433 u8 buckets[]; 2434}; 2435 2436extern int netdev_flow_limit_table_len; 2437#endif /* CONFIG_NET_FLOW_LIMIT */ 2438 2439/* 2440 * Incoming packets are placed on per-cpu queues 2441 */ 2442struct softnet_data { 2443 struct list_head poll_list; 2444 struct sk_buff_head process_queue; 2445 2446 /* stats */ 2447 unsigned int processed; 2448 unsigned int time_squeeze; 2449 unsigned int cpu_collision; 2450 unsigned int received_rps; 2451#ifdef CONFIG_RPS 2452 struct softnet_data *rps_ipi_list; 2453#endif 2454#ifdef CONFIG_NET_FLOW_LIMIT 2455 struct sd_flow_limit __rcu *flow_limit; 2456#endif 2457 struct Qdisc *output_queue; 2458 struct Qdisc **output_queue_tailp; 2459 struct sk_buff *completion_queue; 2460 2461#ifdef CONFIG_RPS 2462 /* Elements below can be accessed between CPUs for RPS */ 2463 struct call_single_data csd ____cacheline_aligned_in_smp; 2464 struct softnet_data *rps_ipi_next; 2465 unsigned int cpu; 2466 unsigned int input_queue_head; 2467 unsigned int input_queue_tail; 2468#endif 2469 unsigned int dropped; 2470 struct sk_buff_head input_pkt_queue; 2471 struct napi_struct backlog; 2472 2473}; 2474 2475static inline void input_queue_head_incr(struct softnet_data *sd) 2476{ 2477#ifdef CONFIG_RPS 2478 sd->input_queue_head++; 2479#endif 2480} 2481 2482static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2483 unsigned int *qtail) 2484{ 2485#ifdef CONFIG_RPS 2486 *qtail = ++sd->input_queue_tail; 2487#endif 2488} 2489 2490DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2491 2492void __netif_schedule(struct Qdisc *q); 2493void netif_schedule_queue(struct netdev_queue *txq); 2494 2495static inline void netif_tx_schedule_all(struct net_device *dev) 2496{ 2497 unsigned int i; 2498 2499 for (i = 0; i < dev->num_tx_queues; i++) 2500 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2501} 2502 2503static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2504{ 2505 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2506} 2507 2508/** 2509 * netif_start_queue - allow transmit 2510 * @dev: network device 2511 * 2512 * Allow upper layers to call the device hard_start_xmit routine. 2513 */ 2514static inline void netif_start_queue(struct net_device *dev) 2515{ 2516 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2517} 2518 2519static inline void netif_tx_start_all_queues(struct net_device *dev) 2520{ 2521 unsigned int i; 2522 2523 for (i = 0; i < dev->num_tx_queues; i++) { 2524 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2525 netif_tx_start_queue(txq); 2526 } 2527} 2528 2529void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2530 2531/** 2532 * netif_wake_queue - restart transmit 2533 * @dev: network device 2534 * 2535 * Allow upper layers to call the device hard_start_xmit routine. 2536 * Used for flow control when transmit resources are available. 2537 */ 2538static inline void netif_wake_queue(struct net_device *dev) 2539{ 2540 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2541} 2542 2543static inline void netif_tx_wake_all_queues(struct net_device *dev) 2544{ 2545 unsigned int i; 2546 2547 for (i = 0; i < dev->num_tx_queues; i++) { 2548 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2549 netif_tx_wake_queue(txq); 2550 } 2551} 2552 2553static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2554{ 2555 if (WARN_ON(!dev_queue)) { 2556 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 2557 return; 2558 } 2559 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2560} 2561 2562/** 2563 * netif_stop_queue - stop transmitted packets 2564 * @dev: network device 2565 * 2566 * Stop upper layers calling the device hard_start_xmit routine. 2567 * Used for flow control when transmit resources are unavailable. 2568 */ 2569static inline void netif_stop_queue(struct net_device *dev) 2570{ 2571 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2572} 2573 2574static inline void netif_tx_stop_all_queues(struct net_device *dev) 2575{ 2576 unsigned int i; 2577 2578 for (i = 0; i < dev->num_tx_queues; i++) { 2579 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2580 netif_tx_stop_queue(txq); 2581 } 2582} 2583 2584static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2585{ 2586 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2587} 2588 2589/** 2590 * netif_queue_stopped - test if transmit queue is flowblocked 2591 * @dev: network device 2592 * 2593 * Test if transmit queue on device is currently unable to send. 2594 */ 2595static inline bool netif_queue_stopped(const struct net_device *dev) 2596{ 2597 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2598} 2599 2600static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2601{ 2602 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2603} 2604 2605static inline bool 2606netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2607{ 2608 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2609} 2610 2611static inline bool 2612netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2613{ 2614 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2615} 2616 2617/** 2618 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2619 * @dev_queue: pointer to transmit queue 2620 * 2621 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2622 * to give appropriate hint to the cpu. 2623 */ 2624static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2625{ 2626#ifdef CONFIG_BQL 2627 prefetchw(&dev_queue->dql.num_queued); 2628#endif 2629} 2630 2631/** 2632 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2633 * @dev_queue: pointer to transmit queue 2634 * 2635 * BQL enabled drivers might use this helper in their TX completion path, 2636 * to give appropriate hint to the cpu. 2637 */ 2638static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2639{ 2640#ifdef CONFIG_BQL 2641 prefetchw(&dev_queue->dql.limit); 2642#endif 2643} 2644 2645static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2646 unsigned int bytes) 2647{ 2648#ifdef CONFIG_BQL 2649 dql_queued(&dev_queue->dql, bytes); 2650 2651 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2652 return; 2653 2654 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2655 2656 /* 2657 * The XOFF flag must be set before checking the dql_avail below, 2658 * because in netdev_tx_completed_queue we update the dql_completed 2659 * before checking the XOFF flag. 2660 */ 2661 smp_mb(); 2662 2663 /* check again in case another CPU has just made room avail */ 2664 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2665 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2666#endif 2667} 2668 2669/** 2670 * netdev_sent_queue - report the number of bytes queued to hardware 2671 * @dev: network device 2672 * @bytes: number of bytes queued to the hardware device queue 2673 * 2674 * Report the number of bytes queued for sending/completion to the network 2675 * device hardware queue. @bytes should be a good approximation and should 2676 * exactly match netdev_completed_queue() @bytes 2677 */ 2678static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2679{ 2680 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2681} 2682 2683static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2684 unsigned int pkts, unsigned int bytes) 2685{ 2686#ifdef CONFIG_BQL 2687 if (unlikely(!bytes)) 2688 return; 2689 2690 dql_completed(&dev_queue->dql, bytes); 2691 2692 /* 2693 * Without the memory barrier there is a small possiblity that 2694 * netdev_tx_sent_queue will miss the update and cause the queue to 2695 * be stopped forever 2696 */ 2697 smp_mb(); 2698 2699 if (dql_avail(&dev_queue->dql) < 0) 2700 return; 2701 2702 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2703 netif_schedule_queue(dev_queue); 2704#endif 2705} 2706 2707/** 2708 * netdev_completed_queue - report bytes and packets completed by device 2709 * @dev: network device 2710 * @pkts: actual number of packets sent over the medium 2711 * @bytes: actual number of bytes sent over the medium 2712 * 2713 * Report the number of bytes and packets transmitted by the network device 2714 * hardware queue over the physical medium, @bytes must exactly match the 2715 * @bytes amount passed to netdev_sent_queue() 2716 */ 2717static inline void netdev_completed_queue(struct net_device *dev, 2718 unsigned int pkts, unsigned int bytes) 2719{ 2720 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2721} 2722 2723static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2724{ 2725#ifdef CONFIG_BQL 2726 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2727 dql_reset(&q->dql); 2728#endif 2729} 2730 2731/** 2732 * netdev_reset_queue - reset the packets and bytes count of a network device 2733 * @dev_queue: network device 2734 * 2735 * Reset the bytes and packet count of a network device and clear the 2736 * software flow control OFF bit for this network device 2737 */ 2738static inline void netdev_reset_queue(struct net_device *dev_queue) 2739{ 2740 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2741} 2742 2743/** 2744 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 2745 * @dev: network device 2746 * @queue_index: given tx queue index 2747 * 2748 * Returns 0 if given tx queue index >= number of device tx queues, 2749 * otherwise returns the originally passed tx queue index. 2750 */ 2751static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 2752{ 2753 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2754 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2755 dev->name, queue_index, 2756 dev->real_num_tx_queues); 2757 return 0; 2758 } 2759 2760 return queue_index; 2761} 2762 2763/** 2764 * netif_running - test if up 2765 * @dev: network device 2766 * 2767 * Test if the device has been brought up. 2768 */ 2769static inline bool netif_running(const struct net_device *dev) 2770{ 2771 return test_bit(__LINK_STATE_START, &dev->state); 2772} 2773 2774/* 2775 * Routines to manage the subqueues on a device. We only need start 2776 * stop, and a check if it's stopped. All other device management is 2777 * done at the overall netdevice level. 2778 * Also test the device if we're multiqueue. 2779 */ 2780 2781/** 2782 * netif_start_subqueue - allow sending packets on subqueue 2783 * @dev: network device 2784 * @queue_index: sub queue index 2785 * 2786 * Start individual transmit queue of a device with multiple transmit queues. 2787 */ 2788static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2789{ 2790 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2791 2792 netif_tx_start_queue(txq); 2793} 2794 2795/** 2796 * netif_stop_subqueue - stop sending packets on subqueue 2797 * @dev: network device 2798 * @queue_index: sub queue index 2799 * 2800 * Stop individual transmit queue of a device with multiple transmit queues. 2801 */ 2802static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2803{ 2804 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2805 netif_tx_stop_queue(txq); 2806} 2807 2808/** 2809 * netif_subqueue_stopped - test status of subqueue 2810 * @dev: network device 2811 * @queue_index: sub queue index 2812 * 2813 * Check individual transmit queue of a device with multiple transmit queues. 2814 */ 2815static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2816 u16 queue_index) 2817{ 2818 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2819 2820 return netif_tx_queue_stopped(txq); 2821} 2822 2823static inline bool netif_subqueue_stopped(const struct net_device *dev, 2824 struct sk_buff *skb) 2825{ 2826 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2827} 2828 2829void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 2830 2831#ifdef CONFIG_XPS 2832int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2833 u16 index); 2834#else 2835static inline int netif_set_xps_queue(struct net_device *dev, 2836 const struct cpumask *mask, 2837 u16 index) 2838{ 2839 return 0; 2840} 2841#endif 2842 2843/* 2844 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2845 * as a distribution range limit for the returned value. 2846 */ 2847static inline u16 skb_tx_hash(const struct net_device *dev, 2848 struct sk_buff *skb) 2849{ 2850 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2851} 2852 2853/** 2854 * netif_is_multiqueue - test if device has multiple transmit queues 2855 * @dev: network device 2856 * 2857 * Check if device has multiple transmit queues 2858 */ 2859static inline bool netif_is_multiqueue(const struct net_device *dev) 2860{ 2861 return dev->num_tx_queues > 1; 2862} 2863 2864int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 2865 2866#ifdef CONFIG_SYSFS 2867int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 2868#else 2869static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2870 unsigned int rxq) 2871{ 2872 return 0; 2873} 2874#endif 2875 2876#ifdef CONFIG_SYSFS 2877static inline unsigned int get_netdev_rx_queue_index( 2878 struct netdev_rx_queue *queue) 2879{ 2880 struct net_device *dev = queue->dev; 2881 int index = queue - dev->_rx; 2882 2883 BUG_ON(index >= dev->num_rx_queues); 2884 return index; 2885} 2886#endif 2887 2888#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2889int netif_get_num_default_rss_queues(void); 2890 2891enum skb_free_reason { 2892 SKB_REASON_CONSUMED, 2893 SKB_REASON_DROPPED, 2894}; 2895 2896void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 2897void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 2898 2899/* 2900 * It is not allowed to call kfree_skb() or consume_skb() from hardware 2901 * interrupt context or with hardware interrupts being disabled. 2902 * (in_irq() || irqs_disabled()) 2903 * 2904 * We provide four helpers that can be used in following contexts : 2905 * 2906 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 2907 * replacing kfree_skb(skb) 2908 * 2909 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 2910 * Typically used in place of consume_skb(skb) in TX completion path 2911 * 2912 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 2913 * replacing kfree_skb(skb) 2914 * 2915 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 2916 * and consumed a packet. Used in place of consume_skb(skb) 2917 */ 2918static inline void dev_kfree_skb_irq(struct sk_buff *skb) 2919{ 2920 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 2921} 2922 2923static inline void dev_consume_skb_irq(struct sk_buff *skb) 2924{ 2925 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 2926} 2927 2928static inline void dev_kfree_skb_any(struct sk_buff *skb) 2929{ 2930 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 2931} 2932 2933static inline void dev_consume_skb_any(struct sk_buff *skb) 2934{ 2935 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 2936} 2937 2938int netif_rx(struct sk_buff *skb); 2939int netif_rx_ni(struct sk_buff *skb); 2940int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb); 2941static inline int netif_receive_skb(struct sk_buff *skb) 2942{ 2943 return netif_receive_skb_sk(skb->sk, skb); 2944} 2945gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 2946void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2947struct sk_buff *napi_get_frags(struct napi_struct *napi); 2948gro_result_t napi_gro_frags(struct napi_struct *napi); 2949struct packet_offload *gro_find_receive_by_type(__be16 type); 2950struct packet_offload *gro_find_complete_by_type(__be16 type); 2951 2952static inline void napi_free_frags(struct napi_struct *napi) 2953{ 2954 kfree_skb(napi->skb); 2955 napi->skb = NULL; 2956} 2957 2958int netdev_rx_handler_register(struct net_device *dev, 2959 rx_handler_func_t *rx_handler, 2960 void *rx_handler_data); 2961void netdev_rx_handler_unregister(struct net_device *dev); 2962 2963bool dev_valid_name(const char *name); 2964int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2965int dev_ethtool(struct net *net, struct ifreq *); 2966unsigned int dev_get_flags(const struct net_device *); 2967int __dev_change_flags(struct net_device *, unsigned int flags); 2968int dev_change_flags(struct net_device *, unsigned int); 2969void __dev_notify_flags(struct net_device *, unsigned int old_flags, 2970 unsigned int gchanges); 2971int dev_change_name(struct net_device *, const char *); 2972int dev_set_alias(struct net_device *, const char *, size_t); 2973int dev_change_net_namespace(struct net_device *, struct net *, const char *); 2974int dev_set_mtu(struct net_device *, int); 2975void dev_set_group(struct net_device *, int); 2976int dev_set_mac_address(struct net_device *, struct sockaddr *); 2977int dev_change_carrier(struct net_device *, bool new_carrier); 2978int dev_get_phys_port_id(struct net_device *dev, 2979 struct netdev_phys_item_id *ppid); 2980int dev_get_phys_port_name(struct net_device *dev, 2981 char *name, size_t len); 2982struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 2983struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2984 struct netdev_queue *txq, int *ret); 2985int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2986int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2987bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb); 2988 2989extern int netdev_budget; 2990 2991/* Called by rtnetlink.c:rtnl_unlock() */ 2992void netdev_run_todo(void); 2993 2994/** 2995 * dev_put - release reference to device 2996 * @dev: network device 2997 * 2998 * Release reference to device to allow it to be freed. 2999 */ 3000static inline void dev_put(struct net_device *dev) 3001{ 3002 this_cpu_dec(*dev->pcpu_refcnt); 3003} 3004 3005/** 3006 * dev_hold - get reference to device 3007 * @dev: network device 3008 * 3009 * Hold reference to device to keep it from being freed. 3010 */ 3011static inline void dev_hold(struct net_device *dev) 3012{ 3013 this_cpu_inc(*dev->pcpu_refcnt); 3014} 3015 3016/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3017 * and _off may be called from IRQ context, but it is caller 3018 * who is responsible for serialization of these calls. 3019 * 3020 * The name carrier is inappropriate, these functions should really be 3021 * called netif_lowerlayer_*() because they represent the state of any 3022 * kind of lower layer not just hardware media. 3023 */ 3024 3025void linkwatch_init_dev(struct net_device *dev); 3026void linkwatch_fire_event(struct net_device *dev); 3027void linkwatch_forget_dev(struct net_device *dev); 3028 3029/** 3030 * netif_carrier_ok - test if carrier present 3031 * @dev: network device 3032 * 3033 * Check if carrier is present on device 3034 */ 3035static inline bool netif_carrier_ok(const struct net_device *dev) 3036{ 3037 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3038} 3039 3040unsigned long dev_trans_start(struct net_device *dev); 3041 3042void __netdev_watchdog_up(struct net_device *dev); 3043 3044void netif_carrier_on(struct net_device *dev); 3045 3046void netif_carrier_off(struct net_device *dev); 3047 3048/** 3049 * netif_dormant_on - mark device as dormant. 3050 * @dev: network device 3051 * 3052 * Mark device as dormant (as per RFC2863). 3053 * 3054 * The dormant state indicates that the relevant interface is not 3055 * actually in a condition to pass packets (i.e., it is not 'up') but is 3056 * in a "pending" state, waiting for some external event. For "on- 3057 * demand" interfaces, this new state identifies the situation where the 3058 * interface is waiting for events to place it in the up state. 3059 * 3060 */ 3061static inline void netif_dormant_on(struct net_device *dev) 3062{ 3063 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3064 linkwatch_fire_event(dev); 3065} 3066 3067/** 3068 * netif_dormant_off - set device as not dormant. 3069 * @dev: network device 3070 * 3071 * Device is not in dormant state. 3072 */ 3073static inline void netif_dormant_off(struct net_device *dev) 3074{ 3075 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3076 linkwatch_fire_event(dev); 3077} 3078 3079/** 3080 * netif_dormant - test if carrier present 3081 * @dev: network device 3082 * 3083 * Check if carrier is present on device 3084 */ 3085static inline bool netif_dormant(const struct net_device *dev) 3086{ 3087 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3088} 3089 3090 3091/** 3092 * netif_oper_up - test if device is operational 3093 * @dev: network device 3094 * 3095 * Check if carrier is operational 3096 */ 3097static inline bool netif_oper_up(const struct net_device *dev) 3098{ 3099 return (dev->operstate == IF_OPER_UP || 3100 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3101} 3102 3103/** 3104 * netif_device_present - is device available or removed 3105 * @dev: network device 3106 * 3107 * Check if device has not been removed from system. 3108 */ 3109static inline bool netif_device_present(struct net_device *dev) 3110{ 3111 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3112} 3113 3114void netif_device_detach(struct net_device *dev); 3115 3116void netif_device_attach(struct net_device *dev); 3117 3118/* 3119 * Network interface message level settings 3120 */ 3121 3122enum { 3123 NETIF_MSG_DRV = 0x0001, 3124 NETIF_MSG_PROBE = 0x0002, 3125 NETIF_MSG_LINK = 0x0004, 3126 NETIF_MSG_TIMER = 0x0008, 3127 NETIF_MSG_IFDOWN = 0x0010, 3128 NETIF_MSG_IFUP = 0x0020, 3129 NETIF_MSG_RX_ERR = 0x0040, 3130 NETIF_MSG_TX_ERR = 0x0080, 3131 NETIF_MSG_TX_QUEUED = 0x0100, 3132 NETIF_MSG_INTR = 0x0200, 3133 NETIF_MSG_TX_DONE = 0x0400, 3134 NETIF_MSG_RX_STATUS = 0x0800, 3135 NETIF_MSG_PKTDATA = 0x1000, 3136 NETIF_MSG_HW = 0x2000, 3137 NETIF_MSG_WOL = 0x4000, 3138}; 3139 3140#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3141#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3142#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3143#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3144#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3145#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3146#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3147#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3148#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3149#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3150#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3151#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3152#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3153#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3154#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3155 3156static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3157{ 3158 /* use default */ 3159 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3160 return default_msg_enable_bits; 3161 if (debug_value == 0) /* no output */ 3162 return 0; 3163 /* set low N bits */ 3164 return (1 << debug_value) - 1; 3165} 3166 3167static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3168{ 3169 spin_lock(&txq->_xmit_lock); 3170 txq->xmit_lock_owner = cpu; 3171} 3172 3173static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3174{ 3175 spin_lock_bh(&txq->_xmit_lock); 3176 txq->xmit_lock_owner = smp_processor_id(); 3177} 3178 3179static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3180{ 3181 bool ok = spin_trylock(&txq->_xmit_lock); 3182 if (likely(ok)) 3183 txq->xmit_lock_owner = smp_processor_id(); 3184 return ok; 3185} 3186 3187static inline void __netif_tx_unlock(struct netdev_queue *txq) 3188{ 3189 txq->xmit_lock_owner = -1; 3190 spin_unlock(&txq->_xmit_lock); 3191} 3192 3193static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3194{ 3195 txq->xmit_lock_owner = -1; 3196 spin_unlock_bh(&txq->_xmit_lock); 3197} 3198 3199static inline void txq_trans_update(struct netdev_queue *txq) 3200{ 3201 if (txq->xmit_lock_owner != -1) 3202 txq->trans_start = jiffies; 3203} 3204 3205/** 3206 * netif_tx_lock - grab network device transmit lock 3207 * @dev: network device 3208 * 3209 * Get network device transmit lock 3210 */ 3211static inline void netif_tx_lock(struct net_device *dev) 3212{ 3213 unsigned int i; 3214 int cpu; 3215 3216 spin_lock(&dev->tx_global_lock); 3217 cpu = smp_processor_id(); 3218 for (i = 0; i < dev->num_tx_queues; i++) { 3219 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3220 3221 /* We are the only thread of execution doing a 3222 * freeze, but we have to grab the _xmit_lock in 3223 * order to synchronize with threads which are in 3224 * the ->hard_start_xmit() handler and already 3225 * checked the frozen bit. 3226 */ 3227 __netif_tx_lock(txq, cpu); 3228 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3229 __netif_tx_unlock(txq); 3230 } 3231} 3232 3233static inline void netif_tx_lock_bh(struct net_device *dev) 3234{ 3235 local_bh_disable(); 3236 netif_tx_lock(dev); 3237} 3238 3239static inline void netif_tx_unlock(struct net_device *dev) 3240{ 3241 unsigned int i; 3242 3243 for (i = 0; i < dev->num_tx_queues; i++) { 3244 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3245 3246 /* No need to grab the _xmit_lock here. If the 3247 * queue is not stopped for another reason, we 3248 * force a schedule. 3249 */ 3250 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3251 netif_schedule_queue(txq); 3252 } 3253 spin_unlock(&dev->tx_global_lock); 3254} 3255 3256static inline void netif_tx_unlock_bh(struct net_device *dev) 3257{ 3258 netif_tx_unlock(dev); 3259 local_bh_enable(); 3260} 3261 3262#define HARD_TX_LOCK(dev, txq, cpu) { \ 3263 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3264 __netif_tx_lock(txq, cpu); \ 3265 } \ 3266} 3267 3268#define HARD_TX_TRYLOCK(dev, txq) \ 3269 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3270 __netif_tx_trylock(txq) : \ 3271 true ) 3272 3273#define HARD_TX_UNLOCK(dev, txq) { \ 3274 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3275 __netif_tx_unlock(txq); \ 3276 } \ 3277} 3278 3279static inline void netif_tx_disable(struct net_device *dev) 3280{ 3281 unsigned int i; 3282 int cpu; 3283 3284 local_bh_disable(); 3285 cpu = smp_processor_id(); 3286 for (i = 0; i < dev->num_tx_queues; i++) { 3287 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3288 3289 __netif_tx_lock(txq, cpu); 3290 netif_tx_stop_queue(txq); 3291 __netif_tx_unlock(txq); 3292 } 3293 local_bh_enable(); 3294} 3295 3296static inline void netif_addr_lock(struct net_device *dev) 3297{ 3298 spin_lock(&dev->addr_list_lock); 3299} 3300 3301static inline void netif_addr_lock_nested(struct net_device *dev) 3302{ 3303 int subclass = SINGLE_DEPTH_NESTING; 3304 3305 if (dev->netdev_ops->ndo_get_lock_subclass) 3306 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3307 3308 spin_lock_nested(&dev->addr_list_lock, subclass); 3309} 3310 3311static inline void netif_addr_lock_bh(struct net_device *dev) 3312{ 3313 spin_lock_bh(&dev->addr_list_lock); 3314} 3315 3316static inline void netif_addr_unlock(struct net_device *dev) 3317{ 3318 spin_unlock(&dev->addr_list_lock); 3319} 3320 3321static inline void netif_addr_unlock_bh(struct net_device *dev) 3322{ 3323 spin_unlock_bh(&dev->addr_list_lock); 3324} 3325 3326/* 3327 * dev_addrs walker. Should be used only for read access. Call with 3328 * rcu_read_lock held. 3329 */ 3330#define for_each_dev_addr(dev, ha) \ 3331 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3332 3333/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3334 3335void ether_setup(struct net_device *dev); 3336 3337/* Support for loadable net-drivers */ 3338struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3339 unsigned char name_assign_type, 3340 void (*setup)(struct net_device *), 3341 unsigned int txqs, unsigned int rxqs); 3342#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3343 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3344 3345#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3346 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3347 count) 3348 3349int register_netdev(struct net_device *dev); 3350void unregister_netdev(struct net_device *dev); 3351 3352/* General hardware address lists handling functions */ 3353int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3354 struct netdev_hw_addr_list *from_list, int addr_len); 3355void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3356 struct netdev_hw_addr_list *from_list, int addr_len); 3357int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3358 struct net_device *dev, 3359 int (*sync)(struct net_device *, const unsigned char *), 3360 int (*unsync)(struct net_device *, 3361 const unsigned char *)); 3362void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3363 struct net_device *dev, 3364 int (*unsync)(struct net_device *, 3365 const unsigned char *)); 3366void __hw_addr_init(struct netdev_hw_addr_list *list); 3367 3368/* Functions used for device addresses handling */ 3369int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3370 unsigned char addr_type); 3371int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3372 unsigned char addr_type); 3373void dev_addr_flush(struct net_device *dev); 3374int dev_addr_init(struct net_device *dev); 3375 3376/* Functions used for unicast addresses handling */ 3377int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3378int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3379int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3380int dev_uc_sync(struct net_device *to, struct net_device *from); 3381int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3382void dev_uc_unsync(struct net_device *to, struct net_device *from); 3383void dev_uc_flush(struct net_device *dev); 3384void dev_uc_init(struct net_device *dev); 3385 3386/** 3387 * __dev_uc_sync - Synchonize device's unicast list 3388 * @dev: device to sync 3389 * @sync: function to call if address should be added 3390 * @unsync: function to call if address should be removed 3391 * 3392 * Add newly added addresses to the interface, and release 3393 * addresses that have been deleted. 3394 **/ 3395static inline int __dev_uc_sync(struct net_device *dev, 3396 int (*sync)(struct net_device *, 3397 const unsigned char *), 3398 int (*unsync)(struct net_device *, 3399 const unsigned char *)) 3400{ 3401 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3402} 3403 3404/** 3405 * __dev_uc_unsync - Remove synchronized addresses from device 3406 * @dev: device to sync 3407 * @unsync: function to call if address should be removed 3408 * 3409 * Remove all addresses that were added to the device by dev_uc_sync(). 3410 **/ 3411static inline void __dev_uc_unsync(struct net_device *dev, 3412 int (*unsync)(struct net_device *, 3413 const unsigned char *)) 3414{ 3415 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3416} 3417 3418/* Functions used for multicast addresses handling */ 3419int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3420int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3421int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3422int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3423int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3424int dev_mc_sync(struct net_device *to, struct net_device *from); 3425int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3426void dev_mc_unsync(struct net_device *to, struct net_device *from); 3427void dev_mc_flush(struct net_device *dev); 3428void dev_mc_init(struct net_device *dev); 3429 3430/** 3431 * __dev_mc_sync - Synchonize device's multicast list 3432 * @dev: device to sync 3433 * @sync: function to call if address should be added 3434 * @unsync: function to call if address should be removed 3435 * 3436 * Add newly added addresses to the interface, and release 3437 * addresses that have been deleted. 3438 **/ 3439static inline int __dev_mc_sync(struct net_device *dev, 3440 int (*sync)(struct net_device *, 3441 const unsigned char *), 3442 int (*unsync)(struct net_device *, 3443 const unsigned char *)) 3444{ 3445 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3446} 3447 3448/** 3449 * __dev_mc_unsync - Remove synchronized addresses from device 3450 * @dev: device to sync 3451 * @unsync: function to call if address should be removed 3452 * 3453 * Remove all addresses that were added to the device by dev_mc_sync(). 3454 **/ 3455static inline void __dev_mc_unsync(struct net_device *dev, 3456 int (*unsync)(struct net_device *, 3457 const unsigned char *)) 3458{ 3459 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3460} 3461 3462/* Functions used for secondary unicast and multicast support */ 3463void dev_set_rx_mode(struct net_device *dev); 3464void __dev_set_rx_mode(struct net_device *dev); 3465int dev_set_promiscuity(struct net_device *dev, int inc); 3466int dev_set_allmulti(struct net_device *dev, int inc); 3467void netdev_state_change(struct net_device *dev); 3468void netdev_notify_peers(struct net_device *dev); 3469void netdev_features_change(struct net_device *dev); 3470/* Load a device via the kmod */ 3471void dev_load(struct net *net, const char *name); 3472struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3473 struct rtnl_link_stats64 *storage); 3474void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3475 const struct net_device_stats *netdev_stats); 3476 3477extern int netdev_max_backlog; 3478extern int netdev_tstamp_prequeue; 3479extern int weight_p; 3480extern int bpf_jit_enable; 3481 3482bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3483struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3484 struct list_head **iter); 3485struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3486 struct list_head **iter); 3487 3488/* iterate through upper list, must be called under RCU read lock */ 3489#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3490 for (iter = &(dev)->adj_list.upper, \ 3491 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3492 updev; \ 3493 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3494 3495/* iterate through upper list, must be called under RCU read lock */ 3496#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3497 for (iter = &(dev)->all_adj_list.upper, \ 3498 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3499 updev; \ 3500 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3501 3502void *netdev_lower_get_next_private(struct net_device *dev, 3503 struct list_head **iter); 3504void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3505 struct list_head **iter); 3506 3507#define netdev_for_each_lower_private(dev, priv, iter) \ 3508 for (iter = (dev)->adj_list.lower.next, \ 3509 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3510 priv; \ 3511 priv = netdev_lower_get_next_private(dev, &(iter))) 3512 3513#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3514 for (iter = &(dev)->adj_list.lower, \ 3515 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3516 priv; \ 3517 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3518 3519void *netdev_lower_get_next(struct net_device *dev, 3520 struct list_head **iter); 3521#define netdev_for_each_lower_dev(dev, ldev, iter) \ 3522 for (iter = &(dev)->adj_list.lower, \ 3523 ldev = netdev_lower_get_next(dev, &(iter)); \ 3524 ldev; \ 3525 ldev = netdev_lower_get_next(dev, &(iter))) 3526 3527void *netdev_adjacent_get_private(struct list_head *adj_list); 3528void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3529struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3530struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3531int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3532int netdev_master_upper_dev_link(struct net_device *dev, 3533 struct net_device *upper_dev); 3534int netdev_master_upper_dev_link_private(struct net_device *dev, 3535 struct net_device *upper_dev, 3536 void *private); 3537void netdev_upper_dev_unlink(struct net_device *dev, 3538 struct net_device *upper_dev); 3539void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3540void *netdev_lower_dev_get_private(struct net_device *dev, 3541 struct net_device *lower_dev); 3542 3543/* RSS keys are 40 or 52 bytes long */ 3544#define NETDEV_RSS_KEY_LEN 52 3545extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN]; 3546void netdev_rss_key_fill(void *buffer, size_t len); 3547 3548int dev_get_nest_level(struct net_device *dev, 3549 bool (*type_check)(struct net_device *dev)); 3550int skb_checksum_help(struct sk_buff *skb); 3551struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3552 netdev_features_t features, bool tx_path); 3553struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3554 netdev_features_t features); 3555 3556struct netdev_bonding_info { 3557 ifslave slave; 3558 ifbond master; 3559}; 3560 3561struct netdev_notifier_bonding_info { 3562 struct netdev_notifier_info info; /* must be first */ 3563 struct netdev_bonding_info bonding_info; 3564}; 3565 3566void netdev_bonding_info_change(struct net_device *dev, 3567 struct netdev_bonding_info *bonding_info); 3568 3569static inline 3570struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3571{ 3572 return __skb_gso_segment(skb, features, true); 3573} 3574__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3575 3576static inline bool can_checksum_protocol(netdev_features_t features, 3577 __be16 protocol) 3578{ 3579 return ((features & NETIF_F_GEN_CSUM) || 3580 ((features & NETIF_F_V4_CSUM) && 3581 protocol == htons(ETH_P_IP)) || 3582 ((features & NETIF_F_V6_CSUM) && 3583 protocol == htons(ETH_P_IPV6)) || 3584 ((features & NETIF_F_FCOE_CRC) && 3585 protocol == htons(ETH_P_FCOE))); 3586} 3587 3588#ifdef CONFIG_BUG 3589void netdev_rx_csum_fault(struct net_device *dev); 3590#else 3591static inline void netdev_rx_csum_fault(struct net_device *dev) 3592{ 3593} 3594#endif 3595/* rx skb timestamps */ 3596void net_enable_timestamp(void); 3597void net_disable_timestamp(void); 3598 3599#ifdef CONFIG_PROC_FS 3600int __init dev_proc_init(void); 3601#else 3602#define dev_proc_init() 0 3603#endif 3604 3605static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3606 struct sk_buff *skb, struct net_device *dev, 3607 bool more) 3608{ 3609 skb->xmit_more = more ? 1 : 0; 3610 return ops->ndo_start_xmit(skb, dev); 3611} 3612 3613static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3614 struct netdev_queue *txq, bool more) 3615{ 3616 const struct net_device_ops *ops = dev->netdev_ops; 3617 int rc; 3618 3619 rc = __netdev_start_xmit(ops, skb, dev, more); 3620 if (rc == NETDEV_TX_OK) 3621 txq_trans_update(txq); 3622 3623 return rc; 3624} 3625 3626int netdev_class_create_file_ns(struct class_attribute *class_attr, 3627 const void *ns); 3628void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3629 const void *ns); 3630 3631static inline int netdev_class_create_file(struct class_attribute *class_attr) 3632{ 3633 return netdev_class_create_file_ns(class_attr, NULL); 3634} 3635 3636static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3637{ 3638 netdev_class_remove_file_ns(class_attr, NULL); 3639} 3640 3641extern struct kobj_ns_type_operations net_ns_type_operations; 3642 3643const char *netdev_drivername(const struct net_device *dev); 3644 3645void linkwatch_run_queue(void); 3646 3647static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3648 netdev_features_t f2) 3649{ 3650 if (f1 & NETIF_F_GEN_CSUM) 3651 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3652 if (f2 & NETIF_F_GEN_CSUM) 3653 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3654 f1 &= f2; 3655 if (f1 & NETIF_F_GEN_CSUM) 3656 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3657 3658 return f1; 3659} 3660 3661static inline netdev_features_t netdev_get_wanted_features( 3662 struct net_device *dev) 3663{ 3664 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3665} 3666netdev_features_t netdev_increment_features(netdev_features_t all, 3667 netdev_features_t one, netdev_features_t mask); 3668 3669/* Allow TSO being used on stacked device : 3670 * Performing the GSO segmentation before last device 3671 * is a performance improvement. 3672 */ 3673static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3674 netdev_features_t mask) 3675{ 3676 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3677} 3678 3679int __netdev_update_features(struct net_device *dev); 3680void netdev_update_features(struct net_device *dev); 3681void netdev_change_features(struct net_device *dev); 3682 3683void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3684 struct net_device *dev); 3685 3686netdev_features_t passthru_features_check(struct sk_buff *skb, 3687 struct net_device *dev, 3688 netdev_features_t features); 3689netdev_features_t netif_skb_features(struct sk_buff *skb); 3690 3691static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3692{ 3693 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 3694 3695 /* check flags correspondence */ 3696 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 3697 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 3698 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 3699 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 3700 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 3701 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 3702 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 3703 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 3704 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT)); 3705 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT)); 3706 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 3707 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 3708 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 3709 3710 return (features & feature) == feature; 3711} 3712 3713static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 3714{ 3715 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 3716 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 3717} 3718 3719static inline bool netif_needs_gso(struct sk_buff *skb, 3720 netdev_features_t features) 3721{ 3722 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 3723 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 3724 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 3725} 3726 3727static inline void netif_set_gso_max_size(struct net_device *dev, 3728 unsigned int size) 3729{ 3730 dev->gso_max_size = size; 3731} 3732 3733static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 3734 int pulled_hlen, u16 mac_offset, 3735 int mac_len) 3736{ 3737 skb->protocol = protocol; 3738 skb->encapsulation = 1; 3739 skb_push(skb, pulled_hlen); 3740 skb_reset_transport_header(skb); 3741 skb->mac_header = mac_offset; 3742 skb->network_header = skb->mac_header + mac_len; 3743 skb->mac_len = mac_len; 3744} 3745 3746static inline bool netif_is_macvlan(struct net_device *dev) 3747{ 3748 return dev->priv_flags & IFF_MACVLAN; 3749} 3750 3751static inline bool netif_is_macvlan_port(struct net_device *dev) 3752{ 3753 return dev->priv_flags & IFF_MACVLAN_PORT; 3754} 3755 3756static inline bool netif_is_ipvlan(struct net_device *dev) 3757{ 3758 return dev->priv_flags & IFF_IPVLAN_SLAVE; 3759} 3760 3761static inline bool netif_is_ipvlan_port(struct net_device *dev) 3762{ 3763 return dev->priv_flags & IFF_IPVLAN_MASTER; 3764} 3765 3766static inline bool netif_is_bond_master(struct net_device *dev) 3767{ 3768 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 3769} 3770 3771static inline bool netif_is_bond_slave(struct net_device *dev) 3772{ 3773 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 3774} 3775 3776static inline bool netif_supports_nofcs(struct net_device *dev) 3777{ 3778 return dev->priv_flags & IFF_SUPP_NOFCS; 3779} 3780 3781/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 3782static inline void netif_keep_dst(struct net_device *dev) 3783{ 3784 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 3785} 3786 3787extern struct pernet_operations __net_initdata loopback_net_ops; 3788 3789/* Logging, debugging and troubleshooting/diagnostic helpers. */ 3790 3791/* netdev_printk helpers, similar to dev_printk */ 3792 3793static inline const char *netdev_name(const struct net_device *dev) 3794{ 3795 if (!dev->name[0] || strchr(dev->name, '%')) 3796 return "(unnamed net_device)"; 3797 return dev->name; 3798} 3799 3800static inline const char *netdev_reg_state(const struct net_device *dev) 3801{ 3802 switch (dev->reg_state) { 3803 case NETREG_UNINITIALIZED: return " (uninitialized)"; 3804 case NETREG_REGISTERED: return ""; 3805 case NETREG_UNREGISTERING: return " (unregistering)"; 3806 case NETREG_UNREGISTERED: return " (unregistered)"; 3807 case NETREG_RELEASED: return " (released)"; 3808 case NETREG_DUMMY: return " (dummy)"; 3809 } 3810 3811 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 3812 return " (unknown)"; 3813} 3814 3815__printf(3, 4) 3816void netdev_printk(const char *level, const struct net_device *dev, 3817 const char *format, ...); 3818__printf(2, 3) 3819void netdev_emerg(const struct net_device *dev, const char *format, ...); 3820__printf(2, 3) 3821void netdev_alert(const struct net_device *dev, const char *format, ...); 3822__printf(2, 3) 3823void netdev_crit(const struct net_device *dev, const char *format, ...); 3824__printf(2, 3) 3825void netdev_err(const struct net_device *dev, const char *format, ...); 3826__printf(2, 3) 3827void netdev_warn(const struct net_device *dev, const char *format, ...); 3828__printf(2, 3) 3829void netdev_notice(const struct net_device *dev, const char *format, ...); 3830__printf(2, 3) 3831void netdev_info(const struct net_device *dev, const char *format, ...); 3832 3833#define MODULE_ALIAS_NETDEV(device) \ 3834 MODULE_ALIAS("netdev-" device) 3835 3836#if defined(CONFIG_DYNAMIC_DEBUG) 3837#define netdev_dbg(__dev, format, args...) \ 3838do { \ 3839 dynamic_netdev_dbg(__dev, format, ##args); \ 3840} while (0) 3841#elif defined(DEBUG) 3842#define netdev_dbg(__dev, format, args...) \ 3843 netdev_printk(KERN_DEBUG, __dev, format, ##args) 3844#else 3845#define netdev_dbg(__dev, format, args...) \ 3846({ \ 3847 if (0) \ 3848 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 3849}) 3850#endif 3851 3852#if defined(VERBOSE_DEBUG) 3853#define netdev_vdbg netdev_dbg 3854#else 3855 3856#define netdev_vdbg(dev, format, args...) \ 3857({ \ 3858 if (0) \ 3859 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 3860 0; \ 3861}) 3862#endif 3863 3864/* 3865 * netdev_WARN() acts like dev_printk(), but with the key difference 3866 * of using a WARN/WARN_ON to get the message out, including the 3867 * file/line information and a backtrace. 3868 */ 3869#define netdev_WARN(dev, format, args...) \ 3870 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 3871 netdev_reg_state(dev), ##args) 3872 3873/* netif printk helpers, similar to netdev_printk */ 3874 3875#define netif_printk(priv, type, level, dev, fmt, args...) \ 3876do { \ 3877 if (netif_msg_##type(priv)) \ 3878 netdev_printk(level, (dev), fmt, ##args); \ 3879} while (0) 3880 3881#define netif_level(level, priv, type, dev, fmt, args...) \ 3882do { \ 3883 if (netif_msg_##type(priv)) \ 3884 netdev_##level(dev, fmt, ##args); \ 3885} while (0) 3886 3887#define netif_emerg(priv, type, dev, fmt, args...) \ 3888 netif_level(emerg, priv, type, dev, fmt, ##args) 3889#define netif_alert(priv, type, dev, fmt, args...) \ 3890 netif_level(alert, priv, type, dev, fmt, ##args) 3891#define netif_crit(priv, type, dev, fmt, args...) \ 3892 netif_level(crit, priv, type, dev, fmt, ##args) 3893#define netif_err(priv, type, dev, fmt, args...) \ 3894 netif_level(err, priv, type, dev, fmt, ##args) 3895#define netif_warn(priv, type, dev, fmt, args...) \ 3896 netif_level(warn, priv, type, dev, fmt, ##args) 3897#define netif_notice(priv, type, dev, fmt, args...) \ 3898 netif_level(notice, priv, type, dev, fmt, ##args) 3899#define netif_info(priv, type, dev, fmt, args...) \ 3900 netif_level(info, priv, type, dev, fmt, ##args) 3901 3902#if defined(CONFIG_DYNAMIC_DEBUG) 3903#define netif_dbg(priv, type, netdev, format, args...) \ 3904do { \ 3905 if (netif_msg_##type(priv)) \ 3906 dynamic_netdev_dbg(netdev, format, ##args); \ 3907} while (0) 3908#elif defined(DEBUG) 3909#define netif_dbg(priv, type, dev, format, args...) \ 3910 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 3911#else 3912#define netif_dbg(priv, type, dev, format, args...) \ 3913({ \ 3914 if (0) \ 3915 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3916 0; \ 3917}) 3918#endif 3919 3920#if defined(VERBOSE_DEBUG) 3921#define netif_vdbg netif_dbg 3922#else 3923#define netif_vdbg(priv, type, dev, format, args...) \ 3924({ \ 3925 if (0) \ 3926 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3927 0; \ 3928}) 3929#endif 3930 3931/* 3932 * The list of packet types we will receive (as opposed to discard) 3933 * and the routines to invoke. 3934 * 3935 * Why 16. Because with 16 the only overlap we get on a hash of the 3936 * low nibble of the protocol value is RARP/SNAP/X.25. 3937 * 3938 * NOTE: That is no longer true with the addition of VLAN tags. Not 3939 * sure which should go first, but I bet it won't make much 3940 * difference if we are running VLANs. The good news is that 3941 * this protocol won't be in the list unless compiled in, so 3942 * the average user (w/out VLANs) will not be adversely affected. 3943 * --BLG 3944 * 3945 * 0800 IP 3946 * 8100 802.1Q VLAN 3947 * 0001 802.3 3948 * 0002 AX.25 3949 * 0004 802.2 3950 * 8035 RARP 3951 * 0005 SNAP 3952 * 0805 X.25 3953 * 0806 ARP 3954 * 8137 IPX 3955 * 0009 Localtalk 3956 * 86DD IPv6 3957 */ 3958#define PTYPE_HASH_SIZE (16) 3959#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 3960 3961#endif /* _LINUX_NETDEVICE_H */ 3962