1/*
2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
4 * (C) SGI 2006, Christoph Lameter
5 * 	Cleaned up and restructured to ease the addition of alternative
6 * 	implementations of SLAB allocators.
7 * (C) Linux Foundation 2008-2013
8 *      Unified interface for all slab allocators
9 */
10
11#ifndef _LINUX_SLAB_H
12#define	_LINUX_SLAB_H
13
14#include <linux/gfp.h>
15#include <linux/types.h>
16#include <linux/workqueue.h>
17
18
19/*
20 * Flags to pass to kmem_cache_create().
21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
22 */
23#define SLAB_DEBUG_FREE		0x00000100UL	/* DEBUG: Perform (expensive) checks on free */
24#define SLAB_RED_ZONE		0x00000400UL	/* DEBUG: Red zone objs in a cache */
25#define SLAB_POISON		0x00000800UL	/* DEBUG: Poison objects */
26#define SLAB_HWCACHE_ALIGN	0x00002000UL	/* Align objs on cache lines */
27#define SLAB_CACHE_DMA		0x00004000UL	/* Use GFP_DMA memory */
28#define SLAB_STORE_USER		0x00010000UL	/* DEBUG: Store the last owner for bug hunting */
29#define SLAB_PANIC		0x00040000UL	/* Panic if kmem_cache_create() fails */
30/*
31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32 *
33 * This delays freeing the SLAB page by a grace period, it does _NOT_
34 * delay object freeing. This means that if you do kmem_cache_free()
35 * that memory location is free to be reused at any time. Thus it may
36 * be possible to see another object there in the same RCU grace period.
37 *
38 * This feature only ensures the memory location backing the object
39 * stays valid, the trick to using this is relying on an independent
40 * object validation pass. Something like:
41 *
42 *  rcu_read_lock()
43 * again:
44 *  obj = lockless_lookup(key);
45 *  if (obj) {
46 *    if (!try_get_ref(obj)) // might fail for free objects
47 *      goto again;
48 *
49 *    if (obj->key != key) { // not the object we expected
50 *      put_ref(obj);
51 *      goto again;
52 *    }
53 *  }
54 *  rcu_read_unlock();
55 *
56 * This is useful if we need to approach a kernel structure obliquely,
57 * from its address obtained without the usual locking. We can lock
58 * the structure to stabilize it and check it's still at the given address,
59 * only if we can be sure that the memory has not been meanwhile reused
60 * for some other kind of object (which our subsystem's lock might corrupt).
61 *
62 * rcu_read_lock before reading the address, then rcu_read_unlock after
63 * taking the spinlock within the structure expected at that address.
64 */
65#define SLAB_DESTROY_BY_RCU	0x00080000UL	/* Defer freeing slabs to RCU */
66#define SLAB_MEM_SPREAD		0x00100000UL	/* Spread some memory over cpuset */
67#define SLAB_TRACE		0x00200000UL	/* Trace allocations and frees */
68
69/* Flag to prevent checks on free */
70#ifdef CONFIG_DEBUG_OBJECTS
71# define SLAB_DEBUG_OBJECTS	0x00400000UL
72#else
73# define SLAB_DEBUG_OBJECTS	0x00000000UL
74#endif
75
76#define SLAB_NOLEAKTRACE	0x00800000UL	/* Avoid kmemleak tracing */
77
78/* Don't track use of uninitialized memory */
79#ifdef CONFIG_KMEMCHECK
80# define SLAB_NOTRACK		0x01000000UL
81#else
82# define SLAB_NOTRACK		0x00000000UL
83#endif
84#ifdef CONFIG_FAILSLAB
85# define SLAB_FAILSLAB		0x02000000UL	/* Fault injection mark */
86#else
87# define SLAB_FAILSLAB		0x00000000UL
88#endif
89
90/* The following flags affect the page allocator grouping pages by mobility */
91#define SLAB_RECLAIM_ACCOUNT	0x00020000UL		/* Objects are reclaimable */
92#define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
93/*
94 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
95 *
96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
97 *
98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
99 * Both make kfree a no-op.
100 */
101#define ZERO_SIZE_PTR ((void *)16)
102
103#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
104				(unsigned long)ZERO_SIZE_PTR)
105
106#include <linux/kmemleak.h>
107#include <linux/kasan.h>
108
109struct mem_cgroup;
110/*
111 * struct kmem_cache related prototypes
112 */
113void __init kmem_cache_init(void);
114int slab_is_available(void);
115
116struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
117			unsigned long,
118			void (*)(void *));
119void kmem_cache_destroy(struct kmem_cache *);
120int kmem_cache_shrink(struct kmem_cache *);
121
122void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
123void memcg_deactivate_kmem_caches(struct mem_cgroup *);
124void memcg_destroy_kmem_caches(struct mem_cgroup *);
125
126/*
127 * Please use this macro to create slab caches. Simply specify the
128 * name of the structure and maybe some flags that are listed above.
129 *
130 * The alignment of the struct determines object alignment. If you
131 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
132 * then the objects will be properly aligned in SMP configurations.
133 */
134#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
135		sizeof(struct __struct), __alignof__(struct __struct),\
136		(__flags), NULL)
137
138/*
139 * Common kmalloc functions provided by all allocators
140 */
141void * __must_check __krealloc(const void *, size_t, gfp_t);
142void * __must_check krealloc(const void *, size_t, gfp_t);
143void kfree(const void *);
144void kzfree(const void *);
145size_t ksize(const void *);
146
147/*
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than the alignment of a 64-bit integer.
150 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
151 */
152#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
153#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
154#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
155#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
156#else
157#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
158#endif
159
160/*
161 * Kmalloc array related definitions
162 */
163
164#ifdef CONFIG_SLAB
165/*
166 * The largest kmalloc size supported by the SLAB allocators is
167 * 32 megabyte (2^25) or the maximum allocatable page order if that is
168 * less than 32 MB.
169 *
170 * WARNING: Its not easy to increase this value since the allocators have
171 * to do various tricks to work around compiler limitations in order to
172 * ensure proper constant folding.
173 */
174#define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
175				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
176#define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
177#ifndef KMALLOC_SHIFT_LOW
178#define KMALLOC_SHIFT_LOW	5
179#endif
180#endif
181
182#ifdef CONFIG_SLUB
183/*
184 * SLUB directly allocates requests fitting in to an order-1 page
185 * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
186 */
187#define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
188#define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT)
189#ifndef KMALLOC_SHIFT_LOW
190#define KMALLOC_SHIFT_LOW	3
191#endif
192#endif
193
194#ifdef CONFIG_SLOB
195/*
196 * SLOB passes all requests larger than one page to the page allocator.
197 * No kmalloc array is necessary since objects of different sizes can
198 * be allocated from the same page.
199 */
200#define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
201#define KMALLOC_SHIFT_MAX	30
202#ifndef KMALLOC_SHIFT_LOW
203#define KMALLOC_SHIFT_LOW	3
204#endif
205#endif
206
207/* Maximum allocatable size */
208#define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
209/* Maximum size for which we actually use a slab cache */
210#define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
211/* Maximum order allocatable via the slab allocagtor */
212#define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
213
214/*
215 * Kmalloc subsystem.
216 */
217#ifndef KMALLOC_MIN_SIZE
218#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
219#endif
220
221/*
222 * This restriction comes from byte sized index implementation.
223 * Page size is normally 2^12 bytes and, in this case, if we want to use
224 * byte sized index which can represent 2^8 entries, the size of the object
225 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
226 * If minimum size of kmalloc is less than 16, we use it as minimum object
227 * size and give up to use byte sized index.
228 */
229#define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
230                               (KMALLOC_MIN_SIZE) : 16)
231
232#ifndef CONFIG_SLOB
233extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
234#ifdef CONFIG_ZONE_DMA
235extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
236#endif
237
238/*
239 * Figure out which kmalloc slab an allocation of a certain size
240 * belongs to.
241 * 0 = zero alloc
242 * 1 =  65 .. 96 bytes
243 * 2 = 120 .. 192 bytes
244 * n = 2^(n-1) .. 2^n -1
245 */
246static __always_inline int kmalloc_index(size_t size)
247{
248	if (!size)
249		return 0;
250
251	if (size <= KMALLOC_MIN_SIZE)
252		return KMALLOC_SHIFT_LOW;
253
254	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
255		return 1;
256	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
257		return 2;
258	if (size <=          8) return 3;
259	if (size <=         16) return 4;
260	if (size <=         32) return 5;
261	if (size <=         64) return 6;
262	if (size <=        128) return 7;
263	if (size <=        256) return 8;
264	if (size <=        512) return 9;
265	if (size <=       1024) return 10;
266	if (size <=   2 * 1024) return 11;
267	if (size <=   4 * 1024) return 12;
268	if (size <=   8 * 1024) return 13;
269	if (size <=  16 * 1024) return 14;
270	if (size <=  32 * 1024) return 15;
271	if (size <=  64 * 1024) return 16;
272	if (size <= 128 * 1024) return 17;
273	if (size <= 256 * 1024) return 18;
274	if (size <= 512 * 1024) return 19;
275	if (size <= 1024 * 1024) return 20;
276	if (size <=  2 * 1024 * 1024) return 21;
277	if (size <=  4 * 1024 * 1024) return 22;
278	if (size <=  8 * 1024 * 1024) return 23;
279	if (size <=  16 * 1024 * 1024) return 24;
280	if (size <=  32 * 1024 * 1024) return 25;
281	if (size <=  64 * 1024 * 1024) return 26;
282	BUG();
283
284	/* Will never be reached. Needed because the compiler may complain */
285	return -1;
286}
287#endif /* !CONFIG_SLOB */
288
289void *__kmalloc(size_t size, gfp_t flags);
290void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags);
291void kmem_cache_free(struct kmem_cache *, void *);
292
293#ifdef CONFIG_NUMA
294void *__kmalloc_node(size_t size, gfp_t flags, int node);
295void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
296#else
297static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
298{
299	return __kmalloc(size, flags);
300}
301
302static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
303{
304	return kmem_cache_alloc(s, flags);
305}
306#endif
307
308#ifdef CONFIG_TRACING
309extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);
310
311#ifdef CONFIG_NUMA
312extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
313					   gfp_t gfpflags,
314					   int node, size_t size);
315#else
316static __always_inline void *
317kmem_cache_alloc_node_trace(struct kmem_cache *s,
318			      gfp_t gfpflags,
319			      int node, size_t size)
320{
321	return kmem_cache_alloc_trace(s, gfpflags, size);
322}
323#endif /* CONFIG_NUMA */
324
325#else /* CONFIG_TRACING */
326static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
327		gfp_t flags, size_t size)
328{
329	void *ret = kmem_cache_alloc(s, flags);
330
331	kasan_kmalloc(s, ret, size);
332	return ret;
333}
334
335static __always_inline void *
336kmem_cache_alloc_node_trace(struct kmem_cache *s,
337			      gfp_t gfpflags,
338			      int node, size_t size)
339{
340	void *ret = kmem_cache_alloc_node(s, gfpflags, node);
341
342	kasan_kmalloc(s, ret, size);
343	return ret;
344}
345#endif /* CONFIG_TRACING */
346
347extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order);
348
349#ifdef CONFIG_TRACING
350extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
351#else
352static __always_inline void *
353kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
354{
355	return kmalloc_order(size, flags, order);
356}
357#endif
358
359static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
360{
361	unsigned int order = get_order(size);
362	return kmalloc_order_trace(size, flags, order);
363}
364
365/**
366 * kmalloc - allocate memory
367 * @size: how many bytes of memory are required.
368 * @flags: the type of memory to allocate.
369 *
370 * kmalloc is the normal method of allocating memory
371 * for objects smaller than page size in the kernel.
372 *
373 * The @flags argument may be one of:
374 *
375 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
376 *
377 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
378 *
379 * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
380 *   For example, use this inside interrupt handlers.
381 *
382 * %GFP_HIGHUSER - Allocate pages from high memory.
383 *
384 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
385 *
386 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
387 *
388 * %GFP_NOWAIT - Allocation will not sleep.
389 *
390 * %__GFP_THISNODE - Allocate node-local memory only.
391 *
392 * %GFP_DMA - Allocation suitable for DMA.
393 *   Should only be used for kmalloc() caches. Otherwise, use a
394 *   slab created with SLAB_DMA.
395 *
396 * Also it is possible to set different flags by OR'ing
397 * in one or more of the following additional @flags:
398 *
399 * %__GFP_COLD - Request cache-cold pages instead of
400 *   trying to return cache-warm pages.
401 *
402 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
403 *
404 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
405 *   (think twice before using).
406 *
407 * %__GFP_NORETRY - If memory is not immediately available,
408 *   then give up at once.
409 *
410 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
411 *
412 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
413 *
414 * There are other flags available as well, but these are not intended
415 * for general use, and so are not documented here. For a full list of
416 * potential flags, always refer to linux/gfp.h.
417 */
418static __always_inline void *kmalloc(size_t size, gfp_t flags)
419{
420	if (__builtin_constant_p(size)) {
421		if (size > KMALLOC_MAX_CACHE_SIZE)
422			return kmalloc_large(size, flags);
423#ifndef CONFIG_SLOB
424		if (!(flags & GFP_DMA)) {
425			int index = kmalloc_index(size);
426
427			if (!index)
428				return ZERO_SIZE_PTR;
429
430			return kmem_cache_alloc_trace(kmalloc_caches[index],
431					flags, size);
432		}
433#endif
434	}
435	return __kmalloc(size, flags);
436}
437
438/*
439 * Determine size used for the nth kmalloc cache.
440 * return size or 0 if a kmalloc cache for that
441 * size does not exist
442 */
443static __always_inline int kmalloc_size(int n)
444{
445#ifndef CONFIG_SLOB
446	if (n > 2)
447		return 1 << n;
448
449	if (n == 1 && KMALLOC_MIN_SIZE <= 32)
450		return 96;
451
452	if (n == 2 && KMALLOC_MIN_SIZE <= 64)
453		return 192;
454#endif
455	return 0;
456}
457
458static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
459{
460#ifndef CONFIG_SLOB
461	if (__builtin_constant_p(size) &&
462		size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
463		int i = kmalloc_index(size);
464
465		if (!i)
466			return ZERO_SIZE_PTR;
467
468		return kmem_cache_alloc_node_trace(kmalloc_caches[i],
469						flags, node, size);
470	}
471#endif
472	return __kmalloc_node(size, flags, node);
473}
474
475/*
476 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
477 * Intended for arches that get misalignment faults even for 64 bit integer
478 * aligned buffers.
479 */
480#ifndef ARCH_SLAB_MINALIGN
481#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
482#endif
483
484struct memcg_cache_array {
485	struct rcu_head rcu;
486	struct kmem_cache *entries[0];
487};
488
489/*
490 * This is the main placeholder for memcg-related information in kmem caches.
491 * Both the root cache and the child caches will have it. For the root cache,
492 * this will hold a dynamically allocated array large enough to hold
493 * information about the currently limited memcgs in the system. To allow the
494 * array to be accessed without taking any locks, on relocation we free the old
495 * version only after a grace period.
496 *
497 * Child caches will hold extra metadata needed for its operation. Fields are:
498 *
499 * @memcg: pointer to the memcg this cache belongs to
500 * @root_cache: pointer to the global, root cache, this cache was derived from
501 *
502 * Both root and child caches of the same kind are linked into a list chained
503 * through @list.
504 */
505struct memcg_cache_params {
506	bool is_root_cache;
507	struct list_head list;
508	union {
509		struct memcg_cache_array __rcu *memcg_caches;
510		struct {
511			struct mem_cgroup *memcg;
512			struct kmem_cache *root_cache;
513		};
514	};
515};
516
517int memcg_update_all_caches(int num_memcgs);
518
519/**
520 * kmalloc_array - allocate memory for an array.
521 * @n: number of elements.
522 * @size: element size.
523 * @flags: the type of memory to allocate (see kmalloc).
524 */
525static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
526{
527	if (size != 0 && n > SIZE_MAX / size)
528		return NULL;
529	return __kmalloc(n * size, flags);
530}
531
532/**
533 * kcalloc - allocate memory for an array. The memory is set to zero.
534 * @n: number of elements.
535 * @size: element size.
536 * @flags: the type of memory to allocate (see kmalloc).
537 */
538static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
539{
540	return kmalloc_array(n, size, flags | __GFP_ZERO);
541}
542
543/*
544 * kmalloc_track_caller is a special version of kmalloc that records the
545 * calling function of the routine calling it for slab leak tracking instead
546 * of just the calling function (confusing, eh?).
547 * It's useful when the call to kmalloc comes from a widely-used standard
548 * allocator where we care about the real place the memory allocation
549 * request comes from.
550 */
551extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
552#define kmalloc_track_caller(size, flags) \
553	__kmalloc_track_caller(size, flags, _RET_IP_)
554
555#ifdef CONFIG_NUMA
556extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
557#define kmalloc_node_track_caller(size, flags, node) \
558	__kmalloc_node_track_caller(size, flags, node, \
559			_RET_IP_)
560
561#else /* CONFIG_NUMA */
562
563#define kmalloc_node_track_caller(size, flags, node) \
564	kmalloc_track_caller(size, flags)
565
566#endif /* CONFIG_NUMA */
567
568/*
569 * Shortcuts
570 */
571static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
572{
573	return kmem_cache_alloc(k, flags | __GFP_ZERO);
574}
575
576/**
577 * kzalloc - allocate memory. The memory is set to zero.
578 * @size: how many bytes of memory are required.
579 * @flags: the type of memory to allocate (see kmalloc).
580 */
581static inline void *kzalloc(size_t size, gfp_t flags)
582{
583	return kmalloc(size, flags | __GFP_ZERO);
584}
585
586/**
587 * kzalloc_node - allocate zeroed memory from a particular memory node.
588 * @size: how many bytes of memory are required.
589 * @flags: the type of memory to allocate (see kmalloc).
590 * @node: memory node from which to allocate
591 */
592static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
593{
594	return kmalloc_node(size, flags | __GFP_ZERO, node);
595}
596
597unsigned int kmem_cache_size(struct kmem_cache *s);
598void __init kmem_cache_init_late(void);
599
600#endif	/* _LINUX_SLAB_H */
601