1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23#include <linux/rbtree.h> 24#include <linux/socket.h> 25 26#include <linux/atomic.h> 27#include <asm/types.h> 28#include <linux/spinlock.h> 29#include <linux/net.h> 30#include <linux/textsearch.h> 31#include <net/checksum.h> 32#include <linux/rcupdate.h> 33#include <linux/hrtimer.h> 34#include <linux/dma-mapping.h> 35#include <linux/netdev_features.h> 36#include <linux/sched.h> 37#include <net/flow_keys.h> 38 39/* A. Checksumming of received packets by device. 40 * 41 * CHECKSUM_NONE: 42 * 43 * Device failed to checksum this packet e.g. due to lack of capabilities. 44 * The packet contains full (though not verified) checksum in packet but 45 * not in skb->csum. Thus, skb->csum is undefined in this case. 46 * 47 * CHECKSUM_UNNECESSARY: 48 * 49 * The hardware you're dealing with doesn't calculate the full checksum 50 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 51 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 52 * if their checksums are okay. skb->csum is still undefined in this case 53 * though. It is a bad option, but, unfortunately, nowadays most vendors do 54 * this. Apparently with the secret goal to sell you new devices, when you 55 * will add new protocol to your host, f.e. IPv6 8) 56 * 57 * CHECKSUM_UNNECESSARY is applicable to following protocols: 58 * TCP: IPv6 and IPv4. 59 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 60 * zero UDP checksum for either IPv4 or IPv6, the networking stack 61 * may perform further validation in this case. 62 * GRE: only if the checksum is present in the header. 63 * SCTP: indicates the CRC in SCTP header has been validated. 64 * 65 * skb->csum_level indicates the number of consecutive checksums found in 66 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 67 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 68 * and a device is able to verify the checksums for UDP (possibly zero), 69 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 70 * two. If the device were only able to verify the UDP checksum and not 71 * GRE, either because it doesn't support GRE checksum of because GRE 72 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 73 * not considered in this case). 74 * 75 * CHECKSUM_COMPLETE: 76 * 77 * This is the most generic way. The device supplied checksum of the _whole_ 78 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 79 * hardware doesn't need to parse L3/L4 headers to implement this. 80 * 81 * Note: Even if device supports only some protocols, but is able to produce 82 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 83 * 84 * CHECKSUM_PARTIAL: 85 * 86 * A checksum is set up to be offloaded to a device as described in the 87 * output description for CHECKSUM_PARTIAL. This may occur on a packet 88 * received directly from another Linux OS, e.g., a virtualized Linux kernel 89 * on the same host, or it may be set in the input path in GRO or remote 90 * checksum offload. For the purposes of checksum verification, the checksum 91 * referred to by skb->csum_start + skb->csum_offset and any preceding 92 * checksums in the packet are considered verified. Any checksums in the 93 * packet that are after the checksum being offloaded are not considered to 94 * be verified. 95 * 96 * B. Checksumming on output. 97 * 98 * CHECKSUM_NONE: 99 * 100 * The skb was already checksummed by the protocol, or a checksum is not 101 * required. 102 * 103 * CHECKSUM_PARTIAL: 104 * 105 * The device is required to checksum the packet as seen by hard_start_xmit() 106 * from skb->csum_start up to the end, and to record/write the checksum at 107 * offset skb->csum_start + skb->csum_offset. 108 * 109 * The device must show its capabilities in dev->features, set up at device 110 * setup time, e.g. netdev_features.h: 111 * 112 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything. 113 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over 114 * IPv4. Sigh. Vendors like this way for an unknown reason. 115 * Though, see comment above about CHECKSUM_UNNECESSARY. 8) 116 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead. 117 * NETIF_F_... - Well, you get the picture. 118 * 119 * CHECKSUM_UNNECESSARY: 120 * 121 * Normally, the device will do per protocol specific checksumming. Protocol 122 * implementations that do not want the NIC to perform the checksum 123 * calculation should use this flag in their outgoing skbs. 124 * 125 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC 126 * offload. Correspondingly, the FCoE protocol driver 127 * stack should use CHECKSUM_UNNECESSARY. 128 * 129 * Any questions? No questions, good. --ANK 130 */ 131 132/* Don't change this without changing skb_csum_unnecessary! */ 133#define CHECKSUM_NONE 0 134#define CHECKSUM_UNNECESSARY 1 135#define CHECKSUM_COMPLETE 2 136#define CHECKSUM_PARTIAL 3 137 138/* Maximum value in skb->csum_level */ 139#define SKB_MAX_CSUM_LEVEL 3 140 141#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 142#define SKB_WITH_OVERHEAD(X) \ 143 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 144#define SKB_MAX_ORDER(X, ORDER) \ 145 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 146#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 147#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 148 149/* return minimum truesize of one skb containing X bytes of data */ 150#define SKB_TRUESIZE(X) ((X) + \ 151 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 152 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 153 154struct net_device; 155struct scatterlist; 156struct pipe_inode_info; 157struct iov_iter; 158struct napi_struct; 159 160#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 161struct nf_conntrack { 162 atomic_t use; 163}; 164#endif 165 166#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 167struct nf_bridge_info { 168 atomic_t use; 169 enum { 170 BRNF_PROTO_UNCHANGED, 171 BRNF_PROTO_8021Q, 172 BRNF_PROTO_PPPOE 173 } orig_proto; 174 bool pkt_otherhost; 175 unsigned int mask; 176 struct net_device *physindev; 177 struct net_device *physoutdev; 178 char neigh_header[8]; 179 __be32 ipv4_daddr; 180}; 181#endif 182 183struct sk_buff_head { 184 /* These two members must be first. */ 185 struct sk_buff *next; 186 struct sk_buff *prev; 187 188 __u32 qlen; 189 spinlock_t lock; 190}; 191 192struct sk_buff; 193 194/* To allow 64K frame to be packed as single skb without frag_list we 195 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 196 * buffers which do not start on a page boundary. 197 * 198 * Since GRO uses frags we allocate at least 16 regardless of page 199 * size. 200 */ 201#if (65536/PAGE_SIZE + 1) < 16 202#define MAX_SKB_FRAGS 16UL 203#else 204#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 205#endif 206extern int sysctl_max_skb_frags; 207 208typedef struct skb_frag_struct skb_frag_t; 209 210struct skb_frag_struct { 211 struct { 212 struct page *p; 213 } page; 214#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 215 __u32 page_offset; 216 __u32 size; 217#else 218 __u16 page_offset; 219 __u16 size; 220#endif 221}; 222 223static inline unsigned int skb_frag_size(const skb_frag_t *frag) 224{ 225 return frag->size; 226} 227 228static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 229{ 230 frag->size = size; 231} 232 233static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 234{ 235 frag->size += delta; 236} 237 238static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 239{ 240 frag->size -= delta; 241} 242 243#define HAVE_HW_TIME_STAMP 244 245/** 246 * struct skb_shared_hwtstamps - hardware time stamps 247 * @hwtstamp: hardware time stamp transformed into duration 248 * since arbitrary point in time 249 * 250 * Software time stamps generated by ktime_get_real() are stored in 251 * skb->tstamp. 252 * 253 * hwtstamps can only be compared against other hwtstamps from 254 * the same device. 255 * 256 * This structure is attached to packets as part of the 257 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 258 */ 259struct skb_shared_hwtstamps { 260 ktime_t hwtstamp; 261}; 262 263/* Definitions for tx_flags in struct skb_shared_info */ 264enum { 265 /* generate hardware time stamp */ 266 SKBTX_HW_TSTAMP = 1 << 0, 267 268 /* generate software time stamp when queueing packet to NIC */ 269 SKBTX_SW_TSTAMP = 1 << 1, 270 271 /* device driver is going to provide hardware time stamp */ 272 SKBTX_IN_PROGRESS = 1 << 2, 273 274 /* device driver supports TX zero-copy buffers */ 275 SKBTX_DEV_ZEROCOPY = 1 << 3, 276 277 /* generate wifi status information (where possible) */ 278 SKBTX_WIFI_STATUS = 1 << 4, 279 280 /* This indicates at least one fragment might be overwritten 281 * (as in vmsplice(), sendfile() ...) 282 * If we need to compute a TX checksum, we'll need to copy 283 * all frags to avoid possible bad checksum 284 */ 285 SKBTX_SHARED_FRAG = 1 << 5, 286 287 /* generate software time stamp when entering packet scheduling */ 288 SKBTX_SCHED_TSTAMP = 1 << 6, 289 290 /* generate software timestamp on peer data acknowledgment */ 291 SKBTX_ACK_TSTAMP = 1 << 7, 292}; 293 294#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 295 SKBTX_SCHED_TSTAMP | \ 296 SKBTX_ACK_TSTAMP) 297#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 298 299/* 300 * The callback notifies userspace to release buffers when skb DMA is done in 301 * lower device, the skb last reference should be 0 when calling this. 302 * The zerocopy_success argument is true if zero copy transmit occurred, 303 * false on data copy or out of memory error caused by data copy attempt. 304 * The ctx field is used to track device context. 305 * The desc field is used to track userspace buffer index. 306 */ 307struct ubuf_info { 308 void (*callback)(struct ubuf_info *, bool zerocopy_success); 309 void *ctx; 310 unsigned long desc; 311}; 312 313/* This data is invariant across clones and lives at 314 * the end of the header data, ie. at skb->end. 315 */ 316struct skb_shared_info { 317 unsigned char nr_frags; 318 __u8 tx_flags; 319 unsigned short gso_size; 320 /* Warning: this field is not always filled in (UFO)! */ 321 unsigned short gso_segs; 322 unsigned short gso_type; 323 struct sk_buff *frag_list; 324 struct skb_shared_hwtstamps hwtstamps; 325 u32 tskey; 326 __be32 ip6_frag_id; 327 328 /* 329 * Warning : all fields before dataref are cleared in __alloc_skb() 330 */ 331 atomic_t dataref; 332 333 /* Intermediate layers must ensure that destructor_arg 334 * remains valid until skb destructor */ 335 void * destructor_arg; 336 337 /* must be last field, see pskb_expand_head() */ 338 skb_frag_t frags[MAX_SKB_FRAGS]; 339}; 340 341/* We divide dataref into two halves. The higher 16 bits hold references 342 * to the payload part of skb->data. The lower 16 bits hold references to 343 * the entire skb->data. A clone of a headerless skb holds the length of 344 * the header in skb->hdr_len. 345 * 346 * All users must obey the rule that the skb->data reference count must be 347 * greater than or equal to the payload reference count. 348 * 349 * Holding a reference to the payload part means that the user does not 350 * care about modifications to the header part of skb->data. 351 */ 352#define SKB_DATAREF_SHIFT 16 353#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 354 355 356enum { 357 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 358 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 359 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 360}; 361 362enum { 363 SKB_GSO_TCPV4 = 1 << 0, 364 SKB_GSO_UDP = 1 << 1, 365 366 /* This indicates the skb is from an untrusted source. */ 367 SKB_GSO_DODGY = 1 << 2, 368 369 /* This indicates the tcp segment has CWR set. */ 370 SKB_GSO_TCP_ECN = 1 << 3, 371 372 SKB_GSO_TCPV6 = 1 << 4, 373 374 SKB_GSO_FCOE = 1 << 5, 375 376 SKB_GSO_GRE = 1 << 6, 377 378 SKB_GSO_GRE_CSUM = 1 << 7, 379 380 SKB_GSO_IPIP = 1 << 8, 381 382 SKB_GSO_SIT = 1 << 9, 383 384 SKB_GSO_UDP_TUNNEL = 1 << 10, 385 386 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 387 388 SKB_GSO_TUNNEL_REMCSUM = 1 << 12, 389}; 390 391#if BITS_PER_LONG > 32 392#define NET_SKBUFF_DATA_USES_OFFSET 1 393#endif 394 395#ifdef NET_SKBUFF_DATA_USES_OFFSET 396typedef unsigned int sk_buff_data_t; 397#else 398typedef unsigned char *sk_buff_data_t; 399#endif 400 401/** 402 * struct skb_mstamp - multi resolution time stamps 403 * @stamp_us: timestamp in us resolution 404 * @stamp_jiffies: timestamp in jiffies 405 */ 406struct skb_mstamp { 407 union { 408 u64 v64; 409 struct { 410 u32 stamp_us; 411 u32 stamp_jiffies; 412 }; 413 }; 414}; 415 416/** 417 * skb_mstamp_get - get current timestamp 418 * @cl: place to store timestamps 419 */ 420static inline void skb_mstamp_get(struct skb_mstamp *cl) 421{ 422 u64 val = local_clock(); 423 424 do_div(val, NSEC_PER_USEC); 425 cl->stamp_us = (u32)val; 426 cl->stamp_jiffies = (u32)jiffies; 427} 428 429/** 430 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 431 * @t1: pointer to newest sample 432 * @t0: pointer to oldest sample 433 */ 434static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 435 const struct skb_mstamp *t0) 436{ 437 s32 delta_us = t1->stamp_us - t0->stamp_us; 438 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 439 440 /* If delta_us is negative, this might be because interval is too big, 441 * or local_clock() drift is too big : fallback using jiffies. 442 */ 443 if (delta_us <= 0 || 444 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 445 446 delta_us = jiffies_to_usecs(delta_jiffies); 447 448 return delta_us; 449} 450 451 452/** 453 * struct sk_buff - socket buffer 454 * @next: Next buffer in list 455 * @prev: Previous buffer in list 456 * @tstamp: Time we arrived/left 457 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 458 * @sk: Socket we are owned by 459 * @dev: Device we arrived on/are leaving by 460 * @cb: Control buffer. Free for use by every layer. Put private vars here 461 * @_skb_refdst: destination entry (with norefcount bit) 462 * @sp: the security path, used for xfrm 463 * @len: Length of actual data 464 * @data_len: Data length 465 * @mac_len: Length of link layer header 466 * @hdr_len: writable header length of cloned skb 467 * @csum: Checksum (must include start/offset pair) 468 * @csum_start: Offset from skb->head where checksumming should start 469 * @csum_offset: Offset from csum_start where checksum should be stored 470 * @priority: Packet queueing priority 471 * @ignore_df: allow local fragmentation 472 * @cloned: Head may be cloned (check refcnt to be sure) 473 * @ip_summed: Driver fed us an IP checksum 474 * @nohdr: Payload reference only, must not modify header 475 * @nfctinfo: Relationship of this skb to the connection 476 * @pkt_type: Packet class 477 * @fclone: skbuff clone status 478 * @ipvs_property: skbuff is owned by ipvs 479 * @peeked: this packet has been seen already, so stats have been 480 * done for it, don't do them again 481 * @nf_trace: netfilter packet trace flag 482 * @protocol: Packet protocol from driver 483 * @destructor: Destruct function 484 * @nfct: Associated connection, if any 485 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 486 * @skb_iif: ifindex of device we arrived on 487 * @tc_index: Traffic control index 488 * @tc_verd: traffic control verdict 489 * @hash: the packet hash 490 * @queue_mapping: Queue mapping for multiqueue devices 491 * @xmit_more: More SKBs are pending for this queue 492 * @ndisc_nodetype: router type (from link layer) 493 * @ooo_okay: allow the mapping of a socket to a queue to be changed 494 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 495 * ports. 496 * @sw_hash: indicates hash was computed in software stack 497 * @wifi_acked_valid: wifi_acked was set 498 * @wifi_acked: whether frame was acked on wifi or not 499 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 500 * @napi_id: id of the NAPI struct this skb came from 501 * @secmark: security marking 502 * @mark: Generic packet mark 503 * @vlan_proto: vlan encapsulation protocol 504 * @vlan_tci: vlan tag control information 505 * @inner_protocol: Protocol (encapsulation) 506 * @inner_transport_header: Inner transport layer header (encapsulation) 507 * @inner_network_header: Network layer header (encapsulation) 508 * @inner_mac_header: Link layer header (encapsulation) 509 * @transport_header: Transport layer header 510 * @network_header: Network layer header 511 * @mac_header: Link layer header 512 * @tail: Tail pointer 513 * @end: End pointer 514 * @head: Head of buffer 515 * @data: Data head pointer 516 * @truesize: Buffer size 517 * @users: User count - see {datagram,tcp}.c 518 */ 519 520struct sk_buff { 521 union { 522 struct { 523 /* These two members must be first. */ 524 struct sk_buff *next; 525 struct sk_buff *prev; 526 527 union { 528 ktime_t tstamp; 529 struct skb_mstamp skb_mstamp; 530 }; 531 }; 532 struct rb_node rbnode; /* used in netem & tcp stack */ 533 }; 534 struct sock *sk; 535 struct net_device *dev; 536 537 /* 538 * This is the control buffer. It is free to use for every 539 * layer. Please put your private variables there. If you 540 * want to keep them across layers you have to do a skb_clone() 541 * first. This is owned by whoever has the skb queued ATM. 542 */ 543 char cb[48] __aligned(8); 544 545 unsigned long _skb_refdst; 546 void (*destructor)(struct sk_buff *skb); 547#ifdef CONFIG_XFRM 548 struct sec_path *sp; 549#endif 550#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 551 struct nf_conntrack *nfct; 552#endif 553#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 554 struct nf_bridge_info *nf_bridge; 555#endif 556 unsigned int len, 557 data_len; 558 __u16 mac_len, 559 hdr_len; 560 561 /* Following fields are _not_ copied in __copy_skb_header() 562 * Note that queue_mapping is here mostly to fill a hole. 563 */ 564 kmemcheck_bitfield_begin(flags1); 565 __u16 queue_mapping; 566 __u8 cloned:1, 567 nohdr:1, 568 fclone:2, 569 peeked:1, 570 head_frag:1, 571 xmit_more:1; 572 /* one bit hole */ 573 kmemcheck_bitfield_end(flags1); 574 575 /* fields enclosed in headers_start/headers_end are copied 576 * using a single memcpy() in __copy_skb_header() 577 */ 578 /* private: */ 579 __u32 headers_start[0]; 580 /* public: */ 581 582/* if you move pkt_type around you also must adapt those constants */ 583#ifdef __BIG_ENDIAN_BITFIELD 584#define PKT_TYPE_MAX (7 << 5) 585#else 586#define PKT_TYPE_MAX 7 587#endif 588#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 589 590 __u8 __pkt_type_offset[0]; 591 __u8 pkt_type:3; 592 __u8 pfmemalloc:1; 593 __u8 ignore_df:1; 594 __u8 nfctinfo:3; 595 596 __u8 nf_trace:1; 597 __u8 ip_summed:2; 598 __u8 ooo_okay:1; 599 __u8 l4_hash:1; 600 __u8 sw_hash:1; 601 __u8 wifi_acked_valid:1; 602 __u8 wifi_acked:1; 603 604 __u8 no_fcs:1; 605 /* Indicates the inner headers are valid in the skbuff. */ 606 __u8 encapsulation:1; 607 __u8 encap_hdr_csum:1; 608 __u8 csum_valid:1; 609 __u8 csum_complete_sw:1; 610 __u8 csum_level:2; 611 __u8 csum_bad:1; 612 613#ifdef CONFIG_IPV6_NDISC_NODETYPE 614 __u8 ndisc_nodetype:2; 615#endif 616 __u8 ipvs_property:1; 617 __u8 inner_protocol_type:1; 618 __u8 remcsum_offload:1; 619 /* 3 or 5 bit hole */ 620 621#ifdef CONFIG_NET_SCHED 622 __u16 tc_index; /* traffic control index */ 623#ifdef CONFIG_NET_CLS_ACT 624 __u16 tc_verd; /* traffic control verdict */ 625#endif 626#endif 627 628 union { 629 __wsum csum; 630 struct { 631 __u16 csum_start; 632 __u16 csum_offset; 633 }; 634 }; 635 __u32 priority; 636 int skb_iif; 637 __u32 hash; 638 __be16 vlan_proto; 639 __u16 vlan_tci; 640#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 641 union { 642 unsigned int napi_id; 643 unsigned int sender_cpu; 644 }; 645#endif 646#ifdef CONFIG_NETWORK_SECMARK 647 __u32 secmark; 648#endif 649 union { 650 __u32 mark; 651 __u32 reserved_tailroom; 652 }; 653 654 union { 655 __be16 inner_protocol; 656 __u8 inner_ipproto; 657 }; 658 659 __u16 inner_transport_header; 660 __u16 inner_network_header; 661 __u16 inner_mac_header; 662 663 __be16 protocol; 664 __u16 transport_header; 665 __u16 network_header; 666 __u16 mac_header; 667 668 /* private: */ 669 __u32 headers_end[0]; 670 /* public: */ 671 672 /* These elements must be at the end, see alloc_skb() for details. */ 673 sk_buff_data_t tail; 674 sk_buff_data_t end; 675 unsigned char *head, 676 *data; 677 unsigned int truesize; 678 atomic_t users; 679}; 680 681#ifdef __KERNEL__ 682/* 683 * Handling routines are only of interest to the kernel 684 */ 685#include <linux/slab.h> 686 687 688#define SKB_ALLOC_FCLONE 0x01 689#define SKB_ALLOC_RX 0x02 690#define SKB_ALLOC_NAPI 0x04 691 692/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 693static inline bool skb_pfmemalloc(const struct sk_buff *skb) 694{ 695 return unlikely(skb->pfmemalloc); 696} 697 698/* 699 * skb might have a dst pointer attached, refcounted or not. 700 * _skb_refdst low order bit is set if refcount was _not_ taken 701 */ 702#define SKB_DST_NOREF 1UL 703#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 704 705/** 706 * skb_dst - returns skb dst_entry 707 * @skb: buffer 708 * 709 * Returns skb dst_entry, regardless of reference taken or not. 710 */ 711static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 712{ 713 /* If refdst was not refcounted, check we still are in a 714 * rcu_read_lock section 715 */ 716 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 717 !rcu_read_lock_held() && 718 !rcu_read_lock_bh_held()); 719 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 720} 721 722/** 723 * skb_dst_set - sets skb dst 724 * @skb: buffer 725 * @dst: dst entry 726 * 727 * Sets skb dst, assuming a reference was taken on dst and should 728 * be released by skb_dst_drop() 729 */ 730static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 731{ 732 skb->_skb_refdst = (unsigned long)dst; 733} 734 735/** 736 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 737 * @skb: buffer 738 * @dst: dst entry 739 * 740 * Sets skb dst, assuming a reference was not taken on dst. 741 * If dst entry is cached, we do not take reference and dst_release 742 * will be avoided by refdst_drop. If dst entry is not cached, we take 743 * reference, so that last dst_release can destroy the dst immediately. 744 */ 745static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 746{ 747 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 748 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 749} 750 751/** 752 * skb_dst_is_noref - Test if skb dst isn't refcounted 753 * @skb: buffer 754 */ 755static inline bool skb_dst_is_noref(const struct sk_buff *skb) 756{ 757 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 758} 759 760static inline struct rtable *skb_rtable(const struct sk_buff *skb) 761{ 762 return (struct rtable *)skb_dst(skb); 763} 764 765void kfree_skb(struct sk_buff *skb); 766void kfree_skb_list(struct sk_buff *segs); 767void skb_tx_error(struct sk_buff *skb); 768void consume_skb(struct sk_buff *skb); 769void __kfree_skb(struct sk_buff *skb); 770extern struct kmem_cache *skbuff_head_cache; 771 772void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 773bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 774 bool *fragstolen, int *delta_truesize); 775 776struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 777 int node); 778struct sk_buff *__build_skb(void *data, unsigned int frag_size); 779struct sk_buff *build_skb(void *data, unsigned int frag_size); 780static inline struct sk_buff *alloc_skb(unsigned int size, 781 gfp_t priority) 782{ 783 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 784} 785 786struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 787 unsigned long data_len, 788 int max_page_order, 789 int *errcode, 790 gfp_t gfp_mask); 791 792/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 793struct sk_buff_fclones { 794 struct sk_buff skb1; 795 796 struct sk_buff skb2; 797 798 atomic_t fclone_ref; 799}; 800 801/** 802 * skb_fclone_busy - check if fclone is busy 803 * @skb: buffer 804 * 805 * Returns true is skb is a fast clone, and its clone is not freed. 806 * Some drivers call skb_orphan() in their ndo_start_xmit(), 807 * so we also check that this didnt happen. 808 */ 809static inline bool skb_fclone_busy(const struct sock *sk, 810 const struct sk_buff *skb) 811{ 812 const struct sk_buff_fclones *fclones; 813 814 fclones = container_of(skb, struct sk_buff_fclones, skb1); 815 816 return skb->fclone == SKB_FCLONE_ORIG && 817 atomic_read(&fclones->fclone_ref) > 1 && 818 fclones->skb2.sk == sk; 819} 820 821static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 822 gfp_t priority) 823{ 824 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 825} 826 827struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 828static inline struct sk_buff *alloc_skb_head(gfp_t priority) 829{ 830 return __alloc_skb_head(priority, -1); 831} 832 833struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 834int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 835struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 836struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 837struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 838 gfp_t gfp_mask, bool fclone); 839static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 840 gfp_t gfp_mask) 841{ 842 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 843} 844 845int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 846struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 847 unsigned int headroom); 848struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 849 int newtailroom, gfp_t priority); 850int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 851 int offset, int len); 852int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 853 int len); 854int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 855int skb_pad(struct sk_buff *skb, int pad); 856#define dev_kfree_skb(a) consume_skb(a) 857 858int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 859 int getfrag(void *from, char *to, int offset, 860 int len, int odd, struct sk_buff *skb), 861 void *from, int length); 862 863struct skb_seq_state { 864 __u32 lower_offset; 865 __u32 upper_offset; 866 __u32 frag_idx; 867 __u32 stepped_offset; 868 struct sk_buff *root_skb; 869 struct sk_buff *cur_skb; 870 __u8 *frag_data; 871}; 872 873void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 874 unsigned int to, struct skb_seq_state *st); 875unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 876 struct skb_seq_state *st); 877void skb_abort_seq_read(struct skb_seq_state *st); 878 879unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 880 unsigned int to, struct ts_config *config); 881 882/* 883 * Packet hash types specify the type of hash in skb_set_hash. 884 * 885 * Hash types refer to the protocol layer addresses which are used to 886 * construct a packet's hash. The hashes are used to differentiate or identify 887 * flows of the protocol layer for the hash type. Hash types are either 888 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 889 * 890 * Properties of hashes: 891 * 892 * 1) Two packets in different flows have different hash values 893 * 2) Two packets in the same flow should have the same hash value 894 * 895 * A hash at a higher layer is considered to be more specific. A driver should 896 * set the most specific hash possible. 897 * 898 * A driver cannot indicate a more specific hash than the layer at which a hash 899 * was computed. For instance an L3 hash cannot be set as an L4 hash. 900 * 901 * A driver may indicate a hash level which is less specific than the 902 * actual layer the hash was computed on. For instance, a hash computed 903 * at L4 may be considered an L3 hash. This should only be done if the 904 * driver can't unambiguously determine that the HW computed the hash at 905 * the higher layer. Note that the "should" in the second property above 906 * permits this. 907 */ 908enum pkt_hash_types { 909 PKT_HASH_TYPE_NONE, /* Undefined type */ 910 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 911 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 912 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 913}; 914 915static inline void 916skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 917{ 918 skb->l4_hash = (type == PKT_HASH_TYPE_L4); 919 skb->sw_hash = 0; 920 skb->hash = hash; 921} 922 923void __skb_get_hash(struct sk_buff *skb); 924static inline __u32 skb_get_hash(struct sk_buff *skb) 925{ 926 if (!skb->l4_hash && !skb->sw_hash) 927 __skb_get_hash(skb); 928 929 return skb->hash; 930} 931 932static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 933{ 934 return skb->hash; 935} 936 937static inline void skb_clear_hash(struct sk_buff *skb) 938{ 939 skb->hash = 0; 940 skb->sw_hash = 0; 941 skb->l4_hash = 0; 942} 943 944static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 945{ 946 if (!skb->l4_hash) 947 skb_clear_hash(skb); 948} 949 950static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 951{ 952 to->hash = from->hash; 953 to->sw_hash = from->sw_hash; 954 to->l4_hash = from->l4_hash; 955}; 956 957static inline void skb_sender_cpu_clear(struct sk_buff *skb) 958{ 959#ifdef CONFIG_XPS 960 skb->sender_cpu = 0; 961#endif 962} 963 964#ifdef NET_SKBUFF_DATA_USES_OFFSET 965static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 966{ 967 return skb->head + skb->end; 968} 969 970static inline unsigned int skb_end_offset(const struct sk_buff *skb) 971{ 972 return skb->end; 973} 974#else 975static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 976{ 977 return skb->end; 978} 979 980static inline unsigned int skb_end_offset(const struct sk_buff *skb) 981{ 982 return skb->end - skb->head; 983} 984#endif 985 986/* Internal */ 987#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 988 989static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 990{ 991 return &skb_shinfo(skb)->hwtstamps; 992} 993 994/** 995 * skb_queue_empty - check if a queue is empty 996 * @list: queue head 997 * 998 * Returns true if the queue is empty, false otherwise. 999 */ 1000static inline int skb_queue_empty(const struct sk_buff_head *list) 1001{ 1002 return list->next == (const struct sk_buff *) list; 1003} 1004 1005/** 1006 * skb_queue_is_last - check if skb is the last entry in the queue 1007 * @list: queue head 1008 * @skb: buffer 1009 * 1010 * Returns true if @skb is the last buffer on the list. 1011 */ 1012static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1013 const struct sk_buff *skb) 1014{ 1015 return skb->next == (const struct sk_buff *) list; 1016} 1017 1018/** 1019 * skb_queue_is_first - check if skb is the first entry in the queue 1020 * @list: queue head 1021 * @skb: buffer 1022 * 1023 * Returns true if @skb is the first buffer on the list. 1024 */ 1025static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1026 const struct sk_buff *skb) 1027{ 1028 return skb->prev == (const struct sk_buff *) list; 1029} 1030 1031/** 1032 * skb_queue_next - return the next packet in the queue 1033 * @list: queue head 1034 * @skb: current buffer 1035 * 1036 * Return the next packet in @list after @skb. It is only valid to 1037 * call this if skb_queue_is_last() evaluates to false. 1038 */ 1039static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1040 const struct sk_buff *skb) 1041{ 1042 /* This BUG_ON may seem severe, but if we just return then we 1043 * are going to dereference garbage. 1044 */ 1045 BUG_ON(skb_queue_is_last(list, skb)); 1046 return skb->next; 1047} 1048 1049/** 1050 * skb_queue_prev - return the prev packet in the queue 1051 * @list: queue head 1052 * @skb: current buffer 1053 * 1054 * Return the prev packet in @list before @skb. It is only valid to 1055 * call this if skb_queue_is_first() evaluates to false. 1056 */ 1057static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1058 const struct sk_buff *skb) 1059{ 1060 /* This BUG_ON may seem severe, but if we just return then we 1061 * are going to dereference garbage. 1062 */ 1063 BUG_ON(skb_queue_is_first(list, skb)); 1064 return skb->prev; 1065} 1066 1067/** 1068 * skb_get - reference buffer 1069 * @skb: buffer to reference 1070 * 1071 * Makes another reference to a socket buffer and returns a pointer 1072 * to the buffer. 1073 */ 1074static inline struct sk_buff *skb_get(struct sk_buff *skb) 1075{ 1076 atomic_inc(&skb->users); 1077 return skb; 1078} 1079 1080/* 1081 * If users == 1, we are the only owner and are can avoid redundant 1082 * atomic change. 1083 */ 1084 1085/** 1086 * skb_cloned - is the buffer a clone 1087 * @skb: buffer to check 1088 * 1089 * Returns true if the buffer was generated with skb_clone() and is 1090 * one of multiple shared copies of the buffer. Cloned buffers are 1091 * shared data so must not be written to under normal circumstances. 1092 */ 1093static inline int skb_cloned(const struct sk_buff *skb) 1094{ 1095 return skb->cloned && 1096 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1097} 1098 1099static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1100{ 1101 might_sleep_if(pri & __GFP_WAIT); 1102 1103 if (skb_cloned(skb)) 1104 return pskb_expand_head(skb, 0, 0, pri); 1105 1106 return 0; 1107} 1108 1109/** 1110 * skb_header_cloned - is the header a clone 1111 * @skb: buffer to check 1112 * 1113 * Returns true if modifying the header part of the buffer requires 1114 * the data to be copied. 1115 */ 1116static inline int skb_header_cloned(const struct sk_buff *skb) 1117{ 1118 int dataref; 1119 1120 if (!skb->cloned) 1121 return 0; 1122 1123 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1124 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1125 return dataref != 1; 1126} 1127 1128/** 1129 * skb_header_release - release reference to header 1130 * @skb: buffer to operate on 1131 * 1132 * Drop a reference to the header part of the buffer. This is done 1133 * by acquiring a payload reference. You must not read from the header 1134 * part of skb->data after this. 1135 * Note : Check if you can use __skb_header_release() instead. 1136 */ 1137static inline void skb_header_release(struct sk_buff *skb) 1138{ 1139 BUG_ON(skb->nohdr); 1140 skb->nohdr = 1; 1141 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1142} 1143 1144/** 1145 * __skb_header_release - release reference to header 1146 * @skb: buffer to operate on 1147 * 1148 * Variant of skb_header_release() assuming skb is private to caller. 1149 * We can avoid one atomic operation. 1150 */ 1151static inline void __skb_header_release(struct sk_buff *skb) 1152{ 1153 skb->nohdr = 1; 1154 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1155} 1156 1157 1158/** 1159 * skb_shared - is the buffer shared 1160 * @skb: buffer to check 1161 * 1162 * Returns true if more than one person has a reference to this 1163 * buffer. 1164 */ 1165static inline int skb_shared(const struct sk_buff *skb) 1166{ 1167 return atomic_read(&skb->users) != 1; 1168} 1169 1170/** 1171 * skb_share_check - check if buffer is shared and if so clone it 1172 * @skb: buffer to check 1173 * @pri: priority for memory allocation 1174 * 1175 * If the buffer is shared the buffer is cloned and the old copy 1176 * drops a reference. A new clone with a single reference is returned. 1177 * If the buffer is not shared the original buffer is returned. When 1178 * being called from interrupt status or with spinlocks held pri must 1179 * be GFP_ATOMIC. 1180 * 1181 * NULL is returned on a memory allocation failure. 1182 */ 1183static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1184{ 1185 might_sleep_if(pri & __GFP_WAIT); 1186 if (skb_shared(skb)) { 1187 struct sk_buff *nskb = skb_clone(skb, pri); 1188 1189 if (likely(nskb)) 1190 consume_skb(skb); 1191 else 1192 kfree_skb(skb); 1193 skb = nskb; 1194 } 1195 return skb; 1196} 1197 1198/* 1199 * Copy shared buffers into a new sk_buff. We effectively do COW on 1200 * packets to handle cases where we have a local reader and forward 1201 * and a couple of other messy ones. The normal one is tcpdumping 1202 * a packet thats being forwarded. 1203 */ 1204 1205/** 1206 * skb_unshare - make a copy of a shared buffer 1207 * @skb: buffer to check 1208 * @pri: priority for memory allocation 1209 * 1210 * If the socket buffer is a clone then this function creates a new 1211 * copy of the data, drops a reference count on the old copy and returns 1212 * the new copy with the reference count at 1. If the buffer is not a clone 1213 * the original buffer is returned. When called with a spinlock held or 1214 * from interrupt state @pri must be %GFP_ATOMIC 1215 * 1216 * %NULL is returned on a memory allocation failure. 1217 */ 1218static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1219 gfp_t pri) 1220{ 1221 might_sleep_if(pri & __GFP_WAIT); 1222 if (skb_cloned(skb)) { 1223 struct sk_buff *nskb = skb_copy(skb, pri); 1224 1225 /* Free our shared copy */ 1226 if (likely(nskb)) 1227 consume_skb(skb); 1228 else 1229 kfree_skb(skb); 1230 skb = nskb; 1231 } 1232 return skb; 1233} 1234 1235/** 1236 * skb_peek - peek at the head of an &sk_buff_head 1237 * @list_: list to peek at 1238 * 1239 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1240 * be careful with this one. A peek leaves the buffer on the 1241 * list and someone else may run off with it. You must hold 1242 * the appropriate locks or have a private queue to do this. 1243 * 1244 * Returns %NULL for an empty list or a pointer to the head element. 1245 * The reference count is not incremented and the reference is therefore 1246 * volatile. Use with caution. 1247 */ 1248static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1249{ 1250 struct sk_buff *skb = list_->next; 1251 1252 if (skb == (struct sk_buff *)list_) 1253 skb = NULL; 1254 return skb; 1255} 1256 1257/** 1258 * skb_peek_next - peek skb following the given one from a queue 1259 * @skb: skb to start from 1260 * @list_: list to peek at 1261 * 1262 * Returns %NULL when the end of the list is met or a pointer to the 1263 * next element. The reference count is not incremented and the 1264 * reference is therefore volatile. Use with caution. 1265 */ 1266static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1267 const struct sk_buff_head *list_) 1268{ 1269 struct sk_buff *next = skb->next; 1270 1271 if (next == (struct sk_buff *)list_) 1272 next = NULL; 1273 return next; 1274} 1275 1276/** 1277 * skb_peek_tail - peek at the tail of an &sk_buff_head 1278 * @list_: list to peek at 1279 * 1280 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1281 * be careful with this one. A peek leaves the buffer on the 1282 * list and someone else may run off with it. You must hold 1283 * the appropriate locks or have a private queue to do this. 1284 * 1285 * Returns %NULL for an empty list or a pointer to the tail element. 1286 * The reference count is not incremented and the reference is therefore 1287 * volatile. Use with caution. 1288 */ 1289static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1290{ 1291 struct sk_buff *skb = list_->prev; 1292 1293 if (skb == (struct sk_buff *)list_) 1294 skb = NULL; 1295 return skb; 1296 1297} 1298 1299/** 1300 * skb_queue_len - get queue length 1301 * @list_: list to measure 1302 * 1303 * Return the length of an &sk_buff queue. 1304 */ 1305static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1306{ 1307 return list_->qlen; 1308} 1309 1310/** 1311 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1312 * @list: queue to initialize 1313 * 1314 * This initializes only the list and queue length aspects of 1315 * an sk_buff_head object. This allows to initialize the list 1316 * aspects of an sk_buff_head without reinitializing things like 1317 * the spinlock. It can also be used for on-stack sk_buff_head 1318 * objects where the spinlock is known to not be used. 1319 */ 1320static inline void __skb_queue_head_init(struct sk_buff_head *list) 1321{ 1322 list->prev = list->next = (struct sk_buff *)list; 1323 list->qlen = 0; 1324} 1325 1326/* 1327 * This function creates a split out lock class for each invocation; 1328 * this is needed for now since a whole lot of users of the skb-queue 1329 * infrastructure in drivers have different locking usage (in hardirq) 1330 * than the networking core (in softirq only). In the long run either the 1331 * network layer or drivers should need annotation to consolidate the 1332 * main types of usage into 3 classes. 1333 */ 1334static inline void skb_queue_head_init(struct sk_buff_head *list) 1335{ 1336 spin_lock_init(&list->lock); 1337 __skb_queue_head_init(list); 1338} 1339 1340static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1341 struct lock_class_key *class) 1342{ 1343 skb_queue_head_init(list); 1344 lockdep_set_class(&list->lock, class); 1345} 1346 1347/* 1348 * Insert an sk_buff on a list. 1349 * 1350 * The "__skb_xxxx()" functions are the non-atomic ones that 1351 * can only be called with interrupts disabled. 1352 */ 1353void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1354 struct sk_buff_head *list); 1355static inline void __skb_insert(struct sk_buff *newsk, 1356 struct sk_buff *prev, struct sk_buff *next, 1357 struct sk_buff_head *list) 1358{ 1359 newsk->next = next; 1360 newsk->prev = prev; 1361 next->prev = prev->next = newsk; 1362 list->qlen++; 1363} 1364 1365static inline void __skb_queue_splice(const struct sk_buff_head *list, 1366 struct sk_buff *prev, 1367 struct sk_buff *next) 1368{ 1369 struct sk_buff *first = list->next; 1370 struct sk_buff *last = list->prev; 1371 1372 first->prev = prev; 1373 prev->next = first; 1374 1375 last->next = next; 1376 next->prev = last; 1377} 1378 1379/** 1380 * skb_queue_splice - join two skb lists, this is designed for stacks 1381 * @list: the new list to add 1382 * @head: the place to add it in the first list 1383 */ 1384static inline void skb_queue_splice(const struct sk_buff_head *list, 1385 struct sk_buff_head *head) 1386{ 1387 if (!skb_queue_empty(list)) { 1388 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1389 head->qlen += list->qlen; 1390 } 1391} 1392 1393/** 1394 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1395 * @list: the new list to add 1396 * @head: the place to add it in the first list 1397 * 1398 * The list at @list is reinitialised 1399 */ 1400static inline void skb_queue_splice_init(struct sk_buff_head *list, 1401 struct sk_buff_head *head) 1402{ 1403 if (!skb_queue_empty(list)) { 1404 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1405 head->qlen += list->qlen; 1406 __skb_queue_head_init(list); 1407 } 1408} 1409 1410/** 1411 * skb_queue_splice_tail - join two skb lists, each list being a queue 1412 * @list: the new list to add 1413 * @head: the place to add it in the first list 1414 */ 1415static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1416 struct sk_buff_head *head) 1417{ 1418 if (!skb_queue_empty(list)) { 1419 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1420 head->qlen += list->qlen; 1421 } 1422} 1423 1424/** 1425 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1426 * @list: the new list to add 1427 * @head: the place to add it in the first list 1428 * 1429 * Each of the lists is a queue. 1430 * The list at @list is reinitialised 1431 */ 1432static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1433 struct sk_buff_head *head) 1434{ 1435 if (!skb_queue_empty(list)) { 1436 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1437 head->qlen += list->qlen; 1438 __skb_queue_head_init(list); 1439 } 1440} 1441 1442/** 1443 * __skb_queue_after - queue a buffer at the list head 1444 * @list: list to use 1445 * @prev: place after this buffer 1446 * @newsk: buffer to queue 1447 * 1448 * Queue a buffer int the middle of a list. This function takes no locks 1449 * and you must therefore hold required locks before calling it. 1450 * 1451 * A buffer cannot be placed on two lists at the same time. 1452 */ 1453static inline void __skb_queue_after(struct sk_buff_head *list, 1454 struct sk_buff *prev, 1455 struct sk_buff *newsk) 1456{ 1457 __skb_insert(newsk, prev, prev->next, list); 1458} 1459 1460void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1461 struct sk_buff_head *list); 1462 1463static inline void __skb_queue_before(struct sk_buff_head *list, 1464 struct sk_buff *next, 1465 struct sk_buff *newsk) 1466{ 1467 __skb_insert(newsk, next->prev, next, list); 1468} 1469 1470/** 1471 * __skb_queue_head - queue a buffer at the list head 1472 * @list: list to use 1473 * @newsk: buffer to queue 1474 * 1475 * Queue a buffer at the start of a list. This function takes no locks 1476 * and you must therefore hold required locks before calling it. 1477 * 1478 * A buffer cannot be placed on two lists at the same time. 1479 */ 1480void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1481static inline void __skb_queue_head(struct sk_buff_head *list, 1482 struct sk_buff *newsk) 1483{ 1484 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1485} 1486 1487/** 1488 * __skb_queue_tail - queue a buffer at the list tail 1489 * @list: list to use 1490 * @newsk: buffer to queue 1491 * 1492 * Queue a buffer at the end of a list. This function takes no locks 1493 * and you must therefore hold required locks before calling it. 1494 * 1495 * A buffer cannot be placed on two lists at the same time. 1496 */ 1497void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1498static inline void __skb_queue_tail(struct sk_buff_head *list, 1499 struct sk_buff *newsk) 1500{ 1501 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1502} 1503 1504/* 1505 * remove sk_buff from list. _Must_ be called atomically, and with 1506 * the list known.. 1507 */ 1508void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1509static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1510{ 1511 struct sk_buff *next, *prev; 1512 1513 list->qlen--; 1514 next = skb->next; 1515 prev = skb->prev; 1516 skb->next = skb->prev = NULL; 1517 next->prev = prev; 1518 prev->next = next; 1519} 1520 1521/** 1522 * __skb_dequeue - remove from the head of the queue 1523 * @list: list to dequeue from 1524 * 1525 * Remove the head of the list. This function does not take any locks 1526 * so must be used with appropriate locks held only. The head item is 1527 * returned or %NULL if the list is empty. 1528 */ 1529struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1530static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1531{ 1532 struct sk_buff *skb = skb_peek(list); 1533 if (skb) 1534 __skb_unlink(skb, list); 1535 return skb; 1536} 1537 1538/** 1539 * __skb_dequeue_tail - remove from the tail of the queue 1540 * @list: list to dequeue from 1541 * 1542 * Remove the tail of the list. This function does not take any locks 1543 * so must be used with appropriate locks held only. The tail item is 1544 * returned or %NULL if the list is empty. 1545 */ 1546struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1547static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1548{ 1549 struct sk_buff *skb = skb_peek_tail(list); 1550 if (skb) 1551 __skb_unlink(skb, list); 1552 return skb; 1553} 1554 1555 1556static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1557{ 1558 return skb->data_len; 1559} 1560 1561static inline unsigned int skb_headlen(const struct sk_buff *skb) 1562{ 1563 return skb->len - skb->data_len; 1564} 1565 1566static inline int skb_pagelen(const struct sk_buff *skb) 1567{ 1568 int i, len = 0; 1569 1570 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1571 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1572 return len + skb_headlen(skb); 1573} 1574 1575/** 1576 * __skb_fill_page_desc - initialise a paged fragment in an skb 1577 * @skb: buffer containing fragment to be initialised 1578 * @i: paged fragment index to initialise 1579 * @page: the page to use for this fragment 1580 * @off: the offset to the data with @page 1581 * @size: the length of the data 1582 * 1583 * Initialises the @i'th fragment of @skb to point to &size bytes at 1584 * offset @off within @page. 1585 * 1586 * Does not take any additional reference on the fragment. 1587 */ 1588static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1589 struct page *page, int off, int size) 1590{ 1591 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1592 1593 /* 1594 * Propagate page pfmemalloc to the skb if we can. The problem is 1595 * that not all callers have unique ownership of the page but rely 1596 * on page_is_pfmemalloc doing the right thing(tm). 1597 */ 1598 frag->page.p = page; 1599 frag->page_offset = off; 1600 skb_frag_size_set(frag, size); 1601 1602 page = compound_head(page); 1603 if (page_is_pfmemalloc(page)) 1604 skb->pfmemalloc = true; 1605} 1606 1607/** 1608 * skb_fill_page_desc - initialise a paged fragment in an skb 1609 * @skb: buffer containing fragment to be initialised 1610 * @i: paged fragment index to initialise 1611 * @page: the page to use for this fragment 1612 * @off: the offset to the data with @page 1613 * @size: the length of the data 1614 * 1615 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1616 * @skb to point to @size bytes at offset @off within @page. In 1617 * addition updates @skb such that @i is the last fragment. 1618 * 1619 * Does not take any additional reference on the fragment. 1620 */ 1621static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1622 struct page *page, int off, int size) 1623{ 1624 __skb_fill_page_desc(skb, i, page, off, size); 1625 skb_shinfo(skb)->nr_frags = i + 1; 1626} 1627 1628void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1629 int size, unsigned int truesize); 1630 1631void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1632 unsigned int truesize); 1633 1634#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1635#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1636#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1637 1638#ifdef NET_SKBUFF_DATA_USES_OFFSET 1639static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1640{ 1641 return skb->head + skb->tail; 1642} 1643 1644static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1645{ 1646 skb->tail = skb->data - skb->head; 1647} 1648 1649static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1650{ 1651 skb_reset_tail_pointer(skb); 1652 skb->tail += offset; 1653} 1654 1655#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1656static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1657{ 1658 return skb->tail; 1659} 1660 1661static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1662{ 1663 skb->tail = skb->data; 1664} 1665 1666static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1667{ 1668 skb->tail = skb->data + offset; 1669} 1670 1671#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1672 1673/* 1674 * Add data to an sk_buff 1675 */ 1676unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1677unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1678static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1679{ 1680 unsigned char *tmp = skb_tail_pointer(skb); 1681 SKB_LINEAR_ASSERT(skb); 1682 skb->tail += len; 1683 skb->len += len; 1684 return tmp; 1685} 1686 1687unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1688static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1689{ 1690 skb->data -= len; 1691 skb->len += len; 1692 return skb->data; 1693} 1694 1695unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1696static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1697{ 1698 skb->len -= len; 1699 BUG_ON(skb->len < skb->data_len); 1700 return skb->data += len; 1701} 1702 1703static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1704{ 1705 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1706} 1707 1708unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1709 1710static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1711{ 1712 if (len > skb_headlen(skb) && 1713 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1714 return NULL; 1715 skb->len -= len; 1716 return skb->data += len; 1717} 1718 1719static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1720{ 1721 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1722} 1723 1724static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1725{ 1726 if (likely(len <= skb_headlen(skb))) 1727 return 1; 1728 if (unlikely(len > skb->len)) 1729 return 0; 1730 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1731} 1732 1733/** 1734 * skb_headroom - bytes at buffer head 1735 * @skb: buffer to check 1736 * 1737 * Return the number of bytes of free space at the head of an &sk_buff. 1738 */ 1739static inline unsigned int skb_headroom(const struct sk_buff *skb) 1740{ 1741 return skb->data - skb->head; 1742} 1743 1744/** 1745 * skb_tailroom - bytes at buffer end 1746 * @skb: buffer to check 1747 * 1748 * Return the number of bytes of free space at the tail of an sk_buff 1749 */ 1750static inline int skb_tailroom(const struct sk_buff *skb) 1751{ 1752 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1753} 1754 1755/** 1756 * skb_availroom - bytes at buffer end 1757 * @skb: buffer to check 1758 * 1759 * Return the number of bytes of free space at the tail of an sk_buff 1760 * allocated by sk_stream_alloc() 1761 */ 1762static inline int skb_availroom(const struct sk_buff *skb) 1763{ 1764 if (skb_is_nonlinear(skb)) 1765 return 0; 1766 1767 return skb->end - skb->tail - skb->reserved_tailroom; 1768} 1769 1770/** 1771 * skb_reserve - adjust headroom 1772 * @skb: buffer to alter 1773 * @len: bytes to move 1774 * 1775 * Increase the headroom of an empty &sk_buff by reducing the tail 1776 * room. This is only allowed for an empty buffer. 1777 */ 1778static inline void skb_reserve(struct sk_buff *skb, int len) 1779{ 1780 skb->data += len; 1781 skb->tail += len; 1782} 1783 1784#define ENCAP_TYPE_ETHER 0 1785#define ENCAP_TYPE_IPPROTO 1 1786 1787static inline void skb_set_inner_protocol(struct sk_buff *skb, 1788 __be16 protocol) 1789{ 1790 skb->inner_protocol = protocol; 1791 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 1792} 1793 1794static inline void skb_set_inner_ipproto(struct sk_buff *skb, 1795 __u8 ipproto) 1796{ 1797 skb->inner_ipproto = ipproto; 1798 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 1799} 1800 1801static inline void skb_reset_inner_headers(struct sk_buff *skb) 1802{ 1803 skb->inner_mac_header = skb->mac_header; 1804 skb->inner_network_header = skb->network_header; 1805 skb->inner_transport_header = skb->transport_header; 1806} 1807 1808static inline void skb_reset_mac_len(struct sk_buff *skb) 1809{ 1810 skb->mac_len = skb->network_header - skb->mac_header; 1811} 1812 1813static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1814 *skb) 1815{ 1816 return skb->head + skb->inner_transport_header; 1817} 1818 1819static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1820{ 1821 skb->inner_transport_header = skb->data - skb->head; 1822} 1823 1824static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1825 const int offset) 1826{ 1827 skb_reset_inner_transport_header(skb); 1828 skb->inner_transport_header += offset; 1829} 1830 1831static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1832{ 1833 return skb->head + skb->inner_network_header; 1834} 1835 1836static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1837{ 1838 skb->inner_network_header = skb->data - skb->head; 1839} 1840 1841static inline void skb_set_inner_network_header(struct sk_buff *skb, 1842 const int offset) 1843{ 1844 skb_reset_inner_network_header(skb); 1845 skb->inner_network_header += offset; 1846} 1847 1848static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1849{ 1850 return skb->head + skb->inner_mac_header; 1851} 1852 1853static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1854{ 1855 skb->inner_mac_header = skb->data - skb->head; 1856} 1857 1858static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1859 const int offset) 1860{ 1861 skb_reset_inner_mac_header(skb); 1862 skb->inner_mac_header += offset; 1863} 1864static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1865{ 1866 return skb->transport_header != (typeof(skb->transport_header))~0U; 1867} 1868 1869static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1870{ 1871 return skb->head + skb->transport_header; 1872} 1873 1874static inline void skb_reset_transport_header(struct sk_buff *skb) 1875{ 1876 skb->transport_header = skb->data - skb->head; 1877} 1878 1879static inline void skb_set_transport_header(struct sk_buff *skb, 1880 const int offset) 1881{ 1882 skb_reset_transport_header(skb); 1883 skb->transport_header += offset; 1884} 1885 1886static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1887{ 1888 return skb->head + skb->network_header; 1889} 1890 1891static inline void skb_reset_network_header(struct sk_buff *skb) 1892{ 1893 skb->network_header = skb->data - skb->head; 1894} 1895 1896static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1897{ 1898 skb_reset_network_header(skb); 1899 skb->network_header += offset; 1900} 1901 1902static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1903{ 1904 return skb->head + skb->mac_header; 1905} 1906 1907static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1908{ 1909 return skb->mac_header != (typeof(skb->mac_header))~0U; 1910} 1911 1912static inline void skb_reset_mac_header(struct sk_buff *skb) 1913{ 1914 skb->mac_header = skb->data - skb->head; 1915} 1916 1917static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1918{ 1919 skb_reset_mac_header(skb); 1920 skb->mac_header += offset; 1921} 1922 1923static inline void skb_pop_mac_header(struct sk_buff *skb) 1924{ 1925 skb->mac_header = skb->network_header; 1926} 1927 1928static inline void skb_probe_transport_header(struct sk_buff *skb, 1929 const int offset_hint) 1930{ 1931 struct flow_keys keys; 1932 1933 if (skb_transport_header_was_set(skb)) 1934 return; 1935 else if (skb_flow_dissect(skb, &keys)) 1936 skb_set_transport_header(skb, keys.thoff); 1937 else 1938 skb_set_transport_header(skb, offset_hint); 1939} 1940 1941static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1942{ 1943 if (skb_mac_header_was_set(skb)) { 1944 const unsigned char *old_mac = skb_mac_header(skb); 1945 1946 skb_set_mac_header(skb, -skb->mac_len); 1947 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1948 } 1949} 1950 1951static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1952{ 1953 return skb->csum_start - skb_headroom(skb); 1954} 1955 1956static inline int skb_transport_offset(const struct sk_buff *skb) 1957{ 1958 return skb_transport_header(skb) - skb->data; 1959} 1960 1961static inline u32 skb_network_header_len(const struct sk_buff *skb) 1962{ 1963 return skb->transport_header - skb->network_header; 1964} 1965 1966static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1967{ 1968 return skb->inner_transport_header - skb->inner_network_header; 1969} 1970 1971static inline int skb_network_offset(const struct sk_buff *skb) 1972{ 1973 return skb_network_header(skb) - skb->data; 1974} 1975 1976static inline int skb_inner_network_offset(const struct sk_buff *skb) 1977{ 1978 return skb_inner_network_header(skb) - skb->data; 1979} 1980 1981static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1982{ 1983 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1984} 1985 1986/* 1987 * CPUs often take a performance hit when accessing unaligned memory 1988 * locations. The actual performance hit varies, it can be small if the 1989 * hardware handles it or large if we have to take an exception and fix it 1990 * in software. 1991 * 1992 * Since an ethernet header is 14 bytes network drivers often end up with 1993 * the IP header at an unaligned offset. The IP header can be aligned by 1994 * shifting the start of the packet by 2 bytes. Drivers should do this 1995 * with: 1996 * 1997 * skb_reserve(skb, NET_IP_ALIGN); 1998 * 1999 * The downside to this alignment of the IP header is that the DMA is now 2000 * unaligned. On some architectures the cost of an unaligned DMA is high 2001 * and this cost outweighs the gains made by aligning the IP header. 2002 * 2003 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2004 * to be overridden. 2005 */ 2006#ifndef NET_IP_ALIGN 2007#define NET_IP_ALIGN 2 2008#endif 2009 2010/* 2011 * The networking layer reserves some headroom in skb data (via 2012 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2013 * the header has to grow. In the default case, if the header has to grow 2014 * 32 bytes or less we avoid the reallocation. 2015 * 2016 * Unfortunately this headroom changes the DMA alignment of the resulting 2017 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2018 * on some architectures. An architecture can override this value, 2019 * perhaps setting it to a cacheline in size (since that will maintain 2020 * cacheline alignment of the DMA). It must be a power of 2. 2021 * 2022 * Various parts of the networking layer expect at least 32 bytes of 2023 * headroom, you should not reduce this. 2024 * 2025 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2026 * to reduce average number of cache lines per packet. 2027 * get_rps_cpus() for example only access one 64 bytes aligned block : 2028 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2029 */ 2030#ifndef NET_SKB_PAD 2031#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2032#endif 2033 2034int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2035 2036static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2037{ 2038 if (unlikely(skb_is_nonlinear(skb))) { 2039 WARN_ON(1); 2040 return; 2041 } 2042 skb->len = len; 2043 skb_set_tail_pointer(skb, len); 2044} 2045 2046void skb_trim(struct sk_buff *skb, unsigned int len); 2047 2048static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2049{ 2050 if (skb->data_len) 2051 return ___pskb_trim(skb, len); 2052 __skb_trim(skb, len); 2053 return 0; 2054} 2055 2056static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2057{ 2058 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2059} 2060 2061/** 2062 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2063 * @skb: buffer to alter 2064 * @len: new length 2065 * 2066 * This is identical to pskb_trim except that the caller knows that 2067 * the skb is not cloned so we should never get an error due to out- 2068 * of-memory. 2069 */ 2070static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2071{ 2072 int err = pskb_trim(skb, len); 2073 BUG_ON(err); 2074} 2075 2076/** 2077 * skb_orphan - orphan a buffer 2078 * @skb: buffer to orphan 2079 * 2080 * If a buffer currently has an owner then we call the owner's 2081 * destructor function and make the @skb unowned. The buffer continues 2082 * to exist but is no longer charged to its former owner. 2083 */ 2084static inline void skb_orphan(struct sk_buff *skb) 2085{ 2086 if (skb->destructor) { 2087 skb->destructor(skb); 2088 skb->destructor = NULL; 2089 skb->sk = NULL; 2090 } else { 2091 BUG_ON(skb->sk); 2092 } 2093} 2094 2095/** 2096 * skb_orphan_frags - orphan the frags contained in a buffer 2097 * @skb: buffer to orphan frags from 2098 * @gfp_mask: allocation mask for replacement pages 2099 * 2100 * For each frag in the SKB which needs a destructor (i.e. has an 2101 * owner) create a copy of that frag and release the original 2102 * page by calling the destructor. 2103 */ 2104static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2105{ 2106 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2107 return 0; 2108 return skb_copy_ubufs(skb, gfp_mask); 2109} 2110 2111/** 2112 * __skb_queue_purge - empty a list 2113 * @list: list to empty 2114 * 2115 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2116 * the list and one reference dropped. This function does not take the 2117 * list lock and the caller must hold the relevant locks to use it. 2118 */ 2119void skb_queue_purge(struct sk_buff_head *list); 2120static inline void __skb_queue_purge(struct sk_buff_head *list) 2121{ 2122 struct sk_buff *skb; 2123 while ((skb = __skb_dequeue(list)) != NULL) 2124 kfree_skb(skb); 2125} 2126 2127#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 2128#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 2129#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 2130 2131void *netdev_alloc_frag(unsigned int fragsz); 2132 2133struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2134 gfp_t gfp_mask); 2135 2136/** 2137 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2138 * @dev: network device to receive on 2139 * @length: length to allocate 2140 * 2141 * Allocate a new &sk_buff and assign it a usage count of one. The 2142 * buffer has unspecified headroom built in. Users should allocate 2143 * the headroom they think they need without accounting for the 2144 * built in space. The built in space is used for optimisations. 2145 * 2146 * %NULL is returned if there is no free memory. Although this function 2147 * allocates memory it can be called from an interrupt. 2148 */ 2149static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2150 unsigned int length) 2151{ 2152 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2153} 2154 2155/* legacy helper around __netdev_alloc_skb() */ 2156static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2157 gfp_t gfp_mask) 2158{ 2159 return __netdev_alloc_skb(NULL, length, gfp_mask); 2160} 2161 2162/* legacy helper around netdev_alloc_skb() */ 2163static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2164{ 2165 return netdev_alloc_skb(NULL, length); 2166} 2167 2168 2169static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2170 unsigned int length, gfp_t gfp) 2171{ 2172 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2173 2174 if (NET_IP_ALIGN && skb) 2175 skb_reserve(skb, NET_IP_ALIGN); 2176 return skb; 2177} 2178 2179static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2180 unsigned int length) 2181{ 2182 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2183} 2184 2185void *napi_alloc_frag(unsigned int fragsz); 2186struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2187 unsigned int length, gfp_t gfp_mask); 2188static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2189 unsigned int length) 2190{ 2191 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2192} 2193 2194/** 2195 * __dev_alloc_pages - allocate page for network Rx 2196 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2197 * @order: size of the allocation 2198 * 2199 * Allocate a new page. 2200 * 2201 * %NULL is returned if there is no free memory. 2202*/ 2203static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2204 unsigned int order) 2205{ 2206 /* This piece of code contains several assumptions. 2207 * 1. This is for device Rx, therefor a cold page is preferred. 2208 * 2. The expectation is the user wants a compound page. 2209 * 3. If requesting a order 0 page it will not be compound 2210 * due to the check to see if order has a value in prep_new_page 2211 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2212 * code in gfp_to_alloc_flags that should be enforcing this. 2213 */ 2214 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2215 2216 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2217} 2218 2219static inline struct page *dev_alloc_pages(unsigned int order) 2220{ 2221 return __dev_alloc_pages(GFP_ATOMIC, order); 2222} 2223 2224/** 2225 * __dev_alloc_page - allocate a page for network Rx 2226 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2227 * 2228 * Allocate a new page. 2229 * 2230 * %NULL is returned if there is no free memory. 2231 */ 2232static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2233{ 2234 return __dev_alloc_pages(gfp_mask, 0); 2235} 2236 2237static inline struct page *dev_alloc_page(void) 2238{ 2239 return __dev_alloc_page(GFP_ATOMIC); 2240} 2241 2242/** 2243 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2244 * @page: The page that was allocated from skb_alloc_page 2245 * @skb: The skb that may need pfmemalloc set 2246 */ 2247static inline void skb_propagate_pfmemalloc(struct page *page, 2248 struct sk_buff *skb) 2249{ 2250 if (page_is_pfmemalloc(page)) 2251 skb->pfmemalloc = true; 2252} 2253 2254/** 2255 * skb_frag_page - retrieve the page referred to by a paged fragment 2256 * @frag: the paged fragment 2257 * 2258 * Returns the &struct page associated with @frag. 2259 */ 2260static inline struct page *skb_frag_page(const skb_frag_t *frag) 2261{ 2262 return frag->page.p; 2263} 2264 2265/** 2266 * __skb_frag_ref - take an addition reference on a paged fragment. 2267 * @frag: the paged fragment 2268 * 2269 * Takes an additional reference on the paged fragment @frag. 2270 */ 2271static inline void __skb_frag_ref(skb_frag_t *frag) 2272{ 2273 get_page(skb_frag_page(frag)); 2274} 2275 2276/** 2277 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2278 * @skb: the buffer 2279 * @f: the fragment offset. 2280 * 2281 * Takes an additional reference on the @f'th paged fragment of @skb. 2282 */ 2283static inline void skb_frag_ref(struct sk_buff *skb, int f) 2284{ 2285 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2286} 2287 2288/** 2289 * __skb_frag_unref - release a reference on a paged fragment. 2290 * @frag: the paged fragment 2291 * 2292 * Releases a reference on the paged fragment @frag. 2293 */ 2294static inline void __skb_frag_unref(skb_frag_t *frag) 2295{ 2296 put_page(skb_frag_page(frag)); 2297} 2298 2299/** 2300 * skb_frag_unref - release a reference on a paged fragment of an skb. 2301 * @skb: the buffer 2302 * @f: the fragment offset 2303 * 2304 * Releases a reference on the @f'th paged fragment of @skb. 2305 */ 2306static inline void skb_frag_unref(struct sk_buff *skb, int f) 2307{ 2308 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2309} 2310 2311/** 2312 * skb_frag_address - gets the address of the data contained in a paged fragment 2313 * @frag: the paged fragment buffer 2314 * 2315 * Returns the address of the data within @frag. The page must already 2316 * be mapped. 2317 */ 2318static inline void *skb_frag_address(const skb_frag_t *frag) 2319{ 2320 return page_address(skb_frag_page(frag)) + frag->page_offset; 2321} 2322 2323/** 2324 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2325 * @frag: the paged fragment buffer 2326 * 2327 * Returns the address of the data within @frag. Checks that the page 2328 * is mapped and returns %NULL otherwise. 2329 */ 2330static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2331{ 2332 void *ptr = page_address(skb_frag_page(frag)); 2333 if (unlikely(!ptr)) 2334 return NULL; 2335 2336 return ptr + frag->page_offset; 2337} 2338 2339/** 2340 * __skb_frag_set_page - sets the page contained in a paged fragment 2341 * @frag: the paged fragment 2342 * @page: the page to set 2343 * 2344 * Sets the fragment @frag to contain @page. 2345 */ 2346static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2347{ 2348 frag->page.p = page; 2349} 2350 2351/** 2352 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2353 * @skb: the buffer 2354 * @f: the fragment offset 2355 * @page: the page to set 2356 * 2357 * Sets the @f'th fragment of @skb to contain @page. 2358 */ 2359static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2360 struct page *page) 2361{ 2362 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2363} 2364 2365bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2366 2367/** 2368 * skb_frag_dma_map - maps a paged fragment via the DMA API 2369 * @dev: the device to map the fragment to 2370 * @frag: the paged fragment to map 2371 * @offset: the offset within the fragment (starting at the 2372 * fragment's own offset) 2373 * @size: the number of bytes to map 2374 * @dir: the direction of the mapping (%PCI_DMA_*) 2375 * 2376 * Maps the page associated with @frag to @device. 2377 */ 2378static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2379 const skb_frag_t *frag, 2380 size_t offset, size_t size, 2381 enum dma_data_direction dir) 2382{ 2383 return dma_map_page(dev, skb_frag_page(frag), 2384 frag->page_offset + offset, size, dir); 2385} 2386 2387static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2388 gfp_t gfp_mask) 2389{ 2390 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2391} 2392 2393 2394static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2395 gfp_t gfp_mask) 2396{ 2397 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2398} 2399 2400 2401/** 2402 * skb_clone_writable - is the header of a clone writable 2403 * @skb: buffer to check 2404 * @len: length up to which to write 2405 * 2406 * Returns true if modifying the header part of the cloned buffer 2407 * does not requires the data to be copied. 2408 */ 2409static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2410{ 2411 return !skb_header_cloned(skb) && 2412 skb_headroom(skb) + len <= skb->hdr_len; 2413} 2414 2415static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2416 int cloned) 2417{ 2418 int delta = 0; 2419 2420 if (headroom > skb_headroom(skb)) 2421 delta = headroom - skb_headroom(skb); 2422 2423 if (delta || cloned) 2424 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2425 GFP_ATOMIC); 2426 return 0; 2427} 2428 2429/** 2430 * skb_cow - copy header of skb when it is required 2431 * @skb: buffer to cow 2432 * @headroom: needed headroom 2433 * 2434 * If the skb passed lacks sufficient headroom or its data part 2435 * is shared, data is reallocated. If reallocation fails, an error 2436 * is returned and original skb is not changed. 2437 * 2438 * The result is skb with writable area skb->head...skb->tail 2439 * and at least @headroom of space at head. 2440 */ 2441static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2442{ 2443 return __skb_cow(skb, headroom, skb_cloned(skb)); 2444} 2445 2446/** 2447 * skb_cow_head - skb_cow but only making the head writable 2448 * @skb: buffer to cow 2449 * @headroom: needed headroom 2450 * 2451 * This function is identical to skb_cow except that we replace the 2452 * skb_cloned check by skb_header_cloned. It should be used when 2453 * you only need to push on some header and do not need to modify 2454 * the data. 2455 */ 2456static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2457{ 2458 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2459} 2460 2461/** 2462 * skb_padto - pad an skbuff up to a minimal size 2463 * @skb: buffer to pad 2464 * @len: minimal length 2465 * 2466 * Pads up a buffer to ensure the trailing bytes exist and are 2467 * blanked. If the buffer already contains sufficient data it 2468 * is untouched. Otherwise it is extended. Returns zero on 2469 * success. The skb is freed on error. 2470 */ 2471static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2472{ 2473 unsigned int size = skb->len; 2474 if (likely(size >= len)) 2475 return 0; 2476 return skb_pad(skb, len - size); 2477} 2478 2479/** 2480 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2481 * @skb: buffer to pad 2482 * @len: minimal length 2483 * 2484 * Pads up a buffer to ensure the trailing bytes exist and are 2485 * blanked. If the buffer already contains sufficient data it 2486 * is untouched. Otherwise it is extended. Returns zero on 2487 * success. The skb is freed on error. 2488 */ 2489static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2490{ 2491 unsigned int size = skb->len; 2492 2493 if (unlikely(size < len)) { 2494 len -= size; 2495 if (skb_pad(skb, len)) 2496 return -ENOMEM; 2497 __skb_put(skb, len); 2498 } 2499 return 0; 2500} 2501 2502static inline int skb_add_data(struct sk_buff *skb, 2503 struct iov_iter *from, int copy) 2504{ 2505 const int off = skb->len; 2506 2507 if (skb->ip_summed == CHECKSUM_NONE) { 2508 __wsum csum = 0; 2509 if (csum_and_copy_from_iter(skb_put(skb, copy), copy, 2510 &csum, from) == copy) { 2511 skb->csum = csum_block_add(skb->csum, csum, off); 2512 return 0; 2513 } 2514 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy) 2515 return 0; 2516 2517 __skb_trim(skb, off); 2518 return -EFAULT; 2519} 2520 2521static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2522 const struct page *page, int off) 2523{ 2524 if (i) { 2525 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2526 2527 return page == skb_frag_page(frag) && 2528 off == frag->page_offset + skb_frag_size(frag); 2529 } 2530 return false; 2531} 2532 2533static inline int __skb_linearize(struct sk_buff *skb) 2534{ 2535 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2536} 2537 2538/** 2539 * skb_linearize - convert paged skb to linear one 2540 * @skb: buffer to linarize 2541 * 2542 * If there is no free memory -ENOMEM is returned, otherwise zero 2543 * is returned and the old skb data released. 2544 */ 2545static inline int skb_linearize(struct sk_buff *skb) 2546{ 2547 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2548} 2549 2550/** 2551 * skb_has_shared_frag - can any frag be overwritten 2552 * @skb: buffer to test 2553 * 2554 * Return true if the skb has at least one frag that might be modified 2555 * by an external entity (as in vmsplice()/sendfile()) 2556 */ 2557static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2558{ 2559 return skb_is_nonlinear(skb) && 2560 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2561} 2562 2563/** 2564 * skb_linearize_cow - make sure skb is linear and writable 2565 * @skb: buffer to process 2566 * 2567 * If there is no free memory -ENOMEM is returned, otherwise zero 2568 * is returned and the old skb data released. 2569 */ 2570static inline int skb_linearize_cow(struct sk_buff *skb) 2571{ 2572 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2573 __skb_linearize(skb) : 0; 2574} 2575 2576/** 2577 * skb_postpull_rcsum - update checksum for received skb after pull 2578 * @skb: buffer to update 2579 * @start: start of data before pull 2580 * @len: length of data pulled 2581 * 2582 * After doing a pull on a received packet, you need to call this to 2583 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2584 * CHECKSUM_NONE so that it can be recomputed from scratch. 2585 */ 2586 2587static inline void skb_postpull_rcsum(struct sk_buff *skb, 2588 const void *start, unsigned int len) 2589{ 2590 if (skb->ip_summed == CHECKSUM_COMPLETE) 2591 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2592 else if (skb->ip_summed == CHECKSUM_PARTIAL && 2593 skb_checksum_start_offset(skb) < 0) 2594 skb->ip_summed = CHECKSUM_NONE; 2595} 2596 2597unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2598 2599/** 2600 * pskb_trim_rcsum - trim received skb and update checksum 2601 * @skb: buffer to trim 2602 * @len: new length 2603 * 2604 * This is exactly the same as pskb_trim except that it ensures the 2605 * checksum of received packets are still valid after the operation. 2606 */ 2607 2608static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2609{ 2610 if (likely(len >= skb->len)) 2611 return 0; 2612 if (skb->ip_summed == CHECKSUM_COMPLETE) 2613 skb->ip_summed = CHECKSUM_NONE; 2614 return __pskb_trim(skb, len); 2615} 2616 2617#define skb_queue_walk(queue, skb) \ 2618 for (skb = (queue)->next; \ 2619 skb != (struct sk_buff *)(queue); \ 2620 skb = skb->next) 2621 2622#define skb_queue_walk_safe(queue, skb, tmp) \ 2623 for (skb = (queue)->next, tmp = skb->next; \ 2624 skb != (struct sk_buff *)(queue); \ 2625 skb = tmp, tmp = skb->next) 2626 2627#define skb_queue_walk_from(queue, skb) \ 2628 for (; skb != (struct sk_buff *)(queue); \ 2629 skb = skb->next) 2630 2631#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2632 for (tmp = skb->next; \ 2633 skb != (struct sk_buff *)(queue); \ 2634 skb = tmp, tmp = skb->next) 2635 2636#define skb_queue_reverse_walk(queue, skb) \ 2637 for (skb = (queue)->prev; \ 2638 skb != (struct sk_buff *)(queue); \ 2639 skb = skb->prev) 2640 2641#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2642 for (skb = (queue)->prev, tmp = skb->prev; \ 2643 skb != (struct sk_buff *)(queue); \ 2644 skb = tmp, tmp = skb->prev) 2645 2646#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2647 for (tmp = skb->prev; \ 2648 skb != (struct sk_buff *)(queue); \ 2649 skb = tmp, tmp = skb->prev) 2650 2651static inline bool skb_has_frag_list(const struct sk_buff *skb) 2652{ 2653 return skb_shinfo(skb)->frag_list != NULL; 2654} 2655 2656static inline void skb_frag_list_init(struct sk_buff *skb) 2657{ 2658 skb_shinfo(skb)->frag_list = NULL; 2659} 2660 2661static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2662{ 2663 frag->next = skb_shinfo(skb)->frag_list; 2664 skb_shinfo(skb)->frag_list = frag; 2665} 2666 2667#define skb_walk_frags(skb, iter) \ 2668 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2669 2670struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2671 int *peeked, int *off, int *err); 2672struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2673 int *err); 2674unsigned int datagram_poll(struct file *file, struct socket *sock, 2675 struct poll_table_struct *wait); 2676int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 2677 struct iov_iter *to, int size); 2678static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 2679 struct msghdr *msg, int size) 2680{ 2681 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 2682} 2683int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 2684 struct msghdr *msg); 2685int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 2686 struct iov_iter *from, int len); 2687int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 2688void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2689void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2690int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2691int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2692int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2693__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2694 int len, __wsum csum); 2695int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 2696 struct pipe_inode_info *pipe, unsigned int len, 2697 unsigned int flags); 2698void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2699unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 2700int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 2701 int len, int hlen); 2702void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2703int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2704void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2705unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 2706struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2707struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 2708int skb_ensure_writable(struct sk_buff *skb, int write_len); 2709int skb_vlan_pop(struct sk_buff *skb); 2710int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 2711 2712static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 2713{ 2714 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 2715} 2716 2717static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 2718{ 2719 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 2720} 2721 2722struct skb_checksum_ops { 2723 __wsum (*update)(const void *mem, int len, __wsum wsum); 2724 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2725}; 2726 2727__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2728 __wsum csum, const struct skb_checksum_ops *ops); 2729__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2730 __wsum csum); 2731 2732static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset, 2733 int len, void *data, int hlen, void *buffer) 2734{ 2735 if (hlen - offset >= len) 2736 return data + offset; 2737 2738 if (!skb || 2739 skb_copy_bits(skb, offset, buffer, len) < 0) 2740 return NULL; 2741 2742 return buffer; 2743} 2744 2745static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2746 int len, void *buffer) 2747{ 2748 return __skb_header_pointer(skb, offset, len, skb->data, 2749 skb_headlen(skb), buffer); 2750} 2751 2752/** 2753 * skb_needs_linearize - check if we need to linearize a given skb 2754 * depending on the given device features. 2755 * @skb: socket buffer to check 2756 * @features: net device features 2757 * 2758 * Returns true if either: 2759 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2760 * 2. skb is fragmented and the device does not support SG. 2761 */ 2762static inline bool skb_needs_linearize(struct sk_buff *skb, 2763 netdev_features_t features) 2764{ 2765 return skb_is_nonlinear(skb) && 2766 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 2767 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 2768} 2769 2770static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2771 void *to, 2772 const unsigned int len) 2773{ 2774 memcpy(to, skb->data, len); 2775} 2776 2777static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2778 const int offset, void *to, 2779 const unsigned int len) 2780{ 2781 memcpy(to, skb->data + offset, len); 2782} 2783 2784static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2785 const void *from, 2786 const unsigned int len) 2787{ 2788 memcpy(skb->data, from, len); 2789} 2790 2791static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2792 const int offset, 2793 const void *from, 2794 const unsigned int len) 2795{ 2796 memcpy(skb->data + offset, from, len); 2797} 2798 2799void skb_init(void); 2800 2801static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2802{ 2803 return skb->tstamp; 2804} 2805 2806/** 2807 * skb_get_timestamp - get timestamp from a skb 2808 * @skb: skb to get stamp from 2809 * @stamp: pointer to struct timeval to store stamp in 2810 * 2811 * Timestamps are stored in the skb as offsets to a base timestamp. 2812 * This function converts the offset back to a struct timeval and stores 2813 * it in stamp. 2814 */ 2815static inline void skb_get_timestamp(const struct sk_buff *skb, 2816 struct timeval *stamp) 2817{ 2818 *stamp = ktime_to_timeval(skb->tstamp); 2819} 2820 2821static inline void skb_get_timestampns(const struct sk_buff *skb, 2822 struct timespec *stamp) 2823{ 2824 *stamp = ktime_to_timespec(skb->tstamp); 2825} 2826 2827static inline void __net_timestamp(struct sk_buff *skb) 2828{ 2829 skb->tstamp = ktime_get_real(); 2830} 2831 2832static inline ktime_t net_timedelta(ktime_t t) 2833{ 2834 return ktime_sub(ktime_get_real(), t); 2835} 2836 2837static inline ktime_t net_invalid_timestamp(void) 2838{ 2839 return ktime_set(0, 0); 2840} 2841 2842struct sk_buff *skb_clone_sk(struct sk_buff *skb); 2843 2844#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2845 2846void skb_clone_tx_timestamp(struct sk_buff *skb); 2847bool skb_defer_rx_timestamp(struct sk_buff *skb); 2848 2849#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2850 2851static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2852{ 2853} 2854 2855static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2856{ 2857 return false; 2858} 2859 2860#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2861 2862/** 2863 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2864 * 2865 * PHY drivers may accept clones of transmitted packets for 2866 * timestamping via their phy_driver.txtstamp method. These drivers 2867 * must call this function to return the skb back to the stack, with 2868 * or without a timestamp. 2869 * 2870 * @skb: clone of the the original outgoing packet 2871 * @hwtstamps: hardware time stamps, may be NULL if not available 2872 * 2873 */ 2874void skb_complete_tx_timestamp(struct sk_buff *skb, 2875 struct skb_shared_hwtstamps *hwtstamps); 2876 2877void __skb_tstamp_tx(struct sk_buff *orig_skb, 2878 struct skb_shared_hwtstamps *hwtstamps, 2879 struct sock *sk, int tstype); 2880 2881/** 2882 * skb_tstamp_tx - queue clone of skb with send time stamps 2883 * @orig_skb: the original outgoing packet 2884 * @hwtstamps: hardware time stamps, may be NULL if not available 2885 * 2886 * If the skb has a socket associated, then this function clones the 2887 * skb (thus sharing the actual data and optional structures), stores 2888 * the optional hardware time stamping information (if non NULL) or 2889 * generates a software time stamp (otherwise), then queues the clone 2890 * to the error queue of the socket. Errors are silently ignored. 2891 */ 2892void skb_tstamp_tx(struct sk_buff *orig_skb, 2893 struct skb_shared_hwtstamps *hwtstamps); 2894 2895static inline void sw_tx_timestamp(struct sk_buff *skb) 2896{ 2897 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2898 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2899 skb_tstamp_tx(skb, NULL); 2900} 2901 2902/** 2903 * skb_tx_timestamp() - Driver hook for transmit timestamping 2904 * 2905 * Ethernet MAC Drivers should call this function in their hard_xmit() 2906 * function immediately before giving the sk_buff to the MAC hardware. 2907 * 2908 * Specifically, one should make absolutely sure that this function is 2909 * called before TX completion of this packet can trigger. Otherwise 2910 * the packet could potentially already be freed. 2911 * 2912 * @skb: A socket buffer. 2913 */ 2914static inline void skb_tx_timestamp(struct sk_buff *skb) 2915{ 2916 skb_clone_tx_timestamp(skb); 2917 sw_tx_timestamp(skb); 2918} 2919 2920/** 2921 * skb_complete_wifi_ack - deliver skb with wifi status 2922 * 2923 * @skb: the original outgoing packet 2924 * @acked: ack status 2925 * 2926 */ 2927void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2928 2929__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2930__sum16 __skb_checksum_complete(struct sk_buff *skb); 2931 2932static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2933{ 2934 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 2935 skb->csum_valid || 2936 (skb->ip_summed == CHECKSUM_PARTIAL && 2937 skb_checksum_start_offset(skb) >= 0)); 2938} 2939 2940/** 2941 * skb_checksum_complete - Calculate checksum of an entire packet 2942 * @skb: packet to process 2943 * 2944 * This function calculates the checksum over the entire packet plus 2945 * the value of skb->csum. The latter can be used to supply the 2946 * checksum of a pseudo header as used by TCP/UDP. It returns the 2947 * checksum. 2948 * 2949 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2950 * this function can be used to verify that checksum on received 2951 * packets. In that case the function should return zero if the 2952 * checksum is correct. In particular, this function will return zero 2953 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2954 * hardware has already verified the correctness of the checksum. 2955 */ 2956static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2957{ 2958 return skb_csum_unnecessary(skb) ? 2959 0 : __skb_checksum_complete(skb); 2960} 2961 2962static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 2963{ 2964 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2965 if (skb->csum_level == 0) 2966 skb->ip_summed = CHECKSUM_NONE; 2967 else 2968 skb->csum_level--; 2969 } 2970} 2971 2972static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 2973{ 2974 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2975 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 2976 skb->csum_level++; 2977 } else if (skb->ip_summed == CHECKSUM_NONE) { 2978 skb->ip_summed = CHECKSUM_UNNECESSARY; 2979 skb->csum_level = 0; 2980 } 2981} 2982 2983static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 2984{ 2985 /* Mark current checksum as bad (typically called from GRO 2986 * path). In the case that ip_summed is CHECKSUM_NONE 2987 * this must be the first checksum encountered in the packet. 2988 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 2989 * checksum after the last one validated. For UDP, a zero 2990 * checksum can not be marked as bad. 2991 */ 2992 2993 if (skb->ip_summed == CHECKSUM_NONE || 2994 skb->ip_summed == CHECKSUM_UNNECESSARY) 2995 skb->csum_bad = 1; 2996} 2997 2998/* Check if we need to perform checksum complete validation. 2999 * 3000 * Returns true if checksum complete is needed, false otherwise 3001 * (either checksum is unnecessary or zero checksum is allowed). 3002 */ 3003static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3004 bool zero_okay, 3005 __sum16 check) 3006{ 3007 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3008 skb->csum_valid = 1; 3009 __skb_decr_checksum_unnecessary(skb); 3010 return false; 3011 } 3012 3013 return true; 3014} 3015 3016/* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3017 * in checksum_init. 3018 */ 3019#define CHECKSUM_BREAK 76 3020 3021/* Unset checksum-complete 3022 * 3023 * Unset checksum complete can be done when packet is being modified 3024 * (uncompressed for instance) and checksum-complete value is 3025 * invalidated. 3026 */ 3027static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3028{ 3029 if (skb->ip_summed == CHECKSUM_COMPLETE) 3030 skb->ip_summed = CHECKSUM_NONE; 3031} 3032 3033/* Validate (init) checksum based on checksum complete. 3034 * 3035 * Return values: 3036 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3037 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3038 * checksum is stored in skb->csum for use in __skb_checksum_complete 3039 * non-zero: value of invalid checksum 3040 * 3041 */ 3042static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3043 bool complete, 3044 __wsum psum) 3045{ 3046 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3047 if (!csum_fold(csum_add(psum, skb->csum))) { 3048 skb->csum_valid = 1; 3049 return 0; 3050 } 3051 } else if (skb->csum_bad) { 3052 /* ip_summed == CHECKSUM_NONE in this case */ 3053 return 1; 3054 } 3055 3056 skb->csum = psum; 3057 3058 if (complete || skb->len <= CHECKSUM_BREAK) { 3059 __sum16 csum; 3060 3061 csum = __skb_checksum_complete(skb); 3062 skb->csum_valid = !csum; 3063 return csum; 3064 } 3065 3066 return 0; 3067} 3068 3069static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3070{ 3071 return 0; 3072} 3073 3074/* Perform checksum validate (init). Note that this is a macro since we only 3075 * want to calculate the pseudo header which is an input function if necessary. 3076 * First we try to validate without any computation (checksum unnecessary) and 3077 * then calculate based on checksum complete calling the function to compute 3078 * pseudo header. 3079 * 3080 * Return values: 3081 * 0: checksum is validated or try to in skb_checksum_complete 3082 * non-zero: value of invalid checksum 3083 */ 3084#define __skb_checksum_validate(skb, proto, complete, \ 3085 zero_okay, check, compute_pseudo) \ 3086({ \ 3087 __sum16 __ret = 0; \ 3088 skb->csum_valid = 0; \ 3089 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3090 __ret = __skb_checksum_validate_complete(skb, \ 3091 complete, compute_pseudo(skb, proto)); \ 3092 __ret; \ 3093}) 3094 3095#define skb_checksum_init(skb, proto, compute_pseudo) \ 3096 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3097 3098#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3099 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3100 3101#define skb_checksum_validate(skb, proto, compute_pseudo) \ 3102 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3103 3104#define skb_checksum_validate_zero_check(skb, proto, check, \ 3105 compute_pseudo) \ 3106 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3107 3108#define skb_checksum_simple_validate(skb) \ 3109 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3110 3111static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3112{ 3113 return (skb->ip_summed == CHECKSUM_NONE && 3114 skb->csum_valid && !skb->csum_bad); 3115} 3116 3117static inline void __skb_checksum_convert(struct sk_buff *skb, 3118 __sum16 check, __wsum pseudo) 3119{ 3120 skb->csum = ~pseudo; 3121 skb->ip_summed = CHECKSUM_COMPLETE; 3122} 3123 3124#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3125do { \ 3126 if (__skb_checksum_convert_check(skb)) \ 3127 __skb_checksum_convert(skb, check, \ 3128 compute_pseudo(skb, proto)); \ 3129} while (0) 3130 3131static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3132 u16 start, u16 offset) 3133{ 3134 skb->ip_summed = CHECKSUM_PARTIAL; 3135 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3136 skb->csum_offset = offset - start; 3137} 3138 3139/* Update skbuf and packet to reflect the remote checksum offload operation. 3140 * When called, ptr indicates the starting point for skb->csum when 3141 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3142 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3143 */ 3144static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3145 int start, int offset, bool nopartial) 3146{ 3147 __wsum delta; 3148 3149 if (!nopartial) { 3150 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3151 return; 3152 } 3153 3154 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3155 __skb_checksum_complete(skb); 3156 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3157 } 3158 3159 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3160 3161 /* Adjust skb->csum since we changed the packet */ 3162 skb->csum = csum_add(skb->csum, delta); 3163} 3164 3165#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3166void nf_conntrack_destroy(struct nf_conntrack *nfct); 3167static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3168{ 3169 if (nfct && atomic_dec_and_test(&nfct->use)) 3170 nf_conntrack_destroy(nfct); 3171} 3172static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3173{ 3174 if (nfct) 3175 atomic_inc(&nfct->use); 3176} 3177#endif 3178#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3179static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3180{ 3181 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3182 kfree(nf_bridge); 3183} 3184static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3185{ 3186 if (nf_bridge) 3187 atomic_inc(&nf_bridge->use); 3188} 3189#endif /* CONFIG_BRIDGE_NETFILTER */ 3190static inline void nf_reset(struct sk_buff *skb) 3191{ 3192#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3193 nf_conntrack_put(skb->nfct); 3194 skb->nfct = NULL; 3195#endif 3196#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3197 nf_bridge_put(skb->nf_bridge); 3198 skb->nf_bridge = NULL; 3199#endif 3200} 3201 3202static inline void nf_reset_trace(struct sk_buff *skb) 3203{ 3204#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3205 skb->nf_trace = 0; 3206#endif 3207} 3208 3209/* Note: This doesn't put any conntrack and bridge info in dst. */ 3210static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3211 bool copy) 3212{ 3213#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3214 dst->nfct = src->nfct; 3215 nf_conntrack_get(src->nfct); 3216 if (copy) 3217 dst->nfctinfo = src->nfctinfo; 3218#endif 3219#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3220 dst->nf_bridge = src->nf_bridge; 3221 nf_bridge_get(src->nf_bridge); 3222#endif 3223#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3224 if (copy) 3225 dst->nf_trace = src->nf_trace; 3226#endif 3227} 3228 3229static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3230{ 3231#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3232 nf_conntrack_put(dst->nfct); 3233#endif 3234#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3235 nf_bridge_put(dst->nf_bridge); 3236#endif 3237 __nf_copy(dst, src, true); 3238} 3239 3240#ifdef CONFIG_NETWORK_SECMARK 3241static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3242{ 3243 to->secmark = from->secmark; 3244} 3245 3246static inline void skb_init_secmark(struct sk_buff *skb) 3247{ 3248 skb->secmark = 0; 3249} 3250#else 3251static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3252{ } 3253 3254static inline void skb_init_secmark(struct sk_buff *skb) 3255{ } 3256#endif 3257 3258static inline bool skb_irq_freeable(const struct sk_buff *skb) 3259{ 3260 return !skb->destructor && 3261#if IS_ENABLED(CONFIG_XFRM) 3262 !skb->sp && 3263#endif 3264#if IS_ENABLED(CONFIG_NF_CONNTRACK) 3265 !skb->nfct && 3266#endif 3267 !skb->_skb_refdst && 3268 !skb_has_frag_list(skb); 3269} 3270 3271static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3272{ 3273 skb->queue_mapping = queue_mapping; 3274} 3275 3276static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3277{ 3278 return skb->queue_mapping; 3279} 3280 3281static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3282{ 3283 to->queue_mapping = from->queue_mapping; 3284} 3285 3286static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3287{ 3288 skb->queue_mapping = rx_queue + 1; 3289} 3290 3291static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3292{ 3293 return skb->queue_mapping - 1; 3294} 3295 3296static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3297{ 3298 return skb->queue_mapping != 0; 3299} 3300 3301u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3302 unsigned int num_tx_queues); 3303 3304static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3305{ 3306#ifdef CONFIG_XFRM 3307 return skb->sp; 3308#else 3309 return NULL; 3310#endif 3311} 3312 3313/* Keeps track of mac header offset relative to skb->head. 3314 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3315 * For non-tunnel skb it points to skb_mac_header() and for 3316 * tunnel skb it points to outer mac header. 3317 * Keeps track of level of encapsulation of network headers. 3318 */ 3319struct skb_gso_cb { 3320 int mac_offset; 3321 int encap_level; 3322 __u16 csum_start; 3323}; 3324#define SKB_SGO_CB_OFFSET 32 3325#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3326 3327static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3328{ 3329 return (skb_mac_header(inner_skb) - inner_skb->head) - 3330 SKB_GSO_CB(inner_skb)->mac_offset; 3331} 3332 3333static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3334{ 3335 int new_headroom, headroom; 3336 int ret; 3337 3338 headroom = skb_headroom(skb); 3339 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3340 if (ret) 3341 return ret; 3342 3343 new_headroom = skb_headroom(skb); 3344 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3345 return 0; 3346} 3347 3348/* Compute the checksum for a gso segment. First compute the checksum value 3349 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3350 * then add in skb->csum (checksum from csum_start to end of packet). 3351 * skb->csum and csum_start are then updated to reflect the checksum of the 3352 * resultant packet starting from the transport header-- the resultant checksum 3353 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3354 * header. 3355 */ 3356static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3357{ 3358 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) - 3359 skb_transport_offset(skb); 3360 __u16 csum; 3361 3362 csum = csum_fold(csum_partial(skb_transport_header(skb), 3363 plen, skb->csum)); 3364 skb->csum = res; 3365 SKB_GSO_CB(skb)->csum_start -= plen; 3366 3367 return csum; 3368} 3369 3370static inline bool skb_is_gso(const struct sk_buff *skb) 3371{ 3372 return skb_shinfo(skb)->gso_size; 3373} 3374 3375/* Note: Should be called only if skb_is_gso(skb) is true */ 3376static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3377{ 3378 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3379} 3380 3381void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3382 3383static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3384{ 3385 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3386 * wanted then gso_type will be set. */ 3387 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3388 3389 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3390 unlikely(shinfo->gso_type == 0)) { 3391 __skb_warn_lro_forwarding(skb); 3392 return true; 3393 } 3394 return false; 3395} 3396 3397static inline void skb_forward_csum(struct sk_buff *skb) 3398{ 3399 /* Unfortunately we don't support this one. Any brave souls? */ 3400 if (skb->ip_summed == CHECKSUM_COMPLETE) 3401 skb->ip_summed = CHECKSUM_NONE; 3402} 3403 3404/** 3405 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3406 * @skb: skb to check 3407 * 3408 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3409 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3410 * use this helper, to document places where we make this assertion. 3411 */ 3412static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3413{ 3414#ifdef DEBUG 3415 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3416#endif 3417} 3418 3419bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3420 3421int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3422 3423u32 skb_get_poff(const struct sk_buff *skb); 3424u32 __skb_get_poff(const struct sk_buff *skb, void *data, 3425 const struct flow_keys *keys, int hlen); 3426 3427/** 3428 * skb_head_is_locked - Determine if the skb->head is locked down 3429 * @skb: skb to check 3430 * 3431 * The head on skbs build around a head frag can be removed if they are 3432 * not cloned. This function returns true if the skb head is locked down 3433 * due to either being allocated via kmalloc, or by being a clone with 3434 * multiple references to the head. 3435 */ 3436static inline bool skb_head_is_locked(const struct sk_buff *skb) 3437{ 3438 return !skb->head_frag || skb_cloned(skb); 3439} 3440 3441/** 3442 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3443 * 3444 * @skb: GSO skb 3445 * 3446 * skb_gso_network_seglen is used to determine the real size of the 3447 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3448 * 3449 * The MAC/L2 header is not accounted for. 3450 */ 3451static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3452{ 3453 unsigned int hdr_len = skb_transport_header(skb) - 3454 skb_network_header(skb); 3455 return hdr_len + skb_gso_transport_seglen(skb); 3456} 3457#endif /* __KERNEL__ */ 3458#endif /* _LINUX_SKBUFF_H */ 3459