1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Definitions for the AF_INET socket handler.
7 *
8 * Version:	@(#)sock.h	1.0.4	05/13/93
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13 *		Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 *		Alan Cox	:	Volatiles in skbuff pointers. See
17 *					skbuff comments. May be overdone,
18 *					better to prove they can be removed
19 *					than the reverse.
20 *		Alan Cox	:	Added a zapped field for tcp to note
21 *					a socket is reset and must stay shut up
22 *		Alan Cox	:	New fields for options
23 *	Pauline Middelink	:	identd support
24 *		Alan Cox	:	Eliminate low level recv/recvfrom
25 *		David S. Miller	:	New socket lookup architecture.
26 *              Steve Whitehouse:       Default routines for sock_ops
27 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28 *              			protinfo be just a void pointer, as the
29 *              			protocol specific parts were moved to
30 *              			respective headers and ipv4/v6, etc now
31 *              			use private slabcaches for its socks
32 *              Pedro Hortas	:	New flags field for socket options
33 *
34 *
35 *		This program is free software; you can redistribute it and/or
36 *		modify it under the terms of the GNU General Public License
37 *		as published by the Free Software Foundation; either version
38 *		2 of the License, or (at your option) any later version.
39 */
40#ifndef _SOCK_H
41#define _SOCK_H
42
43#include <linux/hardirq.h>
44#include <linux/kernel.h>
45#include <linux/list.h>
46#include <linux/list_nulls.h>
47#include <linux/timer.h>
48#include <linux/cache.h>
49#include <linux/bitops.h>
50#include <linux/lockdep.h>
51#include <linux/netdevice.h>
52#include <linux/skbuff.h>	/* struct sk_buff */
53#include <linux/mm.h>
54#include <linux/security.h>
55#include <linux/slab.h>
56#include <linux/uaccess.h>
57#include <linux/page_counter.h>
58#include <linux/memcontrol.h>
59#include <linux/static_key.h>
60#include <linux/sched.h>
61
62#include <linux/filter.h>
63#include <linux/rculist_nulls.h>
64#include <linux/poll.h>
65
66#include <linux/atomic.h>
67#include <net/dst.h>
68#include <net/checksum.h>
69#include <net/tcp_states.h>
70#include <linux/net_tstamp.h>
71
72struct cgroup;
73struct cgroup_subsys;
74#ifdef CONFIG_NET
75int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77#else
78static inline
79int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80{
81	return 0;
82}
83static inline
84void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85{
86}
87#endif
88/*
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
92 */
93
94/* Define this to get the SOCK_DBG debugging facility. */
95#define SOCK_DEBUGGING
96#ifdef SOCK_DEBUGGING
97#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98					printk(KERN_DEBUG msg); } while (0)
99#else
100/* Validate arguments and do nothing */
101static inline __printf(2, 3)
102void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103{
104}
105#endif
106
107/* This is the per-socket lock.  The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
110 */
111typedef struct {
112	spinlock_t		slock;
113	int			owned;
114	wait_queue_head_t	wq;
115	/*
116	 * We express the mutex-alike socket_lock semantics
117	 * to the lock validator by explicitly managing
118	 * the slock as a lock variant (in addition to
119	 * the slock itself):
120	 */
121#ifdef CONFIG_DEBUG_LOCK_ALLOC
122	struct lockdep_map dep_map;
123#endif
124} socket_lock_t;
125
126struct sock;
127struct proto;
128struct net;
129
130typedef __u32 __bitwise __portpair;
131typedef __u64 __bitwise __addrpair;
132
133/**
134 *	struct sock_common - minimal network layer representation of sockets
135 *	@skc_daddr: Foreign IPv4 addr
136 *	@skc_rcv_saddr: Bound local IPv4 addr
137 *	@skc_hash: hash value used with various protocol lookup tables
138 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
139 *	@skc_dport: placeholder for inet_dport/tw_dport
140 *	@skc_num: placeholder for inet_num/tw_num
141 *	@skc_family: network address family
142 *	@skc_state: Connection state
143 *	@skc_reuse: %SO_REUSEADDR setting
144 *	@skc_reuseport: %SO_REUSEPORT setting
145 *	@skc_bound_dev_if: bound device index if != 0
146 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
147 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 *	@skc_prot: protocol handlers inside a network family
149 *	@skc_net: reference to the network namespace of this socket
150 *	@skc_node: main hash linkage for various protocol lookup tables
151 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 *	@skc_tx_queue_mapping: tx queue number for this connection
153 *	@skc_refcnt: reference count
154 *
155 *	This is the minimal network layer representation of sockets, the header
156 *	for struct sock and struct inet_timewait_sock.
157 */
158struct sock_common {
159	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160	 * address on 64bit arches : cf INET_MATCH()
161	 */
162	union {
163		__addrpair	skc_addrpair;
164		struct {
165			__be32	skc_daddr;
166			__be32	skc_rcv_saddr;
167		};
168	};
169	union  {
170		unsigned int	skc_hash;
171		__u16		skc_u16hashes[2];
172	};
173	/* skc_dport && skc_num must be grouped as well */
174	union {
175		__portpair	skc_portpair;
176		struct {
177			__be16	skc_dport;
178			__u16	skc_num;
179		};
180	};
181
182	unsigned short		skc_family;
183	volatile unsigned char	skc_state;
184	unsigned char		skc_reuse:4;
185	unsigned char		skc_reuseport:1;
186	unsigned char		skc_ipv6only:1;
187	int			skc_bound_dev_if;
188	union {
189		struct hlist_node	skc_bind_node;
190		struct hlist_nulls_node skc_portaddr_node;
191	};
192	struct proto		*skc_prot;
193	possible_net_t		skc_net;
194
195#if IS_ENABLED(CONFIG_IPV6)
196	struct in6_addr		skc_v6_daddr;
197	struct in6_addr		skc_v6_rcv_saddr;
198#endif
199
200	atomic64_t		skc_cookie;
201
202	/*
203	 * fields between dontcopy_begin/dontcopy_end
204	 * are not copied in sock_copy()
205	 */
206	/* private: */
207	int			skc_dontcopy_begin[0];
208	/* public: */
209	union {
210		struct hlist_node	skc_node;
211		struct hlist_nulls_node skc_nulls_node;
212	};
213	int			skc_tx_queue_mapping;
214	atomic_t		skc_refcnt;
215	/* private: */
216	int                     skc_dontcopy_end[0];
217	/* public: */
218};
219
220struct cg_proto;
221/**
222  *	struct sock - network layer representation of sockets
223  *	@__sk_common: shared layout with inet_timewait_sock
224  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
225  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
226  *	@sk_lock:	synchronizer
227  *	@sk_rcvbuf: size of receive buffer in bytes
228  *	@sk_wq: sock wait queue and async head
229  *	@sk_rx_dst: receive input route used by early demux
230  *	@sk_dst_cache: destination cache
231  *	@sk_dst_lock: destination cache lock
232  *	@sk_policy: flow policy
233  *	@sk_receive_queue: incoming packets
234  *	@sk_wmem_alloc: transmit queue bytes committed
235  *	@sk_write_queue: Packet sending queue
236  *	@sk_omem_alloc: "o" is "option" or "other"
237  *	@sk_wmem_queued: persistent queue size
238  *	@sk_forward_alloc: space allocated forward
239  *	@sk_napi_id: id of the last napi context to receive data for sk
240  *	@sk_ll_usec: usecs to busypoll when there is no data
241  *	@sk_allocation: allocation mode
242  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
243  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
244  *	@sk_sndbuf: size of send buffer in bytes
245  *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
246  *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
247  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
248  *	@sk_no_check_rx: allow zero checksum in RX packets
249  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
250  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
251  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
252  *	@sk_gso_max_size: Maximum GSO segment size to build
253  *	@sk_gso_max_segs: Maximum number of GSO segments
254  *	@sk_lingertime: %SO_LINGER l_linger setting
255  *	@sk_backlog: always used with the per-socket spinlock held
256  *	@sk_callback_lock: used with the callbacks in the end of this struct
257  *	@sk_error_queue: rarely used
258  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
259  *			  IPV6_ADDRFORM for instance)
260  *	@sk_err: last error
261  *	@sk_err_soft: errors that don't cause failure but are the cause of a
262  *		      persistent failure not just 'timed out'
263  *	@sk_drops: raw/udp drops counter
264  *	@sk_ack_backlog: current listen backlog
265  *	@sk_max_ack_backlog: listen backlog set in listen()
266  *	@sk_priority: %SO_PRIORITY setting
267  *	@sk_cgrp_prioidx: socket group's priority map index
268  *	@sk_type: socket type (%SOCK_STREAM, etc)
269  *	@sk_protocol: which protocol this socket belongs in this network family
270  *	@sk_peer_pid: &struct pid for this socket's peer
271  *	@sk_peer_cred: %SO_PEERCRED setting
272  *	@sk_rcvlowat: %SO_RCVLOWAT setting
273  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
274  *	@sk_sndtimeo: %SO_SNDTIMEO setting
275  *	@sk_rxhash: flow hash received from netif layer
276  *	@sk_incoming_cpu: record cpu processing incoming packets
277  *	@sk_txhash: computed flow hash for use on transmit
278  *	@sk_filter: socket filtering instructions
279  *	@sk_protinfo: private area, net family specific, when not using slab
280  *	@sk_timer: sock cleanup timer
281  *	@sk_stamp: time stamp of last packet received
282  *	@sk_tsflags: SO_TIMESTAMPING socket options
283  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
284  *	@sk_socket: Identd and reporting IO signals
285  *	@sk_user_data: RPC layer private data
286  *	@sk_frag: cached page frag
287  *	@sk_peek_off: current peek_offset value
288  *	@sk_send_head: front of stuff to transmit
289  *	@sk_security: used by security modules
290  *	@sk_mark: generic packet mark
291  *	@sk_classid: this socket's cgroup classid
292  *	@sk_cgrp: this socket's cgroup-specific proto data
293  *	@sk_write_pending: a write to stream socket waits to start
294  *	@sk_state_change: callback to indicate change in the state of the sock
295  *	@sk_data_ready: callback to indicate there is data to be processed
296  *	@sk_write_space: callback to indicate there is bf sending space available
297  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
298  *	@sk_backlog_rcv: callback to process the backlog
299  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
300 */
301struct sock {
302	/*
303	 * Now struct inet_timewait_sock also uses sock_common, so please just
304	 * don't add nothing before this first member (__sk_common) --acme
305	 */
306	struct sock_common	__sk_common;
307#define sk_node			__sk_common.skc_node
308#define sk_nulls_node		__sk_common.skc_nulls_node
309#define sk_refcnt		__sk_common.skc_refcnt
310#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
311
312#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
313#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
314#define sk_hash			__sk_common.skc_hash
315#define sk_portpair		__sk_common.skc_portpair
316#define sk_num			__sk_common.skc_num
317#define sk_dport		__sk_common.skc_dport
318#define sk_addrpair		__sk_common.skc_addrpair
319#define sk_daddr		__sk_common.skc_daddr
320#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
321#define sk_family		__sk_common.skc_family
322#define sk_state		__sk_common.skc_state
323#define sk_reuse		__sk_common.skc_reuse
324#define sk_reuseport		__sk_common.skc_reuseport
325#define sk_ipv6only		__sk_common.skc_ipv6only
326#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
327#define sk_bind_node		__sk_common.skc_bind_node
328#define sk_prot			__sk_common.skc_prot
329#define sk_net			__sk_common.skc_net
330#define sk_v6_daddr		__sk_common.skc_v6_daddr
331#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
332#define sk_cookie		__sk_common.skc_cookie
333
334	socket_lock_t		sk_lock;
335	struct sk_buff_head	sk_receive_queue;
336	/*
337	 * The backlog queue is special, it is always used with
338	 * the per-socket spinlock held and requires low latency
339	 * access. Therefore we special case it's implementation.
340	 * Note : rmem_alloc is in this structure to fill a hole
341	 * on 64bit arches, not because its logically part of
342	 * backlog.
343	 */
344	struct {
345		atomic_t	rmem_alloc;
346		int		len;
347		struct sk_buff	*head;
348		struct sk_buff	*tail;
349	} sk_backlog;
350#define sk_rmem_alloc sk_backlog.rmem_alloc
351	int			sk_forward_alloc;
352#ifdef CONFIG_RPS
353	__u32			sk_rxhash;
354#endif
355	u16			sk_incoming_cpu;
356	/* 16bit hole
357	 * Warned : sk_incoming_cpu can be set from softirq,
358	 * Do not use this hole without fully understanding possible issues.
359	 */
360
361	__u32			sk_txhash;
362#ifdef CONFIG_NET_RX_BUSY_POLL
363	unsigned int		sk_napi_id;
364	unsigned int		sk_ll_usec;
365#endif
366	atomic_t		sk_drops;
367	int			sk_rcvbuf;
368
369	struct sk_filter __rcu	*sk_filter;
370	struct socket_wq __rcu	*sk_wq;
371
372#ifdef CONFIG_XFRM
373	struct xfrm_policy	*sk_policy[2];
374#endif
375	unsigned long 		sk_flags;
376	struct dst_entry	*sk_rx_dst;
377	struct dst_entry __rcu	*sk_dst_cache;
378	spinlock_t		sk_dst_lock;
379	atomic_t		sk_wmem_alloc;
380	atomic_t		sk_omem_alloc;
381	int			sk_sndbuf;
382	struct sk_buff_head	sk_write_queue;
383	kmemcheck_bitfield_begin(flags);
384	unsigned int		sk_shutdown  : 2,
385				sk_no_check_tx : 1,
386				sk_no_check_rx : 1,
387				sk_userlocks : 4,
388				sk_protocol  : 8,
389#define SK_PROTOCOL_MAX U8_MAX
390				sk_type      : 16;
391	kmemcheck_bitfield_end(flags);
392	int			sk_wmem_queued;
393	gfp_t			sk_allocation;
394	u32			sk_pacing_rate; /* bytes per second */
395	u32			sk_max_pacing_rate;
396	netdev_features_t	sk_route_caps;
397	netdev_features_t	sk_route_nocaps;
398	int			sk_gso_type;
399	unsigned int		sk_gso_max_size;
400	u16			sk_gso_max_segs;
401	int			sk_rcvlowat;
402	unsigned long	        sk_lingertime;
403	struct sk_buff_head	sk_error_queue;
404	struct proto		*sk_prot_creator;
405	rwlock_t		sk_callback_lock;
406	int			sk_err,
407				sk_err_soft;
408	u32			sk_ack_backlog;
409	u32			sk_max_ack_backlog;
410	__u32			sk_priority;
411#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
412	__u32			sk_cgrp_prioidx;
413#endif
414	struct pid		*sk_peer_pid;
415	const struct cred	*sk_peer_cred;
416	long			sk_rcvtimeo;
417	long			sk_sndtimeo;
418	void			*sk_protinfo;
419	struct timer_list	sk_timer;
420	ktime_t			sk_stamp;
421	u16			sk_tsflags;
422	u32			sk_tskey;
423	struct socket		*sk_socket;
424	void			*sk_user_data;
425	struct page_frag	sk_frag;
426	struct sk_buff		*sk_send_head;
427	__s32			sk_peek_off;
428	int			sk_write_pending;
429#ifdef CONFIG_SECURITY
430	void			*sk_security;
431#endif
432	__u32			sk_mark;
433	u32			sk_classid;
434	struct cg_proto		*sk_cgrp;
435	void			(*sk_state_change)(struct sock *sk);
436	void			(*sk_data_ready)(struct sock *sk);
437	void			(*sk_write_space)(struct sock *sk);
438	void			(*sk_error_report)(struct sock *sk);
439	int			(*sk_backlog_rcv)(struct sock *sk,
440						  struct sk_buff *skb);
441	void                    (*sk_destruct)(struct sock *sk);
442};
443
444#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
445
446#define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
447#define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
448
449/*
450 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
451 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
452 * on a socket means that the socket will reuse everybody else's port
453 * without looking at the other's sk_reuse value.
454 */
455
456#define SK_NO_REUSE	0
457#define SK_CAN_REUSE	1
458#define SK_FORCE_REUSE	2
459
460static inline int sk_peek_offset(struct sock *sk, int flags)
461{
462	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
463		return sk->sk_peek_off;
464	else
465		return 0;
466}
467
468static inline void sk_peek_offset_bwd(struct sock *sk, int val)
469{
470	if (sk->sk_peek_off >= 0) {
471		if (sk->sk_peek_off >= val)
472			sk->sk_peek_off -= val;
473		else
474			sk->sk_peek_off = 0;
475	}
476}
477
478static inline void sk_peek_offset_fwd(struct sock *sk, int val)
479{
480	if (sk->sk_peek_off >= 0)
481		sk->sk_peek_off += val;
482}
483
484/*
485 * Hashed lists helper routines
486 */
487static inline struct sock *sk_entry(const struct hlist_node *node)
488{
489	return hlist_entry(node, struct sock, sk_node);
490}
491
492static inline struct sock *__sk_head(const struct hlist_head *head)
493{
494	return hlist_entry(head->first, struct sock, sk_node);
495}
496
497static inline struct sock *sk_head(const struct hlist_head *head)
498{
499	return hlist_empty(head) ? NULL : __sk_head(head);
500}
501
502static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
503{
504	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
505}
506
507static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
508{
509	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
510}
511
512static inline struct sock *sk_next(const struct sock *sk)
513{
514	return sk->sk_node.next ?
515		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
516}
517
518static inline struct sock *sk_nulls_next(const struct sock *sk)
519{
520	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
521		hlist_nulls_entry(sk->sk_nulls_node.next,
522				  struct sock, sk_nulls_node) :
523		NULL;
524}
525
526static inline bool sk_unhashed(const struct sock *sk)
527{
528	return hlist_unhashed(&sk->sk_node);
529}
530
531static inline bool sk_hashed(const struct sock *sk)
532{
533	return !sk_unhashed(sk);
534}
535
536static inline void sk_node_init(struct hlist_node *node)
537{
538	node->pprev = NULL;
539}
540
541static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
542{
543	node->pprev = NULL;
544}
545
546static inline void __sk_del_node(struct sock *sk)
547{
548	__hlist_del(&sk->sk_node);
549}
550
551/* NB: equivalent to hlist_del_init_rcu */
552static inline bool __sk_del_node_init(struct sock *sk)
553{
554	if (sk_hashed(sk)) {
555		__sk_del_node(sk);
556		sk_node_init(&sk->sk_node);
557		return true;
558	}
559	return false;
560}
561
562/* Grab socket reference count. This operation is valid only
563   when sk is ALREADY grabbed f.e. it is found in hash table
564   or a list and the lookup is made under lock preventing hash table
565   modifications.
566 */
567
568static inline void sock_hold(struct sock *sk)
569{
570	atomic_inc(&sk->sk_refcnt);
571}
572
573/* Ungrab socket in the context, which assumes that socket refcnt
574   cannot hit zero, f.e. it is true in context of any socketcall.
575 */
576static inline void __sock_put(struct sock *sk)
577{
578	atomic_dec(&sk->sk_refcnt);
579}
580
581static inline bool sk_del_node_init(struct sock *sk)
582{
583	bool rc = __sk_del_node_init(sk);
584
585	if (rc) {
586		/* paranoid for a while -acme */
587		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
588		__sock_put(sk);
589	}
590	return rc;
591}
592#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
593
594static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
595{
596	if (sk_hashed(sk)) {
597		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
598		return true;
599	}
600	return false;
601}
602
603static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
604{
605	bool rc = __sk_nulls_del_node_init_rcu(sk);
606
607	if (rc) {
608		/* paranoid for a while -acme */
609		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
610		__sock_put(sk);
611	}
612	return rc;
613}
614
615static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
616{
617	hlist_add_head(&sk->sk_node, list);
618}
619
620static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
621{
622	sock_hold(sk);
623	__sk_add_node(sk, list);
624}
625
626static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
627{
628	sock_hold(sk);
629	hlist_add_head_rcu(&sk->sk_node, list);
630}
631
632static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
633{
634	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
635}
636
637static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
638{
639	sock_hold(sk);
640	__sk_nulls_add_node_rcu(sk, list);
641}
642
643static inline void __sk_del_bind_node(struct sock *sk)
644{
645	__hlist_del(&sk->sk_bind_node);
646}
647
648static inline void sk_add_bind_node(struct sock *sk,
649					struct hlist_head *list)
650{
651	hlist_add_head(&sk->sk_bind_node, list);
652}
653
654#define sk_for_each(__sk, list) \
655	hlist_for_each_entry(__sk, list, sk_node)
656#define sk_for_each_rcu(__sk, list) \
657	hlist_for_each_entry_rcu(__sk, list, sk_node)
658#define sk_nulls_for_each(__sk, node, list) \
659	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
660#define sk_nulls_for_each_rcu(__sk, node, list) \
661	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
662#define sk_for_each_from(__sk) \
663	hlist_for_each_entry_from(__sk, sk_node)
664#define sk_nulls_for_each_from(__sk, node) \
665	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
666		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
667#define sk_for_each_safe(__sk, tmp, list) \
668	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
669#define sk_for_each_bound(__sk, list) \
670	hlist_for_each_entry(__sk, list, sk_bind_node)
671
672/**
673 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
674 * @tpos:	the type * to use as a loop cursor.
675 * @pos:	the &struct hlist_node to use as a loop cursor.
676 * @head:	the head for your list.
677 * @offset:	offset of hlist_node within the struct.
678 *
679 */
680#define sk_nulls_for_each_entry_offset(tpos, pos, head, offset)		       \
681	for (pos = (head)->first;					       \
682	     (!is_a_nulls(pos)) &&					       \
683		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
684	     pos = pos->next)
685
686static inline struct user_namespace *sk_user_ns(struct sock *sk)
687{
688	/* Careful only use this in a context where these parameters
689	 * can not change and must all be valid, such as recvmsg from
690	 * userspace.
691	 */
692	return sk->sk_socket->file->f_cred->user_ns;
693}
694
695/* Sock flags */
696enum sock_flags {
697	SOCK_DEAD,
698	SOCK_DONE,
699	SOCK_URGINLINE,
700	SOCK_KEEPOPEN,
701	SOCK_LINGER,
702	SOCK_DESTROY,
703	SOCK_BROADCAST,
704	SOCK_TIMESTAMP,
705	SOCK_ZAPPED,
706	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
707	SOCK_DBG, /* %SO_DEBUG setting */
708	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
709	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
710	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
711	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
712	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
713	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
714	SOCK_FASYNC, /* fasync() active */
715	SOCK_RXQ_OVFL,
716	SOCK_ZEROCOPY, /* buffers from userspace */
717	SOCK_WIFI_STATUS, /* push wifi status to userspace */
718	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
719		     * Will use last 4 bytes of packet sent from
720		     * user-space instead.
721		     */
722	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
723	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
724};
725
726#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
727
728static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
729{
730	nsk->sk_flags = osk->sk_flags;
731}
732
733static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
734{
735	__set_bit(flag, &sk->sk_flags);
736}
737
738static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
739{
740	__clear_bit(flag, &sk->sk_flags);
741}
742
743static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
744{
745	return test_bit(flag, &sk->sk_flags);
746}
747
748#ifdef CONFIG_NET
749extern struct static_key memalloc_socks;
750static inline int sk_memalloc_socks(void)
751{
752	return static_key_false(&memalloc_socks);
753}
754#else
755
756static inline int sk_memalloc_socks(void)
757{
758	return 0;
759}
760
761#endif
762
763static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
764{
765	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
766}
767
768static inline void sk_acceptq_removed(struct sock *sk)
769{
770	sk->sk_ack_backlog--;
771}
772
773static inline void sk_acceptq_added(struct sock *sk)
774{
775	sk->sk_ack_backlog++;
776}
777
778static inline bool sk_acceptq_is_full(const struct sock *sk)
779{
780	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
781}
782
783/*
784 * Compute minimal free write space needed to queue new packets.
785 */
786static inline int sk_stream_min_wspace(const struct sock *sk)
787{
788	return sk->sk_wmem_queued >> 1;
789}
790
791static inline int sk_stream_wspace(const struct sock *sk)
792{
793	return sk->sk_sndbuf - sk->sk_wmem_queued;
794}
795
796void sk_stream_write_space(struct sock *sk);
797
798/* OOB backlog add */
799static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
800{
801	/* dont let skb dst not refcounted, we are going to leave rcu lock */
802	skb_dst_force_safe(skb);
803
804	if (!sk->sk_backlog.tail)
805		sk->sk_backlog.head = skb;
806	else
807		sk->sk_backlog.tail->next = skb;
808
809	sk->sk_backlog.tail = skb;
810	skb->next = NULL;
811}
812
813/*
814 * Take into account size of receive queue and backlog queue
815 * Do not take into account this skb truesize,
816 * to allow even a single big packet to come.
817 */
818static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
819{
820	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
821
822	return qsize > limit;
823}
824
825/* The per-socket spinlock must be held here. */
826static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
827					      unsigned int limit)
828{
829	if (sk_rcvqueues_full(sk, limit))
830		return -ENOBUFS;
831
832	/*
833	 * If the skb was allocated from pfmemalloc reserves, only
834	 * allow SOCK_MEMALLOC sockets to use it as this socket is
835	 * helping free memory
836	 */
837	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
838		return -ENOMEM;
839
840	__sk_add_backlog(sk, skb);
841	sk->sk_backlog.len += skb->truesize;
842	return 0;
843}
844
845int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
846
847static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
848{
849	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
850		return __sk_backlog_rcv(sk, skb);
851
852	return sk->sk_backlog_rcv(sk, skb);
853}
854
855static inline void sk_incoming_cpu_update(struct sock *sk)
856{
857	sk->sk_incoming_cpu = raw_smp_processor_id();
858}
859
860static inline void sock_rps_record_flow_hash(__u32 hash)
861{
862#ifdef CONFIG_RPS
863	struct rps_sock_flow_table *sock_flow_table;
864
865	rcu_read_lock();
866	sock_flow_table = rcu_dereference(rps_sock_flow_table);
867	rps_record_sock_flow(sock_flow_table, hash);
868	rcu_read_unlock();
869#endif
870}
871
872static inline void sock_rps_record_flow(const struct sock *sk)
873{
874#ifdef CONFIG_RPS
875	sock_rps_record_flow_hash(sk->sk_rxhash);
876#endif
877}
878
879static inline void sock_rps_save_rxhash(struct sock *sk,
880					const struct sk_buff *skb)
881{
882#ifdef CONFIG_RPS
883	if (unlikely(sk->sk_rxhash != skb->hash))
884		sk->sk_rxhash = skb->hash;
885#endif
886}
887
888static inline void sock_rps_reset_rxhash(struct sock *sk)
889{
890#ifdef CONFIG_RPS
891	sk->sk_rxhash = 0;
892#endif
893}
894
895#define sk_wait_event(__sk, __timeo, __condition)			\
896	({	int __rc;						\
897		release_sock(__sk);					\
898		__rc = __condition;					\
899		if (!__rc) {						\
900			*(__timeo) = schedule_timeout(*(__timeo));	\
901		}							\
902		sched_annotate_sleep();						\
903		lock_sock(__sk);					\
904		__rc = __condition;					\
905		__rc;							\
906	})
907
908int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
909int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
910void sk_stream_wait_close(struct sock *sk, long timeo_p);
911int sk_stream_error(struct sock *sk, int flags, int err);
912void sk_stream_kill_queues(struct sock *sk);
913void sk_set_memalloc(struct sock *sk);
914void sk_clear_memalloc(struct sock *sk);
915
916int sk_wait_data(struct sock *sk, long *timeo);
917
918struct request_sock_ops;
919struct timewait_sock_ops;
920struct inet_hashinfo;
921struct raw_hashinfo;
922struct module;
923
924/*
925 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
926 * un-modified. Special care is taken when initializing object to zero.
927 */
928static inline void sk_prot_clear_nulls(struct sock *sk, int size)
929{
930	if (offsetof(struct sock, sk_node.next) != 0)
931		memset(sk, 0, offsetof(struct sock, sk_node.next));
932	memset(&sk->sk_node.pprev, 0,
933	       size - offsetof(struct sock, sk_node.pprev));
934}
935
936/* Networking protocol blocks we attach to sockets.
937 * socket layer -> transport layer interface
938 * transport -> network interface is defined by struct inet_proto
939 */
940struct proto {
941	void			(*close)(struct sock *sk,
942					long timeout);
943	int			(*connect)(struct sock *sk,
944					struct sockaddr *uaddr,
945					int addr_len);
946	int			(*disconnect)(struct sock *sk, int flags);
947
948	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
949
950	int			(*ioctl)(struct sock *sk, int cmd,
951					 unsigned long arg);
952	int			(*init)(struct sock *sk);
953	void			(*destroy)(struct sock *sk);
954	void			(*shutdown)(struct sock *sk, int how);
955	int			(*setsockopt)(struct sock *sk, int level,
956					int optname, char __user *optval,
957					unsigned int optlen);
958	int			(*getsockopt)(struct sock *sk, int level,
959					int optname, char __user *optval,
960					int __user *option);
961#ifdef CONFIG_COMPAT
962	int			(*compat_setsockopt)(struct sock *sk,
963					int level,
964					int optname, char __user *optval,
965					unsigned int optlen);
966	int			(*compat_getsockopt)(struct sock *sk,
967					int level,
968					int optname, char __user *optval,
969					int __user *option);
970	int			(*compat_ioctl)(struct sock *sk,
971					unsigned int cmd, unsigned long arg);
972#endif
973	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
974					   size_t len);
975	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
976					   size_t len, int noblock, int flags,
977					   int *addr_len);
978	int			(*sendpage)(struct sock *sk, struct page *page,
979					int offset, size_t size, int flags);
980	int			(*bind)(struct sock *sk,
981					struct sockaddr *uaddr, int addr_len);
982
983	int			(*backlog_rcv) (struct sock *sk,
984						struct sk_buff *skb);
985
986	void		(*release_cb)(struct sock *sk);
987
988	/* Keeping track of sk's, looking them up, and port selection methods. */
989	void			(*hash)(struct sock *sk);
990	void			(*unhash)(struct sock *sk);
991	void			(*rehash)(struct sock *sk);
992	int			(*get_port)(struct sock *sk, unsigned short snum);
993	void			(*clear_sk)(struct sock *sk, int size);
994
995	/* Keeping track of sockets in use */
996#ifdef CONFIG_PROC_FS
997	unsigned int		inuse_idx;
998#endif
999
1000	bool			(*stream_memory_free)(const struct sock *sk);
1001	/* Memory pressure */
1002	void			(*enter_memory_pressure)(struct sock *sk);
1003	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1004	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1005	/*
1006	 * Pressure flag: try to collapse.
1007	 * Technical note: it is used by multiple contexts non atomically.
1008	 * All the __sk_mem_schedule() is of this nature: accounting
1009	 * is strict, actions are advisory and have some latency.
1010	 */
1011	int			*memory_pressure;
1012	long			*sysctl_mem;
1013	int			*sysctl_wmem;
1014	int			*sysctl_rmem;
1015	int			max_header;
1016	bool			no_autobind;
1017
1018	struct kmem_cache	*slab;
1019	unsigned int		obj_size;
1020	int			slab_flags;
1021
1022	struct percpu_counter	*orphan_count;
1023
1024	struct request_sock_ops	*rsk_prot;
1025	struct timewait_sock_ops *twsk_prot;
1026
1027	union {
1028		struct inet_hashinfo	*hashinfo;
1029		struct udp_table	*udp_table;
1030		struct raw_hashinfo	*raw_hash;
1031	} h;
1032
1033	struct module		*owner;
1034
1035	char			name[32];
1036
1037	struct list_head	node;
1038#ifdef SOCK_REFCNT_DEBUG
1039	atomic_t		socks;
1040#endif
1041#ifdef CONFIG_MEMCG_KMEM
1042	/*
1043	 * cgroup specific init/deinit functions. Called once for all
1044	 * protocols that implement it, from cgroups populate function.
1045	 * This function has to setup any files the protocol want to
1046	 * appear in the kmem cgroup filesystem.
1047	 */
1048	int			(*init_cgroup)(struct mem_cgroup *memcg,
1049					       struct cgroup_subsys *ss);
1050	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
1051	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
1052#endif
1053};
1054
1055/*
1056 * Bits in struct cg_proto.flags
1057 */
1058enum cg_proto_flags {
1059	/* Currently active and new sockets should be assigned to cgroups */
1060	MEMCG_SOCK_ACTIVE,
1061	/* It was ever activated; we must disarm static keys on destruction */
1062	MEMCG_SOCK_ACTIVATED,
1063};
1064
1065struct cg_proto {
1066	struct page_counter	memory_allocated;	/* Current allocated memory. */
1067	struct percpu_counter	sockets_allocated;	/* Current number of sockets. */
1068	int			memory_pressure;
1069	long			sysctl_mem[3];
1070	unsigned long		flags;
1071	/*
1072	 * memcg field is used to find which memcg we belong directly
1073	 * Each memcg struct can hold more than one cg_proto, so container_of
1074	 * won't really cut.
1075	 *
1076	 * The elegant solution would be having an inverse function to
1077	 * proto_cgroup in struct proto, but that means polluting the structure
1078	 * for everybody, instead of just for memcg users.
1079	 */
1080	struct mem_cgroup	*memcg;
1081};
1082
1083int proto_register(struct proto *prot, int alloc_slab);
1084void proto_unregister(struct proto *prot);
1085
1086static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1087{
1088	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1089}
1090
1091#ifdef SOCK_REFCNT_DEBUG
1092static inline void sk_refcnt_debug_inc(struct sock *sk)
1093{
1094	atomic_inc(&sk->sk_prot->socks);
1095}
1096
1097static inline void sk_refcnt_debug_dec(struct sock *sk)
1098{
1099	atomic_dec(&sk->sk_prot->socks);
1100	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1101	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1102}
1103
1104static inline void sk_refcnt_debug_release(const struct sock *sk)
1105{
1106	if (atomic_read(&sk->sk_refcnt) != 1)
1107		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1108		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1109}
1110#else /* SOCK_REFCNT_DEBUG */
1111#define sk_refcnt_debug_inc(sk) do { } while (0)
1112#define sk_refcnt_debug_dec(sk) do { } while (0)
1113#define sk_refcnt_debug_release(sk) do { } while (0)
1114#endif /* SOCK_REFCNT_DEBUG */
1115
1116#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1117extern struct static_key memcg_socket_limit_enabled;
1118static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1119					       struct cg_proto *cg_proto)
1120{
1121	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1122}
1123#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1124#else
1125#define mem_cgroup_sockets_enabled 0
1126static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1127					       struct cg_proto *cg_proto)
1128{
1129	return NULL;
1130}
1131#endif
1132
1133static inline bool sk_stream_memory_free(const struct sock *sk)
1134{
1135	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1136		return false;
1137
1138	return sk->sk_prot->stream_memory_free ?
1139		sk->sk_prot->stream_memory_free(sk) : true;
1140}
1141
1142static inline bool sk_stream_is_writeable(const struct sock *sk)
1143{
1144	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1145	       sk_stream_memory_free(sk);
1146}
1147
1148
1149static inline bool sk_has_memory_pressure(const struct sock *sk)
1150{
1151	return sk->sk_prot->memory_pressure != NULL;
1152}
1153
1154static inline bool sk_under_memory_pressure(const struct sock *sk)
1155{
1156	if (!sk->sk_prot->memory_pressure)
1157		return false;
1158
1159	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1160		return !!sk->sk_cgrp->memory_pressure;
1161
1162	return !!*sk->sk_prot->memory_pressure;
1163}
1164
1165static inline void sk_leave_memory_pressure(struct sock *sk)
1166{
1167	int *memory_pressure = sk->sk_prot->memory_pressure;
1168
1169	if (!memory_pressure)
1170		return;
1171
1172	if (*memory_pressure)
1173		*memory_pressure = 0;
1174
1175	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1176		struct cg_proto *cg_proto = sk->sk_cgrp;
1177		struct proto *prot = sk->sk_prot;
1178
1179		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1180			cg_proto->memory_pressure = 0;
1181	}
1182
1183}
1184
1185static inline void sk_enter_memory_pressure(struct sock *sk)
1186{
1187	if (!sk->sk_prot->enter_memory_pressure)
1188		return;
1189
1190	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1191		struct cg_proto *cg_proto = sk->sk_cgrp;
1192		struct proto *prot = sk->sk_prot;
1193
1194		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1195			cg_proto->memory_pressure = 1;
1196	}
1197
1198	sk->sk_prot->enter_memory_pressure(sk);
1199}
1200
1201static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1202{
1203	long *prot = sk->sk_prot->sysctl_mem;
1204	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1205		prot = sk->sk_cgrp->sysctl_mem;
1206	return prot[index];
1207}
1208
1209static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1210					      unsigned long amt,
1211					      int *parent_status)
1212{
1213	page_counter_charge(&prot->memory_allocated, amt);
1214
1215	if (page_counter_read(&prot->memory_allocated) >
1216	    prot->memory_allocated.limit)
1217		*parent_status = OVER_LIMIT;
1218}
1219
1220static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1221					      unsigned long amt)
1222{
1223	page_counter_uncharge(&prot->memory_allocated, amt);
1224}
1225
1226static inline long
1227sk_memory_allocated(const struct sock *sk)
1228{
1229	struct proto *prot = sk->sk_prot;
1230
1231	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1232		return page_counter_read(&sk->sk_cgrp->memory_allocated);
1233
1234	return atomic_long_read(prot->memory_allocated);
1235}
1236
1237static inline long
1238sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1239{
1240	struct proto *prot = sk->sk_prot;
1241
1242	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1243		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1244		/* update the root cgroup regardless */
1245		atomic_long_add_return(amt, prot->memory_allocated);
1246		return page_counter_read(&sk->sk_cgrp->memory_allocated);
1247	}
1248
1249	return atomic_long_add_return(amt, prot->memory_allocated);
1250}
1251
1252static inline void
1253sk_memory_allocated_sub(struct sock *sk, int amt)
1254{
1255	struct proto *prot = sk->sk_prot;
1256
1257	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1258		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1259
1260	atomic_long_sub(amt, prot->memory_allocated);
1261}
1262
1263static inline void sk_sockets_allocated_dec(struct sock *sk)
1264{
1265	struct proto *prot = sk->sk_prot;
1266
1267	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1268		struct cg_proto *cg_proto = sk->sk_cgrp;
1269
1270		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1271			percpu_counter_dec(&cg_proto->sockets_allocated);
1272	}
1273
1274	percpu_counter_dec(prot->sockets_allocated);
1275}
1276
1277static inline void sk_sockets_allocated_inc(struct sock *sk)
1278{
1279	struct proto *prot = sk->sk_prot;
1280
1281	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1282		struct cg_proto *cg_proto = sk->sk_cgrp;
1283
1284		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1285			percpu_counter_inc(&cg_proto->sockets_allocated);
1286	}
1287
1288	percpu_counter_inc(prot->sockets_allocated);
1289}
1290
1291static inline int
1292sk_sockets_allocated_read_positive(struct sock *sk)
1293{
1294	struct proto *prot = sk->sk_prot;
1295
1296	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1297		return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1298
1299	return percpu_counter_read_positive(prot->sockets_allocated);
1300}
1301
1302static inline int
1303proto_sockets_allocated_sum_positive(struct proto *prot)
1304{
1305	return percpu_counter_sum_positive(prot->sockets_allocated);
1306}
1307
1308static inline long
1309proto_memory_allocated(struct proto *prot)
1310{
1311	return atomic_long_read(prot->memory_allocated);
1312}
1313
1314static inline bool
1315proto_memory_pressure(struct proto *prot)
1316{
1317	if (!prot->memory_pressure)
1318		return false;
1319	return !!*prot->memory_pressure;
1320}
1321
1322
1323#ifdef CONFIG_PROC_FS
1324/* Called with local bh disabled */
1325void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1326int sock_prot_inuse_get(struct net *net, struct proto *proto);
1327#else
1328static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1329		int inc)
1330{
1331}
1332#endif
1333
1334
1335/* With per-bucket locks this operation is not-atomic, so that
1336 * this version is not worse.
1337 */
1338static inline void __sk_prot_rehash(struct sock *sk)
1339{
1340	sk->sk_prot->unhash(sk);
1341	sk->sk_prot->hash(sk);
1342}
1343
1344void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1345
1346/* About 10 seconds */
1347#define SOCK_DESTROY_TIME (10*HZ)
1348
1349/* Sockets 0-1023 can't be bound to unless you are superuser */
1350#define PROT_SOCK	1024
1351
1352#define SHUTDOWN_MASK	3
1353#define RCV_SHUTDOWN	1
1354#define SEND_SHUTDOWN	2
1355
1356#define SOCK_SNDBUF_LOCK	1
1357#define SOCK_RCVBUF_LOCK	2
1358#define SOCK_BINDADDR_LOCK	4
1359#define SOCK_BINDPORT_LOCK	8
1360
1361struct socket_alloc {
1362	struct socket socket;
1363	struct inode vfs_inode;
1364};
1365
1366static inline struct socket *SOCKET_I(struct inode *inode)
1367{
1368	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1369}
1370
1371static inline struct inode *SOCK_INODE(struct socket *socket)
1372{
1373	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1374}
1375
1376/*
1377 * Functions for memory accounting
1378 */
1379int __sk_mem_schedule(struct sock *sk, int size, int kind);
1380void __sk_mem_reclaim(struct sock *sk);
1381
1382#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1383#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1384#define SK_MEM_SEND	0
1385#define SK_MEM_RECV	1
1386
1387static inline int sk_mem_pages(int amt)
1388{
1389	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1390}
1391
1392static inline bool sk_has_account(struct sock *sk)
1393{
1394	/* return true if protocol supports memory accounting */
1395	return !!sk->sk_prot->memory_allocated;
1396}
1397
1398static inline bool sk_wmem_schedule(struct sock *sk, int size)
1399{
1400	if (!sk_has_account(sk))
1401		return true;
1402	return size <= sk->sk_forward_alloc ||
1403		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1404}
1405
1406static inline bool
1407sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1408{
1409	if (!sk_has_account(sk))
1410		return true;
1411	return size<= sk->sk_forward_alloc ||
1412		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1413		skb_pfmemalloc(skb);
1414}
1415
1416static inline void sk_mem_reclaim(struct sock *sk)
1417{
1418	if (!sk_has_account(sk))
1419		return;
1420	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1421		__sk_mem_reclaim(sk);
1422}
1423
1424static inline void sk_mem_reclaim_partial(struct sock *sk)
1425{
1426	if (!sk_has_account(sk))
1427		return;
1428	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1429		__sk_mem_reclaim(sk);
1430}
1431
1432static inline void sk_mem_charge(struct sock *sk, int size)
1433{
1434	if (!sk_has_account(sk))
1435		return;
1436	sk->sk_forward_alloc -= size;
1437}
1438
1439static inline void sk_mem_uncharge(struct sock *sk, int size)
1440{
1441	if (!sk_has_account(sk))
1442		return;
1443	sk->sk_forward_alloc += size;
1444}
1445
1446static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1447{
1448	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1449	sk->sk_wmem_queued -= skb->truesize;
1450	sk_mem_uncharge(sk, skb->truesize);
1451	__kfree_skb(skb);
1452}
1453
1454/* Used by processes to "lock" a socket state, so that
1455 * interrupts and bottom half handlers won't change it
1456 * from under us. It essentially blocks any incoming
1457 * packets, so that we won't get any new data or any
1458 * packets that change the state of the socket.
1459 *
1460 * While locked, BH processing will add new packets to
1461 * the backlog queue.  This queue is processed by the
1462 * owner of the socket lock right before it is released.
1463 *
1464 * Since ~2.3.5 it is also exclusive sleep lock serializing
1465 * accesses from user process context.
1466 */
1467#define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1468
1469static inline void sock_release_ownership(struct sock *sk)
1470{
1471	sk->sk_lock.owned = 0;
1472}
1473
1474/*
1475 * Macro so as to not evaluate some arguments when
1476 * lockdep is not enabled.
1477 *
1478 * Mark both the sk_lock and the sk_lock.slock as a
1479 * per-address-family lock class.
1480 */
1481#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1482do {									\
1483	sk->sk_lock.owned = 0;						\
1484	init_waitqueue_head(&sk->sk_lock.wq);				\
1485	spin_lock_init(&(sk)->sk_lock.slock);				\
1486	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1487			sizeof((sk)->sk_lock));				\
1488	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1489				(skey), (sname));				\
1490	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1491} while (0)
1492
1493void lock_sock_nested(struct sock *sk, int subclass);
1494
1495static inline void lock_sock(struct sock *sk)
1496{
1497	lock_sock_nested(sk, 0);
1498}
1499
1500void release_sock(struct sock *sk);
1501
1502/* BH context may only use the following locking interface. */
1503#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1504#define bh_lock_sock_nested(__sk) \
1505				spin_lock_nested(&((__sk)->sk_lock.slock), \
1506				SINGLE_DEPTH_NESTING)
1507#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1508
1509bool lock_sock_fast(struct sock *sk);
1510/**
1511 * unlock_sock_fast - complement of lock_sock_fast
1512 * @sk: socket
1513 * @slow: slow mode
1514 *
1515 * fast unlock socket for user context.
1516 * If slow mode is on, we call regular release_sock()
1517 */
1518static inline void unlock_sock_fast(struct sock *sk, bool slow)
1519{
1520	if (slow)
1521		release_sock(sk);
1522	else
1523		spin_unlock_bh(&sk->sk_lock.slock);
1524}
1525
1526
1527struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1528		      struct proto *prot);
1529void sk_free(struct sock *sk);
1530void sk_release_kernel(struct sock *sk);
1531struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1532
1533struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1534			     gfp_t priority);
1535void sock_wfree(struct sk_buff *skb);
1536void skb_orphan_partial(struct sk_buff *skb);
1537void sock_rfree(struct sk_buff *skb);
1538void sock_efree(struct sk_buff *skb);
1539#ifdef CONFIG_INET
1540void sock_edemux(struct sk_buff *skb);
1541#else
1542#define sock_edemux(skb) sock_efree(skb)
1543#endif
1544
1545int sock_setsockopt(struct socket *sock, int level, int op,
1546		    char __user *optval, unsigned int optlen);
1547
1548int sock_getsockopt(struct socket *sock, int level, int op,
1549		    char __user *optval, int __user *optlen);
1550struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1551				    int noblock, int *errcode);
1552struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1553				     unsigned long data_len, int noblock,
1554				     int *errcode, int max_page_order);
1555void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1556void sock_kfree_s(struct sock *sk, void *mem, int size);
1557void sock_kzfree_s(struct sock *sk, void *mem, int size);
1558void sk_send_sigurg(struct sock *sk);
1559
1560/*
1561 * Functions to fill in entries in struct proto_ops when a protocol
1562 * does not implement a particular function.
1563 */
1564int sock_no_bind(struct socket *, struct sockaddr *, int);
1565int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1566int sock_no_socketpair(struct socket *, struct socket *);
1567int sock_no_accept(struct socket *, struct socket *, int);
1568int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1569unsigned int sock_no_poll(struct file *, struct socket *,
1570			  struct poll_table_struct *);
1571int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1572int sock_no_listen(struct socket *, int);
1573int sock_no_shutdown(struct socket *, int);
1574int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1575int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1576int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1577int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1578int sock_no_mmap(struct file *file, struct socket *sock,
1579		 struct vm_area_struct *vma);
1580ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1581			 size_t size, int flags);
1582
1583/*
1584 * Functions to fill in entries in struct proto_ops when a protocol
1585 * uses the inet style.
1586 */
1587int sock_common_getsockopt(struct socket *sock, int level, int optname,
1588				  char __user *optval, int __user *optlen);
1589int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1590			int flags);
1591int sock_common_setsockopt(struct socket *sock, int level, int optname,
1592				  char __user *optval, unsigned int optlen);
1593int compat_sock_common_getsockopt(struct socket *sock, int level,
1594		int optname, char __user *optval, int __user *optlen);
1595int compat_sock_common_setsockopt(struct socket *sock, int level,
1596		int optname, char __user *optval, unsigned int optlen);
1597
1598void sk_common_release(struct sock *sk);
1599
1600/*
1601 *	Default socket callbacks and setup code
1602 */
1603
1604/* Initialise core socket variables */
1605void sock_init_data(struct socket *sock, struct sock *sk);
1606
1607/*
1608 * Socket reference counting postulates.
1609 *
1610 * * Each user of socket SHOULD hold a reference count.
1611 * * Each access point to socket (an hash table bucket, reference from a list,
1612 *   running timer, skb in flight MUST hold a reference count.
1613 * * When reference count hits 0, it means it will never increase back.
1614 * * When reference count hits 0, it means that no references from
1615 *   outside exist to this socket and current process on current CPU
1616 *   is last user and may/should destroy this socket.
1617 * * sk_free is called from any context: process, BH, IRQ. When
1618 *   it is called, socket has no references from outside -> sk_free
1619 *   may release descendant resources allocated by the socket, but
1620 *   to the time when it is called, socket is NOT referenced by any
1621 *   hash tables, lists etc.
1622 * * Packets, delivered from outside (from network or from another process)
1623 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1624 *   when they sit in queue. Otherwise, packets will leak to hole, when
1625 *   socket is looked up by one cpu and unhasing is made by another CPU.
1626 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1627 *   (leak to backlog). Packet socket does all the processing inside
1628 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1629 *   use separate SMP lock, so that they are prone too.
1630 */
1631
1632/* Ungrab socket and destroy it, if it was the last reference. */
1633static inline void sock_put(struct sock *sk)
1634{
1635	if (atomic_dec_and_test(&sk->sk_refcnt))
1636		sk_free(sk);
1637}
1638/* Generic version of sock_put(), dealing with all sockets
1639 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1640 */
1641void sock_gen_put(struct sock *sk);
1642
1643int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1644
1645static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1646{
1647	sk->sk_tx_queue_mapping = tx_queue;
1648}
1649
1650static inline void sk_tx_queue_clear(struct sock *sk)
1651{
1652	sk->sk_tx_queue_mapping = -1;
1653}
1654
1655static inline int sk_tx_queue_get(const struct sock *sk)
1656{
1657	return sk ? sk->sk_tx_queue_mapping : -1;
1658}
1659
1660static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1661{
1662	sk_tx_queue_clear(sk);
1663	sk->sk_socket = sock;
1664}
1665
1666static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1667{
1668	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1669	return &rcu_dereference_raw(sk->sk_wq)->wait;
1670}
1671/* Detach socket from process context.
1672 * Announce socket dead, detach it from wait queue and inode.
1673 * Note that parent inode held reference count on this struct sock,
1674 * we do not release it in this function, because protocol
1675 * probably wants some additional cleanups or even continuing
1676 * to work with this socket (TCP).
1677 */
1678static inline void sock_orphan(struct sock *sk)
1679{
1680	write_lock_bh(&sk->sk_callback_lock);
1681	sock_set_flag(sk, SOCK_DEAD);
1682	sk_set_socket(sk, NULL);
1683	sk->sk_wq  = NULL;
1684	write_unlock_bh(&sk->sk_callback_lock);
1685}
1686
1687static inline void sock_graft(struct sock *sk, struct socket *parent)
1688{
1689	write_lock_bh(&sk->sk_callback_lock);
1690	sk->sk_wq = parent->wq;
1691	parent->sk = sk;
1692	sk_set_socket(sk, parent);
1693	security_sock_graft(sk, parent);
1694	write_unlock_bh(&sk->sk_callback_lock);
1695}
1696
1697kuid_t sock_i_uid(struct sock *sk);
1698unsigned long sock_i_ino(struct sock *sk);
1699
1700static inline struct dst_entry *
1701__sk_dst_get(struct sock *sk)
1702{
1703	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1704						       lockdep_is_held(&sk->sk_lock.slock));
1705}
1706
1707static inline struct dst_entry *
1708sk_dst_get(struct sock *sk)
1709{
1710	struct dst_entry *dst;
1711
1712	rcu_read_lock();
1713	dst = rcu_dereference(sk->sk_dst_cache);
1714	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1715		dst = NULL;
1716	rcu_read_unlock();
1717	return dst;
1718}
1719
1720static inline void dst_negative_advice(struct sock *sk)
1721{
1722	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1723
1724	if (dst && dst->ops->negative_advice) {
1725		ndst = dst->ops->negative_advice(dst);
1726
1727		if (ndst != dst) {
1728			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1729			sk_tx_queue_clear(sk);
1730		}
1731	}
1732}
1733
1734static inline void
1735__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1736{
1737	struct dst_entry *old_dst;
1738
1739	sk_tx_queue_clear(sk);
1740	/*
1741	 * This can be called while sk is owned by the caller only,
1742	 * with no state that can be checked in a rcu_dereference_check() cond
1743	 */
1744	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1745	rcu_assign_pointer(sk->sk_dst_cache, dst);
1746	dst_release(old_dst);
1747}
1748
1749static inline void
1750sk_dst_set(struct sock *sk, struct dst_entry *dst)
1751{
1752	struct dst_entry *old_dst;
1753
1754	sk_tx_queue_clear(sk);
1755	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1756	dst_release(old_dst);
1757}
1758
1759static inline void
1760__sk_dst_reset(struct sock *sk)
1761{
1762	__sk_dst_set(sk, NULL);
1763}
1764
1765static inline void
1766sk_dst_reset(struct sock *sk)
1767{
1768	sk_dst_set(sk, NULL);
1769}
1770
1771struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1772
1773struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1774
1775bool sk_mc_loop(struct sock *sk);
1776
1777static inline bool sk_can_gso(const struct sock *sk)
1778{
1779	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1780}
1781
1782void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1783
1784static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1785{
1786	sk->sk_route_nocaps |= flags;
1787	sk->sk_route_caps &= ~flags;
1788}
1789
1790static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1791					   struct iov_iter *from, char *to,
1792					   int copy, int offset)
1793{
1794	if (skb->ip_summed == CHECKSUM_NONE) {
1795		__wsum csum = 0;
1796		if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1797			return -EFAULT;
1798		skb->csum = csum_block_add(skb->csum, csum, offset);
1799	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1800		if (copy_from_iter_nocache(to, copy, from) != copy)
1801			return -EFAULT;
1802	} else if (copy_from_iter(to, copy, from) != copy)
1803		return -EFAULT;
1804
1805	return 0;
1806}
1807
1808static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1809				       struct iov_iter *from, int copy)
1810{
1811	int err, offset = skb->len;
1812
1813	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1814				       copy, offset);
1815	if (err)
1816		__skb_trim(skb, offset);
1817
1818	return err;
1819}
1820
1821static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1822					   struct sk_buff *skb,
1823					   struct page *page,
1824					   int off, int copy)
1825{
1826	int err;
1827
1828	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1829				       copy, skb->len);
1830	if (err)
1831		return err;
1832
1833	skb->len	     += copy;
1834	skb->data_len	     += copy;
1835	skb->truesize	     += copy;
1836	sk->sk_wmem_queued   += copy;
1837	sk_mem_charge(sk, copy);
1838	return 0;
1839}
1840
1841/**
1842 * sk_wmem_alloc_get - returns write allocations
1843 * @sk: socket
1844 *
1845 * Returns sk_wmem_alloc minus initial offset of one
1846 */
1847static inline int sk_wmem_alloc_get(const struct sock *sk)
1848{
1849	return atomic_read(&sk->sk_wmem_alloc) - 1;
1850}
1851
1852/**
1853 * sk_rmem_alloc_get - returns read allocations
1854 * @sk: socket
1855 *
1856 * Returns sk_rmem_alloc
1857 */
1858static inline int sk_rmem_alloc_get(const struct sock *sk)
1859{
1860	return atomic_read(&sk->sk_rmem_alloc);
1861}
1862
1863/**
1864 * sk_has_allocations - check if allocations are outstanding
1865 * @sk: socket
1866 *
1867 * Returns true if socket has write or read allocations
1868 */
1869static inline bool sk_has_allocations(const struct sock *sk)
1870{
1871	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1872}
1873
1874/**
1875 * wq_has_sleeper - check if there are any waiting processes
1876 * @wq: struct socket_wq
1877 *
1878 * Returns true if socket_wq has waiting processes
1879 *
1880 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1881 * barrier call. They were added due to the race found within the tcp code.
1882 *
1883 * Consider following tcp code paths:
1884 *
1885 * CPU1                  CPU2
1886 *
1887 * sys_select            receive packet
1888 *   ...                 ...
1889 *   __add_wait_queue    update tp->rcv_nxt
1890 *   ...                 ...
1891 *   tp->rcv_nxt check   sock_def_readable
1892 *   ...                 {
1893 *   schedule               rcu_read_lock();
1894 *                          wq = rcu_dereference(sk->sk_wq);
1895 *                          if (wq && waitqueue_active(&wq->wait))
1896 *                              wake_up_interruptible(&wq->wait)
1897 *                          ...
1898 *                       }
1899 *
1900 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1901 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1902 * could then endup calling schedule and sleep forever if there are no more
1903 * data on the socket.
1904 *
1905 */
1906static inline bool wq_has_sleeper(struct socket_wq *wq)
1907{
1908	/* We need to be sure we are in sync with the
1909	 * add_wait_queue modifications to the wait queue.
1910	 *
1911	 * This memory barrier is paired in the sock_poll_wait.
1912	 */
1913	smp_mb();
1914	return wq && waitqueue_active(&wq->wait);
1915}
1916
1917/**
1918 * sock_poll_wait - place memory barrier behind the poll_wait call.
1919 * @filp:           file
1920 * @wait_address:   socket wait queue
1921 * @p:              poll_table
1922 *
1923 * See the comments in the wq_has_sleeper function.
1924 */
1925static inline void sock_poll_wait(struct file *filp,
1926		wait_queue_head_t *wait_address, poll_table *p)
1927{
1928	if (!poll_does_not_wait(p) && wait_address) {
1929		poll_wait(filp, wait_address, p);
1930		/* We need to be sure we are in sync with the
1931		 * socket flags modification.
1932		 *
1933		 * This memory barrier is paired in the wq_has_sleeper.
1934		 */
1935		smp_mb();
1936	}
1937}
1938
1939static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1940{
1941	if (sk->sk_txhash) {
1942		skb->l4_hash = 1;
1943		skb->hash = sk->sk_txhash;
1944	}
1945}
1946
1947/*
1948 *	Queue a received datagram if it will fit. Stream and sequenced
1949 *	protocols can't normally use this as they need to fit buffers in
1950 *	and play with them.
1951 *
1952 *	Inlined as it's very short and called for pretty much every
1953 *	packet ever received.
1954 */
1955
1956static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1957{
1958	skb_orphan(skb);
1959	skb->sk = sk;
1960	skb->destructor = sock_wfree;
1961	skb_set_hash_from_sk(skb, sk);
1962	/*
1963	 * We used to take a refcount on sk, but following operation
1964	 * is enough to guarantee sk_free() wont free this sock until
1965	 * all in-flight packets are completed
1966	 */
1967	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1968}
1969
1970static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1971{
1972	skb_orphan(skb);
1973	skb->sk = sk;
1974	skb->destructor = sock_rfree;
1975	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1976	sk_mem_charge(sk, skb->truesize);
1977}
1978
1979void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1980		    unsigned long expires);
1981
1982void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1983
1984int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1985
1986int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1987struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1988
1989/*
1990 *	Recover an error report and clear atomically
1991 */
1992
1993static inline int sock_error(struct sock *sk)
1994{
1995	int err;
1996	if (likely(!sk->sk_err))
1997		return 0;
1998	err = xchg(&sk->sk_err, 0);
1999	return -err;
2000}
2001
2002static inline unsigned long sock_wspace(struct sock *sk)
2003{
2004	int amt = 0;
2005
2006	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2007		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2008		if (amt < 0)
2009			amt = 0;
2010	}
2011	return amt;
2012}
2013
2014static inline void sk_wake_async(struct sock *sk, int how, int band)
2015{
2016	if (sock_flag(sk, SOCK_FASYNC))
2017		sock_wake_async(sk->sk_socket, how, band);
2018}
2019
2020/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2021 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2022 * Note: for send buffers, TCP works better if we can build two skbs at
2023 * minimum.
2024 */
2025#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2026
2027#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2028#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2029
2030static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2031{
2032	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2033		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2034		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2035	}
2036}
2037
2038struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2039
2040/**
2041 * sk_page_frag - return an appropriate page_frag
2042 * @sk: socket
2043 *
2044 * If socket allocation mode allows current thread to sleep, it means its
2045 * safe to use the per task page_frag instead of the per socket one.
2046 */
2047static inline struct page_frag *sk_page_frag(struct sock *sk)
2048{
2049	if (sk->sk_allocation & __GFP_WAIT)
2050		return &current->task_frag;
2051
2052	return &sk->sk_frag;
2053}
2054
2055bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2056
2057/*
2058 *	Default write policy as shown to user space via poll/select/SIGIO
2059 */
2060static inline bool sock_writeable(const struct sock *sk)
2061{
2062	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2063}
2064
2065static inline gfp_t gfp_any(void)
2066{
2067	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2068}
2069
2070static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2071{
2072	return noblock ? 0 : sk->sk_rcvtimeo;
2073}
2074
2075static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2076{
2077	return noblock ? 0 : sk->sk_sndtimeo;
2078}
2079
2080static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2081{
2082	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2083}
2084
2085/* Alas, with timeout socket operations are not restartable.
2086 * Compare this to poll().
2087 */
2088static inline int sock_intr_errno(long timeo)
2089{
2090	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2091}
2092
2093struct sock_skb_cb {
2094	u32 dropcount;
2095};
2096
2097/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2098 * using skb->cb[] would keep using it directly and utilize its
2099 * alignement guarantee.
2100 */
2101#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2102			    sizeof(struct sock_skb_cb)))
2103
2104#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2105			    SOCK_SKB_CB_OFFSET))
2106
2107#define sock_skb_cb_check_size(size) \
2108	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2109
2110static inline void
2111sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2112{
2113	SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2114}
2115
2116void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2117			   struct sk_buff *skb);
2118void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2119			     struct sk_buff *skb);
2120
2121static inline void
2122sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2123{
2124	ktime_t kt = skb->tstamp;
2125	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2126
2127	/*
2128	 * generate control messages if
2129	 * - receive time stamping in software requested
2130	 * - software time stamp available and wanted
2131	 * - hardware time stamps available and wanted
2132	 */
2133	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2134	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2135	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2136	    (hwtstamps->hwtstamp.tv64 &&
2137	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2138		__sock_recv_timestamp(msg, sk, skb);
2139	else
2140		sk->sk_stamp = kt;
2141
2142	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2143		__sock_recv_wifi_status(msg, sk, skb);
2144}
2145
2146void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2147			      struct sk_buff *skb);
2148
2149static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2150					  struct sk_buff *skb)
2151{
2152#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2153			   (1UL << SOCK_RCVTSTAMP))
2154#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2155			   SOF_TIMESTAMPING_RAW_HARDWARE)
2156
2157	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2158		__sock_recv_ts_and_drops(msg, sk, skb);
2159	else
2160		sk->sk_stamp = skb->tstamp;
2161}
2162
2163void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2164
2165/**
2166 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2167 * @sk:		socket sending this packet
2168 * @tx_flags:	completed with instructions for time stamping
2169 *
2170 * Note : callers should take care of initial *tx_flags value (usually 0)
2171 */
2172static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2173{
2174	if (unlikely(sk->sk_tsflags))
2175		__sock_tx_timestamp(sk, tx_flags);
2176	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2177		*tx_flags |= SKBTX_WIFI_STATUS;
2178}
2179
2180/**
2181 * sk_eat_skb - Release a skb if it is no longer needed
2182 * @sk: socket to eat this skb from
2183 * @skb: socket buffer to eat
2184 *
2185 * This routine must be called with interrupts disabled or with the socket
2186 * locked so that the sk_buff queue operation is ok.
2187*/
2188static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2189{
2190	__skb_unlink(skb, &sk->sk_receive_queue);
2191	__kfree_skb(skb);
2192}
2193
2194static inline
2195struct net *sock_net(const struct sock *sk)
2196{
2197	return read_pnet(&sk->sk_net);
2198}
2199
2200static inline
2201void sock_net_set(struct sock *sk, struct net *net)
2202{
2203	write_pnet(&sk->sk_net, net);
2204}
2205
2206/*
2207 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2208 * They should not hold a reference to a namespace in order to allow
2209 * to stop it.
2210 * Sockets after sk_change_net should be released using sk_release_kernel
2211 */
2212static inline void sk_change_net(struct sock *sk, struct net *net)
2213{
2214	struct net *current_net = sock_net(sk);
2215
2216	if (!net_eq(current_net, net)) {
2217		put_net(current_net);
2218		sock_net_set(sk, net);
2219	}
2220}
2221
2222static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2223{
2224	if (skb->sk) {
2225		struct sock *sk = skb->sk;
2226
2227		skb->destructor = NULL;
2228		skb->sk = NULL;
2229		return sk;
2230	}
2231	return NULL;
2232}
2233
2234/* This helper checks if a socket is a full socket,
2235 * ie _not_ a timewait or request socket.
2236 */
2237static inline bool sk_fullsock(const struct sock *sk)
2238{
2239	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2240}
2241
2242void sock_enable_timestamp(struct sock *sk, int flag);
2243int sock_get_timestamp(struct sock *, struct timeval __user *);
2244int sock_get_timestampns(struct sock *, struct timespec __user *);
2245int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2246		       int type);
2247
2248bool sk_ns_capable(const struct sock *sk,
2249		   struct user_namespace *user_ns, int cap);
2250bool sk_capable(const struct sock *sk, int cap);
2251bool sk_net_capable(const struct sock *sk, int cap);
2252
2253extern __u32 sysctl_wmem_max;
2254extern __u32 sysctl_rmem_max;
2255
2256extern int sysctl_tstamp_allow_data;
2257extern int sysctl_optmem_max;
2258
2259extern __u32 sysctl_wmem_default;
2260extern __u32 sysctl_rmem_default;
2261
2262#endif	/* _SOCK_H */
2263