1/*
2 *	Definitions for the 'struct sk_buff' memory handlers.
3 *
4 *	Authors:
5 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 *	This program is free software; you can redistribute it and/or
9 *	modify it under the terms of the GNU General Public License
10 *	as published by the Free Software Foundation; either version
11 *	2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/kmemcheck.h>
19#include <linux/compiler.h>
20#include <linux/time.h>
21#include <linux/bug.h>
22#include <linux/cache.h>
23#include <linux/rbtree.h>
24#include <linux/socket.h>
25
26#include <linux/atomic.h>
27#include <asm/types.h>
28#include <linux/spinlock.h>
29#include <linux/net.h>
30#include <linux/textsearch.h>
31#include <net/checksum.h>
32#include <linux/rcupdate.h>
33#include <linux/hrtimer.h>
34#include <linux/dma-mapping.h>
35#include <linux/netdev_features.h>
36#include <linux/sched.h>
37#include <net/flow_keys.h>
38
39/* A. Checksumming of received packets by device.
40 *
41 * CHECKSUM_NONE:
42 *
43 *   Device failed to checksum this packet e.g. due to lack of capabilities.
44 *   The packet contains full (though not verified) checksum in packet but
45 *   not in skb->csum. Thus, skb->csum is undefined in this case.
46 *
47 * CHECKSUM_UNNECESSARY:
48 *
49 *   The hardware you're dealing with doesn't calculate the full checksum
50 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
51 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
52 *   if their checksums are okay. skb->csum is still undefined in this case
53 *   though. It is a bad option, but, unfortunately, nowadays most vendors do
54 *   this. Apparently with the secret goal to sell you new devices, when you
55 *   will add new protocol to your host, f.e. IPv6 8)
56 *
57 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
58 *     TCP: IPv6 and IPv4.
59 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
60 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
61 *       may perform further validation in this case.
62 *     GRE: only if the checksum is present in the header.
63 *     SCTP: indicates the CRC in SCTP header has been validated.
64 *
65 *   skb->csum_level indicates the number of consecutive checksums found in
66 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
67 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
68 *   and a device is able to verify the checksums for UDP (possibly zero),
69 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
70 *   two. If the device were only able to verify the UDP checksum and not
71 *   GRE, either because it doesn't support GRE checksum of because GRE
72 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
73 *   not considered in this case).
74 *
75 * CHECKSUM_COMPLETE:
76 *
77 *   This is the most generic way. The device supplied checksum of the _whole_
78 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
79 *   hardware doesn't need to parse L3/L4 headers to implement this.
80 *
81 *   Note: Even if device supports only some protocols, but is able to produce
82 *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
83 *
84 * CHECKSUM_PARTIAL:
85 *
86 *   A checksum is set up to be offloaded to a device as described in the
87 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
88 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
89 *   on the same host, or it may be set in the input path in GRO or remote
90 *   checksum offload. For the purposes of checksum verification, the checksum
91 *   referred to by skb->csum_start + skb->csum_offset and any preceding
92 *   checksums in the packet are considered verified. Any checksums in the
93 *   packet that are after the checksum being offloaded are not considered to
94 *   be verified.
95 *
96 * B. Checksumming on output.
97 *
98 * CHECKSUM_NONE:
99 *
100 *   The skb was already checksummed by the protocol, or a checksum is not
101 *   required.
102 *
103 * CHECKSUM_PARTIAL:
104 *
105 *   The device is required to checksum the packet as seen by hard_start_xmit()
106 *   from skb->csum_start up to the end, and to record/write the checksum at
107 *   offset skb->csum_start + skb->csum_offset.
108 *
109 *   The device must show its capabilities in dev->features, set up at device
110 *   setup time, e.g. netdev_features.h:
111 *
112 *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything.
113 *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
114 *			  IPv4. Sigh. Vendors like this way for an unknown reason.
115 *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8)
116 *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
117 *	NETIF_F_...     - Well, you get the picture.
118 *
119 * CHECKSUM_UNNECESSARY:
120 *
121 *   Normally, the device will do per protocol specific checksumming. Protocol
122 *   implementations that do not want the NIC to perform the checksum
123 *   calculation should use this flag in their outgoing skbs.
124 *
125 *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
126 *			   offload. Correspondingly, the FCoE protocol driver
127 *			   stack should use CHECKSUM_UNNECESSARY.
128 *
129 * Any questions? No questions, good.		--ANK
130 */
131
132/* Don't change this without changing skb_csum_unnecessary! */
133#define CHECKSUM_NONE		0
134#define CHECKSUM_UNNECESSARY	1
135#define CHECKSUM_COMPLETE	2
136#define CHECKSUM_PARTIAL	3
137
138/* Maximum value in skb->csum_level */
139#define SKB_MAX_CSUM_LEVEL	3
140
141#define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
142#define SKB_WITH_OVERHEAD(X)	\
143	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
144#define SKB_MAX_ORDER(X, ORDER) \
145	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
146#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
147#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
148
149/* return minimum truesize of one skb containing X bytes of data */
150#define SKB_TRUESIZE(X) ((X) +						\
151			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
152			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
153
154struct net_device;
155struct scatterlist;
156struct pipe_inode_info;
157struct iov_iter;
158struct napi_struct;
159
160#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
161struct nf_conntrack {
162	atomic_t use;
163};
164#endif
165
166#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
167struct nf_bridge_info {
168	atomic_t		use;
169	enum {
170		BRNF_PROTO_UNCHANGED,
171		BRNF_PROTO_8021Q,
172		BRNF_PROTO_PPPOE
173	} orig_proto;
174	bool			pkt_otherhost;
175	unsigned int		mask;
176	struct net_device	*physindev;
177	struct net_device	*physoutdev;
178	char			neigh_header[8];
179	__be32			ipv4_daddr;
180};
181#endif
182
183struct sk_buff_head {
184	/* These two members must be first. */
185	struct sk_buff	*next;
186	struct sk_buff	*prev;
187
188	__u32		qlen;
189	spinlock_t	lock;
190};
191
192struct sk_buff;
193
194/* To allow 64K frame to be packed as single skb without frag_list we
195 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
196 * buffers which do not start on a page boundary.
197 *
198 * Since GRO uses frags we allocate at least 16 regardless of page
199 * size.
200 */
201#if (65536/PAGE_SIZE + 1) < 16
202#define MAX_SKB_FRAGS 16UL
203#else
204#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
205#endif
206extern int sysctl_max_skb_frags;
207
208typedef struct skb_frag_struct skb_frag_t;
209
210struct skb_frag_struct {
211	struct {
212		struct page *p;
213	} page;
214#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
215	__u32 page_offset;
216	__u32 size;
217#else
218	__u16 page_offset;
219	__u16 size;
220#endif
221};
222
223static inline unsigned int skb_frag_size(const skb_frag_t *frag)
224{
225	return frag->size;
226}
227
228static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
229{
230	frag->size = size;
231}
232
233static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
234{
235	frag->size += delta;
236}
237
238static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
239{
240	frag->size -= delta;
241}
242
243#define HAVE_HW_TIME_STAMP
244
245/**
246 * struct skb_shared_hwtstamps - hardware time stamps
247 * @hwtstamp:	hardware time stamp transformed into duration
248 *		since arbitrary point in time
249 *
250 * Software time stamps generated by ktime_get_real() are stored in
251 * skb->tstamp.
252 *
253 * hwtstamps can only be compared against other hwtstamps from
254 * the same device.
255 *
256 * This structure is attached to packets as part of the
257 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
258 */
259struct skb_shared_hwtstamps {
260	ktime_t	hwtstamp;
261};
262
263/* Definitions for tx_flags in struct skb_shared_info */
264enum {
265	/* generate hardware time stamp */
266	SKBTX_HW_TSTAMP = 1 << 0,
267
268	/* generate software time stamp when queueing packet to NIC */
269	SKBTX_SW_TSTAMP = 1 << 1,
270
271	/* device driver is going to provide hardware time stamp */
272	SKBTX_IN_PROGRESS = 1 << 2,
273
274	/* device driver supports TX zero-copy buffers */
275	SKBTX_DEV_ZEROCOPY = 1 << 3,
276
277	/* generate wifi status information (where possible) */
278	SKBTX_WIFI_STATUS = 1 << 4,
279
280	/* This indicates at least one fragment might be overwritten
281	 * (as in vmsplice(), sendfile() ...)
282	 * If we need to compute a TX checksum, we'll need to copy
283	 * all frags to avoid possible bad checksum
284	 */
285	SKBTX_SHARED_FRAG = 1 << 5,
286
287	/* generate software time stamp when entering packet scheduling */
288	SKBTX_SCHED_TSTAMP = 1 << 6,
289
290	/* generate software timestamp on peer data acknowledgment */
291	SKBTX_ACK_TSTAMP = 1 << 7,
292};
293
294#define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
295				 SKBTX_SCHED_TSTAMP | \
296				 SKBTX_ACK_TSTAMP)
297#define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
298
299/*
300 * The callback notifies userspace to release buffers when skb DMA is done in
301 * lower device, the skb last reference should be 0 when calling this.
302 * The zerocopy_success argument is true if zero copy transmit occurred,
303 * false on data copy or out of memory error caused by data copy attempt.
304 * The ctx field is used to track device context.
305 * The desc field is used to track userspace buffer index.
306 */
307struct ubuf_info {
308	void (*callback)(struct ubuf_info *, bool zerocopy_success);
309	void *ctx;
310	unsigned long desc;
311};
312
313/* This data is invariant across clones and lives at
314 * the end of the header data, ie. at skb->end.
315 */
316struct skb_shared_info {
317	unsigned char	nr_frags;
318	__u8		tx_flags;
319	unsigned short	gso_size;
320	/* Warning: this field is not always filled in (UFO)! */
321	unsigned short	gso_segs;
322	unsigned short  gso_type;
323	struct sk_buff	*frag_list;
324	struct skb_shared_hwtstamps hwtstamps;
325	u32		tskey;
326	__be32          ip6_frag_id;
327
328	/*
329	 * Warning : all fields before dataref are cleared in __alloc_skb()
330	 */
331	atomic_t	dataref;
332
333	/* Intermediate layers must ensure that destructor_arg
334	 * remains valid until skb destructor */
335	void *		destructor_arg;
336
337	/* must be last field, see pskb_expand_head() */
338	skb_frag_t	frags[MAX_SKB_FRAGS];
339};
340
341/* We divide dataref into two halves.  The higher 16 bits hold references
342 * to the payload part of skb->data.  The lower 16 bits hold references to
343 * the entire skb->data.  A clone of a headerless skb holds the length of
344 * the header in skb->hdr_len.
345 *
346 * All users must obey the rule that the skb->data reference count must be
347 * greater than or equal to the payload reference count.
348 *
349 * Holding a reference to the payload part means that the user does not
350 * care about modifications to the header part of skb->data.
351 */
352#define SKB_DATAREF_SHIFT 16
353#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
354
355
356enum {
357	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
358	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
359	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
360};
361
362enum {
363	SKB_GSO_TCPV4 = 1 << 0,
364	SKB_GSO_UDP = 1 << 1,
365
366	/* This indicates the skb is from an untrusted source. */
367	SKB_GSO_DODGY = 1 << 2,
368
369	/* This indicates the tcp segment has CWR set. */
370	SKB_GSO_TCP_ECN = 1 << 3,
371
372	SKB_GSO_TCPV6 = 1 << 4,
373
374	SKB_GSO_FCOE = 1 << 5,
375
376	SKB_GSO_GRE = 1 << 6,
377
378	SKB_GSO_GRE_CSUM = 1 << 7,
379
380	SKB_GSO_IPIP = 1 << 8,
381
382	SKB_GSO_SIT = 1 << 9,
383
384	SKB_GSO_UDP_TUNNEL = 1 << 10,
385
386	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
387
388	SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
389};
390
391#if BITS_PER_LONG > 32
392#define NET_SKBUFF_DATA_USES_OFFSET 1
393#endif
394
395#ifdef NET_SKBUFF_DATA_USES_OFFSET
396typedef unsigned int sk_buff_data_t;
397#else
398typedef unsigned char *sk_buff_data_t;
399#endif
400
401/**
402 * struct skb_mstamp - multi resolution time stamps
403 * @stamp_us: timestamp in us resolution
404 * @stamp_jiffies: timestamp in jiffies
405 */
406struct skb_mstamp {
407	union {
408		u64		v64;
409		struct {
410			u32	stamp_us;
411			u32	stamp_jiffies;
412		};
413	};
414};
415
416/**
417 * skb_mstamp_get - get current timestamp
418 * @cl: place to store timestamps
419 */
420static inline void skb_mstamp_get(struct skb_mstamp *cl)
421{
422	u64 val = local_clock();
423
424	do_div(val, NSEC_PER_USEC);
425	cl->stamp_us = (u32)val;
426	cl->stamp_jiffies = (u32)jiffies;
427}
428
429/**
430 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
431 * @t1: pointer to newest sample
432 * @t0: pointer to oldest sample
433 */
434static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
435				      const struct skb_mstamp *t0)
436{
437	s32 delta_us = t1->stamp_us - t0->stamp_us;
438	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
439
440	/* If delta_us is negative, this might be because interval is too big,
441	 * or local_clock() drift is too big : fallback using jiffies.
442	 */
443	if (delta_us <= 0 ||
444	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
445
446		delta_us = jiffies_to_usecs(delta_jiffies);
447
448	return delta_us;
449}
450
451
452/**
453 *	struct sk_buff - socket buffer
454 *	@next: Next buffer in list
455 *	@prev: Previous buffer in list
456 *	@tstamp: Time we arrived/left
457 *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
458 *	@sk: Socket we are owned by
459 *	@dev: Device we arrived on/are leaving by
460 *	@cb: Control buffer. Free for use by every layer. Put private vars here
461 *	@_skb_refdst: destination entry (with norefcount bit)
462 *	@sp: the security path, used for xfrm
463 *	@len: Length of actual data
464 *	@data_len: Data length
465 *	@mac_len: Length of link layer header
466 *	@hdr_len: writable header length of cloned skb
467 *	@csum: Checksum (must include start/offset pair)
468 *	@csum_start: Offset from skb->head where checksumming should start
469 *	@csum_offset: Offset from csum_start where checksum should be stored
470 *	@priority: Packet queueing priority
471 *	@ignore_df: allow local fragmentation
472 *	@cloned: Head may be cloned (check refcnt to be sure)
473 *	@ip_summed: Driver fed us an IP checksum
474 *	@nohdr: Payload reference only, must not modify header
475 *	@nfctinfo: Relationship of this skb to the connection
476 *	@pkt_type: Packet class
477 *	@fclone: skbuff clone status
478 *	@ipvs_property: skbuff is owned by ipvs
479 *	@peeked: this packet has been seen already, so stats have been
480 *		done for it, don't do them again
481 *	@nf_trace: netfilter packet trace flag
482 *	@protocol: Packet protocol from driver
483 *	@destructor: Destruct function
484 *	@nfct: Associated connection, if any
485 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
486 *	@skb_iif: ifindex of device we arrived on
487 *	@tc_index: Traffic control index
488 *	@tc_verd: traffic control verdict
489 *	@hash: the packet hash
490 *	@queue_mapping: Queue mapping for multiqueue devices
491 *	@xmit_more: More SKBs are pending for this queue
492 *	@ndisc_nodetype: router type (from link layer)
493 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
494 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
495 *		ports.
496 *	@sw_hash: indicates hash was computed in software stack
497 *	@wifi_acked_valid: wifi_acked was set
498 *	@wifi_acked: whether frame was acked on wifi or not
499 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
500  *	@napi_id: id of the NAPI struct this skb came from
501 *	@secmark: security marking
502 *	@mark: Generic packet mark
503 *	@vlan_proto: vlan encapsulation protocol
504 *	@vlan_tci: vlan tag control information
505 *	@inner_protocol: Protocol (encapsulation)
506 *	@inner_transport_header: Inner transport layer header (encapsulation)
507 *	@inner_network_header: Network layer header (encapsulation)
508 *	@inner_mac_header: Link layer header (encapsulation)
509 *	@transport_header: Transport layer header
510 *	@network_header: Network layer header
511 *	@mac_header: Link layer header
512 *	@tail: Tail pointer
513 *	@end: End pointer
514 *	@head: Head of buffer
515 *	@data: Data head pointer
516 *	@truesize: Buffer size
517 *	@users: User count - see {datagram,tcp}.c
518 */
519
520struct sk_buff {
521	union {
522		struct {
523			/* These two members must be first. */
524			struct sk_buff		*next;
525			struct sk_buff		*prev;
526
527			union {
528				ktime_t		tstamp;
529				struct skb_mstamp skb_mstamp;
530			};
531		};
532		struct rb_node	rbnode; /* used in netem & tcp stack */
533	};
534	struct sock		*sk;
535	struct net_device	*dev;
536
537	/*
538	 * This is the control buffer. It is free to use for every
539	 * layer. Please put your private variables there. If you
540	 * want to keep them across layers you have to do a skb_clone()
541	 * first. This is owned by whoever has the skb queued ATM.
542	 */
543	char			cb[48] __aligned(8);
544
545	unsigned long		_skb_refdst;
546	void			(*destructor)(struct sk_buff *skb);
547#ifdef CONFIG_XFRM
548	struct	sec_path	*sp;
549#endif
550#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
551	struct nf_conntrack	*nfct;
552#endif
553#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
554	struct nf_bridge_info	*nf_bridge;
555#endif
556	unsigned int		len,
557				data_len;
558	__u16			mac_len,
559				hdr_len;
560
561	/* Following fields are _not_ copied in __copy_skb_header()
562	 * Note that queue_mapping is here mostly to fill a hole.
563	 */
564	kmemcheck_bitfield_begin(flags1);
565	__u16			queue_mapping;
566	__u8			cloned:1,
567				nohdr:1,
568				fclone:2,
569				peeked:1,
570				head_frag:1,
571				xmit_more:1;
572	/* one bit hole */
573	kmemcheck_bitfield_end(flags1);
574
575	/* fields enclosed in headers_start/headers_end are copied
576	 * using a single memcpy() in __copy_skb_header()
577	 */
578	/* private: */
579	__u32			headers_start[0];
580	/* public: */
581
582/* if you move pkt_type around you also must adapt those constants */
583#ifdef __BIG_ENDIAN_BITFIELD
584#define PKT_TYPE_MAX	(7 << 5)
585#else
586#define PKT_TYPE_MAX	7
587#endif
588#define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
589
590	__u8			__pkt_type_offset[0];
591	__u8			pkt_type:3;
592	__u8			pfmemalloc:1;
593	__u8			ignore_df:1;
594	__u8			nfctinfo:3;
595
596	__u8			nf_trace:1;
597	__u8			ip_summed:2;
598	__u8			ooo_okay:1;
599	__u8			l4_hash:1;
600	__u8			sw_hash:1;
601	__u8			wifi_acked_valid:1;
602	__u8			wifi_acked:1;
603
604	__u8			no_fcs:1;
605	/* Indicates the inner headers are valid in the skbuff. */
606	__u8			encapsulation:1;
607	__u8			encap_hdr_csum:1;
608	__u8			csum_valid:1;
609	__u8			csum_complete_sw:1;
610	__u8			csum_level:2;
611	__u8			csum_bad:1;
612
613#ifdef CONFIG_IPV6_NDISC_NODETYPE
614	__u8			ndisc_nodetype:2;
615#endif
616	__u8			ipvs_property:1;
617	__u8			inner_protocol_type:1;
618	__u8			remcsum_offload:1;
619	/* 3 or 5 bit hole */
620
621#ifdef CONFIG_NET_SCHED
622	__u16			tc_index;	/* traffic control index */
623#ifdef CONFIG_NET_CLS_ACT
624	__u16			tc_verd;	/* traffic control verdict */
625#endif
626#endif
627
628	union {
629		__wsum		csum;
630		struct {
631			__u16	csum_start;
632			__u16	csum_offset;
633		};
634	};
635	__u32			priority;
636	int			skb_iif;
637	__u32			hash;
638	__be16			vlan_proto;
639	__u16			vlan_tci;
640#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
641	union {
642		unsigned int	napi_id;
643		unsigned int	sender_cpu;
644	};
645#endif
646#ifdef CONFIG_NETWORK_SECMARK
647	__u32			secmark;
648#endif
649	union {
650		__u32		mark;
651		__u32		reserved_tailroom;
652	};
653
654	union {
655		__be16		inner_protocol;
656		__u8		inner_ipproto;
657	};
658
659	__u16			inner_transport_header;
660	__u16			inner_network_header;
661	__u16			inner_mac_header;
662
663	__be16			protocol;
664	__u16			transport_header;
665	__u16			network_header;
666	__u16			mac_header;
667
668	/* private: */
669	__u32			headers_end[0];
670	/* public: */
671
672	/* These elements must be at the end, see alloc_skb() for details.  */
673	sk_buff_data_t		tail;
674	sk_buff_data_t		end;
675	unsigned char		*head,
676				*data;
677	unsigned int		truesize;
678	atomic_t		users;
679};
680
681#ifdef __KERNEL__
682/*
683 *	Handling routines are only of interest to the kernel
684 */
685#include <linux/slab.h>
686
687
688#define SKB_ALLOC_FCLONE	0x01
689#define SKB_ALLOC_RX		0x02
690#define SKB_ALLOC_NAPI		0x04
691
692/* Returns true if the skb was allocated from PFMEMALLOC reserves */
693static inline bool skb_pfmemalloc(const struct sk_buff *skb)
694{
695	return unlikely(skb->pfmemalloc);
696}
697
698/*
699 * skb might have a dst pointer attached, refcounted or not.
700 * _skb_refdst low order bit is set if refcount was _not_ taken
701 */
702#define SKB_DST_NOREF	1UL
703#define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
704
705/**
706 * skb_dst - returns skb dst_entry
707 * @skb: buffer
708 *
709 * Returns skb dst_entry, regardless of reference taken or not.
710 */
711static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
712{
713	/* If refdst was not refcounted, check we still are in a
714	 * rcu_read_lock section
715	 */
716	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
717		!rcu_read_lock_held() &&
718		!rcu_read_lock_bh_held());
719	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
720}
721
722/**
723 * skb_dst_set - sets skb dst
724 * @skb: buffer
725 * @dst: dst entry
726 *
727 * Sets skb dst, assuming a reference was taken on dst and should
728 * be released by skb_dst_drop()
729 */
730static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
731{
732	skb->_skb_refdst = (unsigned long)dst;
733}
734
735/**
736 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
737 * @skb: buffer
738 * @dst: dst entry
739 *
740 * Sets skb dst, assuming a reference was not taken on dst.
741 * If dst entry is cached, we do not take reference and dst_release
742 * will be avoided by refdst_drop. If dst entry is not cached, we take
743 * reference, so that last dst_release can destroy the dst immediately.
744 */
745static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
746{
747	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
748	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
749}
750
751/**
752 * skb_dst_is_noref - Test if skb dst isn't refcounted
753 * @skb: buffer
754 */
755static inline bool skb_dst_is_noref(const struct sk_buff *skb)
756{
757	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
758}
759
760static inline struct rtable *skb_rtable(const struct sk_buff *skb)
761{
762	return (struct rtable *)skb_dst(skb);
763}
764
765void kfree_skb(struct sk_buff *skb);
766void kfree_skb_list(struct sk_buff *segs);
767void skb_tx_error(struct sk_buff *skb);
768void consume_skb(struct sk_buff *skb);
769void  __kfree_skb(struct sk_buff *skb);
770extern struct kmem_cache *skbuff_head_cache;
771
772void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
773bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
774		      bool *fragstolen, int *delta_truesize);
775
776struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
777			    int node);
778struct sk_buff *__build_skb(void *data, unsigned int frag_size);
779struct sk_buff *build_skb(void *data, unsigned int frag_size);
780static inline struct sk_buff *alloc_skb(unsigned int size,
781					gfp_t priority)
782{
783	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
784}
785
786struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
787				     unsigned long data_len,
788				     int max_page_order,
789				     int *errcode,
790				     gfp_t gfp_mask);
791
792/* Layout of fast clones : [skb1][skb2][fclone_ref] */
793struct sk_buff_fclones {
794	struct sk_buff	skb1;
795
796	struct sk_buff	skb2;
797
798	atomic_t	fclone_ref;
799};
800
801/**
802 *	skb_fclone_busy - check if fclone is busy
803 *	@skb: buffer
804 *
805 * Returns true is skb is a fast clone, and its clone is not freed.
806 * Some drivers call skb_orphan() in their ndo_start_xmit(),
807 * so we also check that this didnt happen.
808 */
809static inline bool skb_fclone_busy(const struct sock *sk,
810				   const struct sk_buff *skb)
811{
812	const struct sk_buff_fclones *fclones;
813
814	fclones = container_of(skb, struct sk_buff_fclones, skb1);
815
816	return skb->fclone == SKB_FCLONE_ORIG &&
817	       atomic_read(&fclones->fclone_ref) > 1 &&
818	       fclones->skb2.sk == sk;
819}
820
821static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
822					       gfp_t priority)
823{
824	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
825}
826
827struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
828static inline struct sk_buff *alloc_skb_head(gfp_t priority)
829{
830	return __alloc_skb_head(priority, -1);
831}
832
833struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
834int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
835struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
836struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
837struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
838				   gfp_t gfp_mask, bool fclone);
839static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
840					  gfp_t gfp_mask)
841{
842	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
843}
844
845int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
846struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
847				     unsigned int headroom);
848struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
849				int newtailroom, gfp_t priority);
850int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
851			int offset, int len);
852int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
853		 int len);
854int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
855int skb_pad(struct sk_buff *skb, int pad);
856#define dev_kfree_skb(a)	consume_skb(a)
857
858int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
859			    int getfrag(void *from, char *to, int offset,
860					int len, int odd, struct sk_buff *skb),
861			    void *from, int length);
862
863struct skb_seq_state {
864	__u32		lower_offset;
865	__u32		upper_offset;
866	__u32		frag_idx;
867	__u32		stepped_offset;
868	struct sk_buff	*root_skb;
869	struct sk_buff	*cur_skb;
870	__u8		*frag_data;
871};
872
873void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
874			  unsigned int to, struct skb_seq_state *st);
875unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
876			  struct skb_seq_state *st);
877void skb_abort_seq_read(struct skb_seq_state *st);
878
879unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
880			   unsigned int to, struct ts_config *config);
881
882/*
883 * Packet hash types specify the type of hash in skb_set_hash.
884 *
885 * Hash types refer to the protocol layer addresses which are used to
886 * construct a packet's hash. The hashes are used to differentiate or identify
887 * flows of the protocol layer for the hash type. Hash types are either
888 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
889 *
890 * Properties of hashes:
891 *
892 * 1) Two packets in different flows have different hash values
893 * 2) Two packets in the same flow should have the same hash value
894 *
895 * A hash at a higher layer is considered to be more specific. A driver should
896 * set the most specific hash possible.
897 *
898 * A driver cannot indicate a more specific hash than the layer at which a hash
899 * was computed. For instance an L3 hash cannot be set as an L4 hash.
900 *
901 * A driver may indicate a hash level which is less specific than the
902 * actual layer the hash was computed on. For instance, a hash computed
903 * at L4 may be considered an L3 hash. This should only be done if the
904 * driver can't unambiguously determine that the HW computed the hash at
905 * the higher layer. Note that the "should" in the second property above
906 * permits this.
907 */
908enum pkt_hash_types {
909	PKT_HASH_TYPE_NONE,	/* Undefined type */
910	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
911	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
912	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
913};
914
915static inline void
916skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
917{
918	skb->l4_hash = (type == PKT_HASH_TYPE_L4);
919	skb->sw_hash = 0;
920	skb->hash = hash;
921}
922
923void __skb_get_hash(struct sk_buff *skb);
924static inline __u32 skb_get_hash(struct sk_buff *skb)
925{
926	if (!skb->l4_hash && !skb->sw_hash)
927		__skb_get_hash(skb);
928
929	return skb->hash;
930}
931
932static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
933{
934	return skb->hash;
935}
936
937static inline void skb_clear_hash(struct sk_buff *skb)
938{
939	skb->hash = 0;
940	skb->sw_hash = 0;
941	skb->l4_hash = 0;
942}
943
944static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
945{
946	if (!skb->l4_hash)
947		skb_clear_hash(skb);
948}
949
950static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
951{
952	to->hash = from->hash;
953	to->sw_hash = from->sw_hash;
954	to->l4_hash = from->l4_hash;
955};
956
957static inline void skb_sender_cpu_clear(struct sk_buff *skb)
958{
959#ifdef CONFIG_XPS
960	skb->sender_cpu = 0;
961#endif
962}
963
964#ifdef NET_SKBUFF_DATA_USES_OFFSET
965static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
966{
967	return skb->head + skb->end;
968}
969
970static inline unsigned int skb_end_offset(const struct sk_buff *skb)
971{
972	return skb->end;
973}
974#else
975static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
976{
977	return skb->end;
978}
979
980static inline unsigned int skb_end_offset(const struct sk_buff *skb)
981{
982	return skb->end - skb->head;
983}
984#endif
985
986/* Internal */
987#define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
988
989static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
990{
991	return &skb_shinfo(skb)->hwtstamps;
992}
993
994/**
995 *	skb_queue_empty - check if a queue is empty
996 *	@list: queue head
997 *
998 *	Returns true if the queue is empty, false otherwise.
999 */
1000static inline int skb_queue_empty(const struct sk_buff_head *list)
1001{
1002	return list->next == (const struct sk_buff *) list;
1003}
1004
1005/**
1006 *	skb_queue_is_last - check if skb is the last entry in the queue
1007 *	@list: queue head
1008 *	@skb: buffer
1009 *
1010 *	Returns true if @skb is the last buffer on the list.
1011 */
1012static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1013				     const struct sk_buff *skb)
1014{
1015	return skb->next == (const struct sk_buff *) list;
1016}
1017
1018/**
1019 *	skb_queue_is_first - check if skb is the first entry in the queue
1020 *	@list: queue head
1021 *	@skb: buffer
1022 *
1023 *	Returns true if @skb is the first buffer on the list.
1024 */
1025static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1026				      const struct sk_buff *skb)
1027{
1028	return skb->prev == (const struct sk_buff *) list;
1029}
1030
1031/**
1032 *	skb_queue_next - return the next packet in the queue
1033 *	@list: queue head
1034 *	@skb: current buffer
1035 *
1036 *	Return the next packet in @list after @skb.  It is only valid to
1037 *	call this if skb_queue_is_last() evaluates to false.
1038 */
1039static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1040					     const struct sk_buff *skb)
1041{
1042	/* This BUG_ON may seem severe, but if we just return then we
1043	 * are going to dereference garbage.
1044	 */
1045	BUG_ON(skb_queue_is_last(list, skb));
1046	return skb->next;
1047}
1048
1049/**
1050 *	skb_queue_prev - return the prev packet in the queue
1051 *	@list: queue head
1052 *	@skb: current buffer
1053 *
1054 *	Return the prev packet in @list before @skb.  It is only valid to
1055 *	call this if skb_queue_is_first() evaluates to false.
1056 */
1057static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1058					     const struct sk_buff *skb)
1059{
1060	/* This BUG_ON may seem severe, but if we just return then we
1061	 * are going to dereference garbage.
1062	 */
1063	BUG_ON(skb_queue_is_first(list, skb));
1064	return skb->prev;
1065}
1066
1067/**
1068 *	skb_get - reference buffer
1069 *	@skb: buffer to reference
1070 *
1071 *	Makes another reference to a socket buffer and returns a pointer
1072 *	to the buffer.
1073 */
1074static inline struct sk_buff *skb_get(struct sk_buff *skb)
1075{
1076	atomic_inc(&skb->users);
1077	return skb;
1078}
1079
1080/*
1081 * If users == 1, we are the only owner and are can avoid redundant
1082 * atomic change.
1083 */
1084
1085/**
1086 *	skb_cloned - is the buffer a clone
1087 *	@skb: buffer to check
1088 *
1089 *	Returns true if the buffer was generated with skb_clone() and is
1090 *	one of multiple shared copies of the buffer. Cloned buffers are
1091 *	shared data so must not be written to under normal circumstances.
1092 */
1093static inline int skb_cloned(const struct sk_buff *skb)
1094{
1095	return skb->cloned &&
1096	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1097}
1098
1099static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1100{
1101	might_sleep_if(pri & __GFP_WAIT);
1102
1103	if (skb_cloned(skb))
1104		return pskb_expand_head(skb, 0, 0, pri);
1105
1106	return 0;
1107}
1108
1109/**
1110 *	skb_header_cloned - is the header a clone
1111 *	@skb: buffer to check
1112 *
1113 *	Returns true if modifying the header part of the buffer requires
1114 *	the data to be copied.
1115 */
1116static inline int skb_header_cloned(const struct sk_buff *skb)
1117{
1118	int dataref;
1119
1120	if (!skb->cloned)
1121		return 0;
1122
1123	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1124	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1125	return dataref != 1;
1126}
1127
1128/**
1129 *	skb_header_release - release reference to header
1130 *	@skb: buffer to operate on
1131 *
1132 *	Drop a reference to the header part of the buffer.  This is done
1133 *	by acquiring a payload reference.  You must not read from the header
1134 *	part of skb->data after this.
1135 *	Note : Check if you can use __skb_header_release() instead.
1136 */
1137static inline void skb_header_release(struct sk_buff *skb)
1138{
1139	BUG_ON(skb->nohdr);
1140	skb->nohdr = 1;
1141	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1142}
1143
1144/**
1145 *	__skb_header_release - release reference to header
1146 *	@skb: buffer to operate on
1147 *
1148 *	Variant of skb_header_release() assuming skb is private to caller.
1149 *	We can avoid one atomic operation.
1150 */
1151static inline void __skb_header_release(struct sk_buff *skb)
1152{
1153	skb->nohdr = 1;
1154	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1155}
1156
1157
1158/**
1159 *	skb_shared - is the buffer shared
1160 *	@skb: buffer to check
1161 *
1162 *	Returns true if more than one person has a reference to this
1163 *	buffer.
1164 */
1165static inline int skb_shared(const struct sk_buff *skb)
1166{
1167	return atomic_read(&skb->users) != 1;
1168}
1169
1170/**
1171 *	skb_share_check - check if buffer is shared and if so clone it
1172 *	@skb: buffer to check
1173 *	@pri: priority for memory allocation
1174 *
1175 *	If the buffer is shared the buffer is cloned and the old copy
1176 *	drops a reference. A new clone with a single reference is returned.
1177 *	If the buffer is not shared the original buffer is returned. When
1178 *	being called from interrupt status or with spinlocks held pri must
1179 *	be GFP_ATOMIC.
1180 *
1181 *	NULL is returned on a memory allocation failure.
1182 */
1183static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1184{
1185	might_sleep_if(pri & __GFP_WAIT);
1186	if (skb_shared(skb)) {
1187		struct sk_buff *nskb = skb_clone(skb, pri);
1188
1189		if (likely(nskb))
1190			consume_skb(skb);
1191		else
1192			kfree_skb(skb);
1193		skb = nskb;
1194	}
1195	return skb;
1196}
1197
1198/*
1199 *	Copy shared buffers into a new sk_buff. We effectively do COW on
1200 *	packets to handle cases where we have a local reader and forward
1201 *	and a couple of other messy ones. The normal one is tcpdumping
1202 *	a packet thats being forwarded.
1203 */
1204
1205/**
1206 *	skb_unshare - make a copy of a shared buffer
1207 *	@skb: buffer to check
1208 *	@pri: priority for memory allocation
1209 *
1210 *	If the socket buffer is a clone then this function creates a new
1211 *	copy of the data, drops a reference count on the old copy and returns
1212 *	the new copy with the reference count at 1. If the buffer is not a clone
1213 *	the original buffer is returned. When called with a spinlock held or
1214 *	from interrupt state @pri must be %GFP_ATOMIC
1215 *
1216 *	%NULL is returned on a memory allocation failure.
1217 */
1218static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1219					  gfp_t pri)
1220{
1221	might_sleep_if(pri & __GFP_WAIT);
1222	if (skb_cloned(skb)) {
1223		struct sk_buff *nskb = skb_copy(skb, pri);
1224
1225		/* Free our shared copy */
1226		if (likely(nskb))
1227			consume_skb(skb);
1228		else
1229			kfree_skb(skb);
1230		skb = nskb;
1231	}
1232	return skb;
1233}
1234
1235/**
1236 *	skb_peek - peek at the head of an &sk_buff_head
1237 *	@list_: list to peek at
1238 *
1239 *	Peek an &sk_buff. Unlike most other operations you _MUST_
1240 *	be careful with this one. A peek leaves the buffer on the
1241 *	list and someone else may run off with it. You must hold
1242 *	the appropriate locks or have a private queue to do this.
1243 *
1244 *	Returns %NULL for an empty list or a pointer to the head element.
1245 *	The reference count is not incremented and the reference is therefore
1246 *	volatile. Use with caution.
1247 */
1248static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1249{
1250	struct sk_buff *skb = list_->next;
1251
1252	if (skb == (struct sk_buff *)list_)
1253		skb = NULL;
1254	return skb;
1255}
1256
1257/**
1258 *	skb_peek_next - peek skb following the given one from a queue
1259 *	@skb: skb to start from
1260 *	@list_: list to peek at
1261 *
1262 *	Returns %NULL when the end of the list is met or a pointer to the
1263 *	next element. The reference count is not incremented and the
1264 *	reference is therefore volatile. Use with caution.
1265 */
1266static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1267		const struct sk_buff_head *list_)
1268{
1269	struct sk_buff *next = skb->next;
1270
1271	if (next == (struct sk_buff *)list_)
1272		next = NULL;
1273	return next;
1274}
1275
1276/**
1277 *	skb_peek_tail - peek at the tail of an &sk_buff_head
1278 *	@list_: list to peek at
1279 *
1280 *	Peek an &sk_buff. Unlike most other operations you _MUST_
1281 *	be careful with this one. A peek leaves the buffer on the
1282 *	list and someone else may run off with it. You must hold
1283 *	the appropriate locks or have a private queue to do this.
1284 *
1285 *	Returns %NULL for an empty list or a pointer to the tail element.
1286 *	The reference count is not incremented and the reference is therefore
1287 *	volatile. Use with caution.
1288 */
1289static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1290{
1291	struct sk_buff *skb = list_->prev;
1292
1293	if (skb == (struct sk_buff *)list_)
1294		skb = NULL;
1295	return skb;
1296
1297}
1298
1299/**
1300 *	skb_queue_len	- get queue length
1301 *	@list_: list to measure
1302 *
1303 *	Return the length of an &sk_buff queue.
1304 */
1305static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1306{
1307	return list_->qlen;
1308}
1309
1310/**
1311 *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1312 *	@list: queue to initialize
1313 *
1314 *	This initializes only the list and queue length aspects of
1315 *	an sk_buff_head object.  This allows to initialize the list
1316 *	aspects of an sk_buff_head without reinitializing things like
1317 *	the spinlock.  It can also be used for on-stack sk_buff_head
1318 *	objects where the spinlock is known to not be used.
1319 */
1320static inline void __skb_queue_head_init(struct sk_buff_head *list)
1321{
1322	list->prev = list->next = (struct sk_buff *)list;
1323	list->qlen = 0;
1324}
1325
1326/*
1327 * This function creates a split out lock class for each invocation;
1328 * this is needed for now since a whole lot of users of the skb-queue
1329 * infrastructure in drivers have different locking usage (in hardirq)
1330 * than the networking core (in softirq only). In the long run either the
1331 * network layer or drivers should need annotation to consolidate the
1332 * main types of usage into 3 classes.
1333 */
1334static inline void skb_queue_head_init(struct sk_buff_head *list)
1335{
1336	spin_lock_init(&list->lock);
1337	__skb_queue_head_init(list);
1338}
1339
1340static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1341		struct lock_class_key *class)
1342{
1343	skb_queue_head_init(list);
1344	lockdep_set_class(&list->lock, class);
1345}
1346
1347/*
1348 *	Insert an sk_buff on a list.
1349 *
1350 *	The "__skb_xxxx()" functions are the non-atomic ones that
1351 *	can only be called with interrupts disabled.
1352 */
1353void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1354		struct sk_buff_head *list);
1355static inline void __skb_insert(struct sk_buff *newsk,
1356				struct sk_buff *prev, struct sk_buff *next,
1357				struct sk_buff_head *list)
1358{
1359	newsk->next = next;
1360	newsk->prev = prev;
1361	next->prev  = prev->next = newsk;
1362	list->qlen++;
1363}
1364
1365static inline void __skb_queue_splice(const struct sk_buff_head *list,
1366				      struct sk_buff *prev,
1367				      struct sk_buff *next)
1368{
1369	struct sk_buff *first = list->next;
1370	struct sk_buff *last = list->prev;
1371
1372	first->prev = prev;
1373	prev->next = first;
1374
1375	last->next = next;
1376	next->prev = last;
1377}
1378
1379/**
1380 *	skb_queue_splice - join two skb lists, this is designed for stacks
1381 *	@list: the new list to add
1382 *	@head: the place to add it in the first list
1383 */
1384static inline void skb_queue_splice(const struct sk_buff_head *list,
1385				    struct sk_buff_head *head)
1386{
1387	if (!skb_queue_empty(list)) {
1388		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1389		head->qlen += list->qlen;
1390	}
1391}
1392
1393/**
1394 *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1395 *	@list: the new list to add
1396 *	@head: the place to add it in the first list
1397 *
1398 *	The list at @list is reinitialised
1399 */
1400static inline void skb_queue_splice_init(struct sk_buff_head *list,
1401					 struct sk_buff_head *head)
1402{
1403	if (!skb_queue_empty(list)) {
1404		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1405		head->qlen += list->qlen;
1406		__skb_queue_head_init(list);
1407	}
1408}
1409
1410/**
1411 *	skb_queue_splice_tail - join two skb lists, each list being a queue
1412 *	@list: the new list to add
1413 *	@head: the place to add it in the first list
1414 */
1415static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1416					 struct sk_buff_head *head)
1417{
1418	if (!skb_queue_empty(list)) {
1419		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1420		head->qlen += list->qlen;
1421	}
1422}
1423
1424/**
1425 *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1426 *	@list: the new list to add
1427 *	@head: the place to add it in the first list
1428 *
1429 *	Each of the lists is a queue.
1430 *	The list at @list is reinitialised
1431 */
1432static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1433					      struct sk_buff_head *head)
1434{
1435	if (!skb_queue_empty(list)) {
1436		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1437		head->qlen += list->qlen;
1438		__skb_queue_head_init(list);
1439	}
1440}
1441
1442/**
1443 *	__skb_queue_after - queue a buffer at the list head
1444 *	@list: list to use
1445 *	@prev: place after this buffer
1446 *	@newsk: buffer to queue
1447 *
1448 *	Queue a buffer int the middle of a list. This function takes no locks
1449 *	and you must therefore hold required locks before calling it.
1450 *
1451 *	A buffer cannot be placed on two lists at the same time.
1452 */
1453static inline void __skb_queue_after(struct sk_buff_head *list,
1454				     struct sk_buff *prev,
1455				     struct sk_buff *newsk)
1456{
1457	__skb_insert(newsk, prev, prev->next, list);
1458}
1459
1460void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1461		struct sk_buff_head *list);
1462
1463static inline void __skb_queue_before(struct sk_buff_head *list,
1464				      struct sk_buff *next,
1465				      struct sk_buff *newsk)
1466{
1467	__skb_insert(newsk, next->prev, next, list);
1468}
1469
1470/**
1471 *	__skb_queue_head - queue a buffer at the list head
1472 *	@list: list to use
1473 *	@newsk: buffer to queue
1474 *
1475 *	Queue a buffer at the start of a list. This function takes no locks
1476 *	and you must therefore hold required locks before calling it.
1477 *
1478 *	A buffer cannot be placed on two lists at the same time.
1479 */
1480void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1481static inline void __skb_queue_head(struct sk_buff_head *list,
1482				    struct sk_buff *newsk)
1483{
1484	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1485}
1486
1487/**
1488 *	__skb_queue_tail - queue a buffer at the list tail
1489 *	@list: list to use
1490 *	@newsk: buffer to queue
1491 *
1492 *	Queue a buffer at the end of a list. This function takes no locks
1493 *	and you must therefore hold required locks before calling it.
1494 *
1495 *	A buffer cannot be placed on two lists at the same time.
1496 */
1497void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1498static inline void __skb_queue_tail(struct sk_buff_head *list,
1499				   struct sk_buff *newsk)
1500{
1501	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1502}
1503
1504/*
1505 * remove sk_buff from list. _Must_ be called atomically, and with
1506 * the list known..
1507 */
1508void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1509static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1510{
1511	struct sk_buff *next, *prev;
1512
1513	list->qlen--;
1514	next	   = skb->next;
1515	prev	   = skb->prev;
1516	skb->next  = skb->prev = NULL;
1517	next->prev = prev;
1518	prev->next = next;
1519}
1520
1521/**
1522 *	__skb_dequeue - remove from the head of the queue
1523 *	@list: list to dequeue from
1524 *
1525 *	Remove the head of the list. This function does not take any locks
1526 *	so must be used with appropriate locks held only. The head item is
1527 *	returned or %NULL if the list is empty.
1528 */
1529struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1530static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1531{
1532	struct sk_buff *skb = skb_peek(list);
1533	if (skb)
1534		__skb_unlink(skb, list);
1535	return skb;
1536}
1537
1538/**
1539 *	__skb_dequeue_tail - remove from the tail of the queue
1540 *	@list: list to dequeue from
1541 *
1542 *	Remove the tail of the list. This function does not take any locks
1543 *	so must be used with appropriate locks held only. The tail item is
1544 *	returned or %NULL if the list is empty.
1545 */
1546struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1547static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1548{
1549	struct sk_buff *skb = skb_peek_tail(list);
1550	if (skb)
1551		__skb_unlink(skb, list);
1552	return skb;
1553}
1554
1555
1556static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1557{
1558	return skb->data_len;
1559}
1560
1561static inline unsigned int skb_headlen(const struct sk_buff *skb)
1562{
1563	return skb->len - skb->data_len;
1564}
1565
1566static inline int skb_pagelen(const struct sk_buff *skb)
1567{
1568	int i, len = 0;
1569
1570	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1571		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1572	return len + skb_headlen(skb);
1573}
1574
1575/**
1576 * __skb_fill_page_desc - initialise a paged fragment in an skb
1577 * @skb: buffer containing fragment to be initialised
1578 * @i: paged fragment index to initialise
1579 * @page: the page to use for this fragment
1580 * @off: the offset to the data with @page
1581 * @size: the length of the data
1582 *
1583 * Initialises the @i'th fragment of @skb to point to &size bytes at
1584 * offset @off within @page.
1585 *
1586 * Does not take any additional reference on the fragment.
1587 */
1588static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1589					struct page *page, int off, int size)
1590{
1591	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1592
1593	/*
1594	 * Propagate page pfmemalloc to the skb if we can. The problem is
1595	 * that not all callers have unique ownership of the page but rely
1596	 * on page_is_pfmemalloc doing the right thing(tm).
1597	 */
1598	frag->page.p		  = page;
1599	frag->page_offset	  = off;
1600	skb_frag_size_set(frag, size);
1601
1602	page = compound_head(page);
1603	if (page_is_pfmemalloc(page))
1604		skb->pfmemalloc	= true;
1605}
1606
1607/**
1608 * skb_fill_page_desc - initialise a paged fragment in an skb
1609 * @skb: buffer containing fragment to be initialised
1610 * @i: paged fragment index to initialise
1611 * @page: the page to use for this fragment
1612 * @off: the offset to the data with @page
1613 * @size: the length of the data
1614 *
1615 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1616 * @skb to point to @size bytes at offset @off within @page. In
1617 * addition updates @skb such that @i is the last fragment.
1618 *
1619 * Does not take any additional reference on the fragment.
1620 */
1621static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1622				      struct page *page, int off, int size)
1623{
1624	__skb_fill_page_desc(skb, i, page, off, size);
1625	skb_shinfo(skb)->nr_frags = i + 1;
1626}
1627
1628void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1629		     int size, unsigned int truesize);
1630
1631void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1632			  unsigned int truesize);
1633
1634#define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1635#define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1636#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1637
1638#ifdef NET_SKBUFF_DATA_USES_OFFSET
1639static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1640{
1641	return skb->head + skb->tail;
1642}
1643
1644static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1645{
1646	skb->tail = skb->data - skb->head;
1647}
1648
1649static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1650{
1651	skb_reset_tail_pointer(skb);
1652	skb->tail += offset;
1653}
1654
1655#else /* NET_SKBUFF_DATA_USES_OFFSET */
1656static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1657{
1658	return skb->tail;
1659}
1660
1661static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1662{
1663	skb->tail = skb->data;
1664}
1665
1666static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1667{
1668	skb->tail = skb->data + offset;
1669}
1670
1671#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1672
1673/*
1674 *	Add data to an sk_buff
1675 */
1676unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1677unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1678static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1679{
1680	unsigned char *tmp = skb_tail_pointer(skb);
1681	SKB_LINEAR_ASSERT(skb);
1682	skb->tail += len;
1683	skb->len  += len;
1684	return tmp;
1685}
1686
1687unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1688static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1689{
1690	skb->data -= len;
1691	skb->len  += len;
1692	return skb->data;
1693}
1694
1695unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1696static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1697{
1698	skb->len -= len;
1699	BUG_ON(skb->len < skb->data_len);
1700	return skb->data += len;
1701}
1702
1703static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1704{
1705	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1706}
1707
1708unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1709
1710static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1711{
1712	if (len > skb_headlen(skb) &&
1713	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1714		return NULL;
1715	skb->len -= len;
1716	return skb->data += len;
1717}
1718
1719static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1720{
1721	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1722}
1723
1724static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1725{
1726	if (likely(len <= skb_headlen(skb)))
1727		return 1;
1728	if (unlikely(len > skb->len))
1729		return 0;
1730	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1731}
1732
1733/**
1734 *	skb_headroom - bytes at buffer head
1735 *	@skb: buffer to check
1736 *
1737 *	Return the number of bytes of free space at the head of an &sk_buff.
1738 */
1739static inline unsigned int skb_headroom(const struct sk_buff *skb)
1740{
1741	return skb->data - skb->head;
1742}
1743
1744/**
1745 *	skb_tailroom - bytes at buffer end
1746 *	@skb: buffer to check
1747 *
1748 *	Return the number of bytes of free space at the tail of an sk_buff
1749 */
1750static inline int skb_tailroom(const struct sk_buff *skb)
1751{
1752	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1753}
1754
1755/**
1756 *	skb_availroom - bytes at buffer end
1757 *	@skb: buffer to check
1758 *
1759 *	Return the number of bytes of free space at the tail of an sk_buff
1760 *	allocated by sk_stream_alloc()
1761 */
1762static inline int skb_availroom(const struct sk_buff *skb)
1763{
1764	if (skb_is_nonlinear(skb))
1765		return 0;
1766
1767	return skb->end - skb->tail - skb->reserved_tailroom;
1768}
1769
1770/**
1771 *	skb_reserve - adjust headroom
1772 *	@skb: buffer to alter
1773 *	@len: bytes to move
1774 *
1775 *	Increase the headroom of an empty &sk_buff by reducing the tail
1776 *	room. This is only allowed for an empty buffer.
1777 */
1778static inline void skb_reserve(struct sk_buff *skb, int len)
1779{
1780	skb->data += len;
1781	skb->tail += len;
1782}
1783
1784#define ENCAP_TYPE_ETHER	0
1785#define ENCAP_TYPE_IPPROTO	1
1786
1787static inline void skb_set_inner_protocol(struct sk_buff *skb,
1788					  __be16 protocol)
1789{
1790	skb->inner_protocol = protocol;
1791	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1792}
1793
1794static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1795					 __u8 ipproto)
1796{
1797	skb->inner_ipproto = ipproto;
1798	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1799}
1800
1801static inline void skb_reset_inner_headers(struct sk_buff *skb)
1802{
1803	skb->inner_mac_header = skb->mac_header;
1804	skb->inner_network_header = skb->network_header;
1805	skb->inner_transport_header = skb->transport_header;
1806}
1807
1808static inline void skb_reset_mac_len(struct sk_buff *skb)
1809{
1810	skb->mac_len = skb->network_header - skb->mac_header;
1811}
1812
1813static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1814							*skb)
1815{
1816	return skb->head + skb->inner_transport_header;
1817}
1818
1819static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1820{
1821	skb->inner_transport_header = skb->data - skb->head;
1822}
1823
1824static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1825						   const int offset)
1826{
1827	skb_reset_inner_transport_header(skb);
1828	skb->inner_transport_header += offset;
1829}
1830
1831static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1832{
1833	return skb->head + skb->inner_network_header;
1834}
1835
1836static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1837{
1838	skb->inner_network_header = skb->data - skb->head;
1839}
1840
1841static inline void skb_set_inner_network_header(struct sk_buff *skb,
1842						const int offset)
1843{
1844	skb_reset_inner_network_header(skb);
1845	skb->inner_network_header += offset;
1846}
1847
1848static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1849{
1850	return skb->head + skb->inner_mac_header;
1851}
1852
1853static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1854{
1855	skb->inner_mac_header = skb->data - skb->head;
1856}
1857
1858static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1859					    const int offset)
1860{
1861	skb_reset_inner_mac_header(skb);
1862	skb->inner_mac_header += offset;
1863}
1864static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1865{
1866	return skb->transport_header != (typeof(skb->transport_header))~0U;
1867}
1868
1869static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1870{
1871	return skb->head + skb->transport_header;
1872}
1873
1874static inline void skb_reset_transport_header(struct sk_buff *skb)
1875{
1876	skb->transport_header = skb->data - skb->head;
1877}
1878
1879static inline void skb_set_transport_header(struct sk_buff *skb,
1880					    const int offset)
1881{
1882	skb_reset_transport_header(skb);
1883	skb->transport_header += offset;
1884}
1885
1886static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1887{
1888	return skb->head + skb->network_header;
1889}
1890
1891static inline void skb_reset_network_header(struct sk_buff *skb)
1892{
1893	skb->network_header = skb->data - skb->head;
1894}
1895
1896static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1897{
1898	skb_reset_network_header(skb);
1899	skb->network_header += offset;
1900}
1901
1902static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1903{
1904	return skb->head + skb->mac_header;
1905}
1906
1907static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1908{
1909	return skb->mac_header != (typeof(skb->mac_header))~0U;
1910}
1911
1912static inline void skb_reset_mac_header(struct sk_buff *skb)
1913{
1914	skb->mac_header = skb->data - skb->head;
1915}
1916
1917static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1918{
1919	skb_reset_mac_header(skb);
1920	skb->mac_header += offset;
1921}
1922
1923static inline void skb_pop_mac_header(struct sk_buff *skb)
1924{
1925	skb->mac_header = skb->network_header;
1926}
1927
1928static inline void skb_probe_transport_header(struct sk_buff *skb,
1929					      const int offset_hint)
1930{
1931	struct flow_keys keys;
1932
1933	if (skb_transport_header_was_set(skb))
1934		return;
1935	else if (skb_flow_dissect(skb, &keys))
1936		skb_set_transport_header(skb, keys.thoff);
1937	else
1938		skb_set_transport_header(skb, offset_hint);
1939}
1940
1941static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1942{
1943	if (skb_mac_header_was_set(skb)) {
1944		const unsigned char *old_mac = skb_mac_header(skb);
1945
1946		skb_set_mac_header(skb, -skb->mac_len);
1947		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1948	}
1949}
1950
1951static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1952{
1953	return skb->csum_start - skb_headroom(skb);
1954}
1955
1956static inline int skb_transport_offset(const struct sk_buff *skb)
1957{
1958	return skb_transport_header(skb) - skb->data;
1959}
1960
1961static inline u32 skb_network_header_len(const struct sk_buff *skb)
1962{
1963	return skb->transport_header - skb->network_header;
1964}
1965
1966static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1967{
1968	return skb->inner_transport_header - skb->inner_network_header;
1969}
1970
1971static inline int skb_network_offset(const struct sk_buff *skb)
1972{
1973	return skb_network_header(skb) - skb->data;
1974}
1975
1976static inline int skb_inner_network_offset(const struct sk_buff *skb)
1977{
1978	return skb_inner_network_header(skb) - skb->data;
1979}
1980
1981static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1982{
1983	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1984}
1985
1986/*
1987 * CPUs often take a performance hit when accessing unaligned memory
1988 * locations. The actual performance hit varies, it can be small if the
1989 * hardware handles it or large if we have to take an exception and fix it
1990 * in software.
1991 *
1992 * Since an ethernet header is 14 bytes network drivers often end up with
1993 * the IP header at an unaligned offset. The IP header can be aligned by
1994 * shifting the start of the packet by 2 bytes. Drivers should do this
1995 * with:
1996 *
1997 * skb_reserve(skb, NET_IP_ALIGN);
1998 *
1999 * The downside to this alignment of the IP header is that the DMA is now
2000 * unaligned. On some architectures the cost of an unaligned DMA is high
2001 * and this cost outweighs the gains made by aligning the IP header.
2002 *
2003 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2004 * to be overridden.
2005 */
2006#ifndef NET_IP_ALIGN
2007#define NET_IP_ALIGN	2
2008#endif
2009
2010/*
2011 * The networking layer reserves some headroom in skb data (via
2012 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2013 * the header has to grow. In the default case, if the header has to grow
2014 * 32 bytes or less we avoid the reallocation.
2015 *
2016 * Unfortunately this headroom changes the DMA alignment of the resulting
2017 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2018 * on some architectures. An architecture can override this value,
2019 * perhaps setting it to a cacheline in size (since that will maintain
2020 * cacheline alignment of the DMA). It must be a power of 2.
2021 *
2022 * Various parts of the networking layer expect at least 32 bytes of
2023 * headroom, you should not reduce this.
2024 *
2025 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2026 * to reduce average number of cache lines per packet.
2027 * get_rps_cpus() for example only access one 64 bytes aligned block :
2028 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2029 */
2030#ifndef NET_SKB_PAD
2031#define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2032#endif
2033
2034int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2035
2036static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2037{
2038	if (unlikely(skb_is_nonlinear(skb))) {
2039		WARN_ON(1);
2040		return;
2041	}
2042	skb->len = len;
2043	skb_set_tail_pointer(skb, len);
2044}
2045
2046void skb_trim(struct sk_buff *skb, unsigned int len);
2047
2048static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2049{
2050	if (skb->data_len)
2051		return ___pskb_trim(skb, len);
2052	__skb_trim(skb, len);
2053	return 0;
2054}
2055
2056static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2057{
2058	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2059}
2060
2061/**
2062 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2063 *	@skb: buffer to alter
2064 *	@len: new length
2065 *
2066 *	This is identical to pskb_trim except that the caller knows that
2067 *	the skb is not cloned so we should never get an error due to out-
2068 *	of-memory.
2069 */
2070static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2071{
2072	int err = pskb_trim(skb, len);
2073	BUG_ON(err);
2074}
2075
2076/**
2077 *	skb_orphan - orphan a buffer
2078 *	@skb: buffer to orphan
2079 *
2080 *	If a buffer currently has an owner then we call the owner's
2081 *	destructor function and make the @skb unowned. The buffer continues
2082 *	to exist but is no longer charged to its former owner.
2083 */
2084static inline void skb_orphan(struct sk_buff *skb)
2085{
2086	if (skb->destructor) {
2087		skb->destructor(skb);
2088		skb->destructor = NULL;
2089		skb->sk		= NULL;
2090	} else {
2091		BUG_ON(skb->sk);
2092	}
2093}
2094
2095/**
2096 *	skb_orphan_frags - orphan the frags contained in a buffer
2097 *	@skb: buffer to orphan frags from
2098 *	@gfp_mask: allocation mask for replacement pages
2099 *
2100 *	For each frag in the SKB which needs a destructor (i.e. has an
2101 *	owner) create a copy of that frag and release the original
2102 *	page by calling the destructor.
2103 */
2104static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2105{
2106	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2107		return 0;
2108	return skb_copy_ubufs(skb, gfp_mask);
2109}
2110
2111/**
2112 *	__skb_queue_purge - empty a list
2113 *	@list: list to empty
2114 *
2115 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2116 *	the list and one reference dropped. This function does not take the
2117 *	list lock and the caller must hold the relevant locks to use it.
2118 */
2119void skb_queue_purge(struct sk_buff_head *list);
2120static inline void __skb_queue_purge(struct sk_buff_head *list)
2121{
2122	struct sk_buff *skb;
2123	while ((skb = __skb_dequeue(list)) != NULL)
2124		kfree_skb(skb);
2125}
2126
2127#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2128#define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2129#define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE
2130
2131void *netdev_alloc_frag(unsigned int fragsz);
2132
2133struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2134				   gfp_t gfp_mask);
2135
2136/**
2137 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2138 *	@dev: network device to receive on
2139 *	@length: length to allocate
2140 *
2141 *	Allocate a new &sk_buff and assign it a usage count of one. The
2142 *	buffer has unspecified headroom built in. Users should allocate
2143 *	the headroom they think they need without accounting for the
2144 *	built in space. The built in space is used for optimisations.
2145 *
2146 *	%NULL is returned if there is no free memory. Although this function
2147 *	allocates memory it can be called from an interrupt.
2148 */
2149static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2150					       unsigned int length)
2151{
2152	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2153}
2154
2155/* legacy helper around __netdev_alloc_skb() */
2156static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2157					      gfp_t gfp_mask)
2158{
2159	return __netdev_alloc_skb(NULL, length, gfp_mask);
2160}
2161
2162/* legacy helper around netdev_alloc_skb() */
2163static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2164{
2165	return netdev_alloc_skb(NULL, length);
2166}
2167
2168
2169static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2170		unsigned int length, gfp_t gfp)
2171{
2172	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2173
2174	if (NET_IP_ALIGN && skb)
2175		skb_reserve(skb, NET_IP_ALIGN);
2176	return skb;
2177}
2178
2179static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2180		unsigned int length)
2181{
2182	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2183}
2184
2185void *napi_alloc_frag(unsigned int fragsz);
2186struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2187				 unsigned int length, gfp_t gfp_mask);
2188static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2189					     unsigned int length)
2190{
2191	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2192}
2193
2194/**
2195 * __dev_alloc_pages - allocate page for network Rx
2196 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2197 * @order: size of the allocation
2198 *
2199 * Allocate a new page.
2200 *
2201 * %NULL is returned if there is no free memory.
2202*/
2203static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2204					     unsigned int order)
2205{
2206	/* This piece of code contains several assumptions.
2207	 * 1.  This is for device Rx, therefor a cold page is preferred.
2208	 * 2.  The expectation is the user wants a compound page.
2209	 * 3.  If requesting a order 0 page it will not be compound
2210	 *     due to the check to see if order has a value in prep_new_page
2211	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2212	 *     code in gfp_to_alloc_flags that should be enforcing this.
2213	 */
2214	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2215
2216	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2217}
2218
2219static inline struct page *dev_alloc_pages(unsigned int order)
2220{
2221	return __dev_alloc_pages(GFP_ATOMIC, order);
2222}
2223
2224/**
2225 * __dev_alloc_page - allocate a page for network Rx
2226 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2227 *
2228 * Allocate a new page.
2229 *
2230 * %NULL is returned if there is no free memory.
2231 */
2232static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2233{
2234	return __dev_alloc_pages(gfp_mask, 0);
2235}
2236
2237static inline struct page *dev_alloc_page(void)
2238{
2239	return __dev_alloc_page(GFP_ATOMIC);
2240}
2241
2242/**
2243 *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2244 *	@page: The page that was allocated from skb_alloc_page
2245 *	@skb: The skb that may need pfmemalloc set
2246 */
2247static inline void skb_propagate_pfmemalloc(struct page *page,
2248					     struct sk_buff *skb)
2249{
2250	if (page_is_pfmemalloc(page))
2251		skb->pfmemalloc = true;
2252}
2253
2254/**
2255 * skb_frag_page - retrieve the page referred to by a paged fragment
2256 * @frag: the paged fragment
2257 *
2258 * Returns the &struct page associated with @frag.
2259 */
2260static inline struct page *skb_frag_page(const skb_frag_t *frag)
2261{
2262	return frag->page.p;
2263}
2264
2265/**
2266 * __skb_frag_ref - take an addition reference on a paged fragment.
2267 * @frag: the paged fragment
2268 *
2269 * Takes an additional reference on the paged fragment @frag.
2270 */
2271static inline void __skb_frag_ref(skb_frag_t *frag)
2272{
2273	get_page(skb_frag_page(frag));
2274}
2275
2276/**
2277 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2278 * @skb: the buffer
2279 * @f: the fragment offset.
2280 *
2281 * Takes an additional reference on the @f'th paged fragment of @skb.
2282 */
2283static inline void skb_frag_ref(struct sk_buff *skb, int f)
2284{
2285	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2286}
2287
2288/**
2289 * __skb_frag_unref - release a reference on a paged fragment.
2290 * @frag: the paged fragment
2291 *
2292 * Releases a reference on the paged fragment @frag.
2293 */
2294static inline void __skb_frag_unref(skb_frag_t *frag)
2295{
2296	put_page(skb_frag_page(frag));
2297}
2298
2299/**
2300 * skb_frag_unref - release a reference on a paged fragment of an skb.
2301 * @skb: the buffer
2302 * @f: the fragment offset
2303 *
2304 * Releases a reference on the @f'th paged fragment of @skb.
2305 */
2306static inline void skb_frag_unref(struct sk_buff *skb, int f)
2307{
2308	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2309}
2310
2311/**
2312 * skb_frag_address - gets the address of the data contained in a paged fragment
2313 * @frag: the paged fragment buffer
2314 *
2315 * Returns the address of the data within @frag. The page must already
2316 * be mapped.
2317 */
2318static inline void *skb_frag_address(const skb_frag_t *frag)
2319{
2320	return page_address(skb_frag_page(frag)) + frag->page_offset;
2321}
2322
2323/**
2324 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2325 * @frag: the paged fragment buffer
2326 *
2327 * Returns the address of the data within @frag. Checks that the page
2328 * is mapped and returns %NULL otherwise.
2329 */
2330static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2331{
2332	void *ptr = page_address(skb_frag_page(frag));
2333	if (unlikely(!ptr))
2334		return NULL;
2335
2336	return ptr + frag->page_offset;
2337}
2338
2339/**
2340 * __skb_frag_set_page - sets the page contained in a paged fragment
2341 * @frag: the paged fragment
2342 * @page: the page to set
2343 *
2344 * Sets the fragment @frag to contain @page.
2345 */
2346static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2347{
2348	frag->page.p = page;
2349}
2350
2351/**
2352 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2353 * @skb: the buffer
2354 * @f: the fragment offset
2355 * @page: the page to set
2356 *
2357 * Sets the @f'th fragment of @skb to contain @page.
2358 */
2359static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2360				     struct page *page)
2361{
2362	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2363}
2364
2365bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2366
2367/**
2368 * skb_frag_dma_map - maps a paged fragment via the DMA API
2369 * @dev: the device to map the fragment to
2370 * @frag: the paged fragment to map
2371 * @offset: the offset within the fragment (starting at the
2372 *          fragment's own offset)
2373 * @size: the number of bytes to map
2374 * @dir: the direction of the mapping (%PCI_DMA_*)
2375 *
2376 * Maps the page associated with @frag to @device.
2377 */
2378static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2379					  const skb_frag_t *frag,
2380					  size_t offset, size_t size,
2381					  enum dma_data_direction dir)
2382{
2383	return dma_map_page(dev, skb_frag_page(frag),
2384			    frag->page_offset + offset, size, dir);
2385}
2386
2387static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2388					gfp_t gfp_mask)
2389{
2390	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2391}
2392
2393
2394static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2395						  gfp_t gfp_mask)
2396{
2397	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2398}
2399
2400
2401/**
2402 *	skb_clone_writable - is the header of a clone writable
2403 *	@skb: buffer to check
2404 *	@len: length up to which to write
2405 *
2406 *	Returns true if modifying the header part of the cloned buffer
2407 *	does not requires the data to be copied.
2408 */
2409static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2410{
2411	return !skb_header_cloned(skb) &&
2412	       skb_headroom(skb) + len <= skb->hdr_len;
2413}
2414
2415static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2416			    int cloned)
2417{
2418	int delta = 0;
2419
2420	if (headroom > skb_headroom(skb))
2421		delta = headroom - skb_headroom(skb);
2422
2423	if (delta || cloned)
2424		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2425					GFP_ATOMIC);
2426	return 0;
2427}
2428
2429/**
2430 *	skb_cow - copy header of skb when it is required
2431 *	@skb: buffer to cow
2432 *	@headroom: needed headroom
2433 *
2434 *	If the skb passed lacks sufficient headroom or its data part
2435 *	is shared, data is reallocated. If reallocation fails, an error
2436 *	is returned and original skb is not changed.
2437 *
2438 *	The result is skb with writable area skb->head...skb->tail
2439 *	and at least @headroom of space at head.
2440 */
2441static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2442{
2443	return __skb_cow(skb, headroom, skb_cloned(skb));
2444}
2445
2446/**
2447 *	skb_cow_head - skb_cow but only making the head writable
2448 *	@skb: buffer to cow
2449 *	@headroom: needed headroom
2450 *
2451 *	This function is identical to skb_cow except that we replace the
2452 *	skb_cloned check by skb_header_cloned.  It should be used when
2453 *	you only need to push on some header and do not need to modify
2454 *	the data.
2455 */
2456static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2457{
2458	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2459}
2460
2461/**
2462 *	skb_padto	- pad an skbuff up to a minimal size
2463 *	@skb: buffer to pad
2464 *	@len: minimal length
2465 *
2466 *	Pads up a buffer to ensure the trailing bytes exist and are
2467 *	blanked. If the buffer already contains sufficient data it
2468 *	is untouched. Otherwise it is extended. Returns zero on
2469 *	success. The skb is freed on error.
2470 */
2471static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2472{
2473	unsigned int size = skb->len;
2474	if (likely(size >= len))
2475		return 0;
2476	return skb_pad(skb, len - size);
2477}
2478
2479/**
2480 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2481 *	@skb: buffer to pad
2482 *	@len: minimal length
2483 *
2484 *	Pads up a buffer to ensure the trailing bytes exist and are
2485 *	blanked. If the buffer already contains sufficient data it
2486 *	is untouched. Otherwise it is extended. Returns zero on
2487 *	success. The skb is freed on error.
2488 */
2489static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2490{
2491	unsigned int size = skb->len;
2492
2493	if (unlikely(size < len)) {
2494		len -= size;
2495		if (skb_pad(skb, len))
2496			return -ENOMEM;
2497		__skb_put(skb, len);
2498	}
2499	return 0;
2500}
2501
2502static inline int skb_add_data(struct sk_buff *skb,
2503			       struct iov_iter *from, int copy)
2504{
2505	const int off = skb->len;
2506
2507	if (skb->ip_summed == CHECKSUM_NONE) {
2508		__wsum csum = 0;
2509		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2510					    &csum, from) == copy) {
2511			skb->csum = csum_block_add(skb->csum, csum, off);
2512			return 0;
2513		}
2514	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2515		return 0;
2516
2517	__skb_trim(skb, off);
2518	return -EFAULT;
2519}
2520
2521static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2522				    const struct page *page, int off)
2523{
2524	if (i) {
2525		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2526
2527		return page == skb_frag_page(frag) &&
2528		       off == frag->page_offset + skb_frag_size(frag);
2529	}
2530	return false;
2531}
2532
2533static inline int __skb_linearize(struct sk_buff *skb)
2534{
2535	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2536}
2537
2538/**
2539 *	skb_linearize - convert paged skb to linear one
2540 *	@skb: buffer to linarize
2541 *
2542 *	If there is no free memory -ENOMEM is returned, otherwise zero
2543 *	is returned and the old skb data released.
2544 */
2545static inline int skb_linearize(struct sk_buff *skb)
2546{
2547	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2548}
2549
2550/**
2551 * skb_has_shared_frag - can any frag be overwritten
2552 * @skb: buffer to test
2553 *
2554 * Return true if the skb has at least one frag that might be modified
2555 * by an external entity (as in vmsplice()/sendfile())
2556 */
2557static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2558{
2559	return skb_is_nonlinear(skb) &&
2560	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2561}
2562
2563/**
2564 *	skb_linearize_cow - make sure skb is linear and writable
2565 *	@skb: buffer to process
2566 *
2567 *	If there is no free memory -ENOMEM is returned, otherwise zero
2568 *	is returned and the old skb data released.
2569 */
2570static inline int skb_linearize_cow(struct sk_buff *skb)
2571{
2572	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2573	       __skb_linearize(skb) : 0;
2574}
2575
2576/**
2577 *	skb_postpull_rcsum - update checksum for received skb after pull
2578 *	@skb: buffer to update
2579 *	@start: start of data before pull
2580 *	@len: length of data pulled
2581 *
2582 *	After doing a pull on a received packet, you need to call this to
2583 *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2584 *	CHECKSUM_NONE so that it can be recomputed from scratch.
2585 */
2586
2587static inline void skb_postpull_rcsum(struct sk_buff *skb,
2588				      const void *start, unsigned int len)
2589{
2590	if (skb->ip_summed == CHECKSUM_COMPLETE)
2591		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2592	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2593		 skb_checksum_start_offset(skb) < 0)
2594		skb->ip_summed = CHECKSUM_NONE;
2595}
2596
2597unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2598
2599/**
2600 *	pskb_trim_rcsum - trim received skb and update checksum
2601 *	@skb: buffer to trim
2602 *	@len: new length
2603 *
2604 *	This is exactly the same as pskb_trim except that it ensures the
2605 *	checksum of received packets are still valid after the operation.
2606 */
2607
2608static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2609{
2610	if (likely(len >= skb->len))
2611		return 0;
2612	if (skb->ip_summed == CHECKSUM_COMPLETE)
2613		skb->ip_summed = CHECKSUM_NONE;
2614	return __pskb_trim(skb, len);
2615}
2616
2617#define skb_queue_walk(queue, skb) \
2618		for (skb = (queue)->next;					\
2619		     skb != (struct sk_buff *)(queue);				\
2620		     skb = skb->next)
2621
2622#define skb_queue_walk_safe(queue, skb, tmp)					\
2623		for (skb = (queue)->next, tmp = skb->next;			\
2624		     skb != (struct sk_buff *)(queue);				\
2625		     skb = tmp, tmp = skb->next)
2626
2627#define skb_queue_walk_from(queue, skb)						\
2628		for (; skb != (struct sk_buff *)(queue);			\
2629		     skb = skb->next)
2630
2631#define skb_queue_walk_from_safe(queue, skb, tmp)				\
2632		for (tmp = skb->next;						\
2633		     skb != (struct sk_buff *)(queue);				\
2634		     skb = tmp, tmp = skb->next)
2635
2636#define skb_queue_reverse_walk(queue, skb) \
2637		for (skb = (queue)->prev;					\
2638		     skb != (struct sk_buff *)(queue);				\
2639		     skb = skb->prev)
2640
2641#define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2642		for (skb = (queue)->prev, tmp = skb->prev;			\
2643		     skb != (struct sk_buff *)(queue);				\
2644		     skb = tmp, tmp = skb->prev)
2645
2646#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2647		for (tmp = skb->prev;						\
2648		     skb != (struct sk_buff *)(queue);				\
2649		     skb = tmp, tmp = skb->prev)
2650
2651static inline bool skb_has_frag_list(const struct sk_buff *skb)
2652{
2653	return skb_shinfo(skb)->frag_list != NULL;
2654}
2655
2656static inline void skb_frag_list_init(struct sk_buff *skb)
2657{
2658	skb_shinfo(skb)->frag_list = NULL;
2659}
2660
2661static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2662{
2663	frag->next = skb_shinfo(skb)->frag_list;
2664	skb_shinfo(skb)->frag_list = frag;
2665}
2666
2667#define skb_walk_frags(skb, iter)	\
2668	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2669
2670struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2671				    int *peeked, int *off, int *err);
2672struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2673				  int *err);
2674unsigned int datagram_poll(struct file *file, struct socket *sock,
2675			   struct poll_table_struct *wait);
2676int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2677			   struct iov_iter *to, int size);
2678static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2679					struct msghdr *msg, int size)
2680{
2681	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2682}
2683int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2684				   struct msghdr *msg);
2685int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2686				 struct iov_iter *from, int len);
2687int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2688void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2689void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2690int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2691int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2692int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2693__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2694			      int len, __wsum csum);
2695int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2696		    struct pipe_inode_info *pipe, unsigned int len,
2697		    unsigned int flags);
2698void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2699unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2700int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2701		 int len, int hlen);
2702void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2703int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2704void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2705unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2706struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2707struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2708int skb_ensure_writable(struct sk_buff *skb, int write_len);
2709int skb_vlan_pop(struct sk_buff *skb);
2710int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2711
2712static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2713{
2714	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2715}
2716
2717static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2718{
2719	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2720}
2721
2722struct skb_checksum_ops {
2723	__wsum (*update)(const void *mem, int len, __wsum wsum);
2724	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2725};
2726
2727__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2728		      __wsum csum, const struct skb_checksum_ops *ops);
2729__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2730		    __wsum csum);
2731
2732static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2733					 int len, void *data, int hlen, void *buffer)
2734{
2735	if (hlen - offset >= len)
2736		return data + offset;
2737
2738	if (!skb ||
2739	    skb_copy_bits(skb, offset, buffer, len) < 0)
2740		return NULL;
2741
2742	return buffer;
2743}
2744
2745static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2746				       int len, void *buffer)
2747{
2748	return __skb_header_pointer(skb, offset, len, skb->data,
2749				    skb_headlen(skb), buffer);
2750}
2751
2752/**
2753 *	skb_needs_linearize - check if we need to linearize a given skb
2754 *			      depending on the given device features.
2755 *	@skb: socket buffer to check
2756 *	@features: net device features
2757 *
2758 *	Returns true if either:
2759 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2760 *	2. skb is fragmented and the device does not support SG.
2761 */
2762static inline bool skb_needs_linearize(struct sk_buff *skb,
2763				       netdev_features_t features)
2764{
2765	return skb_is_nonlinear(skb) &&
2766	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2767		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2768}
2769
2770static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2771					     void *to,
2772					     const unsigned int len)
2773{
2774	memcpy(to, skb->data, len);
2775}
2776
2777static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2778						    const int offset, void *to,
2779						    const unsigned int len)
2780{
2781	memcpy(to, skb->data + offset, len);
2782}
2783
2784static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2785					   const void *from,
2786					   const unsigned int len)
2787{
2788	memcpy(skb->data, from, len);
2789}
2790
2791static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2792						  const int offset,
2793						  const void *from,
2794						  const unsigned int len)
2795{
2796	memcpy(skb->data + offset, from, len);
2797}
2798
2799void skb_init(void);
2800
2801static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2802{
2803	return skb->tstamp;
2804}
2805
2806/**
2807 *	skb_get_timestamp - get timestamp from a skb
2808 *	@skb: skb to get stamp from
2809 *	@stamp: pointer to struct timeval to store stamp in
2810 *
2811 *	Timestamps are stored in the skb as offsets to a base timestamp.
2812 *	This function converts the offset back to a struct timeval and stores
2813 *	it in stamp.
2814 */
2815static inline void skb_get_timestamp(const struct sk_buff *skb,
2816				     struct timeval *stamp)
2817{
2818	*stamp = ktime_to_timeval(skb->tstamp);
2819}
2820
2821static inline void skb_get_timestampns(const struct sk_buff *skb,
2822				       struct timespec *stamp)
2823{
2824	*stamp = ktime_to_timespec(skb->tstamp);
2825}
2826
2827static inline void __net_timestamp(struct sk_buff *skb)
2828{
2829	skb->tstamp = ktime_get_real();
2830}
2831
2832static inline ktime_t net_timedelta(ktime_t t)
2833{
2834	return ktime_sub(ktime_get_real(), t);
2835}
2836
2837static inline ktime_t net_invalid_timestamp(void)
2838{
2839	return ktime_set(0, 0);
2840}
2841
2842struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2843
2844#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2845
2846void skb_clone_tx_timestamp(struct sk_buff *skb);
2847bool skb_defer_rx_timestamp(struct sk_buff *skb);
2848
2849#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2850
2851static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2852{
2853}
2854
2855static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2856{
2857	return false;
2858}
2859
2860#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2861
2862/**
2863 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2864 *
2865 * PHY drivers may accept clones of transmitted packets for
2866 * timestamping via their phy_driver.txtstamp method. These drivers
2867 * must call this function to return the skb back to the stack, with
2868 * or without a timestamp.
2869 *
2870 * @skb: clone of the the original outgoing packet
2871 * @hwtstamps: hardware time stamps, may be NULL if not available
2872 *
2873 */
2874void skb_complete_tx_timestamp(struct sk_buff *skb,
2875			       struct skb_shared_hwtstamps *hwtstamps);
2876
2877void __skb_tstamp_tx(struct sk_buff *orig_skb,
2878		     struct skb_shared_hwtstamps *hwtstamps,
2879		     struct sock *sk, int tstype);
2880
2881/**
2882 * skb_tstamp_tx - queue clone of skb with send time stamps
2883 * @orig_skb:	the original outgoing packet
2884 * @hwtstamps:	hardware time stamps, may be NULL if not available
2885 *
2886 * If the skb has a socket associated, then this function clones the
2887 * skb (thus sharing the actual data and optional structures), stores
2888 * the optional hardware time stamping information (if non NULL) or
2889 * generates a software time stamp (otherwise), then queues the clone
2890 * to the error queue of the socket.  Errors are silently ignored.
2891 */
2892void skb_tstamp_tx(struct sk_buff *orig_skb,
2893		   struct skb_shared_hwtstamps *hwtstamps);
2894
2895static inline void sw_tx_timestamp(struct sk_buff *skb)
2896{
2897	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2898	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2899		skb_tstamp_tx(skb, NULL);
2900}
2901
2902/**
2903 * skb_tx_timestamp() - Driver hook for transmit timestamping
2904 *
2905 * Ethernet MAC Drivers should call this function in their hard_xmit()
2906 * function immediately before giving the sk_buff to the MAC hardware.
2907 *
2908 * Specifically, one should make absolutely sure that this function is
2909 * called before TX completion of this packet can trigger.  Otherwise
2910 * the packet could potentially already be freed.
2911 *
2912 * @skb: A socket buffer.
2913 */
2914static inline void skb_tx_timestamp(struct sk_buff *skb)
2915{
2916	skb_clone_tx_timestamp(skb);
2917	sw_tx_timestamp(skb);
2918}
2919
2920/**
2921 * skb_complete_wifi_ack - deliver skb with wifi status
2922 *
2923 * @skb: the original outgoing packet
2924 * @acked: ack status
2925 *
2926 */
2927void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2928
2929__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2930__sum16 __skb_checksum_complete(struct sk_buff *skb);
2931
2932static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2933{
2934	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
2935		skb->csum_valid ||
2936		(skb->ip_summed == CHECKSUM_PARTIAL &&
2937		 skb_checksum_start_offset(skb) >= 0));
2938}
2939
2940/**
2941 *	skb_checksum_complete - Calculate checksum of an entire packet
2942 *	@skb: packet to process
2943 *
2944 *	This function calculates the checksum over the entire packet plus
2945 *	the value of skb->csum.  The latter can be used to supply the
2946 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2947 *	checksum.
2948 *
2949 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2950 *	this function can be used to verify that checksum on received
2951 *	packets.  In that case the function should return zero if the
2952 *	checksum is correct.  In particular, this function will return zero
2953 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2954 *	hardware has already verified the correctness of the checksum.
2955 */
2956static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2957{
2958	return skb_csum_unnecessary(skb) ?
2959	       0 : __skb_checksum_complete(skb);
2960}
2961
2962static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2963{
2964	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2965		if (skb->csum_level == 0)
2966			skb->ip_summed = CHECKSUM_NONE;
2967		else
2968			skb->csum_level--;
2969	}
2970}
2971
2972static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2973{
2974	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2975		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2976			skb->csum_level++;
2977	} else if (skb->ip_summed == CHECKSUM_NONE) {
2978		skb->ip_summed = CHECKSUM_UNNECESSARY;
2979		skb->csum_level = 0;
2980	}
2981}
2982
2983static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2984{
2985	/* Mark current checksum as bad (typically called from GRO
2986	 * path). In the case that ip_summed is CHECKSUM_NONE
2987	 * this must be the first checksum encountered in the packet.
2988	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2989	 * checksum after the last one validated. For UDP, a zero
2990	 * checksum can not be marked as bad.
2991	 */
2992
2993	if (skb->ip_summed == CHECKSUM_NONE ||
2994	    skb->ip_summed == CHECKSUM_UNNECESSARY)
2995		skb->csum_bad = 1;
2996}
2997
2998/* Check if we need to perform checksum complete validation.
2999 *
3000 * Returns true if checksum complete is needed, false otherwise
3001 * (either checksum is unnecessary or zero checksum is allowed).
3002 */
3003static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3004						  bool zero_okay,
3005						  __sum16 check)
3006{
3007	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3008		skb->csum_valid = 1;
3009		__skb_decr_checksum_unnecessary(skb);
3010		return false;
3011	}
3012
3013	return true;
3014}
3015
3016/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3017 * in checksum_init.
3018 */
3019#define CHECKSUM_BREAK 76
3020
3021/* Unset checksum-complete
3022 *
3023 * Unset checksum complete can be done when packet is being modified
3024 * (uncompressed for instance) and checksum-complete value is
3025 * invalidated.
3026 */
3027static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3028{
3029	if (skb->ip_summed == CHECKSUM_COMPLETE)
3030		skb->ip_summed = CHECKSUM_NONE;
3031}
3032
3033/* Validate (init) checksum based on checksum complete.
3034 *
3035 * Return values:
3036 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3037 *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3038 *	checksum is stored in skb->csum for use in __skb_checksum_complete
3039 *   non-zero: value of invalid checksum
3040 *
3041 */
3042static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3043						       bool complete,
3044						       __wsum psum)
3045{
3046	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3047		if (!csum_fold(csum_add(psum, skb->csum))) {
3048			skb->csum_valid = 1;
3049			return 0;
3050		}
3051	} else if (skb->csum_bad) {
3052		/* ip_summed == CHECKSUM_NONE in this case */
3053		return 1;
3054	}
3055
3056	skb->csum = psum;
3057
3058	if (complete || skb->len <= CHECKSUM_BREAK) {
3059		__sum16 csum;
3060
3061		csum = __skb_checksum_complete(skb);
3062		skb->csum_valid = !csum;
3063		return csum;
3064	}
3065
3066	return 0;
3067}
3068
3069static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3070{
3071	return 0;
3072}
3073
3074/* Perform checksum validate (init). Note that this is a macro since we only
3075 * want to calculate the pseudo header which is an input function if necessary.
3076 * First we try to validate without any computation (checksum unnecessary) and
3077 * then calculate based on checksum complete calling the function to compute
3078 * pseudo header.
3079 *
3080 * Return values:
3081 *   0: checksum is validated or try to in skb_checksum_complete
3082 *   non-zero: value of invalid checksum
3083 */
3084#define __skb_checksum_validate(skb, proto, complete,			\
3085				zero_okay, check, compute_pseudo)	\
3086({									\
3087	__sum16 __ret = 0;						\
3088	skb->csum_valid = 0;						\
3089	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3090		__ret = __skb_checksum_validate_complete(skb,		\
3091				complete, compute_pseudo(skb, proto));	\
3092	__ret;								\
3093})
3094
3095#define skb_checksum_init(skb, proto, compute_pseudo)			\
3096	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3097
3098#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3099	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3100
3101#define skb_checksum_validate(skb, proto, compute_pseudo)		\
3102	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3103
3104#define skb_checksum_validate_zero_check(skb, proto, check,		\
3105					 compute_pseudo)		\
3106	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3107
3108#define skb_checksum_simple_validate(skb)				\
3109	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3110
3111static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3112{
3113	return (skb->ip_summed == CHECKSUM_NONE &&
3114		skb->csum_valid && !skb->csum_bad);
3115}
3116
3117static inline void __skb_checksum_convert(struct sk_buff *skb,
3118					  __sum16 check, __wsum pseudo)
3119{
3120	skb->csum = ~pseudo;
3121	skb->ip_summed = CHECKSUM_COMPLETE;
3122}
3123
3124#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3125do {									\
3126	if (__skb_checksum_convert_check(skb))				\
3127		__skb_checksum_convert(skb, check,			\
3128				       compute_pseudo(skb, proto));	\
3129} while (0)
3130
3131static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3132					      u16 start, u16 offset)
3133{
3134	skb->ip_summed = CHECKSUM_PARTIAL;
3135	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3136	skb->csum_offset = offset - start;
3137}
3138
3139/* Update skbuf and packet to reflect the remote checksum offload operation.
3140 * When called, ptr indicates the starting point for skb->csum when
3141 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3142 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3143 */
3144static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3145				       int start, int offset, bool nopartial)
3146{
3147	__wsum delta;
3148
3149	if (!nopartial) {
3150		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3151		return;
3152	}
3153
3154	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3155		__skb_checksum_complete(skb);
3156		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3157	}
3158
3159	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3160
3161	/* Adjust skb->csum since we changed the packet */
3162	skb->csum = csum_add(skb->csum, delta);
3163}
3164
3165#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3166void nf_conntrack_destroy(struct nf_conntrack *nfct);
3167static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3168{
3169	if (nfct && atomic_dec_and_test(&nfct->use))
3170		nf_conntrack_destroy(nfct);
3171}
3172static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3173{
3174	if (nfct)
3175		atomic_inc(&nfct->use);
3176}
3177#endif
3178#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3179static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3180{
3181	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3182		kfree(nf_bridge);
3183}
3184static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3185{
3186	if (nf_bridge)
3187		atomic_inc(&nf_bridge->use);
3188}
3189#endif /* CONFIG_BRIDGE_NETFILTER */
3190static inline void nf_reset(struct sk_buff *skb)
3191{
3192#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3193	nf_conntrack_put(skb->nfct);
3194	skb->nfct = NULL;
3195#endif
3196#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3197	nf_bridge_put(skb->nf_bridge);
3198	skb->nf_bridge = NULL;
3199#endif
3200}
3201
3202static inline void nf_reset_trace(struct sk_buff *skb)
3203{
3204#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3205	skb->nf_trace = 0;
3206#endif
3207}
3208
3209/* Note: This doesn't put any conntrack and bridge info in dst. */
3210static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3211			     bool copy)
3212{
3213#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3214	dst->nfct = src->nfct;
3215	nf_conntrack_get(src->nfct);
3216	if (copy)
3217		dst->nfctinfo = src->nfctinfo;
3218#endif
3219#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3220	dst->nf_bridge  = src->nf_bridge;
3221	nf_bridge_get(src->nf_bridge);
3222#endif
3223#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3224	if (copy)
3225		dst->nf_trace = src->nf_trace;
3226#endif
3227}
3228
3229static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3230{
3231#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3232	nf_conntrack_put(dst->nfct);
3233#endif
3234#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3235	nf_bridge_put(dst->nf_bridge);
3236#endif
3237	__nf_copy(dst, src, true);
3238}
3239
3240#ifdef CONFIG_NETWORK_SECMARK
3241static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3242{
3243	to->secmark = from->secmark;
3244}
3245
3246static inline void skb_init_secmark(struct sk_buff *skb)
3247{
3248	skb->secmark = 0;
3249}
3250#else
3251static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3252{ }
3253
3254static inline void skb_init_secmark(struct sk_buff *skb)
3255{ }
3256#endif
3257
3258static inline bool skb_irq_freeable(const struct sk_buff *skb)
3259{
3260	return !skb->destructor &&
3261#if IS_ENABLED(CONFIG_XFRM)
3262		!skb->sp &&
3263#endif
3264#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3265		!skb->nfct &&
3266#endif
3267		!skb->_skb_refdst &&
3268		!skb_has_frag_list(skb);
3269}
3270
3271static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3272{
3273	skb->queue_mapping = queue_mapping;
3274}
3275
3276static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3277{
3278	return skb->queue_mapping;
3279}
3280
3281static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3282{
3283	to->queue_mapping = from->queue_mapping;
3284}
3285
3286static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3287{
3288	skb->queue_mapping = rx_queue + 1;
3289}
3290
3291static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3292{
3293	return skb->queue_mapping - 1;
3294}
3295
3296static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3297{
3298	return skb->queue_mapping != 0;
3299}
3300
3301u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3302		  unsigned int num_tx_queues);
3303
3304static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3305{
3306#ifdef CONFIG_XFRM
3307	return skb->sp;
3308#else
3309	return NULL;
3310#endif
3311}
3312
3313/* Keeps track of mac header offset relative to skb->head.
3314 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3315 * For non-tunnel skb it points to skb_mac_header() and for
3316 * tunnel skb it points to outer mac header.
3317 * Keeps track of level of encapsulation of network headers.
3318 */
3319struct skb_gso_cb {
3320	int	mac_offset;
3321	int	encap_level;
3322	__u16	csum_start;
3323};
3324#define SKB_SGO_CB_OFFSET	32
3325#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3326
3327static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3328{
3329	return (skb_mac_header(inner_skb) - inner_skb->head) -
3330		SKB_GSO_CB(inner_skb)->mac_offset;
3331}
3332
3333static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3334{
3335	int new_headroom, headroom;
3336	int ret;
3337
3338	headroom = skb_headroom(skb);
3339	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3340	if (ret)
3341		return ret;
3342
3343	new_headroom = skb_headroom(skb);
3344	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3345	return 0;
3346}
3347
3348/* Compute the checksum for a gso segment. First compute the checksum value
3349 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3350 * then add in skb->csum (checksum from csum_start to end of packet).
3351 * skb->csum and csum_start are then updated to reflect the checksum of the
3352 * resultant packet starting from the transport header-- the resultant checksum
3353 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3354 * header.
3355 */
3356static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3357{
3358	int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3359	    skb_transport_offset(skb);
3360	__u16 csum;
3361
3362	csum = csum_fold(csum_partial(skb_transport_header(skb),
3363				      plen, skb->csum));
3364	skb->csum = res;
3365	SKB_GSO_CB(skb)->csum_start -= plen;
3366
3367	return csum;
3368}
3369
3370static inline bool skb_is_gso(const struct sk_buff *skb)
3371{
3372	return skb_shinfo(skb)->gso_size;
3373}
3374
3375/* Note: Should be called only if skb_is_gso(skb) is true */
3376static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3377{
3378	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3379}
3380
3381void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3382
3383static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3384{
3385	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3386	 * wanted then gso_type will be set. */
3387	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3388
3389	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3390	    unlikely(shinfo->gso_type == 0)) {
3391		__skb_warn_lro_forwarding(skb);
3392		return true;
3393	}
3394	return false;
3395}
3396
3397static inline void skb_forward_csum(struct sk_buff *skb)
3398{
3399	/* Unfortunately we don't support this one.  Any brave souls? */
3400	if (skb->ip_summed == CHECKSUM_COMPLETE)
3401		skb->ip_summed = CHECKSUM_NONE;
3402}
3403
3404/**
3405 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3406 * @skb: skb to check
3407 *
3408 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3409 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3410 * use this helper, to document places where we make this assertion.
3411 */
3412static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3413{
3414#ifdef DEBUG
3415	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3416#endif
3417}
3418
3419bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3420
3421int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3422
3423u32 skb_get_poff(const struct sk_buff *skb);
3424u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3425		   const struct flow_keys *keys, int hlen);
3426
3427/**
3428 * skb_head_is_locked - Determine if the skb->head is locked down
3429 * @skb: skb to check
3430 *
3431 * The head on skbs build around a head frag can be removed if they are
3432 * not cloned.  This function returns true if the skb head is locked down
3433 * due to either being allocated via kmalloc, or by being a clone with
3434 * multiple references to the head.
3435 */
3436static inline bool skb_head_is_locked(const struct sk_buff *skb)
3437{
3438	return !skb->head_frag || skb_cloned(skb);
3439}
3440
3441/**
3442 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3443 *
3444 * @skb: GSO skb
3445 *
3446 * skb_gso_network_seglen is used to determine the real size of the
3447 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3448 *
3449 * The MAC/L2 header is not accounted for.
3450 */
3451static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3452{
3453	unsigned int hdr_len = skb_transport_header(skb) -
3454			       skb_network_header(skb);
3455	return hdr_len + skb_gso_transport_seglen(skb);
3456}
3457#endif	/* __KERNEL__ */
3458#endif	/* _LINUX_SKBUFF_H */
3459