1#ifndef __LINUX_USB_H
2#define __LINUX_USB_H
3
4#include <linux/mod_devicetable.h>
5#include <linux/usb/ch9.h>
6
7#define USB_MAJOR			180
8#define USB_DEVICE_MAJOR		189
9
10
11#ifdef __KERNEL__
12
13#include <linux/errno.h>        /* for -ENODEV */
14#include <linux/delay.h>	/* for mdelay() */
15#include <linux/interrupt.h>	/* for in_interrupt() */
16#include <linux/list.h>		/* for struct list_head */
17#include <linux/kref.h>		/* for struct kref */
18#include <linux/device.h>	/* for struct device */
19#include <linux/fs.h>		/* for struct file_operations */
20#include <linux/completion.h>	/* for struct completion */
21#include <linux/sched.h>	/* for current && schedule_timeout */
22#include <linux/mutex.h>	/* for struct mutex */
23#include <linux/pm_runtime.h>	/* for runtime PM */
24
25struct usb_device;
26struct usb_driver;
27struct wusb_dev;
28
29/*-------------------------------------------------------------------------*/
30
31/*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices.  Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 *  - devices have one (usually) or more configs;
37 *  - configs have one (often) or more interfaces;
38 *  - interfaces have one (usually) or more settings;
39 *  - each interface setting has zero or (usually) more endpoints.
40 *  - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47struct ep_device;
48
49/**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 *	with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 * @streams: number of USB-3 streams allocated on the endpoint
61 *
62 * USB requests are always queued to a given endpoint, identified by a
63 * descriptor within an active interface in a given USB configuration.
64 */
65struct usb_host_endpoint {
66	struct usb_endpoint_descriptor		desc;
67	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
68	struct list_head		urb_list;
69	void				*hcpriv;
70	struct ep_device		*ep_dev;	/* For sysfs info */
71
72	unsigned char *extra;   /* Extra descriptors */
73	int extralen;
74	int enabled;
75	int streams;
76};
77
78/* host-side wrapper for one interface setting's parsed descriptors */
79struct usb_host_interface {
80	struct usb_interface_descriptor	desc;
81
82	int extralen;
83	unsigned char *extra;   /* Extra descriptors */
84
85	/* array of desc.bNumEndpoints endpoints associated with this
86	 * interface setting.  these will be in no particular order.
87	 */
88	struct usb_host_endpoint *endpoint;
89
90	char *string;		/* iInterface string, if present */
91};
92
93enum usb_interface_condition {
94	USB_INTERFACE_UNBOUND = 0,
95	USB_INTERFACE_BINDING,
96	USB_INTERFACE_BOUND,
97	USB_INTERFACE_UNBINDING,
98};
99
100/**
101 * struct usb_interface - what usb device drivers talk to
102 * @altsetting: array of interface structures, one for each alternate
103 *	setting that may be selected.  Each one includes a set of
104 *	endpoint configurations.  They will be in no particular order.
105 * @cur_altsetting: the current altsetting.
106 * @num_altsetting: number of altsettings defined.
107 * @intf_assoc: interface association descriptor
108 * @minor: the minor number assigned to this interface, if this
109 *	interface is bound to a driver that uses the USB major number.
110 *	If this interface does not use the USB major, this field should
111 *	be unused.  The driver should set this value in the probe()
112 *	function of the driver, after it has been assigned a minor
113 *	number from the USB core by calling usb_register_dev().
114 * @condition: binding state of the interface: not bound, binding
115 *	(in probe()), bound to a driver, or unbinding (in disconnect())
116 * @sysfs_files_created: sysfs attributes exist
117 * @ep_devs_created: endpoint child pseudo-devices exist
118 * @unregistering: flag set when the interface is being unregistered
119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
120 *	capability during autosuspend.
121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
122 *	has been deferred.
123 * @needs_binding: flag set when the driver should be re-probed or unbound
124 *	following a reset or suspend operation it doesn't support.
125 * @dev: driver model's view of this device
126 * @usb_dev: if an interface is bound to the USB major, this will point
127 *	to the sysfs representation for that device.
128 * @pm_usage_cnt: PM usage counter for this interface
129 * @reset_ws: Used for scheduling resets from atomic context.
130 * @resetting_device: USB core reset the device, so use alt setting 0 as
131 *	current; needs bandwidth alloc after reset.
132 *
133 * USB device drivers attach to interfaces on a physical device.  Each
134 * interface encapsulates a single high level function, such as feeding
135 * an audio stream to a speaker or reporting a change in a volume control.
136 * Many USB devices only have one interface.  The protocol used to talk to
137 * an interface's endpoints can be defined in a usb "class" specification,
138 * or by a product's vendor.  The (default) control endpoint is part of
139 * every interface, but is never listed among the interface's descriptors.
140 *
141 * The driver that is bound to the interface can use standard driver model
142 * calls such as dev_get_drvdata() on the dev member of this structure.
143 *
144 * Each interface may have alternate settings.  The initial configuration
145 * of a device sets altsetting 0, but the device driver can change
146 * that setting using usb_set_interface().  Alternate settings are often
147 * used to control the use of periodic endpoints, such as by having
148 * different endpoints use different amounts of reserved USB bandwidth.
149 * All standards-conformant USB devices that use isochronous endpoints
150 * will use them in non-default settings.
151 *
152 * The USB specification says that alternate setting numbers must run from
153 * 0 to one less than the total number of alternate settings.  But some
154 * devices manage to mess this up, and the structures aren't necessarily
155 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
156 * look up an alternate setting in the altsetting array based on its number.
157 */
158struct usb_interface {
159	/* array of alternate settings for this interface,
160	 * stored in no particular order */
161	struct usb_host_interface *altsetting;
162
163	struct usb_host_interface *cur_altsetting;	/* the currently
164					 * active alternate setting */
165	unsigned num_altsetting;	/* number of alternate settings */
166
167	/* If there is an interface association descriptor then it will list
168	 * the associated interfaces */
169	struct usb_interface_assoc_descriptor *intf_assoc;
170
171	int minor;			/* minor number this interface is
172					 * bound to */
173	enum usb_interface_condition condition;		/* state of binding */
174	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
175	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
176	unsigned unregistering:1;	/* unregistration is in progress */
177	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
178	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
179	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
180	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
181
182	struct device dev;		/* interface specific device info */
183	struct device *usb_dev;
184	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
185	struct work_struct reset_ws;	/* for resets in atomic context */
186};
187#define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
188
189static inline void *usb_get_intfdata(struct usb_interface *intf)
190{
191	return dev_get_drvdata(&intf->dev);
192}
193
194static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
195{
196	dev_set_drvdata(&intf->dev, data);
197}
198
199struct usb_interface *usb_get_intf(struct usb_interface *intf);
200void usb_put_intf(struct usb_interface *intf);
201
202/* Hard limit */
203#define USB_MAXENDPOINTS	30
204/* this maximum is arbitrary */
205#define USB_MAXINTERFACES	32
206#define USB_MAXIADS		(USB_MAXINTERFACES/2)
207
208/*
209 * USB Resume Timer: Every Host controller driver should drive the resume
210 * signalling on the bus for the amount of time defined by this macro.
211 *
212 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
213 *
214 * Note that the USB Specification states we should drive resume for *at least*
215 * 20 ms, but it doesn't give an upper bound. This creates two possible
216 * situations which we want to avoid:
217 *
218 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
219 * us to fail USB Electrical Tests, thus failing Certification
220 *
221 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
222 * and while we can argue that's against the USB Specification, we don't have
223 * control over which devices a certification laboratory will be using for
224 * certification. If CertLab uses a device which was tested against Windows and
225 * that happens to have relaxed resume signalling rules, we might fall into
226 * situations where we fail interoperability and electrical tests.
227 *
228 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
229 * should cope with both LPJ calibration errors and devices not following every
230 * detail of the USB Specification.
231 */
232#define USB_RESUME_TIMEOUT	40 /* ms */
233
234/**
235 * struct usb_interface_cache - long-term representation of a device interface
236 * @num_altsetting: number of altsettings defined.
237 * @ref: reference counter.
238 * @altsetting: variable-length array of interface structures, one for
239 *	each alternate setting that may be selected.  Each one includes a
240 *	set of endpoint configurations.  They will be in no particular order.
241 *
242 * These structures persist for the lifetime of a usb_device, unlike
243 * struct usb_interface (which persists only as long as its configuration
244 * is installed).  The altsetting arrays can be accessed through these
245 * structures at any time, permitting comparison of configurations and
246 * providing support for the /proc/bus/usb/devices pseudo-file.
247 */
248struct usb_interface_cache {
249	unsigned num_altsetting;	/* number of alternate settings */
250	struct kref ref;		/* reference counter */
251
252	/* variable-length array of alternate settings for this interface,
253	 * stored in no particular order */
254	struct usb_host_interface altsetting[0];
255};
256#define	ref_to_usb_interface_cache(r) \
257		container_of(r, struct usb_interface_cache, ref)
258#define	altsetting_to_usb_interface_cache(a) \
259		container_of(a, struct usb_interface_cache, altsetting[0])
260
261/**
262 * struct usb_host_config - representation of a device's configuration
263 * @desc: the device's configuration descriptor.
264 * @string: pointer to the cached version of the iConfiguration string, if
265 *	present for this configuration.
266 * @intf_assoc: list of any interface association descriptors in this config
267 * @interface: array of pointers to usb_interface structures, one for each
268 *	interface in the configuration.  The number of interfaces is stored
269 *	in desc.bNumInterfaces.  These pointers are valid only while the
270 *	the configuration is active.
271 * @intf_cache: array of pointers to usb_interface_cache structures, one
272 *	for each interface in the configuration.  These structures exist
273 *	for the entire life of the device.
274 * @extra: pointer to buffer containing all extra descriptors associated
275 *	with this configuration (those preceding the first interface
276 *	descriptor).
277 * @extralen: length of the extra descriptors buffer.
278 *
279 * USB devices may have multiple configurations, but only one can be active
280 * at any time.  Each encapsulates a different operational environment;
281 * for example, a dual-speed device would have separate configurations for
282 * full-speed and high-speed operation.  The number of configurations
283 * available is stored in the device descriptor as bNumConfigurations.
284 *
285 * A configuration can contain multiple interfaces.  Each corresponds to
286 * a different function of the USB device, and all are available whenever
287 * the configuration is active.  The USB standard says that interfaces
288 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
289 * of devices get this wrong.  In addition, the interface array is not
290 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
291 * look up an interface entry based on its number.
292 *
293 * Device drivers should not attempt to activate configurations.  The choice
294 * of which configuration to install is a policy decision based on such
295 * considerations as available power, functionality provided, and the user's
296 * desires (expressed through userspace tools).  However, drivers can call
297 * usb_reset_configuration() to reinitialize the current configuration and
298 * all its interfaces.
299 */
300struct usb_host_config {
301	struct usb_config_descriptor	desc;
302
303	char *string;		/* iConfiguration string, if present */
304
305	/* List of any Interface Association Descriptors in this
306	 * configuration. */
307	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
308
309	/* the interfaces associated with this configuration,
310	 * stored in no particular order */
311	struct usb_interface *interface[USB_MAXINTERFACES];
312
313	/* Interface information available even when this is not the
314	 * active configuration */
315	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
316
317	unsigned char *extra;   /* Extra descriptors */
318	int extralen;
319};
320
321/* USB2.0 and USB3.0 device BOS descriptor set */
322struct usb_host_bos {
323	struct usb_bos_descriptor	*desc;
324
325	/* wireless cap descriptor is handled by wusb */
326	struct usb_ext_cap_descriptor	*ext_cap;
327	struct usb_ss_cap_descriptor	*ss_cap;
328	struct usb_ss_container_id_descriptor	*ss_id;
329};
330
331int __usb_get_extra_descriptor(char *buffer, unsigned size,
332	unsigned char type, void **ptr);
333#define usb_get_extra_descriptor(ifpoint, type, ptr) \
334				__usb_get_extra_descriptor((ifpoint)->extra, \
335				(ifpoint)->extralen, \
336				type, (void **)ptr)
337
338/* ----------------------------------------------------------------------- */
339
340/* USB device number allocation bitmap */
341struct usb_devmap {
342	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
343};
344
345/*
346 * Allocated per bus (tree of devices) we have:
347 */
348struct usb_bus {
349	struct device *controller;	/* host/master side hardware */
350	int busnum;			/* Bus number (in order of reg) */
351	const char *bus_name;		/* stable id (PCI slot_name etc) */
352	u8 uses_dma;			/* Does the host controller use DMA? */
353	u8 uses_pio_for_control;	/*
354					 * Does the host controller use PIO
355					 * for control transfers?
356					 */
357	u8 otg_port;			/* 0, or number of OTG/HNP port */
358	unsigned is_b_host:1;		/* true during some HNP roleswitches */
359	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
360	unsigned no_stop_on_short:1;    /*
361					 * Quirk: some controllers don't stop
362					 * the ep queue on a short transfer
363					 * with the URB_SHORT_NOT_OK flag set.
364					 */
365	unsigned no_sg_constraint:1;	/* no sg constraint */
366	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
367
368	int devnum_next;		/* Next open device number in
369					 * round-robin allocation */
370	struct mutex devnum_next_mutex; /* devnum_next mutex */
371
372	struct usb_devmap devmap;	/* device address allocation map */
373	struct usb_device *root_hub;	/* Root hub */
374	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
375	struct list_head bus_list;	/* list of busses */
376
377	int bandwidth_allocated;	/* on this bus: how much of the time
378					 * reserved for periodic (intr/iso)
379					 * requests is used, on average?
380					 * Units: microseconds/frame.
381					 * Limits: Full/low speed reserve 90%,
382					 * while high speed reserves 80%.
383					 */
384	int bandwidth_int_reqs;		/* number of Interrupt requests */
385	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
386
387	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
388
389#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
390	struct mon_bus *mon_bus;	/* non-null when associated */
391	int monitored;			/* non-zero when monitored */
392#endif
393};
394
395struct usb_dev_state;
396
397/* ----------------------------------------------------------------------- */
398
399struct usb_tt;
400
401enum usb_device_removable {
402	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
403	USB_DEVICE_REMOVABLE,
404	USB_DEVICE_FIXED,
405};
406
407enum usb_port_connect_type {
408	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
409	USB_PORT_CONNECT_TYPE_HOT_PLUG,
410	USB_PORT_CONNECT_TYPE_HARD_WIRED,
411	USB_PORT_NOT_USED,
412};
413
414/*
415 * USB 2.0 Link Power Management (LPM) parameters.
416 */
417struct usb2_lpm_parameters {
418	/* Best effort service latency indicate how long the host will drive
419	 * resume on an exit from L1.
420	 */
421	unsigned int besl;
422
423	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
424	 * When the timer counts to zero, the parent hub will initiate a LPM
425	 * transition to L1.
426	 */
427	int timeout;
428};
429
430/*
431 * USB 3.0 Link Power Management (LPM) parameters.
432 *
433 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
434 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
435 * All three are stored in nanoseconds.
436 */
437struct usb3_lpm_parameters {
438	/*
439	 * Maximum exit latency (MEL) for the host to send a packet to the
440	 * device (either a Ping for isoc endpoints, or a data packet for
441	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
442	 * in the path to transition the links to U0.
443	 */
444	unsigned int mel;
445	/*
446	 * Maximum exit latency for a device-initiated LPM transition to bring
447	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
448	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
449	 */
450	unsigned int pel;
451
452	/*
453	 * The System Exit Latency (SEL) includes PEL, and three other
454	 * latencies.  After a device initiates a U0 transition, it will take
455	 * some time from when the device sends the ERDY to when it will finally
456	 * receive the data packet.  Basically, SEL should be the worse-case
457	 * latency from when a device starts initiating a U0 transition to when
458	 * it will get data.
459	 */
460	unsigned int sel;
461	/*
462	 * The idle timeout value that is currently programmed into the parent
463	 * hub for this device.  When the timer counts to zero, the parent hub
464	 * will initiate an LPM transition to either U1 or U2.
465	 */
466	int timeout;
467};
468
469/**
470 * struct usb_device - kernel's representation of a USB device
471 * @devnum: device number; address on a USB bus
472 * @devpath: device ID string for use in messages (e.g., /port/...)
473 * @route: tree topology hex string for use with xHCI
474 * @state: device state: configured, not attached, etc.
475 * @speed: device speed: high/full/low (or error)
476 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
477 * @ttport: device port on that tt hub
478 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
479 * @parent: our hub, unless we're the root
480 * @bus: bus we're part of
481 * @ep0: endpoint 0 data (default control pipe)
482 * @dev: generic device interface
483 * @descriptor: USB device descriptor
484 * @bos: USB device BOS descriptor set
485 * @config: all of the device's configs
486 * @actconfig: the active configuration
487 * @ep_in: array of IN endpoints
488 * @ep_out: array of OUT endpoints
489 * @rawdescriptors: raw descriptors for each config
490 * @bus_mA: Current available from the bus
491 * @portnum: parent port number (origin 1)
492 * @level: number of USB hub ancestors
493 * @can_submit: URBs may be submitted
494 * @persist_enabled:  USB_PERSIST enabled for this device
495 * @have_langid: whether string_langid is valid
496 * @authorized: policy has said we can use it;
497 *	(user space) policy determines if we authorize this device to be
498 *	used or not. By default, wired USB devices are authorized.
499 *	WUSB devices are not, until we authorize them from user space.
500 *	FIXME -- complete doc
501 * @authenticated: Crypto authentication passed
502 * @wusb: device is Wireless USB
503 * @lpm_capable: device supports LPM
504 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
505 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
506 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
507 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
508 * @usb3_lpm_enabled: USB3 hardware LPM enabled
509 * @string_langid: language ID for strings
510 * @product: iProduct string, if present (static)
511 * @manufacturer: iManufacturer string, if present (static)
512 * @serial: iSerialNumber string, if present (static)
513 * @filelist: usbfs files that are open to this device
514 * @maxchild: number of ports if hub
515 * @quirks: quirks of the whole device
516 * @urbnum: number of URBs submitted for the whole device
517 * @active_duration: total time device is not suspended
518 * @connect_time: time device was first connected
519 * @do_remote_wakeup:  remote wakeup should be enabled
520 * @reset_resume: needs reset instead of resume
521 * @port_is_suspended: the upstream port is suspended (L2 or U3)
522 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
523 *	specific data for the device.
524 * @slot_id: Slot ID assigned by xHCI
525 * @removable: Device can be physically removed from this port
526 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
527 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
528 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
529 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
530 *	to keep track of the number of functions that require USB 3.0 Link Power
531 *	Management to be disabled for this usb_device.  This count should only
532 *	be manipulated by those functions, with the bandwidth_mutex is held.
533 *
534 * Notes:
535 * Usbcore drivers should not set usbdev->state directly.  Instead use
536 * usb_set_device_state().
537 */
538struct usb_device {
539	int		devnum;
540	char		devpath[16];
541	u32		route;
542	enum usb_device_state	state;
543	enum usb_device_speed	speed;
544
545	struct usb_tt	*tt;
546	int		ttport;
547
548	unsigned int toggle[2];
549
550	struct usb_device *parent;
551	struct usb_bus *bus;
552	struct usb_host_endpoint ep0;
553
554	struct device dev;
555
556	struct usb_device_descriptor descriptor;
557	struct usb_host_bos *bos;
558	struct usb_host_config *config;
559
560	struct usb_host_config *actconfig;
561	struct usb_host_endpoint *ep_in[16];
562	struct usb_host_endpoint *ep_out[16];
563
564	char **rawdescriptors;
565
566	unsigned short bus_mA;
567	u8 portnum;
568	u8 level;
569
570	unsigned can_submit:1;
571	unsigned persist_enabled:1;
572	unsigned have_langid:1;
573	unsigned authorized:1;
574	unsigned authenticated:1;
575	unsigned wusb:1;
576	unsigned lpm_capable:1;
577	unsigned usb2_hw_lpm_capable:1;
578	unsigned usb2_hw_lpm_besl_capable:1;
579	unsigned usb2_hw_lpm_enabled:1;
580	unsigned usb2_hw_lpm_allowed:1;
581	unsigned usb3_lpm_enabled:1;
582	int string_langid;
583
584	/* static strings from the device */
585	char *product;
586	char *manufacturer;
587	char *serial;
588
589	struct list_head filelist;
590
591	int maxchild;
592
593	u32 quirks;
594	atomic_t urbnum;
595
596	unsigned long active_duration;
597
598#ifdef CONFIG_PM
599	unsigned long connect_time;
600
601	unsigned do_remote_wakeup:1;
602	unsigned reset_resume:1;
603	unsigned port_is_suspended:1;
604#endif
605	struct wusb_dev *wusb_dev;
606	int slot_id;
607	enum usb_device_removable removable;
608	struct usb2_lpm_parameters l1_params;
609	struct usb3_lpm_parameters u1_params;
610	struct usb3_lpm_parameters u2_params;
611	unsigned lpm_disable_count;
612};
613#define	to_usb_device(d) container_of(d, struct usb_device, dev)
614
615static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
616{
617	return to_usb_device(intf->dev.parent);
618}
619
620extern struct usb_device *usb_get_dev(struct usb_device *dev);
621extern void usb_put_dev(struct usb_device *dev);
622extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
623	int port1);
624
625/**
626 * usb_hub_for_each_child - iterate over all child devices on the hub
627 * @hdev:  USB device belonging to the usb hub
628 * @port1: portnum associated with child device
629 * @child: child device pointer
630 */
631#define usb_hub_for_each_child(hdev, port1, child) \
632	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
633			port1 <= hdev->maxchild; \
634			child = usb_hub_find_child(hdev, ++port1)) \
635		if (!child) continue; else
636
637/* USB device locking */
638#define usb_lock_device(udev)		device_lock(&(udev)->dev)
639#define usb_unlock_device(udev)		device_unlock(&(udev)->dev)
640#define usb_trylock_device(udev)	device_trylock(&(udev)->dev)
641extern int usb_lock_device_for_reset(struct usb_device *udev,
642				     const struct usb_interface *iface);
643
644/* USB port reset for device reinitialization */
645extern int usb_reset_device(struct usb_device *dev);
646extern void usb_queue_reset_device(struct usb_interface *dev);
647
648#ifdef CONFIG_ACPI
649extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
650	bool enable);
651extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
652#else
653static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
654	bool enable) { return 0; }
655static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
656	{ return true; }
657#endif
658
659/* USB autosuspend and autoresume */
660#ifdef CONFIG_PM
661extern void usb_enable_autosuspend(struct usb_device *udev);
662extern void usb_disable_autosuspend(struct usb_device *udev);
663
664extern int usb_autopm_get_interface(struct usb_interface *intf);
665extern void usb_autopm_put_interface(struct usb_interface *intf);
666extern int usb_autopm_get_interface_async(struct usb_interface *intf);
667extern void usb_autopm_put_interface_async(struct usb_interface *intf);
668extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
669extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
670
671static inline void usb_mark_last_busy(struct usb_device *udev)
672{
673	pm_runtime_mark_last_busy(&udev->dev);
674}
675
676#else
677
678static inline int usb_enable_autosuspend(struct usb_device *udev)
679{ return 0; }
680static inline int usb_disable_autosuspend(struct usb_device *udev)
681{ return 0; }
682
683static inline int usb_autopm_get_interface(struct usb_interface *intf)
684{ return 0; }
685static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
686{ return 0; }
687
688static inline void usb_autopm_put_interface(struct usb_interface *intf)
689{ }
690static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
691{ }
692static inline void usb_autopm_get_interface_no_resume(
693		struct usb_interface *intf)
694{ }
695static inline void usb_autopm_put_interface_no_suspend(
696		struct usb_interface *intf)
697{ }
698static inline void usb_mark_last_busy(struct usb_device *udev)
699{ }
700#endif
701
702extern int usb_disable_lpm(struct usb_device *udev);
703extern void usb_enable_lpm(struct usb_device *udev);
704/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
705extern int usb_unlocked_disable_lpm(struct usb_device *udev);
706extern void usb_unlocked_enable_lpm(struct usb_device *udev);
707
708extern int usb_disable_ltm(struct usb_device *udev);
709extern void usb_enable_ltm(struct usb_device *udev);
710
711static inline bool usb_device_supports_ltm(struct usb_device *udev)
712{
713	if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
714		return false;
715	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
716}
717
718static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
719{
720	return udev && udev->bus && udev->bus->no_sg_constraint;
721}
722
723
724/*-------------------------------------------------------------------------*/
725
726/* for drivers using iso endpoints */
727extern int usb_get_current_frame_number(struct usb_device *usb_dev);
728
729/* Sets up a group of bulk endpoints to support multiple stream IDs. */
730extern int usb_alloc_streams(struct usb_interface *interface,
731		struct usb_host_endpoint **eps, unsigned int num_eps,
732		unsigned int num_streams, gfp_t mem_flags);
733
734/* Reverts a group of bulk endpoints back to not using stream IDs. */
735extern int usb_free_streams(struct usb_interface *interface,
736		struct usb_host_endpoint **eps, unsigned int num_eps,
737		gfp_t mem_flags);
738
739/* used these for multi-interface device registration */
740extern int usb_driver_claim_interface(struct usb_driver *driver,
741			struct usb_interface *iface, void *priv);
742
743/**
744 * usb_interface_claimed - returns true iff an interface is claimed
745 * @iface: the interface being checked
746 *
747 * Return: %true (nonzero) iff the interface is claimed, else %false
748 * (zero).
749 *
750 * Note:
751 * Callers must own the driver model's usb bus readlock.  So driver
752 * probe() entries don't need extra locking, but other call contexts
753 * may need to explicitly claim that lock.
754 *
755 */
756static inline int usb_interface_claimed(struct usb_interface *iface)
757{
758	return (iface->dev.driver != NULL);
759}
760
761extern void usb_driver_release_interface(struct usb_driver *driver,
762			struct usb_interface *iface);
763const struct usb_device_id *usb_match_id(struct usb_interface *interface,
764					 const struct usb_device_id *id);
765extern int usb_match_one_id(struct usb_interface *interface,
766			    const struct usb_device_id *id);
767
768extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
769extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
770		int minor);
771extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
772		unsigned ifnum);
773extern struct usb_host_interface *usb_altnum_to_altsetting(
774		const struct usb_interface *intf, unsigned int altnum);
775extern struct usb_host_interface *usb_find_alt_setting(
776		struct usb_host_config *config,
777		unsigned int iface_num,
778		unsigned int alt_num);
779
780/* port claiming functions */
781int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
782		struct usb_dev_state *owner);
783int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
784		struct usb_dev_state *owner);
785
786/**
787 * usb_make_path - returns stable device path in the usb tree
788 * @dev: the device whose path is being constructed
789 * @buf: where to put the string
790 * @size: how big is "buf"?
791 *
792 * Return: Length of the string (> 0) or negative if size was too small.
793 *
794 * Note:
795 * This identifier is intended to be "stable", reflecting physical paths in
796 * hardware such as physical bus addresses for host controllers or ports on
797 * USB hubs.  That makes it stay the same until systems are physically
798 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
799 * controllers.  Adding and removing devices, including virtual root hubs
800 * in host controller driver modules, does not change these path identifiers;
801 * neither does rebooting or re-enumerating.  These are more useful identifiers
802 * than changeable ("unstable") ones like bus numbers or device addresses.
803 *
804 * With a partial exception for devices connected to USB 2.0 root hubs, these
805 * identifiers are also predictable.  So long as the device tree isn't changed,
806 * plugging any USB device into a given hub port always gives it the same path.
807 * Because of the use of "companion" controllers, devices connected to ports on
808 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
809 * high speed, and a different one if they are full or low speed.
810 */
811static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
812{
813	int actual;
814	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
815			  dev->devpath);
816	return (actual >= (int)size) ? -1 : actual;
817}
818
819/*-------------------------------------------------------------------------*/
820
821#define USB_DEVICE_ID_MATCH_DEVICE \
822		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
823#define USB_DEVICE_ID_MATCH_DEV_RANGE \
824		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
825#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
826		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
827#define USB_DEVICE_ID_MATCH_DEV_INFO \
828		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
829		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
830		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
831#define USB_DEVICE_ID_MATCH_INT_INFO \
832		(USB_DEVICE_ID_MATCH_INT_CLASS | \
833		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
834		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
835
836/**
837 * USB_DEVICE - macro used to describe a specific usb device
838 * @vend: the 16 bit USB Vendor ID
839 * @prod: the 16 bit USB Product ID
840 *
841 * This macro is used to create a struct usb_device_id that matches a
842 * specific device.
843 */
844#define USB_DEVICE(vend, prod) \
845	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
846	.idVendor = (vend), \
847	.idProduct = (prod)
848/**
849 * USB_DEVICE_VER - describe a specific usb device with a version range
850 * @vend: the 16 bit USB Vendor ID
851 * @prod: the 16 bit USB Product ID
852 * @lo: the bcdDevice_lo value
853 * @hi: the bcdDevice_hi value
854 *
855 * This macro is used to create a struct usb_device_id that matches a
856 * specific device, with a version range.
857 */
858#define USB_DEVICE_VER(vend, prod, lo, hi) \
859	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
860	.idVendor = (vend), \
861	.idProduct = (prod), \
862	.bcdDevice_lo = (lo), \
863	.bcdDevice_hi = (hi)
864
865/**
866 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
867 * @vend: the 16 bit USB Vendor ID
868 * @prod: the 16 bit USB Product ID
869 * @cl: bInterfaceClass value
870 *
871 * This macro is used to create a struct usb_device_id that matches a
872 * specific interface class of devices.
873 */
874#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
875	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
876		       USB_DEVICE_ID_MATCH_INT_CLASS, \
877	.idVendor = (vend), \
878	.idProduct = (prod), \
879	.bInterfaceClass = (cl)
880
881/**
882 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
883 * @vend: the 16 bit USB Vendor ID
884 * @prod: the 16 bit USB Product ID
885 * @pr: bInterfaceProtocol value
886 *
887 * This macro is used to create a struct usb_device_id that matches a
888 * specific interface protocol of devices.
889 */
890#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
891	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
892		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
893	.idVendor = (vend), \
894	.idProduct = (prod), \
895	.bInterfaceProtocol = (pr)
896
897/**
898 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
899 * @vend: the 16 bit USB Vendor ID
900 * @prod: the 16 bit USB Product ID
901 * @num: bInterfaceNumber value
902 *
903 * This macro is used to create a struct usb_device_id that matches a
904 * specific interface number of devices.
905 */
906#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
907	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
908		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
909	.idVendor = (vend), \
910	.idProduct = (prod), \
911	.bInterfaceNumber = (num)
912
913/**
914 * USB_DEVICE_INFO - macro used to describe a class of usb devices
915 * @cl: bDeviceClass value
916 * @sc: bDeviceSubClass value
917 * @pr: bDeviceProtocol value
918 *
919 * This macro is used to create a struct usb_device_id that matches a
920 * specific class of devices.
921 */
922#define USB_DEVICE_INFO(cl, sc, pr) \
923	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
924	.bDeviceClass = (cl), \
925	.bDeviceSubClass = (sc), \
926	.bDeviceProtocol = (pr)
927
928/**
929 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
930 * @cl: bInterfaceClass value
931 * @sc: bInterfaceSubClass value
932 * @pr: bInterfaceProtocol value
933 *
934 * This macro is used to create a struct usb_device_id that matches a
935 * specific class of interfaces.
936 */
937#define USB_INTERFACE_INFO(cl, sc, pr) \
938	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
939	.bInterfaceClass = (cl), \
940	.bInterfaceSubClass = (sc), \
941	.bInterfaceProtocol = (pr)
942
943/**
944 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
945 * @vend: the 16 bit USB Vendor ID
946 * @prod: the 16 bit USB Product ID
947 * @cl: bInterfaceClass value
948 * @sc: bInterfaceSubClass value
949 * @pr: bInterfaceProtocol value
950 *
951 * This macro is used to create a struct usb_device_id that matches a
952 * specific device with a specific class of interfaces.
953 *
954 * This is especially useful when explicitly matching devices that have
955 * vendor specific bDeviceClass values, but standards-compliant interfaces.
956 */
957#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
958	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
959		| USB_DEVICE_ID_MATCH_DEVICE, \
960	.idVendor = (vend), \
961	.idProduct = (prod), \
962	.bInterfaceClass = (cl), \
963	.bInterfaceSubClass = (sc), \
964	.bInterfaceProtocol = (pr)
965
966/**
967 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
968 * @vend: the 16 bit USB Vendor ID
969 * @cl: bInterfaceClass value
970 * @sc: bInterfaceSubClass value
971 * @pr: bInterfaceProtocol value
972 *
973 * This macro is used to create a struct usb_device_id that matches a
974 * specific vendor with a specific class of interfaces.
975 *
976 * This is especially useful when explicitly matching devices that have
977 * vendor specific bDeviceClass values, but standards-compliant interfaces.
978 */
979#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
980	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
981		| USB_DEVICE_ID_MATCH_VENDOR, \
982	.idVendor = (vend), \
983	.bInterfaceClass = (cl), \
984	.bInterfaceSubClass = (sc), \
985	.bInterfaceProtocol = (pr)
986
987/* ----------------------------------------------------------------------- */
988
989/* Stuff for dynamic usb ids */
990struct usb_dynids {
991	spinlock_t lock;
992	struct list_head list;
993};
994
995struct usb_dynid {
996	struct list_head node;
997	struct usb_device_id id;
998};
999
1000extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1001				const struct usb_device_id *id_table,
1002				struct device_driver *driver,
1003				const char *buf, size_t count);
1004
1005extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1006
1007/**
1008 * struct usbdrv_wrap - wrapper for driver-model structure
1009 * @driver: The driver-model core driver structure.
1010 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1011 */
1012struct usbdrv_wrap {
1013	struct device_driver driver;
1014	int for_devices;
1015};
1016
1017/**
1018 * struct usb_driver - identifies USB interface driver to usbcore
1019 * @name: The driver name should be unique among USB drivers,
1020 *	and should normally be the same as the module name.
1021 * @probe: Called to see if the driver is willing to manage a particular
1022 *	interface on a device.  If it is, probe returns zero and uses
1023 *	usb_set_intfdata() to associate driver-specific data with the
1024 *	interface.  It may also use usb_set_interface() to specify the
1025 *	appropriate altsetting.  If unwilling to manage the interface,
1026 *	return -ENODEV, if genuine IO errors occurred, an appropriate
1027 *	negative errno value.
1028 * @disconnect: Called when the interface is no longer accessible, usually
1029 *	because its device has been (or is being) disconnected or the
1030 *	driver module is being unloaded.
1031 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1032 *	the "usbfs" filesystem.  This lets devices provide ways to
1033 *	expose information to user space regardless of where they
1034 *	do (or don't) show up otherwise in the filesystem.
1035 * @suspend: Called when the device is going to be suspended by the
1036 *	system either from system sleep or runtime suspend context. The
1037 *	return value will be ignored in system sleep context, so do NOT
1038 *	try to continue using the device if suspend fails in this case.
1039 *	Instead, let the resume or reset-resume routine recover from
1040 *	the failure.
1041 * @resume: Called when the device is being resumed by the system.
1042 * @reset_resume: Called when the suspended device has been reset instead
1043 *	of being resumed.
1044 * @pre_reset: Called by usb_reset_device() when the device is about to be
1045 *	reset.  This routine must not return until the driver has no active
1046 *	URBs for the device, and no more URBs may be submitted until the
1047 *	post_reset method is called.
1048 * @post_reset: Called by usb_reset_device() after the device
1049 *	has been reset
1050 * @id_table: USB drivers use ID table to support hotplugging.
1051 *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1052 *	or your driver's probe function will never get called.
1053 * @dynids: used internally to hold the list of dynamically added device
1054 *	ids for this driver.
1055 * @drvwrap: Driver-model core structure wrapper.
1056 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1057 *	added to this driver by preventing the sysfs file from being created.
1058 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1059 *	for interfaces bound to this driver.
1060 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1061 *	endpoints before calling the driver's disconnect method.
1062 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1063 *	to initiate lower power link state transitions when an idle timeout
1064 *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1065 *
1066 * USB interface drivers must provide a name, probe() and disconnect()
1067 * methods, and an id_table.  Other driver fields are optional.
1068 *
1069 * The id_table is used in hotplugging.  It holds a set of descriptors,
1070 * and specialized data may be associated with each entry.  That table
1071 * is used by both user and kernel mode hotplugging support.
1072 *
1073 * The probe() and disconnect() methods are called in a context where
1074 * they can sleep, but they should avoid abusing the privilege.  Most
1075 * work to connect to a device should be done when the device is opened,
1076 * and undone at the last close.  The disconnect code needs to address
1077 * concurrency issues with respect to open() and close() methods, as
1078 * well as forcing all pending I/O requests to complete (by unlinking
1079 * them as necessary, and blocking until the unlinks complete).
1080 */
1081struct usb_driver {
1082	const char *name;
1083
1084	int (*probe) (struct usb_interface *intf,
1085		      const struct usb_device_id *id);
1086
1087	void (*disconnect) (struct usb_interface *intf);
1088
1089	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1090			void *buf);
1091
1092	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1093	int (*resume) (struct usb_interface *intf);
1094	int (*reset_resume)(struct usb_interface *intf);
1095
1096	int (*pre_reset)(struct usb_interface *intf);
1097	int (*post_reset)(struct usb_interface *intf);
1098
1099	const struct usb_device_id *id_table;
1100
1101	struct usb_dynids dynids;
1102	struct usbdrv_wrap drvwrap;
1103	unsigned int no_dynamic_id:1;
1104	unsigned int supports_autosuspend:1;
1105	unsigned int disable_hub_initiated_lpm:1;
1106	unsigned int soft_unbind:1;
1107};
1108#define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1109
1110/**
1111 * struct usb_device_driver - identifies USB device driver to usbcore
1112 * @name: The driver name should be unique among USB drivers,
1113 *	and should normally be the same as the module name.
1114 * @probe: Called to see if the driver is willing to manage a particular
1115 *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1116 *	to associate driver-specific data with the device.  If unwilling
1117 *	to manage the device, return a negative errno value.
1118 * @disconnect: Called when the device is no longer accessible, usually
1119 *	because it has been (or is being) disconnected or the driver's
1120 *	module is being unloaded.
1121 * @suspend: Called when the device is going to be suspended by the system.
1122 * @resume: Called when the device is being resumed by the system.
1123 * @drvwrap: Driver-model core structure wrapper.
1124 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1125 *	for devices bound to this driver.
1126 *
1127 * USB drivers must provide all the fields listed above except drvwrap.
1128 */
1129struct usb_device_driver {
1130	const char *name;
1131
1132	int (*probe) (struct usb_device *udev);
1133	void (*disconnect) (struct usb_device *udev);
1134
1135	int (*suspend) (struct usb_device *udev, pm_message_t message);
1136	int (*resume) (struct usb_device *udev, pm_message_t message);
1137	struct usbdrv_wrap drvwrap;
1138	unsigned int supports_autosuspend:1;
1139};
1140#define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1141		drvwrap.driver)
1142
1143extern struct bus_type usb_bus_type;
1144
1145/**
1146 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1147 * @name: the usb class device name for this driver.  Will show up in sysfs.
1148 * @devnode: Callback to provide a naming hint for a possible
1149 *	device node to create.
1150 * @fops: pointer to the struct file_operations of this driver.
1151 * @minor_base: the start of the minor range for this driver.
1152 *
1153 * This structure is used for the usb_register_dev() and
1154 * usb_unregister_dev() functions, to consolidate a number of the
1155 * parameters used for them.
1156 */
1157struct usb_class_driver {
1158	char *name;
1159	char *(*devnode)(struct device *dev, umode_t *mode);
1160	const struct file_operations *fops;
1161	int minor_base;
1162};
1163
1164/*
1165 * use these in module_init()/module_exit()
1166 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1167 */
1168extern int usb_register_driver(struct usb_driver *, struct module *,
1169			       const char *);
1170
1171/* use a define to avoid include chaining to get THIS_MODULE & friends */
1172#define usb_register(driver) \
1173	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1174
1175extern void usb_deregister(struct usb_driver *);
1176
1177/**
1178 * module_usb_driver() - Helper macro for registering a USB driver
1179 * @__usb_driver: usb_driver struct
1180 *
1181 * Helper macro for USB drivers which do not do anything special in module
1182 * init/exit. This eliminates a lot of boilerplate. Each module may only
1183 * use this macro once, and calling it replaces module_init() and module_exit()
1184 */
1185#define module_usb_driver(__usb_driver) \
1186	module_driver(__usb_driver, usb_register, \
1187		       usb_deregister)
1188
1189extern int usb_register_device_driver(struct usb_device_driver *,
1190			struct module *);
1191extern void usb_deregister_device_driver(struct usb_device_driver *);
1192
1193extern int usb_register_dev(struct usb_interface *intf,
1194			    struct usb_class_driver *class_driver);
1195extern void usb_deregister_dev(struct usb_interface *intf,
1196			       struct usb_class_driver *class_driver);
1197
1198extern int usb_disabled(void);
1199
1200/* ----------------------------------------------------------------------- */
1201
1202/*
1203 * URB support, for asynchronous request completions
1204 */
1205
1206/*
1207 * urb->transfer_flags:
1208 *
1209 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1210 */
1211#define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1212#define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1213					 * slot in the schedule */
1214#define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1215#define URB_NO_FSBR		0x0020	/* UHCI-specific */
1216#define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1217#define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1218					 * needed */
1219#define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1220
1221/* The following flags are used internally by usbcore and HCDs */
1222#define URB_DIR_IN		0x0200	/* Transfer from device to host */
1223#define URB_DIR_OUT		0
1224#define URB_DIR_MASK		URB_DIR_IN
1225
1226#define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1227#define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1228#define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1229#define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1230#define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1231#define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1232#define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1233#define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1234
1235struct usb_iso_packet_descriptor {
1236	unsigned int offset;
1237	unsigned int length;		/* expected length */
1238	unsigned int actual_length;
1239	int status;
1240};
1241
1242struct urb;
1243
1244struct usb_anchor {
1245	struct list_head urb_list;
1246	wait_queue_head_t wait;
1247	spinlock_t lock;
1248	atomic_t suspend_wakeups;
1249	unsigned int poisoned:1;
1250};
1251
1252static inline void init_usb_anchor(struct usb_anchor *anchor)
1253{
1254	memset(anchor, 0, sizeof(*anchor));
1255	INIT_LIST_HEAD(&anchor->urb_list);
1256	init_waitqueue_head(&anchor->wait);
1257	spin_lock_init(&anchor->lock);
1258}
1259
1260typedef void (*usb_complete_t)(struct urb *);
1261
1262/**
1263 * struct urb - USB Request Block
1264 * @urb_list: For use by current owner of the URB.
1265 * @anchor_list: membership in the list of an anchor
1266 * @anchor: to anchor URBs to a common mooring
1267 * @ep: Points to the endpoint's data structure.  Will eventually
1268 *	replace @pipe.
1269 * @pipe: Holds endpoint number, direction, type, and more.
1270 *	Create these values with the eight macros available;
1271 *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1272 *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1273 *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1274 *	numbers range from zero to fifteen.  Note that "in" endpoint two
1275 *	is a different endpoint (and pipe) from "out" endpoint two.
1276 *	The current configuration controls the existence, type, and
1277 *	maximum packet size of any given endpoint.
1278 * @stream_id: the endpoint's stream ID for bulk streams
1279 * @dev: Identifies the USB device to perform the request.
1280 * @status: This is read in non-iso completion functions to get the
1281 *	status of the particular request.  ISO requests only use it
1282 *	to tell whether the URB was unlinked; detailed status for
1283 *	each frame is in the fields of the iso_frame-desc.
1284 * @transfer_flags: A variety of flags may be used to affect how URB
1285 *	submission, unlinking, or operation are handled.  Different
1286 *	kinds of URB can use different flags.
1287 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1288 *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1289 *	(however, do not leave garbage in transfer_buffer even then).
1290 *	This buffer must be suitable for DMA; allocate it with
1291 *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1292 *	of this buffer will be modified.  This buffer is used for the data
1293 *	stage of control transfers.
1294 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1295 *	the device driver is saying that it provided this DMA address,
1296 *	which the host controller driver should use in preference to the
1297 *	transfer_buffer.
1298 * @sg: scatter gather buffer list, the buffer size of each element in
1299 * 	the list (except the last) must be divisible by the endpoint's
1300 * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1301 * @num_mapped_sgs: (internal) number of mapped sg entries
1302 * @num_sgs: number of entries in the sg list
1303 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1304 *	be broken up into chunks according to the current maximum packet
1305 *	size for the endpoint, which is a function of the configuration
1306 *	and is encoded in the pipe.  When the length is zero, neither
1307 *	transfer_buffer nor transfer_dma is used.
1308 * @actual_length: This is read in non-iso completion functions, and
1309 *	it tells how many bytes (out of transfer_buffer_length) were
1310 *	transferred.  It will normally be the same as requested, unless
1311 *	either an error was reported or a short read was performed.
1312 *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1313 *	short reads be reported as errors.
1314 * @setup_packet: Only used for control transfers, this points to eight bytes
1315 *	of setup data.  Control transfers always start by sending this data
1316 *	to the device.  Then transfer_buffer is read or written, if needed.
1317 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1318 *	this field; setup_packet must point to a valid buffer.
1319 * @start_frame: Returns the initial frame for isochronous transfers.
1320 * @number_of_packets: Lists the number of ISO transfer buffers.
1321 * @interval: Specifies the polling interval for interrupt or isochronous
1322 *	transfers.  The units are frames (milliseconds) for full and low
1323 *	speed devices, and microframes (1/8 millisecond) for highspeed
1324 *	and SuperSpeed devices.
1325 * @error_count: Returns the number of ISO transfers that reported errors.
1326 * @context: For use in completion functions.  This normally points to
1327 *	request-specific driver context.
1328 * @complete: Completion handler. This URB is passed as the parameter to the
1329 *	completion function.  The completion function may then do what
1330 *	it likes with the URB, including resubmitting or freeing it.
1331 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1332 *	collect the transfer status for each buffer.
1333 *
1334 * This structure identifies USB transfer requests.  URBs must be allocated by
1335 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1336 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1337 * are submitted using usb_submit_urb(), and pending requests may be canceled
1338 * using usb_unlink_urb() or usb_kill_urb().
1339 *
1340 * Data Transfer Buffers:
1341 *
1342 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1343 * taken from the general page pool.  That is provided by transfer_buffer
1344 * (control requests also use setup_packet), and host controller drivers
1345 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1346 * mapping operations can be expensive on some platforms (perhaps using a dma
1347 * bounce buffer or talking to an IOMMU),
1348 * although they're cheap on commodity x86 and ppc hardware.
1349 *
1350 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1351 * which tells the host controller driver that no such mapping is needed for
1352 * the transfer_buffer since
1353 * the device driver is DMA-aware.  For example, a device driver might
1354 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1355 * When this transfer flag is provided, host controller drivers will
1356 * attempt to use the dma address found in the transfer_dma
1357 * field rather than determining a dma address themselves.
1358 *
1359 * Note that transfer_buffer must still be set if the controller
1360 * does not support DMA (as indicated by bus.uses_dma) and when talking
1361 * to root hub. If you have to trasfer between highmem zone and the device
1362 * on such controller, create a bounce buffer or bail out with an error.
1363 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1364 * capable, assign NULL to it, so that usbmon knows not to use the value.
1365 * The setup_packet must always be set, so it cannot be located in highmem.
1366 *
1367 * Initialization:
1368 *
1369 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1370 * zero), and complete fields.  All URBs must also initialize
1371 * transfer_buffer and transfer_buffer_length.  They may provide the
1372 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1373 * to be treated as errors; that flag is invalid for write requests.
1374 *
1375 * Bulk URBs may
1376 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1377 * should always terminate with a short packet, even if it means adding an
1378 * extra zero length packet.
1379 *
1380 * Control URBs must provide a valid pointer in the setup_packet field.
1381 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1382 * beforehand.
1383 *
1384 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1385 * or, for highspeed devices, 125 microsecond units)
1386 * to poll for transfers.  After the URB has been submitted, the interval
1387 * field reflects how the transfer was actually scheduled.
1388 * The polling interval may be more frequent than requested.
1389 * For example, some controllers have a maximum interval of 32 milliseconds,
1390 * while others support intervals of up to 1024 milliseconds.
1391 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1392 * endpoints, as well as high speed interrupt endpoints, the encoding of
1393 * the transfer interval in the endpoint descriptor is logarithmic.
1394 * Device drivers must convert that value to linear units themselves.)
1395 *
1396 * If an isochronous endpoint queue isn't already running, the host
1397 * controller will schedule a new URB to start as soon as bandwidth
1398 * utilization allows.  If the queue is running then a new URB will be
1399 * scheduled to start in the first transfer slot following the end of the
1400 * preceding URB, if that slot has not already expired.  If the slot has
1401 * expired (which can happen when IRQ delivery is delayed for a long time),
1402 * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1403 * is clear then the URB will be scheduled to start in the expired slot,
1404 * implying that some of its packets will not be transferred; if the flag
1405 * is set then the URB will be scheduled in the first unexpired slot,
1406 * breaking the queue's synchronization.  Upon URB completion, the
1407 * start_frame field will be set to the (micro)frame number in which the
1408 * transfer was scheduled.  Ranges for frame counter values are HC-specific
1409 * and can go from as low as 256 to as high as 65536 frames.
1410 *
1411 * Isochronous URBs have a different data transfer model, in part because
1412 * the quality of service is only "best effort".  Callers provide specially
1413 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1414 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1415 * URBs are normally queued, submitted by drivers to arrange that
1416 * transfers are at least double buffered, and then explicitly resubmitted
1417 * in completion handlers, so
1418 * that data (such as audio or video) streams at as constant a rate as the
1419 * host controller scheduler can support.
1420 *
1421 * Completion Callbacks:
1422 *
1423 * The completion callback is made in_interrupt(), and one of the first
1424 * things that a completion handler should do is check the status field.
1425 * The status field is provided for all URBs.  It is used to report
1426 * unlinked URBs, and status for all non-ISO transfers.  It should not
1427 * be examined before the URB is returned to the completion handler.
1428 *
1429 * The context field is normally used to link URBs back to the relevant
1430 * driver or request state.
1431 *
1432 * When the completion callback is invoked for non-isochronous URBs, the
1433 * actual_length field tells how many bytes were transferred.  This field
1434 * is updated even when the URB terminated with an error or was unlinked.
1435 *
1436 * ISO transfer status is reported in the status and actual_length fields
1437 * of the iso_frame_desc array, and the number of errors is reported in
1438 * error_count.  Completion callbacks for ISO transfers will normally
1439 * (re)submit URBs to ensure a constant transfer rate.
1440 *
1441 * Note that even fields marked "public" should not be touched by the driver
1442 * when the urb is owned by the hcd, that is, since the call to
1443 * usb_submit_urb() till the entry into the completion routine.
1444 */
1445struct urb {
1446	/* private: usb core and host controller only fields in the urb */
1447	struct kref kref;		/* reference count of the URB */
1448	void *hcpriv;			/* private data for host controller */
1449	atomic_t use_count;		/* concurrent submissions counter */
1450	atomic_t reject;		/* submissions will fail */
1451	int unlinked;			/* unlink error code */
1452
1453	/* public: documented fields in the urb that can be used by drivers */
1454	struct list_head urb_list;	/* list head for use by the urb's
1455					 * current owner */
1456	struct list_head anchor_list;	/* the URB may be anchored */
1457	struct usb_anchor *anchor;
1458	struct usb_device *dev;		/* (in) pointer to associated device */
1459	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1460	unsigned int pipe;		/* (in) pipe information */
1461	unsigned int stream_id;		/* (in) stream ID */
1462	int status;			/* (return) non-ISO status */
1463	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1464	void *transfer_buffer;		/* (in) associated data buffer */
1465	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1466	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1467	int num_mapped_sgs;		/* (internal) mapped sg entries */
1468	int num_sgs;			/* (in) number of entries in the sg list */
1469	u32 transfer_buffer_length;	/* (in) data buffer length */
1470	u32 actual_length;		/* (return) actual transfer length */
1471	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1472	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1473	int start_frame;		/* (modify) start frame (ISO) */
1474	int number_of_packets;		/* (in) number of ISO packets */
1475	int interval;			/* (modify) transfer interval
1476					 * (INT/ISO) */
1477	int error_count;		/* (return) number of ISO errors */
1478	void *context;			/* (in) context for completion */
1479	usb_complete_t complete;	/* (in) completion routine */
1480	struct usb_iso_packet_descriptor iso_frame_desc[0];
1481					/* (in) ISO ONLY */
1482};
1483
1484/* ----------------------------------------------------------------------- */
1485
1486/**
1487 * usb_fill_control_urb - initializes a control urb
1488 * @urb: pointer to the urb to initialize.
1489 * @dev: pointer to the struct usb_device for this urb.
1490 * @pipe: the endpoint pipe
1491 * @setup_packet: pointer to the setup_packet buffer
1492 * @transfer_buffer: pointer to the transfer buffer
1493 * @buffer_length: length of the transfer buffer
1494 * @complete_fn: pointer to the usb_complete_t function
1495 * @context: what to set the urb context to.
1496 *
1497 * Initializes a control urb with the proper information needed to submit
1498 * it to a device.
1499 */
1500static inline void usb_fill_control_urb(struct urb *urb,
1501					struct usb_device *dev,
1502					unsigned int pipe,
1503					unsigned char *setup_packet,
1504					void *transfer_buffer,
1505					int buffer_length,
1506					usb_complete_t complete_fn,
1507					void *context)
1508{
1509	urb->dev = dev;
1510	urb->pipe = pipe;
1511	urb->setup_packet = setup_packet;
1512	urb->transfer_buffer = transfer_buffer;
1513	urb->transfer_buffer_length = buffer_length;
1514	urb->complete = complete_fn;
1515	urb->context = context;
1516}
1517
1518/**
1519 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1520 * @urb: pointer to the urb to initialize.
1521 * @dev: pointer to the struct usb_device for this urb.
1522 * @pipe: the endpoint pipe
1523 * @transfer_buffer: pointer to the transfer buffer
1524 * @buffer_length: length of the transfer buffer
1525 * @complete_fn: pointer to the usb_complete_t function
1526 * @context: what to set the urb context to.
1527 *
1528 * Initializes a bulk urb with the proper information needed to submit it
1529 * to a device.
1530 */
1531static inline void usb_fill_bulk_urb(struct urb *urb,
1532				     struct usb_device *dev,
1533				     unsigned int pipe,
1534				     void *transfer_buffer,
1535				     int buffer_length,
1536				     usb_complete_t complete_fn,
1537				     void *context)
1538{
1539	urb->dev = dev;
1540	urb->pipe = pipe;
1541	urb->transfer_buffer = transfer_buffer;
1542	urb->transfer_buffer_length = buffer_length;
1543	urb->complete = complete_fn;
1544	urb->context = context;
1545}
1546
1547/**
1548 * usb_fill_int_urb - macro to help initialize a interrupt urb
1549 * @urb: pointer to the urb to initialize.
1550 * @dev: pointer to the struct usb_device for this urb.
1551 * @pipe: the endpoint pipe
1552 * @transfer_buffer: pointer to the transfer buffer
1553 * @buffer_length: length of the transfer buffer
1554 * @complete_fn: pointer to the usb_complete_t function
1555 * @context: what to set the urb context to.
1556 * @interval: what to set the urb interval to, encoded like
1557 *	the endpoint descriptor's bInterval value.
1558 *
1559 * Initializes a interrupt urb with the proper information needed to submit
1560 * it to a device.
1561 *
1562 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1563 * encoding of the endpoint interval, and express polling intervals in
1564 * microframes (eight per millisecond) rather than in frames (one per
1565 * millisecond).
1566 *
1567 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1568 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1569 * through to the host controller, rather than being translated into microframe
1570 * units.
1571 */
1572static inline void usb_fill_int_urb(struct urb *urb,
1573				    struct usb_device *dev,
1574				    unsigned int pipe,
1575				    void *transfer_buffer,
1576				    int buffer_length,
1577				    usb_complete_t complete_fn,
1578				    void *context,
1579				    int interval)
1580{
1581	urb->dev = dev;
1582	urb->pipe = pipe;
1583	urb->transfer_buffer = transfer_buffer;
1584	urb->transfer_buffer_length = buffer_length;
1585	urb->complete = complete_fn;
1586	urb->context = context;
1587
1588	if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1589		/* make sure interval is within allowed range */
1590		interval = clamp(interval, 1, 16);
1591
1592		urb->interval = 1 << (interval - 1);
1593	} else {
1594		urb->interval = interval;
1595	}
1596
1597	urb->start_frame = -1;
1598}
1599
1600extern void usb_init_urb(struct urb *urb);
1601extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1602extern void usb_free_urb(struct urb *urb);
1603#define usb_put_urb usb_free_urb
1604extern struct urb *usb_get_urb(struct urb *urb);
1605extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1606extern int usb_unlink_urb(struct urb *urb);
1607extern void usb_kill_urb(struct urb *urb);
1608extern void usb_poison_urb(struct urb *urb);
1609extern void usb_unpoison_urb(struct urb *urb);
1610extern void usb_block_urb(struct urb *urb);
1611extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1612extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1613extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1614extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1615extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1616extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1617extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1618extern void usb_unanchor_urb(struct urb *urb);
1619extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1620					 unsigned int timeout);
1621extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1622extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1623extern int usb_anchor_empty(struct usb_anchor *anchor);
1624
1625#define usb_unblock_urb	usb_unpoison_urb
1626
1627/**
1628 * usb_urb_dir_in - check if an URB describes an IN transfer
1629 * @urb: URB to be checked
1630 *
1631 * Return: 1 if @urb describes an IN transfer (device-to-host),
1632 * otherwise 0.
1633 */
1634static inline int usb_urb_dir_in(struct urb *urb)
1635{
1636	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1637}
1638
1639/**
1640 * usb_urb_dir_out - check if an URB describes an OUT transfer
1641 * @urb: URB to be checked
1642 *
1643 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1644 * otherwise 0.
1645 */
1646static inline int usb_urb_dir_out(struct urb *urb)
1647{
1648	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1649}
1650
1651void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1652	gfp_t mem_flags, dma_addr_t *dma);
1653void usb_free_coherent(struct usb_device *dev, size_t size,
1654	void *addr, dma_addr_t dma);
1655
1656#if 0
1657struct urb *usb_buffer_map(struct urb *urb);
1658void usb_buffer_dmasync(struct urb *urb);
1659void usb_buffer_unmap(struct urb *urb);
1660#endif
1661
1662struct scatterlist;
1663int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1664		      struct scatterlist *sg, int nents);
1665#if 0
1666void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1667			   struct scatterlist *sg, int n_hw_ents);
1668#endif
1669void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1670			 struct scatterlist *sg, int n_hw_ents);
1671
1672/*-------------------------------------------------------------------*
1673 *                         SYNCHRONOUS CALL SUPPORT                  *
1674 *-------------------------------------------------------------------*/
1675
1676extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1677	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1678	void *data, __u16 size, int timeout);
1679extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1680	void *data, int len, int *actual_length, int timeout);
1681extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1682	void *data, int len, int *actual_length,
1683	int timeout);
1684
1685/* wrappers around usb_control_msg() for the most common standard requests */
1686extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1687	unsigned char descindex, void *buf, int size);
1688extern int usb_get_status(struct usb_device *dev,
1689	int type, int target, void *data);
1690extern int usb_string(struct usb_device *dev, int index,
1691	char *buf, size_t size);
1692
1693/* wrappers that also update important state inside usbcore */
1694extern int usb_clear_halt(struct usb_device *dev, int pipe);
1695extern int usb_reset_configuration(struct usb_device *dev);
1696extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1697extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1698
1699/* this request isn't really synchronous, but it belongs with the others */
1700extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1701
1702/* choose and set configuration for device */
1703extern int usb_choose_configuration(struct usb_device *udev);
1704extern int usb_set_configuration(struct usb_device *dev, int configuration);
1705
1706/*
1707 * timeouts, in milliseconds, used for sending/receiving control messages
1708 * they typically complete within a few frames (msec) after they're issued
1709 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1710 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1711 */
1712#define USB_CTRL_GET_TIMEOUT	5000
1713#define USB_CTRL_SET_TIMEOUT	5000
1714
1715
1716/**
1717 * struct usb_sg_request - support for scatter/gather I/O
1718 * @status: zero indicates success, else negative errno
1719 * @bytes: counts bytes transferred.
1720 *
1721 * These requests are initialized using usb_sg_init(), and then are used
1722 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1723 * members of the request object aren't for driver access.
1724 *
1725 * The status and bytecount values are valid only after usb_sg_wait()
1726 * returns.  If the status is zero, then the bytecount matches the total
1727 * from the request.
1728 *
1729 * After an error completion, drivers may need to clear a halt condition
1730 * on the endpoint.
1731 */
1732struct usb_sg_request {
1733	int			status;
1734	size_t			bytes;
1735
1736	/* private:
1737	 * members below are private to usbcore,
1738	 * and are not provided for driver access!
1739	 */
1740	spinlock_t		lock;
1741
1742	struct usb_device	*dev;
1743	int			pipe;
1744
1745	int			entries;
1746	struct urb		**urbs;
1747
1748	int			count;
1749	struct completion	complete;
1750};
1751
1752int usb_sg_init(
1753	struct usb_sg_request	*io,
1754	struct usb_device	*dev,
1755	unsigned		pipe,
1756	unsigned		period,
1757	struct scatterlist	*sg,
1758	int			nents,
1759	size_t			length,
1760	gfp_t			mem_flags
1761);
1762void usb_sg_cancel(struct usb_sg_request *io);
1763void usb_sg_wait(struct usb_sg_request *io);
1764
1765
1766/* ----------------------------------------------------------------------- */
1767
1768/*
1769 * For various legacy reasons, Linux has a small cookie that's paired with
1770 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1771 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1772 * an unsigned int encoded as:
1773 *
1774 *  - direction:	bit 7		(0 = Host-to-Device [Out],
1775 *					 1 = Device-to-Host [In] ...
1776 *					like endpoint bEndpointAddress)
1777 *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1778 *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1779 *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1780 *					 10 = control, 11 = bulk)
1781 *
1782 * Given the device address and endpoint descriptor, pipes are redundant.
1783 */
1784
1785/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1786/* (yet ... they're the values used by usbfs) */
1787#define PIPE_ISOCHRONOUS		0
1788#define PIPE_INTERRUPT			1
1789#define PIPE_CONTROL			2
1790#define PIPE_BULK			3
1791
1792#define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1793#define usb_pipeout(pipe)	(!usb_pipein(pipe))
1794
1795#define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1796#define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1797
1798#define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1799#define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1800#define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1801#define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1802#define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1803
1804static inline unsigned int __create_pipe(struct usb_device *dev,
1805		unsigned int endpoint)
1806{
1807	return (dev->devnum << 8) | (endpoint << 15);
1808}
1809
1810/* Create various pipes... */
1811#define usb_sndctrlpipe(dev, endpoint)	\
1812	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1813#define usb_rcvctrlpipe(dev, endpoint)	\
1814	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1815#define usb_sndisocpipe(dev, endpoint)	\
1816	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1817#define usb_rcvisocpipe(dev, endpoint)	\
1818	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1819#define usb_sndbulkpipe(dev, endpoint)	\
1820	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1821#define usb_rcvbulkpipe(dev, endpoint)	\
1822	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1823#define usb_sndintpipe(dev, endpoint)	\
1824	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1825#define usb_rcvintpipe(dev, endpoint)	\
1826	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1827
1828static inline struct usb_host_endpoint *
1829usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1830{
1831	struct usb_host_endpoint **eps;
1832	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1833	return eps[usb_pipeendpoint(pipe)];
1834}
1835
1836/*-------------------------------------------------------------------------*/
1837
1838static inline __u16
1839usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1840{
1841	struct usb_host_endpoint	*ep;
1842	unsigned			epnum = usb_pipeendpoint(pipe);
1843
1844	if (is_out) {
1845		WARN_ON(usb_pipein(pipe));
1846		ep = udev->ep_out[epnum];
1847	} else {
1848		WARN_ON(usb_pipeout(pipe));
1849		ep = udev->ep_in[epnum];
1850	}
1851	if (!ep)
1852		return 0;
1853
1854	/* NOTE:  only 0x07ff bits are for packet size... */
1855	return usb_endpoint_maxp(&ep->desc);
1856}
1857
1858/* ----------------------------------------------------------------------- */
1859
1860/* translate USB error codes to codes user space understands */
1861static inline int usb_translate_errors(int error_code)
1862{
1863	switch (error_code) {
1864	case 0:
1865	case -ENOMEM:
1866	case -ENODEV:
1867	case -EOPNOTSUPP:
1868		return error_code;
1869	default:
1870		return -EIO;
1871	}
1872}
1873
1874/* Events from the usb core */
1875#define USB_DEVICE_ADD		0x0001
1876#define USB_DEVICE_REMOVE	0x0002
1877#define USB_BUS_ADD		0x0003
1878#define USB_BUS_REMOVE		0x0004
1879extern void usb_register_notify(struct notifier_block *nb);
1880extern void usb_unregister_notify(struct notifier_block *nb);
1881
1882/* debugfs stuff */
1883extern struct dentry *usb_debug_root;
1884
1885/* LED triggers */
1886enum usb_led_event {
1887	USB_LED_EVENT_HOST = 0,
1888	USB_LED_EVENT_GADGET = 1,
1889};
1890
1891#ifdef CONFIG_USB_LED_TRIG
1892extern void usb_led_activity(enum usb_led_event ev);
1893#else
1894static inline void usb_led_activity(enum usb_led_event ev) {}
1895#endif
1896
1897#endif  /* __KERNEL__ */
1898
1899#endif
1900