1/*
2 * Macros for manipulating and testing page->flags
3 */
4
5#ifndef PAGE_FLAGS_H
6#define PAGE_FLAGS_H
7
8#include <linux/types.h>
9#include <linux/bug.h>
10#include <linux/mmdebug.h>
11#ifndef __GENERATING_BOUNDS_H
12#include <linux/mm_types.h>
13#include <generated/bounds.h>
14#endif /* !__GENERATING_BOUNDS_H */
15
16/*
17 * Various page->flags bits:
18 *
19 * PG_reserved is set for special pages, which can never be swapped out. Some
20 * of them might not even exist (eg empty_bad_page)...
21 *
22 * The PG_private bitflag is set on pagecache pages if they contain filesystem
23 * specific data (which is normally at page->private). It can be used by
24 * private allocations for its own usage.
25 *
26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
28 * is set before writeback starts and cleared when it finishes.
29 *
30 * PG_locked also pins a page in pagecache, and blocks truncation of the file
31 * while it is held.
32 *
33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
34 * to become unlocked.
35 *
36 * PG_uptodate tells whether the page's contents is valid.  When a read
37 * completes, the page becomes uptodate, unless a disk I/O error happened.
38 *
39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
40 * file-backed pagecache (see mm/vmscan.c).
41 *
42 * PG_error is set to indicate that an I/O error occurred on this page.
43 *
44 * PG_arch_1 is an architecture specific page state bit.  The generic code
45 * guarantees that this bit is cleared for a page when it first is entered into
46 * the page cache.
47 *
48 * PG_highmem pages are not permanently mapped into the kernel virtual address
49 * space, they need to be kmapped separately for doing IO on the pages.  The
50 * struct page (these bits with information) are always mapped into kernel
51 * address space...
52 *
53 * PG_hwpoison indicates that a page got corrupted in hardware and contains
54 * data with incorrect ECC bits that triggered a machine check. Accessing is
55 * not safe since it may cause another machine check. Don't touch!
56 */
57
58/*
59 * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
60 * locked- and dirty-page accounting.
61 *
62 * The page flags field is split into two parts, the main flags area
63 * which extends from the low bits upwards, and the fields area which
64 * extends from the high bits downwards.
65 *
66 *  | FIELD | ... | FLAGS |
67 *  N-1           ^       0
68 *               (NR_PAGEFLAGS)
69 *
70 * The fields area is reserved for fields mapping zone, node (for NUMA) and
71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
73 */
74enum pageflags {
75	PG_locked,		/* Page is locked. Don't touch. */
76	PG_error,
77	PG_referenced,
78	PG_uptodate,
79	PG_dirty,
80	PG_lru,
81	PG_active,
82	PG_slab,
83	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
84	PG_arch_1,
85	PG_reserved,
86	PG_private,		/* If pagecache, has fs-private data */
87	PG_private_2,		/* If pagecache, has fs aux data */
88	PG_writeback,		/* Page is under writeback */
89#ifdef CONFIG_PAGEFLAGS_EXTENDED
90	PG_head,		/* A head page */
91	PG_tail,		/* A tail page */
92#else
93	PG_compound,		/* A compound page */
94#endif
95	PG_swapcache,		/* Swap page: swp_entry_t in private */
96	PG_mappedtodisk,	/* Has blocks allocated on-disk */
97	PG_reclaim,		/* To be reclaimed asap */
98	PG_swapbacked,		/* Page is backed by RAM/swap */
99	PG_unevictable,		/* Page is "unevictable"  */
100#ifdef CONFIG_MMU
101	PG_mlocked,		/* Page is vma mlocked */
102#endif
103#ifdef CONFIG_ARCH_USES_PG_UNCACHED
104	PG_uncached,		/* Page has been mapped as uncached */
105#endif
106#ifdef CONFIG_MEMORY_FAILURE
107	PG_hwpoison,		/* hardware poisoned page. Don't touch */
108#endif
109#ifdef CONFIG_TRANSPARENT_HUGEPAGE
110	PG_compound_lock,
111#endif
112	__NR_PAGEFLAGS,
113
114	/* Filesystems */
115	PG_checked = PG_owner_priv_1,
116
117	/* Two page bits are conscripted by FS-Cache to maintain local caching
118	 * state.  These bits are set on pages belonging to the netfs's inodes
119	 * when those inodes are being locally cached.
120	 */
121	PG_fscache = PG_private_2,	/* page backed by cache */
122
123	/* XEN */
124	/* Pinned in Xen as a read-only pagetable page. */
125	PG_pinned = PG_owner_priv_1,
126	/* Pinned as part of domain save (see xen_mm_pin_all()). */
127	PG_savepinned = PG_dirty,
128	/* Has a grant mapping of another (foreign) domain's page. */
129	PG_foreign = PG_owner_priv_1,
130
131	/* SLOB */
132	PG_slob_free = PG_private,
133};
134
135#ifndef __GENERATING_BOUNDS_H
136
137/*
138 * Macros to create function definitions for page flags
139 */
140#define TESTPAGEFLAG(uname, lname)					\
141static inline int Page##uname(const struct page *page)			\
142			{ return test_bit(PG_##lname, &page->flags); }
143
144#define SETPAGEFLAG(uname, lname)					\
145static inline void SetPage##uname(struct page *page)			\
146			{ set_bit(PG_##lname, &page->flags); }
147
148#define CLEARPAGEFLAG(uname, lname)					\
149static inline void ClearPage##uname(struct page *page)			\
150			{ clear_bit(PG_##lname, &page->flags); }
151
152#define __SETPAGEFLAG(uname, lname)					\
153static inline void __SetPage##uname(struct page *page)			\
154			{ __set_bit(PG_##lname, &page->flags); }
155
156#define __CLEARPAGEFLAG(uname, lname)					\
157static inline void __ClearPage##uname(struct page *page)		\
158			{ __clear_bit(PG_##lname, &page->flags); }
159
160#define TESTSETFLAG(uname, lname)					\
161static inline int TestSetPage##uname(struct page *page)			\
162		{ return test_and_set_bit(PG_##lname, &page->flags); }
163
164#define TESTCLEARFLAG(uname, lname)					\
165static inline int TestClearPage##uname(struct page *page)		\
166		{ return test_and_clear_bit(PG_##lname, &page->flags); }
167
168#define __TESTCLEARFLAG(uname, lname)					\
169static inline int __TestClearPage##uname(struct page *page)		\
170		{ return __test_and_clear_bit(PG_##lname, &page->flags); }
171
172#define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname)		\
173	SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname)
174
175#define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname)		\
176	__SETPAGEFLAG(uname, lname)  __CLEARPAGEFLAG(uname, lname)
177
178#define TESTSCFLAG(uname, lname)					\
179	TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname)
180
181#define TESTPAGEFLAG_FALSE(uname)					\
182static inline int Page##uname(const struct page *page) { return 0; }
183
184#define SETPAGEFLAG_NOOP(uname)						\
185static inline void SetPage##uname(struct page *page) {  }
186
187#define CLEARPAGEFLAG_NOOP(uname)					\
188static inline void ClearPage##uname(struct page *page) {  }
189
190#define __CLEARPAGEFLAG_NOOP(uname)					\
191static inline void __ClearPage##uname(struct page *page) {  }
192
193#define TESTSETFLAG_FALSE(uname)					\
194static inline int TestSetPage##uname(struct page *page) { return 0; }
195
196#define TESTCLEARFLAG_FALSE(uname)					\
197static inline int TestClearPage##uname(struct page *page) { return 0; }
198
199#define __TESTCLEARFLAG_FALSE(uname)					\
200static inline int __TestClearPage##uname(struct page *page) { return 0; }
201
202#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)			\
203	SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
204
205#define TESTSCFLAG_FALSE(uname)						\
206	TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
207
208struct page;	/* forward declaration */
209
210TESTPAGEFLAG(Locked, locked)
211PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error)
212PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced)
213	__SETPAGEFLAG(Referenced, referenced)
214PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty)
215PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru)
216PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active)
217	TESTCLEARFLAG(Active, active)
218__PAGEFLAG(Slab, slab)
219PAGEFLAG(Checked, checked)		/* Used by some filesystems */
220PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned)	/* Xen */
221PAGEFLAG(SavePinned, savepinned);			/* Xen */
222PAGEFLAG(Foreign, foreign);				/* Xen */
223PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved)
224PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked)
225	__SETPAGEFLAG(SwapBacked, swapbacked)
226
227__PAGEFLAG(SlobFree, slob_free)
228
229/*
230 * Private page markings that may be used by the filesystem that owns the page
231 * for its own purposes.
232 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
233 */
234PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private)
235	__CLEARPAGEFLAG(Private, private)
236PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2)
237PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1)
238
239/*
240 * Only test-and-set exist for PG_writeback.  The unconditional operators are
241 * risky: they bypass page accounting.
242 */
243TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback)
244PAGEFLAG(MappedToDisk, mappedtodisk)
245
246/* PG_readahead is only used for reads; PG_reclaim is only for writes */
247PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim)
248PAGEFLAG(Readahead, reclaim) TESTCLEARFLAG(Readahead, reclaim)
249
250#ifdef CONFIG_HIGHMEM
251/*
252 * Must use a macro here due to header dependency issues. page_zone() is not
253 * available at this point.
254 */
255#define PageHighMem(__p) is_highmem(page_zone(__p))
256#else
257PAGEFLAG_FALSE(HighMem)
258#endif
259
260#ifdef CONFIG_SWAP
261PAGEFLAG(SwapCache, swapcache)
262#else
263PAGEFLAG_FALSE(SwapCache)
264#endif
265
266PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable)
267	TESTCLEARFLAG(Unevictable, unevictable)
268
269#ifdef CONFIG_MMU
270PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked)
271	TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked)
272#else
273PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
274	TESTSCFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked)
275#endif
276
277#ifdef CONFIG_ARCH_USES_PG_UNCACHED
278PAGEFLAG(Uncached, uncached)
279#else
280PAGEFLAG_FALSE(Uncached)
281#endif
282
283#ifdef CONFIG_MEMORY_FAILURE
284PAGEFLAG(HWPoison, hwpoison)
285TESTSCFLAG(HWPoison, hwpoison)
286#define __PG_HWPOISON (1UL << PG_hwpoison)
287#else
288PAGEFLAG_FALSE(HWPoison)
289#define __PG_HWPOISON 0
290#endif
291
292/*
293 * On an anonymous page mapped into a user virtual memory area,
294 * page->mapping points to its anon_vma, not to a struct address_space;
295 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
296 *
297 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
298 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
299 * and then page->mapping points, not to an anon_vma, but to a private
300 * structure which KSM associates with that merged page.  See ksm.h.
301 *
302 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
303 *
304 * Please note that, confusingly, "page_mapping" refers to the inode
305 * address_space which maps the page from disk; whereas "page_mapped"
306 * refers to user virtual address space into which the page is mapped.
307 */
308#define PAGE_MAPPING_ANON	1
309#define PAGE_MAPPING_KSM	2
310#define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
311
312static inline int PageAnon(struct page *page)
313{
314	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
315}
316
317#ifdef CONFIG_KSM
318/*
319 * A KSM page is one of those write-protected "shared pages" or "merged pages"
320 * which KSM maps into multiple mms, wherever identical anonymous page content
321 * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
322 * anon_vma, but to that page's node of the stable tree.
323 */
324static inline int PageKsm(struct page *page)
325{
326	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
327				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
328}
329#else
330TESTPAGEFLAG_FALSE(Ksm)
331#endif
332
333u64 stable_page_flags(struct page *page);
334
335static inline int PageUptodate(struct page *page)
336{
337	int ret = test_bit(PG_uptodate, &(page)->flags);
338
339	/*
340	 * Must ensure that the data we read out of the page is loaded
341	 * _after_ we've loaded page->flags to check for PageUptodate.
342	 * We can skip the barrier if the page is not uptodate, because
343	 * we wouldn't be reading anything from it.
344	 *
345	 * See SetPageUptodate() for the other side of the story.
346	 */
347	if (ret)
348		smp_rmb();
349
350	return ret;
351}
352
353static inline void __SetPageUptodate(struct page *page)
354{
355	smp_wmb();
356	__set_bit(PG_uptodate, &(page)->flags);
357}
358
359static inline void SetPageUptodate(struct page *page)
360{
361	/*
362	 * Memory barrier must be issued before setting the PG_uptodate bit,
363	 * so that all previous stores issued in order to bring the page
364	 * uptodate are actually visible before PageUptodate becomes true.
365	 */
366	smp_wmb();
367	set_bit(PG_uptodate, &(page)->flags);
368}
369
370CLEARPAGEFLAG(Uptodate, uptodate)
371
372int test_clear_page_writeback(struct page *page);
373int __test_set_page_writeback(struct page *page, bool keep_write);
374
375#define test_set_page_writeback(page)			\
376	__test_set_page_writeback(page, false)
377#define test_set_page_writeback_keepwrite(page)	\
378	__test_set_page_writeback(page, true)
379
380static inline void set_page_writeback(struct page *page)
381{
382	test_set_page_writeback(page);
383}
384
385static inline void set_page_writeback_keepwrite(struct page *page)
386{
387	test_set_page_writeback_keepwrite(page);
388}
389
390#ifdef CONFIG_PAGEFLAGS_EXTENDED
391/*
392 * System with lots of page flags available. This allows separate
393 * flags for PageHead() and PageTail() checks of compound pages so that bit
394 * tests can be used in performance sensitive paths. PageCompound is
395 * generally not used in hot code paths except arch/powerpc/mm/init_64.c
396 * and arch/powerpc/kvm/book3s_64_vio_hv.c which use it to detect huge pages
397 * and avoid handling those in real mode.
398 */
399__PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head)
400__PAGEFLAG(Tail, tail)
401
402static inline int PageCompound(struct page *page)
403{
404	return page->flags & ((1L << PG_head) | (1L << PG_tail));
405
406}
407#ifdef CONFIG_TRANSPARENT_HUGEPAGE
408static inline void ClearPageCompound(struct page *page)
409{
410	BUG_ON(!PageHead(page));
411	ClearPageHead(page);
412}
413#endif
414
415#define PG_head_mask ((1L << PG_head))
416
417#else
418/*
419 * Reduce page flag use as much as possible by overlapping
420 * compound page flags with the flags used for page cache pages. Possible
421 * because PageCompound is always set for compound pages and not for
422 * pages on the LRU and/or pagecache.
423 */
424TESTPAGEFLAG(Compound, compound)
425__SETPAGEFLAG(Head, compound)  __CLEARPAGEFLAG(Head, compound)
426
427/*
428 * PG_reclaim is used in combination with PG_compound to mark the
429 * head and tail of a compound page. This saves one page flag
430 * but makes it impossible to use compound pages for the page cache.
431 * The PG_reclaim bit would have to be used for reclaim or readahead
432 * if compound pages enter the page cache.
433 *
434 * PG_compound & PG_reclaim	=> Tail page
435 * PG_compound & ~PG_reclaim	=> Head page
436 */
437#define PG_head_mask ((1L << PG_compound))
438#define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim))
439
440static inline int PageHead(struct page *page)
441{
442	return ((page->flags & PG_head_tail_mask) == PG_head_mask);
443}
444
445static inline int PageTail(struct page *page)
446{
447	return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask);
448}
449
450static inline void __SetPageTail(struct page *page)
451{
452	page->flags |= PG_head_tail_mask;
453}
454
455static inline void __ClearPageTail(struct page *page)
456{
457	page->flags &= ~PG_head_tail_mask;
458}
459
460#ifdef CONFIG_TRANSPARENT_HUGEPAGE
461static inline void ClearPageCompound(struct page *page)
462{
463	BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound));
464	clear_bit(PG_compound, &page->flags);
465}
466#endif
467
468#endif /* !PAGEFLAGS_EXTENDED */
469
470#ifdef CONFIG_HUGETLB_PAGE
471int PageHuge(struct page *page);
472int PageHeadHuge(struct page *page);
473bool page_huge_active(struct page *page);
474#else
475TESTPAGEFLAG_FALSE(Huge)
476TESTPAGEFLAG_FALSE(HeadHuge)
477
478static inline bool page_huge_active(struct page *page)
479{
480	return 0;
481}
482#endif
483
484
485#ifdef CONFIG_TRANSPARENT_HUGEPAGE
486/*
487 * PageHuge() only returns true for hugetlbfs pages, but not for
488 * normal or transparent huge pages.
489 *
490 * PageTransHuge() returns true for both transparent huge and
491 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
492 * called only in the core VM paths where hugetlbfs pages can't exist.
493 */
494static inline int PageTransHuge(struct page *page)
495{
496	VM_BUG_ON_PAGE(PageTail(page), page);
497	return PageHead(page);
498}
499
500/*
501 * PageTransCompound returns true for both transparent huge pages
502 * and hugetlbfs pages, so it should only be called when it's known
503 * that hugetlbfs pages aren't involved.
504 */
505static inline int PageTransCompound(struct page *page)
506{
507	return PageCompound(page);
508}
509
510/*
511 * PageTransTail returns true for both transparent huge pages
512 * and hugetlbfs pages, so it should only be called when it's known
513 * that hugetlbfs pages aren't involved.
514 */
515static inline int PageTransTail(struct page *page)
516{
517	return PageTail(page);
518}
519
520#else
521
522static inline int PageTransHuge(struct page *page)
523{
524	return 0;
525}
526
527static inline int PageTransCompound(struct page *page)
528{
529	return 0;
530}
531
532static inline int PageTransTail(struct page *page)
533{
534	return 0;
535}
536#endif
537
538/*
539 * PageBuddy() indicate that the page is free and in the buddy system
540 * (see mm/page_alloc.c).
541 *
542 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
543 * -2 so that an underflow of the page_mapcount() won't be mistaken
544 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
545 * efficiently by most CPU architectures.
546 */
547#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
548
549static inline int PageBuddy(struct page *page)
550{
551	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
552}
553
554static inline void __SetPageBuddy(struct page *page)
555{
556	VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
557	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
558}
559
560static inline void __ClearPageBuddy(struct page *page)
561{
562	VM_BUG_ON_PAGE(!PageBuddy(page), page);
563	atomic_set(&page->_mapcount, -1);
564}
565
566#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
567
568static inline int PageBalloon(struct page *page)
569{
570	return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
571}
572
573static inline void __SetPageBalloon(struct page *page)
574{
575	VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
576	atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
577}
578
579static inline void __ClearPageBalloon(struct page *page)
580{
581	VM_BUG_ON_PAGE(!PageBalloon(page), page);
582	atomic_set(&page->_mapcount, -1);
583}
584
585/*
586 * If network-based swap is enabled, sl*b must keep track of whether pages
587 * were allocated from pfmemalloc reserves.
588 */
589static inline int PageSlabPfmemalloc(struct page *page)
590{
591	VM_BUG_ON_PAGE(!PageSlab(page), page);
592	return PageActive(page);
593}
594
595static inline void SetPageSlabPfmemalloc(struct page *page)
596{
597	VM_BUG_ON_PAGE(!PageSlab(page), page);
598	SetPageActive(page);
599}
600
601static inline void __ClearPageSlabPfmemalloc(struct page *page)
602{
603	VM_BUG_ON_PAGE(!PageSlab(page), page);
604	__ClearPageActive(page);
605}
606
607static inline void ClearPageSlabPfmemalloc(struct page *page)
608{
609	VM_BUG_ON_PAGE(!PageSlab(page), page);
610	ClearPageActive(page);
611}
612
613#ifdef CONFIG_MMU
614#define __PG_MLOCKED		(1 << PG_mlocked)
615#else
616#define __PG_MLOCKED		0
617#endif
618
619#ifdef CONFIG_TRANSPARENT_HUGEPAGE
620#define __PG_COMPOUND_LOCK		(1 << PG_compound_lock)
621#else
622#define __PG_COMPOUND_LOCK		0
623#endif
624
625/*
626 * Flags checked when a page is freed.  Pages being freed should not have
627 * these flags set.  It they are, there is a problem.
628 */
629#define PAGE_FLAGS_CHECK_AT_FREE \
630	(1 << PG_lru	 | 1 << PG_locked    | \
631	 1 << PG_private | 1 << PG_private_2 | \
632	 1 << PG_writeback | 1 << PG_reserved | \
633	 1 << PG_slab	 | 1 << PG_swapcache | 1 << PG_active | \
634	 1 << PG_unevictable | __PG_MLOCKED | \
635	 __PG_COMPOUND_LOCK)
636
637/*
638 * Flags checked when a page is prepped for return by the page allocator.
639 * Pages being prepped should not have these flags set.  It they are set,
640 * there has been a kernel bug or struct page corruption.
641 *
642 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
643 * alloc-free cycle to prevent from reusing the page.
644 */
645#define PAGE_FLAGS_CHECK_AT_PREP	\
646	(((1 << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
647
648#define PAGE_FLAGS_PRIVATE				\
649	(1 << PG_private | 1 << PG_private_2)
650/**
651 * page_has_private - Determine if page has private stuff
652 * @page: The page to be checked
653 *
654 * Determine if a page has private stuff, indicating that release routines
655 * should be invoked upon it.
656 */
657static inline int page_has_private(struct page *page)
658{
659	return !!(page->flags & PAGE_FLAGS_PRIVATE);
660}
661
662#endif /* !__GENERATING_BOUNDS_H */
663
664#endif	/* PAGE_FLAGS_H */
665