1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23#include <linux/pm_runtime.h> /* for runtime PM */ 24 25struct usb_device; 26struct usb_driver; 27struct wusb_dev; 28 29/*-------------------------------------------------------------------------*/ 30 31/* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47struct ep_device; 48 49/** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @urb_list: urbs queued to this endpoint; maintained by usbcore 54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 55 * with one or more transfer descriptors (TDs) per urb 56 * @ep_dev: ep_device for sysfs info 57 * @extra: descriptors following this endpoint in the configuration 58 * @extralen: how many bytes of "extra" are valid 59 * @enabled: URBs may be submitted to this endpoint 60 * @streams: number of USB-3 streams allocated on the endpoint 61 * 62 * USB requests are always queued to a given endpoint, identified by a 63 * descriptor within an active interface in a given USB configuration. 64 */ 65struct usb_host_endpoint { 66 struct usb_endpoint_descriptor desc; 67 struct usb_ss_ep_comp_descriptor ss_ep_comp; 68 struct list_head urb_list; 69 void *hcpriv; 70 struct ep_device *ep_dev; /* For sysfs info */ 71 72 unsigned char *extra; /* Extra descriptors */ 73 int extralen; 74 int enabled; 75 int streams; 76}; 77 78/* host-side wrapper for one interface setting's parsed descriptors */ 79struct usb_host_interface { 80 struct usb_interface_descriptor desc; 81 82 int extralen; 83 unsigned char *extra; /* Extra descriptors */ 84 85 /* array of desc.bNumEndpoints endpoints associated with this 86 * interface setting. these will be in no particular order. 87 */ 88 struct usb_host_endpoint *endpoint; 89 90 char *string; /* iInterface string, if present */ 91}; 92 93enum usb_interface_condition { 94 USB_INTERFACE_UNBOUND = 0, 95 USB_INTERFACE_BINDING, 96 USB_INTERFACE_BOUND, 97 USB_INTERFACE_UNBINDING, 98}; 99 100/** 101 * struct usb_interface - what usb device drivers talk to 102 * @altsetting: array of interface structures, one for each alternate 103 * setting that may be selected. Each one includes a set of 104 * endpoint configurations. They will be in no particular order. 105 * @cur_altsetting: the current altsetting. 106 * @num_altsetting: number of altsettings defined. 107 * @intf_assoc: interface association descriptor 108 * @minor: the minor number assigned to this interface, if this 109 * interface is bound to a driver that uses the USB major number. 110 * If this interface does not use the USB major, this field should 111 * be unused. The driver should set this value in the probe() 112 * function of the driver, after it has been assigned a minor 113 * number from the USB core by calling usb_register_dev(). 114 * @condition: binding state of the interface: not bound, binding 115 * (in probe()), bound to a driver, or unbinding (in disconnect()) 116 * @sysfs_files_created: sysfs attributes exist 117 * @ep_devs_created: endpoint child pseudo-devices exist 118 * @unregistering: flag set when the interface is being unregistered 119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 120 * capability during autosuspend. 121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 122 * has been deferred. 123 * @needs_binding: flag set when the driver should be re-probed or unbound 124 * following a reset or suspend operation it doesn't support. 125 * @dev: driver model's view of this device 126 * @usb_dev: if an interface is bound to the USB major, this will point 127 * to the sysfs representation for that device. 128 * @pm_usage_cnt: PM usage counter for this interface 129 * @reset_ws: Used for scheduling resets from atomic context. 130 * @resetting_device: USB core reset the device, so use alt setting 0 as 131 * current; needs bandwidth alloc after reset. 132 * 133 * USB device drivers attach to interfaces on a physical device. Each 134 * interface encapsulates a single high level function, such as feeding 135 * an audio stream to a speaker or reporting a change in a volume control. 136 * Many USB devices only have one interface. The protocol used to talk to 137 * an interface's endpoints can be defined in a usb "class" specification, 138 * or by a product's vendor. The (default) control endpoint is part of 139 * every interface, but is never listed among the interface's descriptors. 140 * 141 * The driver that is bound to the interface can use standard driver model 142 * calls such as dev_get_drvdata() on the dev member of this structure. 143 * 144 * Each interface may have alternate settings. The initial configuration 145 * of a device sets altsetting 0, but the device driver can change 146 * that setting using usb_set_interface(). Alternate settings are often 147 * used to control the use of periodic endpoints, such as by having 148 * different endpoints use different amounts of reserved USB bandwidth. 149 * All standards-conformant USB devices that use isochronous endpoints 150 * will use them in non-default settings. 151 * 152 * The USB specification says that alternate setting numbers must run from 153 * 0 to one less than the total number of alternate settings. But some 154 * devices manage to mess this up, and the structures aren't necessarily 155 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 156 * look up an alternate setting in the altsetting array based on its number. 157 */ 158struct usb_interface { 159 /* array of alternate settings for this interface, 160 * stored in no particular order */ 161 struct usb_host_interface *altsetting; 162 163 struct usb_host_interface *cur_altsetting; /* the currently 164 * active alternate setting */ 165 unsigned num_altsetting; /* number of alternate settings */ 166 167 /* If there is an interface association descriptor then it will list 168 * the associated interfaces */ 169 struct usb_interface_assoc_descriptor *intf_assoc; 170 171 int minor; /* minor number this interface is 172 * bound to */ 173 enum usb_interface_condition condition; /* state of binding */ 174 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 175 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 176 unsigned unregistering:1; /* unregistration is in progress */ 177 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 178 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 179 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 180 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 181 182 struct device dev; /* interface specific device info */ 183 struct device *usb_dev; 184 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 185 struct work_struct reset_ws; /* for resets in atomic context */ 186}; 187#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 188 189static inline void *usb_get_intfdata(struct usb_interface *intf) 190{ 191 return dev_get_drvdata(&intf->dev); 192} 193 194static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 195{ 196 dev_set_drvdata(&intf->dev, data); 197} 198 199struct usb_interface *usb_get_intf(struct usb_interface *intf); 200void usb_put_intf(struct usb_interface *intf); 201 202/* Hard limit */ 203#define USB_MAXENDPOINTS 30 204/* this maximum is arbitrary */ 205#define USB_MAXINTERFACES 32 206#define USB_MAXIADS (USB_MAXINTERFACES/2) 207 208/* 209 * USB Resume Timer: Every Host controller driver should drive the resume 210 * signalling on the bus for the amount of time defined by this macro. 211 * 212 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 213 * 214 * Note that the USB Specification states we should drive resume for *at least* 215 * 20 ms, but it doesn't give an upper bound. This creates two possible 216 * situations which we want to avoid: 217 * 218 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 219 * us to fail USB Electrical Tests, thus failing Certification 220 * 221 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 222 * and while we can argue that's against the USB Specification, we don't have 223 * control over which devices a certification laboratory will be using for 224 * certification. If CertLab uses a device which was tested against Windows and 225 * that happens to have relaxed resume signalling rules, we might fall into 226 * situations where we fail interoperability and electrical tests. 227 * 228 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 229 * should cope with both LPJ calibration errors and devices not following every 230 * detail of the USB Specification. 231 */ 232#define USB_RESUME_TIMEOUT 40 /* ms */ 233 234/** 235 * struct usb_interface_cache - long-term representation of a device interface 236 * @num_altsetting: number of altsettings defined. 237 * @ref: reference counter. 238 * @altsetting: variable-length array of interface structures, one for 239 * each alternate setting that may be selected. Each one includes a 240 * set of endpoint configurations. They will be in no particular order. 241 * 242 * These structures persist for the lifetime of a usb_device, unlike 243 * struct usb_interface (which persists only as long as its configuration 244 * is installed). The altsetting arrays can be accessed through these 245 * structures at any time, permitting comparison of configurations and 246 * providing support for the /proc/bus/usb/devices pseudo-file. 247 */ 248struct usb_interface_cache { 249 unsigned num_altsetting; /* number of alternate settings */ 250 struct kref ref; /* reference counter */ 251 252 /* variable-length array of alternate settings for this interface, 253 * stored in no particular order */ 254 struct usb_host_interface altsetting[0]; 255}; 256#define ref_to_usb_interface_cache(r) \ 257 container_of(r, struct usb_interface_cache, ref) 258#define altsetting_to_usb_interface_cache(a) \ 259 container_of(a, struct usb_interface_cache, altsetting[0]) 260 261/** 262 * struct usb_host_config - representation of a device's configuration 263 * @desc: the device's configuration descriptor. 264 * @string: pointer to the cached version of the iConfiguration string, if 265 * present for this configuration. 266 * @intf_assoc: list of any interface association descriptors in this config 267 * @interface: array of pointers to usb_interface structures, one for each 268 * interface in the configuration. The number of interfaces is stored 269 * in desc.bNumInterfaces. These pointers are valid only while the 270 * the configuration is active. 271 * @intf_cache: array of pointers to usb_interface_cache structures, one 272 * for each interface in the configuration. These structures exist 273 * for the entire life of the device. 274 * @extra: pointer to buffer containing all extra descriptors associated 275 * with this configuration (those preceding the first interface 276 * descriptor). 277 * @extralen: length of the extra descriptors buffer. 278 * 279 * USB devices may have multiple configurations, but only one can be active 280 * at any time. Each encapsulates a different operational environment; 281 * for example, a dual-speed device would have separate configurations for 282 * full-speed and high-speed operation. The number of configurations 283 * available is stored in the device descriptor as bNumConfigurations. 284 * 285 * A configuration can contain multiple interfaces. Each corresponds to 286 * a different function of the USB device, and all are available whenever 287 * the configuration is active. The USB standard says that interfaces 288 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 289 * of devices get this wrong. In addition, the interface array is not 290 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 291 * look up an interface entry based on its number. 292 * 293 * Device drivers should not attempt to activate configurations. The choice 294 * of which configuration to install is a policy decision based on such 295 * considerations as available power, functionality provided, and the user's 296 * desires (expressed through userspace tools). However, drivers can call 297 * usb_reset_configuration() to reinitialize the current configuration and 298 * all its interfaces. 299 */ 300struct usb_host_config { 301 struct usb_config_descriptor desc; 302 303 char *string; /* iConfiguration string, if present */ 304 305 /* List of any Interface Association Descriptors in this 306 * configuration. */ 307 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 308 309 /* the interfaces associated with this configuration, 310 * stored in no particular order */ 311 struct usb_interface *interface[USB_MAXINTERFACES]; 312 313 /* Interface information available even when this is not the 314 * active configuration */ 315 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 316 317 unsigned char *extra; /* Extra descriptors */ 318 int extralen; 319}; 320 321/* USB2.0 and USB3.0 device BOS descriptor set */ 322struct usb_host_bos { 323 struct usb_bos_descriptor *desc; 324 325 /* wireless cap descriptor is handled by wusb */ 326 struct usb_ext_cap_descriptor *ext_cap; 327 struct usb_ss_cap_descriptor *ss_cap; 328 struct usb_ss_container_id_descriptor *ss_id; 329}; 330 331int __usb_get_extra_descriptor(char *buffer, unsigned size, 332 unsigned char type, void **ptr); 333#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 334 __usb_get_extra_descriptor((ifpoint)->extra, \ 335 (ifpoint)->extralen, \ 336 type, (void **)ptr) 337 338/* ----------------------------------------------------------------------- */ 339 340/* USB device number allocation bitmap */ 341struct usb_devmap { 342 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 343}; 344 345/* 346 * Allocated per bus (tree of devices) we have: 347 */ 348struct usb_bus { 349 struct device *controller; /* host/master side hardware */ 350 int busnum; /* Bus number (in order of reg) */ 351 const char *bus_name; /* stable id (PCI slot_name etc) */ 352 u8 uses_dma; /* Does the host controller use DMA? */ 353 u8 uses_pio_for_control; /* 354 * Does the host controller use PIO 355 * for control transfers? 356 */ 357 u8 otg_port; /* 0, or number of OTG/HNP port */ 358 unsigned is_b_host:1; /* true during some HNP roleswitches */ 359 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 360 unsigned no_stop_on_short:1; /* 361 * Quirk: some controllers don't stop 362 * the ep queue on a short transfer 363 * with the URB_SHORT_NOT_OK flag set. 364 */ 365 unsigned no_sg_constraint:1; /* no sg constraint */ 366 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 367 368 int devnum_next; /* Next open device number in 369 * round-robin allocation */ 370 struct mutex devnum_next_mutex; /* devnum_next mutex */ 371 372 struct usb_devmap devmap; /* device address allocation map */ 373 struct usb_device *root_hub; /* Root hub */ 374 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 375 struct list_head bus_list; /* list of busses */ 376 377 int bandwidth_allocated; /* on this bus: how much of the time 378 * reserved for periodic (intr/iso) 379 * requests is used, on average? 380 * Units: microseconds/frame. 381 * Limits: Full/low speed reserve 90%, 382 * while high speed reserves 80%. 383 */ 384 int bandwidth_int_reqs; /* number of Interrupt requests */ 385 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 386 387 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 388 389#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 390 struct mon_bus *mon_bus; /* non-null when associated */ 391 int monitored; /* non-zero when monitored */ 392#endif 393}; 394 395struct usb_dev_state; 396 397/* ----------------------------------------------------------------------- */ 398 399struct usb_tt; 400 401enum usb_device_removable { 402 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 403 USB_DEVICE_REMOVABLE, 404 USB_DEVICE_FIXED, 405}; 406 407enum usb_port_connect_type { 408 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 409 USB_PORT_CONNECT_TYPE_HOT_PLUG, 410 USB_PORT_CONNECT_TYPE_HARD_WIRED, 411 USB_PORT_NOT_USED, 412}; 413 414/* 415 * USB 2.0 Link Power Management (LPM) parameters. 416 */ 417struct usb2_lpm_parameters { 418 /* Best effort service latency indicate how long the host will drive 419 * resume on an exit from L1. 420 */ 421 unsigned int besl; 422 423 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 424 * When the timer counts to zero, the parent hub will initiate a LPM 425 * transition to L1. 426 */ 427 int timeout; 428}; 429 430/* 431 * USB 3.0 Link Power Management (LPM) parameters. 432 * 433 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 434 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 435 * All three are stored in nanoseconds. 436 */ 437struct usb3_lpm_parameters { 438 /* 439 * Maximum exit latency (MEL) for the host to send a packet to the 440 * device (either a Ping for isoc endpoints, or a data packet for 441 * interrupt endpoints), the hubs to decode the packet, and for all hubs 442 * in the path to transition the links to U0. 443 */ 444 unsigned int mel; 445 /* 446 * Maximum exit latency for a device-initiated LPM transition to bring 447 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 448 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 449 */ 450 unsigned int pel; 451 452 /* 453 * The System Exit Latency (SEL) includes PEL, and three other 454 * latencies. After a device initiates a U0 transition, it will take 455 * some time from when the device sends the ERDY to when it will finally 456 * receive the data packet. Basically, SEL should be the worse-case 457 * latency from when a device starts initiating a U0 transition to when 458 * it will get data. 459 */ 460 unsigned int sel; 461 /* 462 * The idle timeout value that is currently programmed into the parent 463 * hub for this device. When the timer counts to zero, the parent hub 464 * will initiate an LPM transition to either U1 or U2. 465 */ 466 int timeout; 467}; 468 469/** 470 * struct usb_device - kernel's representation of a USB device 471 * @devnum: device number; address on a USB bus 472 * @devpath: device ID string for use in messages (e.g., /port/...) 473 * @route: tree topology hex string for use with xHCI 474 * @state: device state: configured, not attached, etc. 475 * @speed: device speed: high/full/low (or error) 476 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 477 * @ttport: device port on that tt hub 478 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 479 * @parent: our hub, unless we're the root 480 * @bus: bus we're part of 481 * @ep0: endpoint 0 data (default control pipe) 482 * @dev: generic device interface 483 * @descriptor: USB device descriptor 484 * @bos: USB device BOS descriptor set 485 * @config: all of the device's configs 486 * @actconfig: the active configuration 487 * @ep_in: array of IN endpoints 488 * @ep_out: array of OUT endpoints 489 * @rawdescriptors: raw descriptors for each config 490 * @bus_mA: Current available from the bus 491 * @portnum: parent port number (origin 1) 492 * @level: number of USB hub ancestors 493 * @can_submit: URBs may be submitted 494 * @persist_enabled: USB_PERSIST enabled for this device 495 * @have_langid: whether string_langid is valid 496 * @authorized: policy has said we can use it; 497 * (user space) policy determines if we authorize this device to be 498 * used or not. By default, wired USB devices are authorized. 499 * WUSB devices are not, until we authorize them from user space. 500 * FIXME -- complete doc 501 * @authenticated: Crypto authentication passed 502 * @wusb: device is Wireless USB 503 * @lpm_capable: device supports LPM 504 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 505 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 506 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 507 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 508 * @usb3_lpm_enabled: USB3 hardware LPM enabled 509 * @string_langid: language ID for strings 510 * @product: iProduct string, if present (static) 511 * @manufacturer: iManufacturer string, if present (static) 512 * @serial: iSerialNumber string, if present (static) 513 * @filelist: usbfs files that are open to this device 514 * @maxchild: number of ports if hub 515 * @quirks: quirks of the whole device 516 * @urbnum: number of URBs submitted for the whole device 517 * @active_duration: total time device is not suspended 518 * @connect_time: time device was first connected 519 * @do_remote_wakeup: remote wakeup should be enabled 520 * @reset_resume: needs reset instead of resume 521 * @port_is_suspended: the upstream port is suspended (L2 or U3) 522 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 523 * specific data for the device. 524 * @slot_id: Slot ID assigned by xHCI 525 * @removable: Device can be physically removed from this port 526 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 527 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 528 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 529 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 530 * to keep track of the number of functions that require USB 3.0 Link Power 531 * Management to be disabled for this usb_device. This count should only 532 * be manipulated by those functions, with the bandwidth_mutex is held. 533 * 534 * Notes: 535 * Usbcore drivers should not set usbdev->state directly. Instead use 536 * usb_set_device_state(). 537 */ 538struct usb_device { 539 int devnum; 540 char devpath[16]; 541 u32 route; 542 enum usb_device_state state; 543 enum usb_device_speed speed; 544 545 struct usb_tt *tt; 546 int ttport; 547 548 unsigned int toggle[2]; 549 550 struct usb_device *parent; 551 struct usb_bus *bus; 552 struct usb_host_endpoint ep0; 553 554 struct device dev; 555 556 struct usb_device_descriptor descriptor; 557 struct usb_host_bos *bos; 558 struct usb_host_config *config; 559 560 struct usb_host_config *actconfig; 561 struct usb_host_endpoint *ep_in[16]; 562 struct usb_host_endpoint *ep_out[16]; 563 564 char **rawdescriptors; 565 566 unsigned short bus_mA; 567 u8 portnum; 568 u8 level; 569 570 unsigned can_submit:1; 571 unsigned persist_enabled:1; 572 unsigned have_langid:1; 573 unsigned authorized:1; 574 unsigned authenticated:1; 575 unsigned wusb:1; 576 unsigned lpm_capable:1; 577 unsigned usb2_hw_lpm_capable:1; 578 unsigned usb2_hw_lpm_besl_capable:1; 579 unsigned usb2_hw_lpm_enabled:1; 580 unsigned usb2_hw_lpm_allowed:1; 581 unsigned usb3_lpm_enabled:1; 582 int string_langid; 583 584 /* static strings from the device */ 585 char *product; 586 char *manufacturer; 587 char *serial; 588 589 struct list_head filelist; 590 591 int maxchild; 592 593 u32 quirks; 594 atomic_t urbnum; 595 596 unsigned long active_duration; 597 598#ifdef CONFIG_PM 599 unsigned long connect_time; 600 601 unsigned do_remote_wakeup:1; 602 unsigned reset_resume:1; 603 unsigned port_is_suspended:1; 604#endif 605 struct wusb_dev *wusb_dev; 606 int slot_id; 607 enum usb_device_removable removable; 608 struct usb2_lpm_parameters l1_params; 609 struct usb3_lpm_parameters u1_params; 610 struct usb3_lpm_parameters u2_params; 611 unsigned lpm_disable_count; 612}; 613#define to_usb_device(d) container_of(d, struct usb_device, dev) 614 615static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 616{ 617 return to_usb_device(intf->dev.parent); 618} 619 620extern struct usb_device *usb_get_dev(struct usb_device *dev); 621extern void usb_put_dev(struct usb_device *dev); 622extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 623 int port1); 624 625/** 626 * usb_hub_for_each_child - iterate over all child devices on the hub 627 * @hdev: USB device belonging to the usb hub 628 * @port1: portnum associated with child device 629 * @child: child device pointer 630 */ 631#define usb_hub_for_each_child(hdev, port1, child) \ 632 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 633 port1 <= hdev->maxchild; \ 634 child = usb_hub_find_child(hdev, ++port1)) \ 635 if (!child) continue; else 636 637/* USB device locking */ 638#define usb_lock_device(udev) device_lock(&(udev)->dev) 639#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 640#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 641extern int usb_lock_device_for_reset(struct usb_device *udev, 642 const struct usb_interface *iface); 643 644/* USB port reset for device reinitialization */ 645extern int usb_reset_device(struct usb_device *dev); 646extern void usb_queue_reset_device(struct usb_interface *dev); 647 648#ifdef CONFIG_ACPI 649extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 650 bool enable); 651extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 652#else 653static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 654 bool enable) { return 0; } 655static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 656 { return true; } 657#endif 658 659/* USB autosuspend and autoresume */ 660#ifdef CONFIG_PM 661extern void usb_enable_autosuspend(struct usb_device *udev); 662extern void usb_disable_autosuspend(struct usb_device *udev); 663 664extern int usb_autopm_get_interface(struct usb_interface *intf); 665extern void usb_autopm_put_interface(struct usb_interface *intf); 666extern int usb_autopm_get_interface_async(struct usb_interface *intf); 667extern void usb_autopm_put_interface_async(struct usb_interface *intf); 668extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 669extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 670 671static inline void usb_mark_last_busy(struct usb_device *udev) 672{ 673 pm_runtime_mark_last_busy(&udev->dev); 674} 675 676#else 677 678static inline int usb_enable_autosuspend(struct usb_device *udev) 679{ return 0; } 680static inline int usb_disable_autosuspend(struct usb_device *udev) 681{ return 0; } 682 683static inline int usb_autopm_get_interface(struct usb_interface *intf) 684{ return 0; } 685static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 686{ return 0; } 687 688static inline void usb_autopm_put_interface(struct usb_interface *intf) 689{ } 690static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 691{ } 692static inline void usb_autopm_get_interface_no_resume( 693 struct usb_interface *intf) 694{ } 695static inline void usb_autopm_put_interface_no_suspend( 696 struct usb_interface *intf) 697{ } 698static inline void usb_mark_last_busy(struct usb_device *udev) 699{ } 700#endif 701 702extern int usb_disable_lpm(struct usb_device *udev); 703extern void usb_enable_lpm(struct usb_device *udev); 704/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 705extern int usb_unlocked_disable_lpm(struct usb_device *udev); 706extern void usb_unlocked_enable_lpm(struct usb_device *udev); 707 708extern int usb_disable_ltm(struct usb_device *udev); 709extern void usb_enable_ltm(struct usb_device *udev); 710 711static inline bool usb_device_supports_ltm(struct usb_device *udev) 712{ 713 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 714 return false; 715 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 716} 717 718static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 719{ 720 return udev && udev->bus && udev->bus->no_sg_constraint; 721} 722 723 724/*-------------------------------------------------------------------------*/ 725 726/* for drivers using iso endpoints */ 727extern int usb_get_current_frame_number(struct usb_device *usb_dev); 728 729/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 730extern int usb_alloc_streams(struct usb_interface *interface, 731 struct usb_host_endpoint **eps, unsigned int num_eps, 732 unsigned int num_streams, gfp_t mem_flags); 733 734/* Reverts a group of bulk endpoints back to not using stream IDs. */ 735extern int usb_free_streams(struct usb_interface *interface, 736 struct usb_host_endpoint **eps, unsigned int num_eps, 737 gfp_t mem_flags); 738 739/* used these for multi-interface device registration */ 740extern int usb_driver_claim_interface(struct usb_driver *driver, 741 struct usb_interface *iface, void *priv); 742 743/** 744 * usb_interface_claimed - returns true iff an interface is claimed 745 * @iface: the interface being checked 746 * 747 * Return: %true (nonzero) iff the interface is claimed, else %false 748 * (zero). 749 * 750 * Note: 751 * Callers must own the driver model's usb bus readlock. So driver 752 * probe() entries don't need extra locking, but other call contexts 753 * may need to explicitly claim that lock. 754 * 755 */ 756static inline int usb_interface_claimed(struct usb_interface *iface) 757{ 758 return (iface->dev.driver != NULL); 759} 760 761extern void usb_driver_release_interface(struct usb_driver *driver, 762 struct usb_interface *iface); 763const struct usb_device_id *usb_match_id(struct usb_interface *interface, 764 const struct usb_device_id *id); 765extern int usb_match_one_id(struct usb_interface *interface, 766 const struct usb_device_id *id); 767 768extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 769extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 770 int minor); 771extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 772 unsigned ifnum); 773extern struct usb_host_interface *usb_altnum_to_altsetting( 774 const struct usb_interface *intf, unsigned int altnum); 775extern struct usb_host_interface *usb_find_alt_setting( 776 struct usb_host_config *config, 777 unsigned int iface_num, 778 unsigned int alt_num); 779 780/* port claiming functions */ 781int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 782 struct usb_dev_state *owner); 783int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 784 struct usb_dev_state *owner); 785 786/** 787 * usb_make_path - returns stable device path in the usb tree 788 * @dev: the device whose path is being constructed 789 * @buf: where to put the string 790 * @size: how big is "buf"? 791 * 792 * Return: Length of the string (> 0) or negative if size was too small. 793 * 794 * Note: 795 * This identifier is intended to be "stable", reflecting physical paths in 796 * hardware such as physical bus addresses for host controllers or ports on 797 * USB hubs. That makes it stay the same until systems are physically 798 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 799 * controllers. Adding and removing devices, including virtual root hubs 800 * in host controller driver modules, does not change these path identifiers; 801 * neither does rebooting or re-enumerating. These are more useful identifiers 802 * than changeable ("unstable") ones like bus numbers or device addresses. 803 * 804 * With a partial exception for devices connected to USB 2.0 root hubs, these 805 * identifiers are also predictable. So long as the device tree isn't changed, 806 * plugging any USB device into a given hub port always gives it the same path. 807 * Because of the use of "companion" controllers, devices connected to ports on 808 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 809 * high speed, and a different one if they are full or low speed. 810 */ 811static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 812{ 813 int actual; 814 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 815 dev->devpath); 816 return (actual >= (int)size) ? -1 : actual; 817} 818 819/*-------------------------------------------------------------------------*/ 820 821#define USB_DEVICE_ID_MATCH_DEVICE \ 822 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 823#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 824 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 825#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 826 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 827#define USB_DEVICE_ID_MATCH_DEV_INFO \ 828 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 829 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 830 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 831#define USB_DEVICE_ID_MATCH_INT_INFO \ 832 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 833 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 834 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 835 836/** 837 * USB_DEVICE - macro used to describe a specific usb device 838 * @vend: the 16 bit USB Vendor ID 839 * @prod: the 16 bit USB Product ID 840 * 841 * This macro is used to create a struct usb_device_id that matches a 842 * specific device. 843 */ 844#define USB_DEVICE(vend, prod) \ 845 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 846 .idVendor = (vend), \ 847 .idProduct = (prod) 848/** 849 * USB_DEVICE_VER - describe a specific usb device with a version range 850 * @vend: the 16 bit USB Vendor ID 851 * @prod: the 16 bit USB Product ID 852 * @lo: the bcdDevice_lo value 853 * @hi: the bcdDevice_hi value 854 * 855 * This macro is used to create a struct usb_device_id that matches a 856 * specific device, with a version range. 857 */ 858#define USB_DEVICE_VER(vend, prod, lo, hi) \ 859 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 860 .idVendor = (vend), \ 861 .idProduct = (prod), \ 862 .bcdDevice_lo = (lo), \ 863 .bcdDevice_hi = (hi) 864 865/** 866 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 867 * @vend: the 16 bit USB Vendor ID 868 * @prod: the 16 bit USB Product ID 869 * @cl: bInterfaceClass value 870 * 871 * This macro is used to create a struct usb_device_id that matches a 872 * specific interface class of devices. 873 */ 874#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 875 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 876 USB_DEVICE_ID_MATCH_INT_CLASS, \ 877 .idVendor = (vend), \ 878 .idProduct = (prod), \ 879 .bInterfaceClass = (cl) 880 881/** 882 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 883 * @vend: the 16 bit USB Vendor ID 884 * @prod: the 16 bit USB Product ID 885 * @pr: bInterfaceProtocol value 886 * 887 * This macro is used to create a struct usb_device_id that matches a 888 * specific interface protocol of devices. 889 */ 890#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 891 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 892 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 893 .idVendor = (vend), \ 894 .idProduct = (prod), \ 895 .bInterfaceProtocol = (pr) 896 897/** 898 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 899 * @vend: the 16 bit USB Vendor ID 900 * @prod: the 16 bit USB Product ID 901 * @num: bInterfaceNumber value 902 * 903 * This macro is used to create a struct usb_device_id that matches a 904 * specific interface number of devices. 905 */ 906#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 907 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 908 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 909 .idVendor = (vend), \ 910 .idProduct = (prod), \ 911 .bInterfaceNumber = (num) 912 913/** 914 * USB_DEVICE_INFO - macro used to describe a class of usb devices 915 * @cl: bDeviceClass value 916 * @sc: bDeviceSubClass value 917 * @pr: bDeviceProtocol value 918 * 919 * This macro is used to create a struct usb_device_id that matches a 920 * specific class of devices. 921 */ 922#define USB_DEVICE_INFO(cl, sc, pr) \ 923 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 924 .bDeviceClass = (cl), \ 925 .bDeviceSubClass = (sc), \ 926 .bDeviceProtocol = (pr) 927 928/** 929 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 930 * @cl: bInterfaceClass value 931 * @sc: bInterfaceSubClass value 932 * @pr: bInterfaceProtocol value 933 * 934 * This macro is used to create a struct usb_device_id that matches a 935 * specific class of interfaces. 936 */ 937#define USB_INTERFACE_INFO(cl, sc, pr) \ 938 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 939 .bInterfaceClass = (cl), \ 940 .bInterfaceSubClass = (sc), \ 941 .bInterfaceProtocol = (pr) 942 943/** 944 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 945 * @vend: the 16 bit USB Vendor ID 946 * @prod: the 16 bit USB Product ID 947 * @cl: bInterfaceClass value 948 * @sc: bInterfaceSubClass value 949 * @pr: bInterfaceProtocol value 950 * 951 * This macro is used to create a struct usb_device_id that matches a 952 * specific device with a specific class of interfaces. 953 * 954 * This is especially useful when explicitly matching devices that have 955 * vendor specific bDeviceClass values, but standards-compliant interfaces. 956 */ 957#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 958 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 959 | USB_DEVICE_ID_MATCH_DEVICE, \ 960 .idVendor = (vend), \ 961 .idProduct = (prod), \ 962 .bInterfaceClass = (cl), \ 963 .bInterfaceSubClass = (sc), \ 964 .bInterfaceProtocol = (pr) 965 966/** 967 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 968 * @vend: the 16 bit USB Vendor ID 969 * @cl: bInterfaceClass value 970 * @sc: bInterfaceSubClass value 971 * @pr: bInterfaceProtocol value 972 * 973 * This macro is used to create a struct usb_device_id that matches a 974 * specific vendor with a specific class of interfaces. 975 * 976 * This is especially useful when explicitly matching devices that have 977 * vendor specific bDeviceClass values, but standards-compliant interfaces. 978 */ 979#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 980 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 981 | USB_DEVICE_ID_MATCH_VENDOR, \ 982 .idVendor = (vend), \ 983 .bInterfaceClass = (cl), \ 984 .bInterfaceSubClass = (sc), \ 985 .bInterfaceProtocol = (pr) 986 987/* ----------------------------------------------------------------------- */ 988 989/* Stuff for dynamic usb ids */ 990struct usb_dynids { 991 spinlock_t lock; 992 struct list_head list; 993}; 994 995struct usb_dynid { 996 struct list_head node; 997 struct usb_device_id id; 998}; 999 1000extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1001 const struct usb_device_id *id_table, 1002 struct device_driver *driver, 1003 const char *buf, size_t count); 1004 1005extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1006 1007/** 1008 * struct usbdrv_wrap - wrapper for driver-model structure 1009 * @driver: The driver-model core driver structure. 1010 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1011 */ 1012struct usbdrv_wrap { 1013 struct device_driver driver; 1014 int for_devices; 1015}; 1016 1017/** 1018 * struct usb_driver - identifies USB interface driver to usbcore 1019 * @name: The driver name should be unique among USB drivers, 1020 * and should normally be the same as the module name. 1021 * @probe: Called to see if the driver is willing to manage a particular 1022 * interface on a device. If it is, probe returns zero and uses 1023 * usb_set_intfdata() to associate driver-specific data with the 1024 * interface. It may also use usb_set_interface() to specify the 1025 * appropriate altsetting. If unwilling to manage the interface, 1026 * return -ENODEV, if genuine IO errors occurred, an appropriate 1027 * negative errno value. 1028 * @disconnect: Called when the interface is no longer accessible, usually 1029 * because its device has been (or is being) disconnected or the 1030 * driver module is being unloaded. 1031 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1032 * the "usbfs" filesystem. This lets devices provide ways to 1033 * expose information to user space regardless of where they 1034 * do (or don't) show up otherwise in the filesystem. 1035 * @suspend: Called when the device is going to be suspended by the 1036 * system either from system sleep or runtime suspend context. The 1037 * return value will be ignored in system sleep context, so do NOT 1038 * try to continue using the device if suspend fails in this case. 1039 * Instead, let the resume or reset-resume routine recover from 1040 * the failure. 1041 * @resume: Called when the device is being resumed by the system. 1042 * @reset_resume: Called when the suspended device has been reset instead 1043 * of being resumed. 1044 * @pre_reset: Called by usb_reset_device() when the device is about to be 1045 * reset. This routine must not return until the driver has no active 1046 * URBs for the device, and no more URBs may be submitted until the 1047 * post_reset method is called. 1048 * @post_reset: Called by usb_reset_device() after the device 1049 * has been reset 1050 * @id_table: USB drivers use ID table to support hotplugging. 1051 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1052 * or your driver's probe function will never get called. 1053 * @dynids: used internally to hold the list of dynamically added device 1054 * ids for this driver. 1055 * @drvwrap: Driver-model core structure wrapper. 1056 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1057 * added to this driver by preventing the sysfs file from being created. 1058 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1059 * for interfaces bound to this driver. 1060 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1061 * endpoints before calling the driver's disconnect method. 1062 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1063 * to initiate lower power link state transitions when an idle timeout 1064 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1065 * 1066 * USB interface drivers must provide a name, probe() and disconnect() 1067 * methods, and an id_table. Other driver fields are optional. 1068 * 1069 * The id_table is used in hotplugging. It holds a set of descriptors, 1070 * and specialized data may be associated with each entry. That table 1071 * is used by both user and kernel mode hotplugging support. 1072 * 1073 * The probe() and disconnect() methods are called in a context where 1074 * they can sleep, but they should avoid abusing the privilege. Most 1075 * work to connect to a device should be done when the device is opened, 1076 * and undone at the last close. The disconnect code needs to address 1077 * concurrency issues with respect to open() and close() methods, as 1078 * well as forcing all pending I/O requests to complete (by unlinking 1079 * them as necessary, and blocking until the unlinks complete). 1080 */ 1081struct usb_driver { 1082 const char *name; 1083 1084 int (*probe) (struct usb_interface *intf, 1085 const struct usb_device_id *id); 1086 1087 void (*disconnect) (struct usb_interface *intf); 1088 1089 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1090 void *buf); 1091 1092 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1093 int (*resume) (struct usb_interface *intf); 1094 int (*reset_resume)(struct usb_interface *intf); 1095 1096 int (*pre_reset)(struct usb_interface *intf); 1097 int (*post_reset)(struct usb_interface *intf); 1098 1099 const struct usb_device_id *id_table; 1100 1101 struct usb_dynids dynids; 1102 struct usbdrv_wrap drvwrap; 1103 unsigned int no_dynamic_id:1; 1104 unsigned int supports_autosuspend:1; 1105 unsigned int disable_hub_initiated_lpm:1; 1106 unsigned int soft_unbind:1; 1107}; 1108#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1109 1110/** 1111 * struct usb_device_driver - identifies USB device driver to usbcore 1112 * @name: The driver name should be unique among USB drivers, 1113 * and should normally be the same as the module name. 1114 * @probe: Called to see if the driver is willing to manage a particular 1115 * device. If it is, probe returns zero and uses dev_set_drvdata() 1116 * to associate driver-specific data with the device. If unwilling 1117 * to manage the device, return a negative errno value. 1118 * @disconnect: Called when the device is no longer accessible, usually 1119 * because it has been (or is being) disconnected or the driver's 1120 * module is being unloaded. 1121 * @suspend: Called when the device is going to be suspended by the system. 1122 * @resume: Called when the device is being resumed by the system. 1123 * @drvwrap: Driver-model core structure wrapper. 1124 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1125 * for devices bound to this driver. 1126 * 1127 * USB drivers must provide all the fields listed above except drvwrap. 1128 */ 1129struct usb_device_driver { 1130 const char *name; 1131 1132 int (*probe) (struct usb_device *udev); 1133 void (*disconnect) (struct usb_device *udev); 1134 1135 int (*suspend) (struct usb_device *udev, pm_message_t message); 1136 int (*resume) (struct usb_device *udev, pm_message_t message); 1137 struct usbdrv_wrap drvwrap; 1138 unsigned int supports_autosuspend:1; 1139}; 1140#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1141 drvwrap.driver) 1142 1143extern struct bus_type usb_bus_type; 1144 1145/** 1146 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1147 * @name: the usb class device name for this driver. Will show up in sysfs. 1148 * @devnode: Callback to provide a naming hint for a possible 1149 * device node to create. 1150 * @fops: pointer to the struct file_operations of this driver. 1151 * @minor_base: the start of the minor range for this driver. 1152 * 1153 * This structure is used for the usb_register_dev() and 1154 * usb_unregister_dev() functions, to consolidate a number of the 1155 * parameters used for them. 1156 */ 1157struct usb_class_driver { 1158 char *name; 1159 char *(*devnode)(struct device *dev, umode_t *mode); 1160 const struct file_operations *fops; 1161 int minor_base; 1162}; 1163 1164/* 1165 * use these in module_init()/module_exit() 1166 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1167 */ 1168extern int usb_register_driver(struct usb_driver *, struct module *, 1169 const char *); 1170 1171/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1172#define usb_register(driver) \ 1173 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1174 1175extern void usb_deregister(struct usb_driver *); 1176 1177/** 1178 * module_usb_driver() - Helper macro for registering a USB driver 1179 * @__usb_driver: usb_driver struct 1180 * 1181 * Helper macro for USB drivers which do not do anything special in module 1182 * init/exit. This eliminates a lot of boilerplate. Each module may only 1183 * use this macro once, and calling it replaces module_init() and module_exit() 1184 */ 1185#define module_usb_driver(__usb_driver) \ 1186 module_driver(__usb_driver, usb_register, \ 1187 usb_deregister) 1188 1189extern int usb_register_device_driver(struct usb_device_driver *, 1190 struct module *); 1191extern void usb_deregister_device_driver(struct usb_device_driver *); 1192 1193extern int usb_register_dev(struct usb_interface *intf, 1194 struct usb_class_driver *class_driver); 1195extern void usb_deregister_dev(struct usb_interface *intf, 1196 struct usb_class_driver *class_driver); 1197 1198extern int usb_disabled(void); 1199 1200/* ----------------------------------------------------------------------- */ 1201 1202/* 1203 * URB support, for asynchronous request completions 1204 */ 1205 1206/* 1207 * urb->transfer_flags: 1208 * 1209 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1210 */ 1211#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1212#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1213 * slot in the schedule */ 1214#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1215#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1216#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1217#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1218 * needed */ 1219#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1220 1221/* The following flags are used internally by usbcore and HCDs */ 1222#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1223#define URB_DIR_OUT 0 1224#define URB_DIR_MASK URB_DIR_IN 1225 1226#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1227#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1228#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1229#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1230#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1231#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1232#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1233#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1234 1235struct usb_iso_packet_descriptor { 1236 unsigned int offset; 1237 unsigned int length; /* expected length */ 1238 unsigned int actual_length; 1239 int status; 1240}; 1241 1242struct urb; 1243 1244struct usb_anchor { 1245 struct list_head urb_list; 1246 wait_queue_head_t wait; 1247 spinlock_t lock; 1248 atomic_t suspend_wakeups; 1249 unsigned int poisoned:1; 1250}; 1251 1252static inline void init_usb_anchor(struct usb_anchor *anchor) 1253{ 1254 memset(anchor, 0, sizeof(*anchor)); 1255 INIT_LIST_HEAD(&anchor->urb_list); 1256 init_waitqueue_head(&anchor->wait); 1257 spin_lock_init(&anchor->lock); 1258} 1259 1260typedef void (*usb_complete_t)(struct urb *); 1261 1262/** 1263 * struct urb - USB Request Block 1264 * @urb_list: For use by current owner of the URB. 1265 * @anchor_list: membership in the list of an anchor 1266 * @anchor: to anchor URBs to a common mooring 1267 * @ep: Points to the endpoint's data structure. Will eventually 1268 * replace @pipe. 1269 * @pipe: Holds endpoint number, direction, type, and more. 1270 * Create these values with the eight macros available; 1271 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1272 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1273 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1274 * numbers range from zero to fifteen. Note that "in" endpoint two 1275 * is a different endpoint (and pipe) from "out" endpoint two. 1276 * The current configuration controls the existence, type, and 1277 * maximum packet size of any given endpoint. 1278 * @stream_id: the endpoint's stream ID for bulk streams 1279 * @dev: Identifies the USB device to perform the request. 1280 * @status: This is read in non-iso completion functions to get the 1281 * status of the particular request. ISO requests only use it 1282 * to tell whether the URB was unlinked; detailed status for 1283 * each frame is in the fields of the iso_frame-desc. 1284 * @transfer_flags: A variety of flags may be used to affect how URB 1285 * submission, unlinking, or operation are handled. Different 1286 * kinds of URB can use different flags. 1287 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1288 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1289 * (however, do not leave garbage in transfer_buffer even then). 1290 * This buffer must be suitable for DMA; allocate it with 1291 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1292 * of this buffer will be modified. This buffer is used for the data 1293 * stage of control transfers. 1294 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1295 * the device driver is saying that it provided this DMA address, 1296 * which the host controller driver should use in preference to the 1297 * transfer_buffer. 1298 * @sg: scatter gather buffer list, the buffer size of each element in 1299 * the list (except the last) must be divisible by the endpoint's 1300 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1301 * @num_mapped_sgs: (internal) number of mapped sg entries 1302 * @num_sgs: number of entries in the sg list 1303 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1304 * be broken up into chunks according to the current maximum packet 1305 * size for the endpoint, which is a function of the configuration 1306 * and is encoded in the pipe. When the length is zero, neither 1307 * transfer_buffer nor transfer_dma is used. 1308 * @actual_length: This is read in non-iso completion functions, and 1309 * it tells how many bytes (out of transfer_buffer_length) were 1310 * transferred. It will normally be the same as requested, unless 1311 * either an error was reported or a short read was performed. 1312 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1313 * short reads be reported as errors. 1314 * @setup_packet: Only used for control transfers, this points to eight bytes 1315 * of setup data. Control transfers always start by sending this data 1316 * to the device. Then transfer_buffer is read or written, if needed. 1317 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1318 * this field; setup_packet must point to a valid buffer. 1319 * @start_frame: Returns the initial frame for isochronous transfers. 1320 * @number_of_packets: Lists the number of ISO transfer buffers. 1321 * @interval: Specifies the polling interval for interrupt or isochronous 1322 * transfers. The units are frames (milliseconds) for full and low 1323 * speed devices, and microframes (1/8 millisecond) for highspeed 1324 * and SuperSpeed devices. 1325 * @error_count: Returns the number of ISO transfers that reported errors. 1326 * @context: For use in completion functions. This normally points to 1327 * request-specific driver context. 1328 * @complete: Completion handler. This URB is passed as the parameter to the 1329 * completion function. The completion function may then do what 1330 * it likes with the URB, including resubmitting or freeing it. 1331 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1332 * collect the transfer status for each buffer. 1333 * 1334 * This structure identifies USB transfer requests. URBs must be allocated by 1335 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1336 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1337 * are submitted using usb_submit_urb(), and pending requests may be canceled 1338 * using usb_unlink_urb() or usb_kill_urb(). 1339 * 1340 * Data Transfer Buffers: 1341 * 1342 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1343 * taken from the general page pool. That is provided by transfer_buffer 1344 * (control requests also use setup_packet), and host controller drivers 1345 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1346 * mapping operations can be expensive on some platforms (perhaps using a dma 1347 * bounce buffer or talking to an IOMMU), 1348 * although they're cheap on commodity x86 and ppc hardware. 1349 * 1350 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1351 * which tells the host controller driver that no such mapping is needed for 1352 * the transfer_buffer since 1353 * the device driver is DMA-aware. For example, a device driver might 1354 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1355 * When this transfer flag is provided, host controller drivers will 1356 * attempt to use the dma address found in the transfer_dma 1357 * field rather than determining a dma address themselves. 1358 * 1359 * Note that transfer_buffer must still be set if the controller 1360 * does not support DMA (as indicated by bus.uses_dma) and when talking 1361 * to root hub. If you have to trasfer between highmem zone and the device 1362 * on such controller, create a bounce buffer or bail out with an error. 1363 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1364 * capable, assign NULL to it, so that usbmon knows not to use the value. 1365 * The setup_packet must always be set, so it cannot be located in highmem. 1366 * 1367 * Initialization: 1368 * 1369 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1370 * zero), and complete fields. All URBs must also initialize 1371 * transfer_buffer and transfer_buffer_length. They may provide the 1372 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1373 * to be treated as errors; that flag is invalid for write requests. 1374 * 1375 * Bulk URBs may 1376 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1377 * should always terminate with a short packet, even if it means adding an 1378 * extra zero length packet. 1379 * 1380 * Control URBs must provide a valid pointer in the setup_packet field. 1381 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1382 * beforehand. 1383 * 1384 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1385 * or, for highspeed devices, 125 microsecond units) 1386 * to poll for transfers. After the URB has been submitted, the interval 1387 * field reflects how the transfer was actually scheduled. 1388 * The polling interval may be more frequent than requested. 1389 * For example, some controllers have a maximum interval of 32 milliseconds, 1390 * while others support intervals of up to 1024 milliseconds. 1391 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1392 * endpoints, as well as high speed interrupt endpoints, the encoding of 1393 * the transfer interval in the endpoint descriptor is logarithmic. 1394 * Device drivers must convert that value to linear units themselves.) 1395 * 1396 * If an isochronous endpoint queue isn't already running, the host 1397 * controller will schedule a new URB to start as soon as bandwidth 1398 * utilization allows. If the queue is running then a new URB will be 1399 * scheduled to start in the first transfer slot following the end of the 1400 * preceding URB, if that slot has not already expired. If the slot has 1401 * expired (which can happen when IRQ delivery is delayed for a long time), 1402 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1403 * is clear then the URB will be scheduled to start in the expired slot, 1404 * implying that some of its packets will not be transferred; if the flag 1405 * is set then the URB will be scheduled in the first unexpired slot, 1406 * breaking the queue's synchronization. Upon URB completion, the 1407 * start_frame field will be set to the (micro)frame number in which the 1408 * transfer was scheduled. Ranges for frame counter values are HC-specific 1409 * and can go from as low as 256 to as high as 65536 frames. 1410 * 1411 * Isochronous URBs have a different data transfer model, in part because 1412 * the quality of service is only "best effort". Callers provide specially 1413 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1414 * at the end. Each such packet is an individual ISO transfer. Isochronous 1415 * URBs are normally queued, submitted by drivers to arrange that 1416 * transfers are at least double buffered, and then explicitly resubmitted 1417 * in completion handlers, so 1418 * that data (such as audio or video) streams at as constant a rate as the 1419 * host controller scheduler can support. 1420 * 1421 * Completion Callbacks: 1422 * 1423 * The completion callback is made in_interrupt(), and one of the first 1424 * things that a completion handler should do is check the status field. 1425 * The status field is provided for all URBs. It is used to report 1426 * unlinked URBs, and status for all non-ISO transfers. It should not 1427 * be examined before the URB is returned to the completion handler. 1428 * 1429 * The context field is normally used to link URBs back to the relevant 1430 * driver or request state. 1431 * 1432 * When the completion callback is invoked for non-isochronous URBs, the 1433 * actual_length field tells how many bytes were transferred. This field 1434 * is updated even when the URB terminated with an error or was unlinked. 1435 * 1436 * ISO transfer status is reported in the status and actual_length fields 1437 * of the iso_frame_desc array, and the number of errors is reported in 1438 * error_count. Completion callbacks for ISO transfers will normally 1439 * (re)submit URBs to ensure a constant transfer rate. 1440 * 1441 * Note that even fields marked "public" should not be touched by the driver 1442 * when the urb is owned by the hcd, that is, since the call to 1443 * usb_submit_urb() till the entry into the completion routine. 1444 */ 1445struct urb { 1446 /* private: usb core and host controller only fields in the urb */ 1447 struct kref kref; /* reference count of the URB */ 1448 void *hcpriv; /* private data for host controller */ 1449 atomic_t use_count; /* concurrent submissions counter */ 1450 atomic_t reject; /* submissions will fail */ 1451 int unlinked; /* unlink error code */ 1452 1453 /* public: documented fields in the urb that can be used by drivers */ 1454 struct list_head urb_list; /* list head for use by the urb's 1455 * current owner */ 1456 struct list_head anchor_list; /* the URB may be anchored */ 1457 struct usb_anchor *anchor; 1458 struct usb_device *dev; /* (in) pointer to associated device */ 1459 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1460 unsigned int pipe; /* (in) pipe information */ 1461 unsigned int stream_id; /* (in) stream ID */ 1462 int status; /* (return) non-ISO status */ 1463 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1464 void *transfer_buffer; /* (in) associated data buffer */ 1465 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1466 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1467 int num_mapped_sgs; /* (internal) mapped sg entries */ 1468 int num_sgs; /* (in) number of entries in the sg list */ 1469 u32 transfer_buffer_length; /* (in) data buffer length */ 1470 u32 actual_length; /* (return) actual transfer length */ 1471 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1472 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1473 int start_frame; /* (modify) start frame (ISO) */ 1474 int number_of_packets; /* (in) number of ISO packets */ 1475 int interval; /* (modify) transfer interval 1476 * (INT/ISO) */ 1477 int error_count; /* (return) number of ISO errors */ 1478 void *context; /* (in) context for completion */ 1479 usb_complete_t complete; /* (in) completion routine */ 1480 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1481 /* (in) ISO ONLY */ 1482}; 1483 1484/* ----------------------------------------------------------------------- */ 1485 1486/** 1487 * usb_fill_control_urb - initializes a control urb 1488 * @urb: pointer to the urb to initialize. 1489 * @dev: pointer to the struct usb_device for this urb. 1490 * @pipe: the endpoint pipe 1491 * @setup_packet: pointer to the setup_packet buffer 1492 * @transfer_buffer: pointer to the transfer buffer 1493 * @buffer_length: length of the transfer buffer 1494 * @complete_fn: pointer to the usb_complete_t function 1495 * @context: what to set the urb context to. 1496 * 1497 * Initializes a control urb with the proper information needed to submit 1498 * it to a device. 1499 */ 1500static inline void usb_fill_control_urb(struct urb *urb, 1501 struct usb_device *dev, 1502 unsigned int pipe, 1503 unsigned char *setup_packet, 1504 void *transfer_buffer, 1505 int buffer_length, 1506 usb_complete_t complete_fn, 1507 void *context) 1508{ 1509 urb->dev = dev; 1510 urb->pipe = pipe; 1511 urb->setup_packet = setup_packet; 1512 urb->transfer_buffer = transfer_buffer; 1513 urb->transfer_buffer_length = buffer_length; 1514 urb->complete = complete_fn; 1515 urb->context = context; 1516} 1517 1518/** 1519 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1520 * @urb: pointer to the urb to initialize. 1521 * @dev: pointer to the struct usb_device for this urb. 1522 * @pipe: the endpoint pipe 1523 * @transfer_buffer: pointer to the transfer buffer 1524 * @buffer_length: length of the transfer buffer 1525 * @complete_fn: pointer to the usb_complete_t function 1526 * @context: what to set the urb context to. 1527 * 1528 * Initializes a bulk urb with the proper information needed to submit it 1529 * to a device. 1530 */ 1531static inline void usb_fill_bulk_urb(struct urb *urb, 1532 struct usb_device *dev, 1533 unsigned int pipe, 1534 void *transfer_buffer, 1535 int buffer_length, 1536 usb_complete_t complete_fn, 1537 void *context) 1538{ 1539 urb->dev = dev; 1540 urb->pipe = pipe; 1541 urb->transfer_buffer = transfer_buffer; 1542 urb->transfer_buffer_length = buffer_length; 1543 urb->complete = complete_fn; 1544 urb->context = context; 1545} 1546 1547/** 1548 * usb_fill_int_urb - macro to help initialize a interrupt urb 1549 * @urb: pointer to the urb to initialize. 1550 * @dev: pointer to the struct usb_device for this urb. 1551 * @pipe: the endpoint pipe 1552 * @transfer_buffer: pointer to the transfer buffer 1553 * @buffer_length: length of the transfer buffer 1554 * @complete_fn: pointer to the usb_complete_t function 1555 * @context: what to set the urb context to. 1556 * @interval: what to set the urb interval to, encoded like 1557 * the endpoint descriptor's bInterval value. 1558 * 1559 * Initializes a interrupt urb with the proper information needed to submit 1560 * it to a device. 1561 * 1562 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic 1563 * encoding of the endpoint interval, and express polling intervals in 1564 * microframes (eight per millisecond) rather than in frames (one per 1565 * millisecond). 1566 * 1567 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1568 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1569 * through to the host controller, rather than being translated into microframe 1570 * units. 1571 */ 1572static inline void usb_fill_int_urb(struct urb *urb, 1573 struct usb_device *dev, 1574 unsigned int pipe, 1575 void *transfer_buffer, 1576 int buffer_length, 1577 usb_complete_t complete_fn, 1578 void *context, 1579 int interval) 1580{ 1581 urb->dev = dev; 1582 urb->pipe = pipe; 1583 urb->transfer_buffer = transfer_buffer; 1584 urb->transfer_buffer_length = buffer_length; 1585 urb->complete = complete_fn; 1586 urb->context = context; 1587 1588 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) { 1589 /* make sure interval is within allowed range */ 1590 interval = clamp(interval, 1, 16); 1591 1592 urb->interval = 1 << (interval - 1); 1593 } else { 1594 urb->interval = interval; 1595 } 1596 1597 urb->start_frame = -1; 1598} 1599 1600extern void usb_init_urb(struct urb *urb); 1601extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1602extern void usb_free_urb(struct urb *urb); 1603#define usb_put_urb usb_free_urb 1604extern struct urb *usb_get_urb(struct urb *urb); 1605extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1606extern int usb_unlink_urb(struct urb *urb); 1607extern void usb_kill_urb(struct urb *urb); 1608extern void usb_poison_urb(struct urb *urb); 1609extern void usb_unpoison_urb(struct urb *urb); 1610extern void usb_block_urb(struct urb *urb); 1611extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1612extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1613extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1614extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1615extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1616extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1617extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1618extern void usb_unanchor_urb(struct urb *urb); 1619extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1620 unsigned int timeout); 1621extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1622extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1623extern int usb_anchor_empty(struct usb_anchor *anchor); 1624 1625#define usb_unblock_urb usb_unpoison_urb 1626 1627/** 1628 * usb_urb_dir_in - check if an URB describes an IN transfer 1629 * @urb: URB to be checked 1630 * 1631 * Return: 1 if @urb describes an IN transfer (device-to-host), 1632 * otherwise 0. 1633 */ 1634static inline int usb_urb_dir_in(struct urb *urb) 1635{ 1636 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1637} 1638 1639/** 1640 * usb_urb_dir_out - check if an URB describes an OUT transfer 1641 * @urb: URB to be checked 1642 * 1643 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1644 * otherwise 0. 1645 */ 1646static inline int usb_urb_dir_out(struct urb *urb) 1647{ 1648 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1649} 1650 1651void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1652 gfp_t mem_flags, dma_addr_t *dma); 1653void usb_free_coherent(struct usb_device *dev, size_t size, 1654 void *addr, dma_addr_t dma); 1655 1656#if 0 1657struct urb *usb_buffer_map(struct urb *urb); 1658void usb_buffer_dmasync(struct urb *urb); 1659void usb_buffer_unmap(struct urb *urb); 1660#endif 1661 1662struct scatterlist; 1663int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1664 struct scatterlist *sg, int nents); 1665#if 0 1666void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1667 struct scatterlist *sg, int n_hw_ents); 1668#endif 1669void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1670 struct scatterlist *sg, int n_hw_ents); 1671 1672/*-------------------------------------------------------------------* 1673 * SYNCHRONOUS CALL SUPPORT * 1674 *-------------------------------------------------------------------*/ 1675 1676extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1677 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1678 void *data, __u16 size, int timeout); 1679extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1680 void *data, int len, int *actual_length, int timeout); 1681extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1682 void *data, int len, int *actual_length, 1683 int timeout); 1684 1685/* wrappers around usb_control_msg() for the most common standard requests */ 1686extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1687 unsigned char descindex, void *buf, int size); 1688extern int usb_get_status(struct usb_device *dev, 1689 int type, int target, void *data); 1690extern int usb_string(struct usb_device *dev, int index, 1691 char *buf, size_t size); 1692 1693/* wrappers that also update important state inside usbcore */ 1694extern int usb_clear_halt(struct usb_device *dev, int pipe); 1695extern int usb_reset_configuration(struct usb_device *dev); 1696extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1697extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1698 1699/* this request isn't really synchronous, but it belongs with the others */ 1700extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1701 1702/* choose and set configuration for device */ 1703extern int usb_choose_configuration(struct usb_device *udev); 1704extern int usb_set_configuration(struct usb_device *dev, int configuration); 1705 1706/* 1707 * timeouts, in milliseconds, used for sending/receiving control messages 1708 * they typically complete within a few frames (msec) after they're issued 1709 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1710 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1711 */ 1712#define USB_CTRL_GET_TIMEOUT 5000 1713#define USB_CTRL_SET_TIMEOUT 5000 1714 1715 1716/** 1717 * struct usb_sg_request - support for scatter/gather I/O 1718 * @status: zero indicates success, else negative errno 1719 * @bytes: counts bytes transferred. 1720 * 1721 * These requests are initialized using usb_sg_init(), and then are used 1722 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1723 * members of the request object aren't for driver access. 1724 * 1725 * The status and bytecount values are valid only after usb_sg_wait() 1726 * returns. If the status is zero, then the bytecount matches the total 1727 * from the request. 1728 * 1729 * After an error completion, drivers may need to clear a halt condition 1730 * on the endpoint. 1731 */ 1732struct usb_sg_request { 1733 int status; 1734 size_t bytes; 1735 1736 /* private: 1737 * members below are private to usbcore, 1738 * and are not provided for driver access! 1739 */ 1740 spinlock_t lock; 1741 1742 struct usb_device *dev; 1743 int pipe; 1744 1745 int entries; 1746 struct urb **urbs; 1747 1748 int count; 1749 struct completion complete; 1750}; 1751 1752int usb_sg_init( 1753 struct usb_sg_request *io, 1754 struct usb_device *dev, 1755 unsigned pipe, 1756 unsigned period, 1757 struct scatterlist *sg, 1758 int nents, 1759 size_t length, 1760 gfp_t mem_flags 1761); 1762void usb_sg_cancel(struct usb_sg_request *io); 1763void usb_sg_wait(struct usb_sg_request *io); 1764 1765 1766/* ----------------------------------------------------------------------- */ 1767 1768/* 1769 * For various legacy reasons, Linux has a small cookie that's paired with 1770 * a struct usb_device to identify an endpoint queue. Queue characteristics 1771 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1772 * an unsigned int encoded as: 1773 * 1774 * - direction: bit 7 (0 = Host-to-Device [Out], 1775 * 1 = Device-to-Host [In] ... 1776 * like endpoint bEndpointAddress) 1777 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1778 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1779 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1780 * 10 = control, 11 = bulk) 1781 * 1782 * Given the device address and endpoint descriptor, pipes are redundant. 1783 */ 1784 1785/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1786/* (yet ... they're the values used by usbfs) */ 1787#define PIPE_ISOCHRONOUS 0 1788#define PIPE_INTERRUPT 1 1789#define PIPE_CONTROL 2 1790#define PIPE_BULK 3 1791 1792#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1793#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1794 1795#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1796#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1797 1798#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1799#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1800#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1801#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1802#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1803 1804static inline unsigned int __create_pipe(struct usb_device *dev, 1805 unsigned int endpoint) 1806{ 1807 return (dev->devnum << 8) | (endpoint << 15); 1808} 1809 1810/* Create various pipes... */ 1811#define usb_sndctrlpipe(dev, endpoint) \ 1812 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1813#define usb_rcvctrlpipe(dev, endpoint) \ 1814 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1815#define usb_sndisocpipe(dev, endpoint) \ 1816 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1817#define usb_rcvisocpipe(dev, endpoint) \ 1818 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1819#define usb_sndbulkpipe(dev, endpoint) \ 1820 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1821#define usb_rcvbulkpipe(dev, endpoint) \ 1822 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1823#define usb_sndintpipe(dev, endpoint) \ 1824 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1825#define usb_rcvintpipe(dev, endpoint) \ 1826 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1827 1828static inline struct usb_host_endpoint * 1829usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1830{ 1831 struct usb_host_endpoint **eps; 1832 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1833 return eps[usb_pipeendpoint(pipe)]; 1834} 1835 1836/*-------------------------------------------------------------------------*/ 1837 1838static inline __u16 1839usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1840{ 1841 struct usb_host_endpoint *ep; 1842 unsigned epnum = usb_pipeendpoint(pipe); 1843 1844 if (is_out) { 1845 WARN_ON(usb_pipein(pipe)); 1846 ep = udev->ep_out[epnum]; 1847 } else { 1848 WARN_ON(usb_pipeout(pipe)); 1849 ep = udev->ep_in[epnum]; 1850 } 1851 if (!ep) 1852 return 0; 1853 1854 /* NOTE: only 0x07ff bits are for packet size... */ 1855 return usb_endpoint_maxp(&ep->desc); 1856} 1857 1858/* ----------------------------------------------------------------------- */ 1859 1860/* translate USB error codes to codes user space understands */ 1861static inline int usb_translate_errors(int error_code) 1862{ 1863 switch (error_code) { 1864 case 0: 1865 case -ENOMEM: 1866 case -ENODEV: 1867 case -EOPNOTSUPP: 1868 return error_code; 1869 default: 1870 return -EIO; 1871 } 1872} 1873 1874/* Events from the usb core */ 1875#define USB_DEVICE_ADD 0x0001 1876#define USB_DEVICE_REMOVE 0x0002 1877#define USB_BUS_ADD 0x0003 1878#define USB_BUS_REMOVE 0x0004 1879extern void usb_register_notify(struct notifier_block *nb); 1880extern void usb_unregister_notify(struct notifier_block *nb); 1881 1882/* debugfs stuff */ 1883extern struct dentry *usb_debug_root; 1884 1885/* LED triggers */ 1886enum usb_led_event { 1887 USB_LED_EVENT_HOST = 0, 1888 USB_LED_EVENT_GADGET = 1, 1889}; 1890 1891#ifdef CONFIG_USB_LED_TRIG 1892extern void usb_led_activity(enum usb_led_event ev); 1893#else 1894static inline void usb_led_activity(enum usb_led_event ev) {} 1895#endif 1896 1897#endif /* __KERNEL__ */ 1898 1899#endif 1900