1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2006 Nick Piggin
5 * Copyright (C) 2012 Konstantin Khlebnikov
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2, or (at
10 * your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21#ifndef _LINUX_RADIX_TREE_H
22#define _LINUX_RADIX_TREE_H
23
24#include <linux/preempt.h>
25#include <linux/types.h>
26#include <linux/bug.h>
27#include <linux/kernel.h>
28#include <linux/rcupdate.h>
29
30/*
31 * An indirect pointer (root->rnode pointing to a radix_tree_node, rather
32 * than a data item) is signalled by the low bit set in the root->rnode
33 * pointer.
34 *
35 * In this case root->height is > 0, but the indirect pointer tests are
36 * needed for RCU lookups (because root->height is unreliable). The only
37 * time callers need worry about this is when doing a lookup_slot under
38 * RCU.
39 *
40 * Indirect pointer in fact is also used to tag the last pointer of a node
41 * when it is shrunk, before we rcu free the node. See shrink code for
42 * details.
43 */
44#define RADIX_TREE_INDIRECT_PTR		1
45/*
46 * A common use of the radix tree is to store pointers to struct pages;
47 * but shmem/tmpfs needs also to store swap entries in the same tree:
48 * those are marked as exceptional entries to distinguish them.
49 * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
50 */
51#define RADIX_TREE_EXCEPTIONAL_ENTRY	2
52#define RADIX_TREE_EXCEPTIONAL_SHIFT	2
53
54static inline int radix_tree_is_indirect_ptr(void *ptr)
55{
56	return (int)((unsigned long)ptr & RADIX_TREE_INDIRECT_PTR);
57}
58
59/*** radix-tree API starts here ***/
60
61#define RADIX_TREE_MAX_TAGS 3
62
63#ifdef __KERNEL__
64#define RADIX_TREE_MAP_SHIFT	(CONFIG_BASE_SMALL ? 4 : 6)
65#else
66#define RADIX_TREE_MAP_SHIFT	3	/* For more stressful testing */
67#endif
68
69#define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
70#define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)
71
72#define RADIX_TREE_TAG_LONGS	\
73	((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
74
75#define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
76#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
77					  RADIX_TREE_MAP_SHIFT))
78
79/* Height component in node->path */
80#define RADIX_TREE_HEIGHT_SHIFT	(RADIX_TREE_MAX_PATH + 1)
81#define RADIX_TREE_HEIGHT_MASK	((1UL << RADIX_TREE_HEIGHT_SHIFT) - 1)
82
83/* Internally used bits of node->count */
84#define RADIX_TREE_COUNT_SHIFT	(RADIX_TREE_MAP_SHIFT + 1)
85#define RADIX_TREE_COUNT_MASK	((1UL << RADIX_TREE_COUNT_SHIFT) - 1)
86
87struct radix_tree_node {
88	unsigned int	path;	/* Offset in parent & height from the bottom */
89	unsigned int	count;
90	union {
91		struct {
92			/* Used when ascending tree */
93			struct radix_tree_node *parent;
94			/* For tree user */
95			void *private_data;
96		};
97		/* Used when freeing node */
98		struct rcu_head	rcu_head;
99	};
100	/* For tree user */
101	struct list_head private_list;
102	void __rcu	*slots[RADIX_TREE_MAP_SIZE];
103	unsigned long	tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
104};
105
106/* root tags are stored in gfp_mask, shifted by __GFP_BITS_SHIFT */
107struct radix_tree_root {
108	unsigned int		height;
109	gfp_t			gfp_mask;
110	struct radix_tree_node	__rcu *rnode;
111};
112
113#define RADIX_TREE_INIT(mask)	{					\
114	.height = 0,							\
115	.gfp_mask = (mask),						\
116	.rnode = NULL,							\
117}
118
119#define RADIX_TREE(name, mask) \
120	struct radix_tree_root name = RADIX_TREE_INIT(mask)
121
122#define INIT_RADIX_TREE(root, mask)					\
123do {									\
124	(root)->height = 0;						\
125	(root)->gfp_mask = (mask);					\
126	(root)->rnode = NULL;						\
127} while (0)
128
129/**
130 * Radix-tree synchronization
131 *
132 * The radix-tree API requires that users provide all synchronisation (with
133 * specific exceptions, noted below).
134 *
135 * Synchronization of access to the data items being stored in the tree, and
136 * management of their lifetimes must be completely managed by API users.
137 *
138 * For API usage, in general,
139 * - any function _modifying_ the tree or tags (inserting or deleting
140 *   items, setting or clearing tags) must exclude other modifications, and
141 *   exclude any functions reading the tree.
142 * - any function _reading_ the tree or tags (looking up items or tags,
143 *   gang lookups) must exclude modifications to the tree, but may occur
144 *   concurrently with other readers.
145 *
146 * The notable exceptions to this rule are the following functions:
147 * __radix_tree_lookup
148 * radix_tree_lookup
149 * radix_tree_lookup_slot
150 * radix_tree_tag_get
151 * radix_tree_gang_lookup
152 * radix_tree_gang_lookup_slot
153 * radix_tree_gang_lookup_tag
154 * radix_tree_gang_lookup_tag_slot
155 * radix_tree_tagged
156 *
157 * The first 7 functions are able to be called locklessly, using RCU. The
158 * caller must ensure calls to these functions are made within rcu_read_lock()
159 * regions. Other readers (lock-free or otherwise) and modifications may be
160 * running concurrently.
161 *
162 * It is still required that the caller manage the synchronization and lifetimes
163 * of the items. So if RCU lock-free lookups are used, typically this would mean
164 * that the items have their own locks, or are amenable to lock-free access; and
165 * that the items are freed by RCU (or only freed after having been deleted from
166 * the radix tree *and* a synchronize_rcu() grace period).
167 *
168 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
169 * access to data items when inserting into or looking up from the radix tree)
170 *
171 * Note that the value returned by radix_tree_tag_get() may not be relied upon
172 * if only the RCU read lock is held.  Functions to set/clear tags and to
173 * delete nodes running concurrently with it may affect its result such that
174 * two consecutive reads in the same locked section may return different
175 * values.  If reliability is required, modification functions must also be
176 * excluded from concurrency.
177 *
178 * radix_tree_tagged is able to be called without locking or RCU.
179 */
180
181/**
182 * radix_tree_deref_slot	- dereference a slot
183 * @pslot:	pointer to slot, returned by radix_tree_lookup_slot
184 * Returns:	item that was stored in that slot with any direct pointer flag
185 *		removed.
186 *
187 * For use with radix_tree_lookup_slot().  Caller must hold tree at least read
188 * locked across slot lookup and dereference. Not required if write lock is
189 * held (ie. items cannot be concurrently inserted).
190 *
191 * radix_tree_deref_retry must be used to confirm validity of the pointer if
192 * only the read lock is held.
193 */
194static inline void *radix_tree_deref_slot(void **pslot)
195{
196	return rcu_dereference(*pslot);
197}
198
199/**
200 * radix_tree_deref_slot_protected	- dereference a slot without RCU lock but with tree lock held
201 * @pslot:	pointer to slot, returned by radix_tree_lookup_slot
202 * Returns:	item that was stored in that slot with any direct pointer flag
203 *		removed.
204 *
205 * Similar to radix_tree_deref_slot but only used during migration when a pages
206 * mapping is being moved. The caller does not hold the RCU read lock but it
207 * must hold the tree lock to prevent parallel updates.
208 */
209static inline void *radix_tree_deref_slot_protected(void **pslot,
210							spinlock_t *treelock)
211{
212	return rcu_dereference_protected(*pslot, lockdep_is_held(treelock));
213}
214
215/**
216 * radix_tree_deref_retry	- check radix_tree_deref_slot
217 * @arg:	pointer returned by radix_tree_deref_slot
218 * Returns:	0 if retry is not required, otherwise retry is required
219 *
220 * radix_tree_deref_retry must be used with radix_tree_deref_slot.
221 */
222static inline int radix_tree_deref_retry(void *arg)
223{
224	return unlikely((unsigned long)arg & RADIX_TREE_INDIRECT_PTR);
225}
226
227/**
228 * radix_tree_exceptional_entry	- radix_tree_deref_slot gave exceptional entry?
229 * @arg:	value returned by radix_tree_deref_slot
230 * Returns:	0 if well-aligned pointer, non-0 if exceptional entry.
231 */
232static inline int radix_tree_exceptional_entry(void *arg)
233{
234	/* Not unlikely because radix_tree_exception often tested first */
235	return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY;
236}
237
238/**
239 * radix_tree_exception	- radix_tree_deref_slot returned either exception?
240 * @arg:	value returned by radix_tree_deref_slot
241 * Returns:	0 if well-aligned pointer, non-0 if either kind of exception.
242 */
243static inline int radix_tree_exception(void *arg)
244{
245	return unlikely((unsigned long)arg &
246		(RADIX_TREE_INDIRECT_PTR | RADIX_TREE_EXCEPTIONAL_ENTRY));
247}
248
249/**
250 * radix_tree_replace_slot	- replace item in a slot
251 * @pslot:	pointer to slot, returned by radix_tree_lookup_slot
252 * @item:	new item to store in the slot.
253 *
254 * For use with radix_tree_lookup_slot().  Caller must hold tree write locked
255 * across slot lookup and replacement.
256 */
257static inline void radix_tree_replace_slot(void **pslot, void *item)
258{
259	BUG_ON(radix_tree_is_indirect_ptr(item));
260	rcu_assign_pointer(*pslot, item);
261}
262
263int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
264			struct radix_tree_node **nodep, void ***slotp);
265int radix_tree_insert(struct radix_tree_root *, unsigned long, void *);
266void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
267			  struct radix_tree_node **nodep, void ***slotp);
268void *radix_tree_lookup(struct radix_tree_root *, unsigned long);
269void **radix_tree_lookup_slot(struct radix_tree_root *, unsigned long);
270bool __radix_tree_delete_node(struct radix_tree_root *root,
271			      struct radix_tree_node *node);
272void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
273void *radix_tree_delete(struct radix_tree_root *, unsigned long);
274unsigned int
275radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
276			unsigned long first_index, unsigned int max_items);
277unsigned int radix_tree_gang_lookup_slot(struct radix_tree_root *root,
278			void ***results, unsigned long *indices,
279			unsigned long first_index, unsigned int max_items);
280int radix_tree_preload(gfp_t gfp_mask);
281int radix_tree_maybe_preload(gfp_t gfp_mask);
282void radix_tree_init(void);
283void *radix_tree_tag_set(struct radix_tree_root *root,
284			unsigned long index, unsigned int tag);
285void *radix_tree_tag_clear(struct radix_tree_root *root,
286			unsigned long index, unsigned int tag);
287int radix_tree_tag_get(struct radix_tree_root *root,
288			unsigned long index, unsigned int tag);
289unsigned int
290radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
291		unsigned long first_index, unsigned int max_items,
292		unsigned int tag);
293unsigned int
294radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
295		unsigned long first_index, unsigned int max_items,
296		unsigned int tag);
297unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
298		unsigned long *first_indexp, unsigned long last_index,
299		unsigned long nr_to_tag,
300		unsigned int fromtag, unsigned int totag);
301int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag);
302unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item);
303
304static inline void radix_tree_preload_end(void)
305{
306	preempt_enable();
307}
308
309/**
310 * struct radix_tree_iter - radix tree iterator state
311 *
312 * @index:	index of current slot
313 * @next_index:	next-to-last index for this chunk
314 * @tags:	bit-mask for tag-iterating
315 *
316 * This radix tree iterator works in terms of "chunks" of slots.  A chunk is a
317 * subinterval of slots contained within one radix tree leaf node.  It is
318 * described by a pointer to its first slot and a struct radix_tree_iter
319 * which holds the chunk's position in the tree and its size.  For tagged
320 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
321 * radix tree tag.
322 */
323struct radix_tree_iter {
324	unsigned long	index;
325	unsigned long	next_index;
326	unsigned long	tags;
327};
328
329#define RADIX_TREE_ITER_TAG_MASK	0x00FF	/* tag index in lower byte */
330#define RADIX_TREE_ITER_TAGGED		0x0100	/* lookup tagged slots */
331#define RADIX_TREE_ITER_CONTIG		0x0200	/* stop at first hole */
332
333/**
334 * radix_tree_iter_init - initialize radix tree iterator
335 *
336 * @iter:	pointer to iterator state
337 * @start:	iteration starting index
338 * Returns:	NULL
339 */
340static __always_inline void **
341radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
342{
343	/*
344	 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
345	 * in the case of a successful tagged chunk lookup.  If the lookup was
346	 * unsuccessful or non-tagged then nobody cares about ->tags.
347	 *
348	 * Set index to zero to bypass next_index overflow protection.
349	 * See the comment in radix_tree_next_chunk() for details.
350	 */
351	iter->index = 0;
352	iter->next_index = start;
353	return NULL;
354}
355
356/**
357 * radix_tree_next_chunk - find next chunk of slots for iteration
358 *
359 * @root:	radix tree root
360 * @iter:	iterator state
361 * @flags:	RADIX_TREE_ITER_* flags and tag index
362 * Returns:	pointer to chunk first slot, or NULL if there no more left
363 *
364 * This function looks up the next chunk in the radix tree starting from
365 * @iter->next_index.  It returns a pointer to the chunk's first slot.
366 * Also it fills @iter with data about chunk: position in the tree (index),
367 * its end (next_index), and constructs a bit mask for tagged iterating (tags).
368 */
369void **radix_tree_next_chunk(struct radix_tree_root *root,
370			     struct radix_tree_iter *iter, unsigned flags);
371
372/**
373 * radix_tree_iter_retry - retry this chunk of the iteration
374 * @iter:	iterator state
375 *
376 * If we iterate over a tree protected only by the RCU lock, a race
377 * against deletion or creation may result in seeing a slot for which
378 * radix_tree_deref_retry() returns true.  If so, call this function
379 * and continue the iteration.
380 */
381static inline __must_check
382void **radix_tree_iter_retry(struct radix_tree_iter *iter)
383{
384	iter->next_index = iter->index;
385	return NULL;
386}
387
388/**
389 * radix_tree_chunk_size - get current chunk size
390 *
391 * @iter:	pointer to radix tree iterator
392 * Returns:	current chunk size
393 */
394static __always_inline long
395radix_tree_chunk_size(struct radix_tree_iter *iter)
396{
397	return iter->next_index - iter->index;
398}
399
400/**
401 * radix_tree_next_slot - find next slot in chunk
402 *
403 * @slot:	pointer to current slot
404 * @iter:	pointer to interator state
405 * @flags:	RADIX_TREE_ITER_*, should be constant
406 * Returns:	pointer to next slot, or NULL if there no more left
407 *
408 * This function updates @iter->index in the case of a successful lookup.
409 * For tagged lookup it also eats @iter->tags.
410 */
411static __always_inline void **
412radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, unsigned flags)
413{
414	if (flags & RADIX_TREE_ITER_TAGGED) {
415		iter->tags >>= 1;
416		if (likely(iter->tags & 1ul)) {
417			iter->index++;
418			return slot + 1;
419		}
420		if (!(flags & RADIX_TREE_ITER_CONTIG) && likely(iter->tags)) {
421			unsigned offset = __ffs(iter->tags);
422
423			iter->tags >>= offset;
424			iter->index += offset + 1;
425			return slot + offset + 1;
426		}
427	} else {
428		long size = radix_tree_chunk_size(iter);
429
430		while (--size > 0) {
431			slot++;
432			iter->index++;
433			if (likely(*slot))
434				return slot;
435			if (flags & RADIX_TREE_ITER_CONTIG) {
436				/* forbid switching to the next chunk */
437				iter->next_index = 0;
438				break;
439			}
440		}
441	}
442	return NULL;
443}
444
445/**
446 * radix_tree_for_each_chunk - iterate over chunks
447 *
448 * @slot:	the void** variable for pointer to chunk first slot
449 * @root:	the struct radix_tree_root pointer
450 * @iter:	the struct radix_tree_iter pointer
451 * @start:	iteration starting index
452 * @flags:	RADIX_TREE_ITER_* and tag index
453 *
454 * Locks can be released and reacquired between iterations.
455 */
456#define radix_tree_for_each_chunk(slot, root, iter, start, flags)	\
457	for (slot = radix_tree_iter_init(iter, start) ;			\
458	      (slot = radix_tree_next_chunk(root, iter, flags)) ;)
459
460/**
461 * radix_tree_for_each_chunk_slot - iterate over slots in one chunk
462 *
463 * @slot:	the void** variable, at the beginning points to chunk first slot
464 * @iter:	the struct radix_tree_iter pointer
465 * @flags:	RADIX_TREE_ITER_*, should be constant
466 *
467 * This macro is designed to be nested inside radix_tree_for_each_chunk().
468 * @slot points to the radix tree slot, @iter->index contains its index.
469 */
470#define radix_tree_for_each_chunk_slot(slot, iter, flags)		\
471	for (; slot ; slot = radix_tree_next_slot(slot, iter, flags))
472
473/**
474 * radix_tree_for_each_slot - iterate over non-empty slots
475 *
476 * @slot:	the void** variable for pointer to slot
477 * @root:	the struct radix_tree_root pointer
478 * @iter:	the struct radix_tree_iter pointer
479 * @start:	iteration starting index
480 *
481 * @slot points to radix tree slot, @iter->index contains its index.
482 */
483#define radix_tree_for_each_slot(slot, root, iter, start)		\
484	for (slot = radix_tree_iter_init(iter, start) ;			\
485	     slot || (slot = radix_tree_next_chunk(root, iter, 0)) ;	\
486	     slot = radix_tree_next_slot(slot, iter, 0))
487
488/**
489 * radix_tree_for_each_contig - iterate over contiguous slots
490 *
491 * @slot:	the void** variable for pointer to slot
492 * @root:	the struct radix_tree_root pointer
493 * @iter:	the struct radix_tree_iter pointer
494 * @start:	iteration starting index
495 *
496 * @slot points to radix tree slot, @iter->index contains its index.
497 */
498#define radix_tree_for_each_contig(slot, root, iter, start)		\
499	for (slot = radix_tree_iter_init(iter, start) ;			\
500	     slot || (slot = radix_tree_next_chunk(root, iter,		\
501				RADIX_TREE_ITER_CONTIG)) ;		\
502	     slot = radix_tree_next_slot(slot, iter,			\
503				RADIX_TREE_ITER_CONTIG))
504
505/**
506 * radix_tree_for_each_tagged - iterate over tagged slots
507 *
508 * @slot:	the void** variable for pointer to slot
509 * @root:	the struct radix_tree_root pointer
510 * @iter:	the struct radix_tree_iter pointer
511 * @start:	iteration starting index
512 * @tag:	tag index
513 *
514 * @slot points to radix tree slot, @iter->index contains its index.
515 */
516#define radix_tree_for_each_tagged(slot, root, iter, start, tag)	\
517	for (slot = radix_tree_iter_init(iter, start) ;			\
518	     slot || (slot = radix_tree_next_chunk(root, iter,		\
519			      RADIX_TREE_ITER_TAGGED | tag)) ;		\
520	     slot = radix_tree_next_slot(slot, iter,			\
521				RADIX_TREE_ITER_TAGGED))
522
523#endif /* _LINUX_RADIX_TREE_H */
524