1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47#include <linux/init.h>
48#include <asm/types.h>
49#include <linux/atomic.h>
50#include <linux/fs.h>
51#include <linux/namei.h>
52#include <linux/mm.h>
53#include <linux/export.h>
54#include <linux/slab.h>
55#include <linux/mount.h>
56#include <linux/socket.h>
57#include <linux/mqueue.h>
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
61#include <linux/netlink.h>
62#include <linux/compiler.h>
63#include <asm/unistd.h>
64#include <linux/security.h>
65#include <linux/list.h>
66#include <linux/tty.h>
67#include <linux/binfmts.h>
68#include <linux/highmem.h>
69#include <linux/syscalls.h>
70#include <asm/syscall.h>
71#include <linux/capability.h>
72#include <linux/fs_struct.h>
73#include <linux/compat.h>
74#include <linux/ctype.h>
75#include <linux/string.h>
76#include <uapi/linux/limits.h>
77
78#include "audit.h"
79
80/* flags stating the success for a syscall */
81#define AUDITSC_INVALID 0
82#define AUDITSC_SUCCESS 1
83#define AUDITSC_FAILURE 2
84
85/* no execve audit message should be longer than this (userspace limits) */
86#define MAX_EXECVE_AUDIT_LEN 7500
87
88/* max length to print of cmdline/proctitle value during audit */
89#define MAX_PROCTITLE_AUDIT_LEN 128
90
91/* number of audit rules */
92int audit_n_rules;
93
94/* determines whether we collect data for signals sent */
95int audit_signals;
96
97struct audit_aux_data {
98	struct audit_aux_data	*next;
99	int			type;
100};
101
102#define AUDIT_AUX_IPCPERM	0
103
104/* Number of target pids per aux struct. */
105#define AUDIT_AUX_PIDS	16
106
107struct audit_aux_data_pids {
108	struct audit_aux_data	d;
109	pid_t			target_pid[AUDIT_AUX_PIDS];
110	kuid_t			target_auid[AUDIT_AUX_PIDS];
111	kuid_t			target_uid[AUDIT_AUX_PIDS];
112	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
113	u32			target_sid[AUDIT_AUX_PIDS];
114	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
115	int			pid_count;
116};
117
118struct audit_aux_data_bprm_fcaps {
119	struct audit_aux_data	d;
120	struct audit_cap_data	fcap;
121	unsigned int		fcap_ver;
122	struct audit_cap_data	old_pcap;
123	struct audit_cap_data	new_pcap;
124};
125
126struct audit_tree_refs {
127	struct audit_tree_refs *next;
128	struct audit_chunk *c[31];
129};
130
131static int audit_match_perm(struct audit_context *ctx, int mask)
132{
133	unsigned n;
134	if (unlikely(!ctx))
135		return 0;
136	n = ctx->major;
137
138	switch (audit_classify_syscall(ctx->arch, n)) {
139	case 0:	/* native */
140		if ((mask & AUDIT_PERM_WRITE) &&
141		     audit_match_class(AUDIT_CLASS_WRITE, n))
142			return 1;
143		if ((mask & AUDIT_PERM_READ) &&
144		     audit_match_class(AUDIT_CLASS_READ, n))
145			return 1;
146		if ((mask & AUDIT_PERM_ATTR) &&
147		     audit_match_class(AUDIT_CLASS_CHATTR, n))
148			return 1;
149		return 0;
150	case 1: /* 32bit on biarch */
151		if ((mask & AUDIT_PERM_WRITE) &&
152		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
153			return 1;
154		if ((mask & AUDIT_PERM_READ) &&
155		     audit_match_class(AUDIT_CLASS_READ_32, n))
156			return 1;
157		if ((mask & AUDIT_PERM_ATTR) &&
158		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
159			return 1;
160		return 0;
161	case 2: /* open */
162		return mask & ACC_MODE(ctx->argv[1]);
163	case 3: /* openat */
164		return mask & ACC_MODE(ctx->argv[2]);
165	case 4: /* socketcall */
166		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
167	case 5: /* execve */
168		return mask & AUDIT_PERM_EXEC;
169	default:
170		return 0;
171	}
172}
173
174static int audit_match_filetype(struct audit_context *ctx, int val)
175{
176	struct audit_names *n;
177	umode_t mode = (umode_t)val;
178
179	if (unlikely(!ctx))
180		return 0;
181
182	list_for_each_entry(n, &ctx->names_list, list) {
183		if ((n->ino != -1) &&
184		    ((n->mode & S_IFMT) == mode))
185			return 1;
186	}
187
188	return 0;
189}
190
191/*
192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
193 * ->first_trees points to its beginning, ->trees - to the current end of data.
194 * ->tree_count is the number of free entries in array pointed to by ->trees.
195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
196 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
197 * it's going to remain 1-element for almost any setup) until we free context itself.
198 * References in it _are_ dropped - at the same time we free/drop aux stuff.
199 */
200
201#ifdef CONFIG_AUDIT_TREE
202static void audit_set_auditable(struct audit_context *ctx)
203{
204	if (!ctx->prio) {
205		ctx->prio = 1;
206		ctx->current_state = AUDIT_RECORD_CONTEXT;
207	}
208}
209
210static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
211{
212	struct audit_tree_refs *p = ctx->trees;
213	int left = ctx->tree_count;
214	if (likely(left)) {
215		p->c[--left] = chunk;
216		ctx->tree_count = left;
217		return 1;
218	}
219	if (!p)
220		return 0;
221	p = p->next;
222	if (p) {
223		p->c[30] = chunk;
224		ctx->trees = p;
225		ctx->tree_count = 30;
226		return 1;
227	}
228	return 0;
229}
230
231static int grow_tree_refs(struct audit_context *ctx)
232{
233	struct audit_tree_refs *p = ctx->trees;
234	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
235	if (!ctx->trees) {
236		ctx->trees = p;
237		return 0;
238	}
239	if (p)
240		p->next = ctx->trees;
241	else
242		ctx->first_trees = ctx->trees;
243	ctx->tree_count = 31;
244	return 1;
245}
246#endif
247
248static void unroll_tree_refs(struct audit_context *ctx,
249		      struct audit_tree_refs *p, int count)
250{
251#ifdef CONFIG_AUDIT_TREE
252	struct audit_tree_refs *q;
253	int n;
254	if (!p) {
255		/* we started with empty chain */
256		p = ctx->first_trees;
257		count = 31;
258		/* if the very first allocation has failed, nothing to do */
259		if (!p)
260			return;
261	}
262	n = count;
263	for (q = p; q != ctx->trees; q = q->next, n = 31) {
264		while (n--) {
265			audit_put_chunk(q->c[n]);
266			q->c[n] = NULL;
267		}
268	}
269	while (n-- > ctx->tree_count) {
270		audit_put_chunk(q->c[n]);
271		q->c[n] = NULL;
272	}
273	ctx->trees = p;
274	ctx->tree_count = count;
275#endif
276}
277
278static void free_tree_refs(struct audit_context *ctx)
279{
280	struct audit_tree_refs *p, *q;
281	for (p = ctx->first_trees; p; p = q) {
282		q = p->next;
283		kfree(p);
284	}
285}
286
287static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
288{
289#ifdef CONFIG_AUDIT_TREE
290	struct audit_tree_refs *p;
291	int n;
292	if (!tree)
293		return 0;
294	/* full ones */
295	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
296		for (n = 0; n < 31; n++)
297			if (audit_tree_match(p->c[n], tree))
298				return 1;
299	}
300	/* partial */
301	if (p) {
302		for (n = ctx->tree_count; n < 31; n++)
303			if (audit_tree_match(p->c[n], tree))
304				return 1;
305	}
306#endif
307	return 0;
308}
309
310static int audit_compare_uid(kuid_t uid,
311			     struct audit_names *name,
312			     struct audit_field *f,
313			     struct audit_context *ctx)
314{
315	struct audit_names *n;
316	int rc;
317
318	if (name) {
319		rc = audit_uid_comparator(uid, f->op, name->uid);
320		if (rc)
321			return rc;
322	}
323
324	if (ctx) {
325		list_for_each_entry(n, &ctx->names_list, list) {
326			rc = audit_uid_comparator(uid, f->op, n->uid);
327			if (rc)
328				return rc;
329		}
330	}
331	return 0;
332}
333
334static int audit_compare_gid(kgid_t gid,
335			     struct audit_names *name,
336			     struct audit_field *f,
337			     struct audit_context *ctx)
338{
339	struct audit_names *n;
340	int rc;
341
342	if (name) {
343		rc = audit_gid_comparator(gid, f->op, name->gid);
344		if (rc)
345			return rc;
346	}
347
348	if (ctx) {
349		list_for_each_entry(n, &ctx->names_list, list) {
350			rc = audit_gid_comparator(gid, f->op, n->gid);
351			if (rc)
352				return rc;
353		}
354	}
355	return 0;
356}
357
358static int audit_field_compare(struct task_struct *tsk,
359			       const struct cred *cred,
360			       struct audit_field *f,
361			       struct audit_context *ctx,
362			       struct audit_names *name)
363{
364	switch (f->val) {
365	/* process to file object comparisons */
366	case AUDIT_COMPARE_UID_TO_OBJ_UID:
367		return audit_compare_uid(cred->uid, name, f, ctx);
368	case AUDIT_COMPARE_GID_TO_OBJ_GID:
369		return audit_compare_gid(cred->gid, name, f, ctx);
370	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
371		return audit_compare_uid(cred->euid, name, f, ctx);
372	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
373		return audit_compare_gid(cred->egid, name, f, ctx);
374	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
375		return audit_compare_uid(tsk->loginuid, name, f, ctx);
376	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
377		return audit_compare_uid(cred->suid, name, f, ctx);
378	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
379		return audit_compare_gid(cred->sgid, name, f, ctx);
380	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
381		return audit_compare_uid(cred->fsuid, name, f, ctx);
382	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
383		return audit_compare_gid(cred->fsgid, name, f, ctx);
384	/* uid comparisons */
385	case AUDIT_COMPARE_UID_TO_AUID:
386		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
387	case AUDIT_COMPARE_UID_TO_EUID:
388		return audit_uid_comparator(cred->uid, f->op, cred->euid);
389	case AUDIT_COMPARE_UID_TO_SUID:
390		return audit_uid_comparator(cred->uid, f->op, cred->suid);
391	case AUDIT_COMPARE_UID_TO_FSUID:
392		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
393	/* auid comparisons */
394	case AUDIT_COMPARE_AUID_TO_EUID:
395		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
396	case AUDIT_COMPARE_AUID_TO_SUID:
397		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
398	case AUDIT_COMPARE_AUID_TO_FSUID:
399		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
400	/* euid comparisons */
401	case AUDIT_COMPARE_EUID_TO_SUID:
402		return audit_uid_comparator(cred->euid, f->op, cred->suid);
403	case AUDIT_COMPARE_EUID_TO_FSUID:
404		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405	/* suid comparisons */
406	case AUDIT_COMPARE_SUID_TO_FSUID:
407		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408	/* gid comparisons */
409	case AUDIT_COMPARE_GID_TO_EGID:
410		return audit_gid_comparator(cred->gid, f->op, cred->egid);
411	case AUDIT_COMPARE_GID_TO_SGID:
412		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413	case AUDIT_COMPARE_GID_TO_FSGID:
414		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415	/* egid comparisons */
416	case AUDIT_COMPARE_EGID_TO_SGID:
417		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418	case AUDIT_COMPARE_EGID_TO_FSGID:
419		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420	/* sgid comparison */
421	case AUDIT_COMPARE_SGID_TO_FSGID:
422		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423	default:
424		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
425		return 0;
426	}
427	return 0;
428}
429
430/* Determine if any context name data matches a rule's watch data */
431/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time.  This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
438static int audit_filter_rules(struct task_struct *tsk,
439			      struct audit_krule *rule,
440			      struct audit_context *ctx,
441			      struct audit_names *name,
442			      enum audit_state *state,
443			      bool task_creation)
444{
445	const struct cred *cred;
446	int i, need_sid = 1;
447	u32 sid;
448
449	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
450
451	for (i = 0; i < rule->field_count; i++) {
452		struct audit_field *f = &rule->fields[i];
453		struct audit_names *n;
454		int result = 0;
455		pid_t pid;
456
457		switch (f->type) {
458		case AUDIT_PID:
459			pid = task_pid_nr(tsk);
460			result = audit_comparator(pid, f->op, f->val);
461			break;
462		case AUDIT_PPID:
463			if (ctx) {
464				if (!ctx->ppid)
465					ctx->ppid = task_ppid_nr(tsk);
466				result = audit_comparator(ctx->ppid, f->op, f->val);
467			}
468			break;
469		case AUDIT_UID:
470			result = audit_uid_comparator(cred->uid, f->op, f->uid);
471			break;
472		case AUDIT_EUID:
473			result = audit_uid_comparator(cred->euid, f->op, f->uid);
474			break;
475		case AUDIT_SUID:
476			result = audit_uid_comparator(cred->suid, f->op, f->uid);
477			break;
478		case AUDIT_FSUID:
479			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
480			break;
481		case AUDIT_GID:
482			result = audit_gid_comparator(cred->gid, f->op, f->gid);
483			if (f->op == Audit_equal) {
484				if (!result)
485					result = in_group_p(f->gid);
486			} else if (f->op == Audit_not_equal) {
487				if (result)
488					result = !in_group_p(f->gid);
489			}
490			break;
491		case AUDIT_EGID:
492			result = audit_gid_comparator(cred->egid, f->op, f->gid);
493			if (f->op == Audit_equal) {
494				if (!result)
495					result = in_egroup_p(f->gid);
496			} else if (f->op == Audit_not_equal) {
497				if (result)
498					result = !in_egroup_p(f->gid);
499			}
500			break;
501		case AUDIT_SGID:
502			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
503			break;
504		case AUDIT_FSGID:
505			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
506			break;
507		case AUDIT_PERS:
508			result = audit_comparator(tsk->personality, f->op, f->val);
509			break;
510		case AUDIT_ARCH:
511			if (ctx)
512				result = audit_comparator(ctx->arch, f->op, f->val);
513			break;
514
515		case AUDIT_EXIT:
516			if (ctx && ctx->return_valid)
517				result = audit_comparator(ctx->return_code, f->op, f->val);
518			break;
519		case AUDIT_SUCCESS:
520			if (ctx && ctx->return_valid) {
521				if (f->val)
522					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
523				else
524					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
525			}
526			break;
527		case AUDIT_DEVMAJOR:
528			if (name) {
529				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
530				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
531					++result;
532			} else if (ctx) {
533				list_for_each_entry(n, &ctx->names_list, list) {
534					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
535					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
536						++result;
537						break;
538					}
539				}
540			}
541			break;
542		case AUDIT_DEVMINOR:
543			if (name) {
544				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
545				    audit_comparator(MINOR(name->rdev), f->op, f->val))
546					++result;
547			} else if (ctx) {
548				list_for_each_entry(n, &ctx->names_list, list) {
549					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
550					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
551						++result;
552						break;
553					}
554				}
555			}
556			break;
557		case AUDIT_INODE:
558			if (name)
559				result = audit_comparator(name->ino, f->op, f->val);
560			else if (ctx) {
561				list_for_each_entry(n, &ctx->names_list, list) {
562					if (audit_comparator(n->ino, f->op, f->val)) {
563						++result;
564						break;
565					}
566				}
567			}
568			break;
569		case AUDIT_OBJ_UID:
570			if (name) {
571				result = audit_uid_comparator(name->uid, f->op, f->uid);
572			} else if (ctx) {
573				list_for_each_entry(n, &ctx->names_list, list) {
574					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
575						++result;
576						break;
577					}
578				}
579			}
580			break;
581		case AUDIT_OBJ_GID:
582			if (name) {
583				result = audit_gid_comparator(name->gid, f->op, f->gid);
584			} else if (ctx) {
585				list_for_each_entry(n, &ctx->names_list, list) {
586					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
587						++result;
588						break;
589					}
590				}
591			}
592			break;
593		case AUDIT_WATCH:
594			if (name)
595				result = audit_watch_compare(rule->watch, name->ino, name->dev);
596			break;
597		case AUDIT_DIR:
598			if (ctx)
599				result = match_tree_refs(ctx, rule->tree);
600			break;
601		case AUDIT_LOGINUID:
602			result = 0;
603			if (ctx)
604				result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
605			break;
606		case AUDIT_LOGINUID_SET:
607			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
608			break;
609		case AUDIT_SUBJ_USER:
610		case AUDIT_SUBJ_ROLE:
611		case AUDIT_SUBJ_TYPE:
612		case AUDIT_SUBJ_SEN:
613		case AUDIT_SUBJ_CLR:
614			/* NOTE: this may return negative values indicating
615			   a temporary error.  We simply treat this as a
616			   match for now to avoid losing information that
617			   may be wanted.   An error message will also be
618			   logged upon error */
619			if (f->lsm_rule) {
620				if (need_sid) {
621					security_task_getsecid(tsk, &sid);
622					need_sid = 0;
623				}
624				result = security_audit_rule_match(sid, f->type,
625				                                  f->op,
626				                                  f->lsm_rule,
627				                                  ctx);
628			}
629			break;
630		case AUDIT_OBJ_USER:
631		case AUDIT_OBJ_ROLE:
632		case AUDIT_OBJ_TYPE:
633		case AUDIT_OBJ_LEV_LOW:
634		case AUDIT_OBJ_LEV_HIGH:
635			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
636			   also applies here */
637			if (f->lsm_rule) {
638				/* Find files that match */
639				if (name) {
640					result = security_audit_rule_match(
641					           name->osid, f->type, f->op,
642					           f->lsm_rule, ctx);
643				} else if (ctx) {
644					list_for_each_entry(n, &ctx->names_list, list) {
645						if (security_audit_rule_match(n->osid, f->type,
646									      f->op, f->lsm_rule,
647									      ctx)) {
648							++result;
649							break;
650						}
651					}
652				}
653				/* Find ipc objects that match */
654				if (!ctx || ctx->type != AUDIT_IPC)
655					break;
656				if (security_audit_rule_match(ctx->ipc.osid,
657							      f->type, f->op,
658							      f->lsm_rule, ctx))
659					++result;
660			}
661			break;
662		case AUDIT_ARG0:
663		case AUDIT_ARG1:
664		case AUDIT_ARG2:
665		case AUDIT_ARG3:
666			if (ctx)
667				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
668			break;
669		case AUDIT_FILTERKEY:
670			/* ignore this field for filtering */
671			result = 1;
672			break;
673		case AUDIT_PERM:
674			result = audit_match_perm(ctx, f->val);
675			break;
676		case AUDIT_FILETYPE:
677			result = audit_match_filetype(ctx, f->val);
678			break;
679		case AUDIT_FIELD_COMPARE:
680			result = audit_field_compare(tsk, cred, f, ctx, name);
681			break;
682		}
683		if (!result)
684			return 0;
685	}
686
687	if (ctx) {
688		if (rule->prio <= ctx->prio)
689			return 0;
690		if (rule->filterkey) {
691			kfree(ctx->filterkey);
692			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
693		}
694		ctx->prio = rule->prio;
695	}
696	switch (rule->action) {
697	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
698	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
699	}
700	return 1;
701}
702
703/* At process creation time, we can determine if system-call auditing is
704 * completely disabled for this task.  Since we only have the task
705 * structure at this point, we can only check uid and gid.
706 */
707static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
708{
709	struct audit_entry *e;
710	enum audit_state   state;
711
712	rcu_read_lock();
713	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
714		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
715				       &state, true)) {
716			if (state == AUDIT_RECORD_CONTEXT)
717				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
718			rcu_read_unlock();
719			return state;
720		}
721	}
722	rcu_read_unlock();
723	return AUDIT_BUILD_CONTEXT;
724}
725
726static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
727{
728	int word, bit;
729
730	if (val > 0xffffffff)
731		return false;
732
733	word = AUDIT_WORD(val);
734	if (word >= AUDIT_BITMASK_SIZE)
735		return false;
736
737	bit = AUDIT_BIT(val);
738
739	return rule->mask[word] & bit;
740}
741
742/* At syscall entry and exit time, this filter is called if the
743 * audit_state is not low enough that auditing cannot take place, but is
744 * also not high enough that we already know we have to write an audit
745 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
746 */
747static enum audit_state audit_filter_syscall(struct task_struct *tsk,
748					     struct audit_context *ctx,
749					     struct list_head *list)
750{
751	struct audit_entry *e;
752	enum audit_state state;
753
754	if (audit_pid && tsk->tgid == audit_pid)
755		return AUDIT_DISABLED;
756
757	rcu_read_lock();
758	if (!list_empty(list)) {
759		list_for_each_entry_rcu(e, list, list) {
760			if (audit_in_mask(&e->rule, ctx->major) &&
761			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
762					       &state, false)) {
763				rcu_read_unlock();
764				ctx->current_state = state;
765				return state;
766			}
767		}
768	}
769	rcu_read_unlock();
770	return AUDIT_BUILD_CONTEXT;
771}
772
773/*
774 * Given an audit_name check the inode hash table to see if they match.
775 * Called holding the rcu read lock to protect the use of audit_inode_hash
776 */
777static int audit_filter_inode_name(struct task_struct *tsk,
778				   struct audit_names *n,
779				   struct audit_context *ctx) {
780	int h = audit_hash_ino((u32)n->ino);
781	struct list_head *list = &audit_inode_hash[h];
782	struct audit_entry *e;
783	enum audit_state state;
784
785	if (list_empty(list))
786		return 0;
787
788	list_for_each_entry_rcu(e, list, list) {
789		if (audit_in_mask(&e->rule, ctx->major) &&
790		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
791			ctx->current_state = state;
792			return 1;
793		}
794	}
795
796	return 0;
797}
798
799/* At syscall exit time, this filter is called if any audit_names have been
800 * collected during syscall processing.  We only check rules in sublists at hash
801 * buckets applicable to the inode numbers in audit_names.
802 * Regarding audit_state, same rules apply as for audit_filter_syscall().
803 */
804void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
805{
806	struct audit_names *n;
807
808	if (audit_pid && tsk->tgid == audit_pid)
809		return;
810
811	rcu_read_lock();
812
813	list_for_each_entry(n, &ctx->names_list, list) {
814		if (audit_filter_inode_name(tsk, n, ctx))
815			break;
816	}
817	rcu_read_unlock();
818}
819
820/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
821static inline struct audit_context *audit_take_context(struct task_struct *tsk,
822						      int return_valid,
823						      long return_code)
824{
825	struct audit_context *context = tsk->audit_context;
826
827	if (!context)
828		return NULL;
829	context->return_valid = return_valid;
830
831	/*
832	 * we need to fix up the return code in the audit logs if the actual
833	 * return codes are later going to be fixed up by the arch specific
834	 * signal handlers
835	 *
836	 * This is actually a test for:
837	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
838	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
839	 *
840	 * but is faster than a bunch of ||
841	 */
842	if (unlikely(return_code <= -ERESTARTSYS) &&
843	    (return_code >= -ERESTART_RESTARTBLOCK) &&
844	    (return_code != -ENOIOCTLCMD))
845		context->return_code = -EINTR;
846	else
847		context->return_code  = return_code;
848
849	if (context->in_syscall && !context->dummy) {
850		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
851		audit_filter_inodes(tsk, context);
852	}
853
854	tsk->audit_context = NULL;
855	return context;
856}
857
858static inline void audit_proctitle_free(struct audit_context *context)
859{
860	kfree(context->proctitle.value);
861	context->proctitle.value = NULL;
862	context->proctitle.len = 0;
863}
864
865static inline void audit_free_names(struct audit_context *context)
866{
867	struct audit_names *n, *next;
868
869	list_for_each_entry_safe(n, next, &context->names_list, list) {
870		list_del(&n->list);
871		if (n->name)
872			putname(n->name);
873		if (n->should_free)
874			kfree(n);
875	}
876	context->name_count = 0;
877	path_put(&context->pwd);
878	context->pwd.dentry = NULL;
879	context->pwd.mnt = NULL;
880}
881
882static inline void audit_free_aux(struct audit_context *context)
883{
884	struct audit_aux_data *aux;
885
886	while ((aux = context->aux)) {
887		context->aux = aux->next;
888		kfree(aux);
889	}
890	while ((aux = context->aux_pids)) {
891		context->aux_pids = aux->next;
892		kfree(aux);
893	}
894}
895
896static inline struct audit_context *audit_alloc_context(enum audit_state state)
897{
898	struct audit_context *context;
899
900	context = kzalloc(sizeof(*context), GFP_KERNEL);
901	if (!context)
902		return NULL;
903	context->state = state;
904	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
905	INIT_LIST_HEAD(&context->killed_trees);
906	INIT_LIST_HEAD(&context->names_list);
907	return context;
908}
909
910/**
911 * audit_alloc - allocate an audit context block for a task
912 * @tsk: task
913 *
914 * Filter on the task information and allocate a per-task audit context
915 * if necessary.  Doing so turns on system call auditing for the
916 * specified task.  This is called from copy_process, so no lock is
917 * needed.
918 */
919int audit_alloc(struct task_struct *tsk)
920{
921	struct audit_context *context;
922	enum audit_state     state;
923	char *key = NULL;
924
925	if (likely(!audit_ever_enabled))
926		return 0; /* Return if not auditing. */
927
928	state = audit_filter_task(tsk, &key);
929	if (state == AUDIT_DISABLED) {
930		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
931		return 0;
932	}
933
934	if (!(context = audit_alloc_context(state))) {
935		kfree(key);
936		audit_log_lost("out of memory in audit_alloc");
937		return -ENOMEM;
938	}
939	context->filterkey = key;
940
941	tsk->audit_context  = context;
942	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
943	return 0;
944}
945
946static inline void audit_free_context(struct audit_context *context)
947{
948	audit_free_names(context);
949	unroll_tree_refs(context, NULL, 0);
950	free_tree_refs(context);
951	audit_free_aux(context);
952	kfree(context->filterkey);
953	kfree(context->sockaddr);
954	audit_proctitle_free(context);
955	kfree(context);
956}
957
958static int audit_log_pid_context(struct audit_context *context, pid_t pid,
959				 kuid_t auid, kuid_t uid, unsigned int sessionid,
960				 u32 sid, char *comm)
961{
962	struct audit_buffer *ab;
963	char *ctx = NULL;
964	u32 len;
965	int rc = 0;
966
967	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
968	if (!ab)
969		return rc;
970
971	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
972			 from_kuid(&init_user_ns, auid),
973			 from_kuid(&init_user_ns, uid), sessionid);
974	if (sid) {
975		if (security_secid_to_secctx(sid, &ctx, &len)) {
976			audit_log_format(ab, " obj=(none)");
977			rc = 1;
978		} else {
979			audit_log_format(ab, " obj=%s", ctx);
980			security_release_secctx(ctx, len);
981		}
982	}
983	audit_log_format(ab, " ocomm=");
984	audit_log_untrustedstring(ab, comm);
985	audit_log_end(ab);
986
987	return rc;
988}
989
990/*
991 * to_send and len_sent accounting are very loose estimates.  We aren't
992 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
993 * within about 500 bytes (next page boundary)
994 *
995 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
996 * logging that a[%d]= was going to be 16 characters long we would be wasting
997 * space in every audit message.  In one 7500 byte message we can log up to
998 * about 1000 min size arguments.  That comes down to about 50% waste of space
999 * if we didn't do the snprintf to find out how long arg_num_len was.
1000 */
1001static int audit_log_single_execve_arg(struct audit_context *context,
1002					struct audit_buffer **ab,
1003					int arg_num,
1004					size_t *len_sent,
1005					const char __user *p,
1006					char *buf)
1007{
1008	char arg_num_len_buf[12];
1009	const char __user *tmp_p = p;
1010	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1011	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1012	size_t len, len_left, to_send;
1013	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1014	unsigned int i, has_cntl = 0, too_long = 0;
1015	int ret;
1016
1017	/* strnlen_user includes the null we don't want to send */
1018	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1019
1020	/*
1021	 * We just created this mm, if we can't find the strings
1022	 * we just copied into it something is _very_ wrong. Similar
1023	 * for strings that are too long, we should not have created
1024	 * any.
1025	 */
1026	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1027		WARN_ON(1);
1028		send_sig(SIGKILL, current, 0);
1029		return -1;
1030	}
1031
1032	/* walk the whole argument looking for non-ascii chars */
1033	do {
1034		if (len_left > MAX_EXECVE_AUDIT_LEN)
1035			to_send = MAX_EXECVE_AUDIT_LEN;
1036		else
1037			to_send = len_left;
1038		ret = copy_from_user(buf, tmp_p, to_send);
1039		/*
1040		 * There is no reason for this copy to be short. We just
1041		 * copied them here, and the mm hasn't been exposed to user-
1042		 * space yet.
1043		 */
1044		if (ret) {
1045			WARN_ON(1);
1046			send_sig(SIGKILL, current, 0);
1047			return -1;
1048		}
1049		buf[to_send] = '\0';
1050		has_cntl = audit_string_contains_control(buf, to_send);
1051		if (has_cntl) {
1052			/*
1053			 * hex messages get logged as 2 bytes, so we can only
1054			 * send half as much in each message
1055			 */
1056			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1057			break;
1058		}
1059		len_left -= to_send;
1060		tmp_p += to_send;
1061	} while (len_left > 0);
1062
1063	len_left = len;
1064
1065	if (len > max_execve_audit_len)
1066		too_long = 1;
1067
1068	/* rewalk the argument actually logging the message */
1069	for (i = 0; len_left > 0; i++) {
1070		int room_left;
1071
1072		if (len_left > max_execve_audit_len)
1073			to_send = max_execve_audit_len;
1074		else
1075			to_send = len_left;
1076
1077		/* do we have space left to send this argument in this ab? */
1078		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1079		if (has_cntl)
1080			room_left -= (to_send * 2);
1081		else
1082			room_left -= to_send;
1083		if (room_left < 0) {
1084			*len_sent = 0;
1085			audit_log_end(*ab);
1086			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1087			if (!*ab)
1088				return 0;
1089		}
1090
1091		/*
1092		 * first record needs to say how long the original string was
1093		 * so we can be sure nothing was lost.
1094		 */
1095		if ((i == 0) && (too_long))
1096			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1097					 has_cntl ? 2*len : len);
1098
1099		/*
1100		 * normally arguments are small enough to fit and we already
1101		 * filled buf above when we checked for control characters
1102		 * so don't bother with another copy_from_user
1103		 */
1104		if (len >= max_execve_audit_len)
1105			ret = copy_from_user(buf, p, to_send);
1106		else
1107			ret = 0;
1108		if (ret) {
1109			WARN_ON(1);
1110			send_sig(SIGKILL, current, 0);
1111			return -1;
1112		}
1113		buf[to_send] = '\0';
1114
1115		/* actually log it */
1116		audit_log_format(*ab, " a%d", arg_num);
1117		if (too_long)
1118			audit_log_format(*ab, "[%d]", i);
1119		audit_log_format(*ab, "=");
1120		if (has_cntl)
1121			audit_log_n_hex(*ab, buf, to_send);
1122		else
1123			audit_log_string(*ab, buf);
1124
1125		p += to_send;
1126		len_left -= to_send;
1127		*len_sent += arg_num_len;
1128		if (has_cntl)
1129			*len_sent += to_send * 2;
1130		else
1131			*len_sent += to_send;
1132	}
1133	/* include the null we didn't log */
1134	return len + 1;
1135}
1136
1137static void audit_log_execve_info(struct audit_context *context,
1138				  struct audit_buffer **ab)
1139{
1140	int i, len;
1141	size_t len_sent = 0;
1142	const char __user *p;
1143	char *buf;
1144
1145	p = (const char __user *)current->mm->arg_start;
1146
1147	audit_log_format(*ab, "argc=%d", context->execve.argc);
1148
1149	/*
1150	 * we need some kernel buffer to hold the userspace args.  Just
1151	 * allocate one big one rather than allocating one of the right size
1152	 * for every single argument inside audit_log_single_execve_arg()
1153	 * should be <8k allocation so should be pretty safe.
1154	 */
1155	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1156	if (!buf) {
1157		audit_panic("out of memory for argv string");
1158		return;
1159	}
1160
1161	for (i = 0; i < context->execve.argc; i++) {
1162		len = audit_log_single_execve_arg(context, ab, i,
1163						  &len_sent, p, buf);
1164		if (len <= 0)
1165			break;
1166		p += len;
1167	}
1168	kfree(buf);
1169}
1170
1171static void show_special(struct audit_context *context, int *call_panic)
1172{
1173	struct audit_buffer *ab;
1174	int i;
1175
1176	ab = audit_log_start(context, GFP_KERNEL, context->type);
1177	if (!ab)
1178		return;
1179
1180	switch (context->type) {
1181	case AUDIT_SOCKETCALL: {
1182		int nargs = context->socketcall.nargs;
1183		audit_log_format(ab, "nargs=%d", nargs);
1184		for (i = 0; i < nargs; i++)
1185			audit_log_format(ab, " a%d=%lx", i,
1186				context->socketcall.args[i]);
1187		break; }
1188	case AUDIT_IPC: {
1189		u32 osid = context->ipc.osid;
1190
1191		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1192				 from_kuid(&init_user_ns, context->ipc.uid),
1193				 from_kgid(&init_user_ns, context->ipc.gid),
1194				 context->ipc.mode);
1195		if (osid) {
1196			char *ctx = NULL;
1197			u32 len;
1198			if (security_secid_to_secctx(osid, &ctx, &len)) {
1199				audit_log_format(ab, " osid=%u", osid);
1200				*call_panic = 1;
1201			} else {
1202				audit_log_format(ab, " obj=%s", ctx);
1203				security_release_secctx(ctx, len);
1204			}
1205		}
1206		if (context->ipc.has_perm) {
1207			audit_log_end(ab);
1208			ab = audit_log_start(context, GFP_KERNEL,
1209					     AUDIT_IPC_SET_PERM);
1210			if (unlikely(!ab))
1211				return;
1212			audit_log_format(ab,
1213				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1214				context->ipc.qbytes,
1215				context->ipc.perm_uid,
1216				context->ipc.perm_gid,
1217				context->ipc.perm_mode);
1218		}
1219		break; }
1220	case AUDIT_MQ_OPEN: {
1221		audit_log_format(ab,
1222			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1223			"mq_msgsize=%ld mq_curmsgs=%ld",
1224			context->mq_open.oflag, context->mq_open.mode,
1225			context->mq_open.attr.mq_flags,
1226			context->mq_open.attr.mq_maxmsg,
1227			context->mq_open.attr.mq_msgsize,
1228			context->mq_open.attr.mq_curmsgs);
1229		break; }
1230	case AUDIT_MQ_SENDRECV: {
1231		audit_log_format(ab,
1232			"mqdes=%d msg_len=%zd msg_prio=%u "
1233			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1234			context->mq_sendrecv.mqdes,
1235			context->mq_sendrecv.msg_len,
1236			context->mq_sendrecv.msg_prio,
1237			context->mq_sendrecv.abs_timeout.tv_sec,
1238			context->mq_sendrecv.abs_timeout.tv_nsec);
1239		break; }
1240	case AUDIT_MQ_NOTIFY: {
1241		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1242				context->mq_notify.mqdes,
1243				context->mq_notify.sigev_signo);
1244		break; }
1245	case AUDIT_MQ_GETSETATTR: {
1246		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1247		audit_log_format(ab,
1248			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1249			"mq_curmsgs=%ld ",
1250			context->mq_getsetattr.mqdes,
1251			attr->mq_flags, attr->mq_maxmsg,
1252			attr->mq_msgsize, attr->mq_curmsgs);
1253		break; }
1254	case AUDIT_CAPSET: {
1255		audit_log_format(ab, "pid=%d", context->capset.pid);
1256		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1257		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1258		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1259		break; }
1260	case AUDIT_MMAP: {
1261		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1262				 context->mmap.flags);
1263		break; }
1264	case AUDIT_EXECVE: {
1265		audit_log_execve_info(context, &ab);
1266		break; }
1267	}
1268	audit_log_end(ab);
1269}
1270
1271static inline int audit_proctitle_rtrim(char *proctitle, int len)
1272{
1273	char *end = proctitle + len - 1;
1274	while (end > proctitle && !isprint(*end))
1275		end--;
1276
1277	/* catch the case where proctitle is only 1 non-print character */
1278	len = end - proctitle + 1;
1279	len -= isprint(proctitle[len-1]) == 0;
1280	return len;
1281}
1282
1283static void audit_log_proctitle(struct task_struct *tsk,
1284			 struct audit_context *context)
1285{
1286	int res;
1287	char *buf;
1288	char *msg = "(null)";
1289	int len = strlen(msg);
1290	struct audit_buffer *ab;
1291
1292	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1293	if (!ab)
1294		return;	/* audit_panic or being filtered */
1295
1296	audit_log_format(ab, "proctitle=");
1297
1298	/* Not  cached */
1299	if (!context->proctitle.value) {
1300		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1301		if (!buf)
1302			goto out;
1303		/* Historically called this from procfs naming */
1304		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1305		if (res == 0) {
1306			kfree(buf);
1307			goto out;
1308		}
1309		res = audit_proctitle_rtrim(buf, res);
1310		if (res == 0) {
1311			kfree(buf);
1312			goto out;
1313		}
1314		context->proctitle.value = buf;
1315		context->proctitle.len = res;
1316	}
1317	msg = context->proctitle.value;
1318	len = context->proctitle.len;
1319out:
1320	audit_log_n_untrustedstring(ab, msg, len);
1321	audit_log_end(ab);
1322}
1323
1324static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1325{
1326	int i, call_panic = 0;
1327	struct audit_buffer *ab;
1328	struct audit_aux_data *aux;
1329	struct audit_names *n;
1330
1331	/* tsk == current */
1332	context->personality = tsk->personality;
1333
1334	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1335	if (!ab)
1336		return;		/* audit_panic has been called */
1337	audit_log_format(ab, "arch=%x syscall=%d",
1338			 context->arch, context->major);
1339	if (context->personality != PER_LINUX)
1340		audit_log_format(ab, " per=%lx", context->personality);
1341	if (context->return_valid)
1342		audit_log_format(ab, " success=%s exit=%ld",
1343				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1344				 context->return_code);
1345
1346	audit_log_format(ab,
1347			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1348			 context->argv[0],
1349			 context->argv[1],
1350			 context->argv[2],
1351			 context->argv[3],
1352			 context->name_count);
1353
1354	audit_log_task_info(ab, tsk);
1355	audit_log_key(ab, context->filterkey);
1356	audit_log_end(ab);
1357
1358	for (aux = context->aux; aux; aux = aux->next) {
1359
1360		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1361		if (!ab)
1362			continue; /* audit_panic has been called */
1363
1364		switch (aux->type) {
1365
1366		case AUDIT_BPRM_FCAPS: {
1367			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1368			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1369			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1370			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1371			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1372			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1373			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1374			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1375			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1376			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1377			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1378			break; }
1379
1380		}
1381		audit_log_end(ab);
1382	}
1383
1384	if (context->type)
1385		show_special(context, &call_panic);
1386
1387	if (context->fds[0] >= 0) {
1388		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1389		if (ab) {
1390			audit_log_format(ab, "fd0=%d fd1=%d",
1391					context->fds[0], context->fds[1]);
1392			audit_log_end(ab);
1393		}
1394	}
1395
1396	if (context->sockaddr_len) {
1397		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1398		if (ab) {
1399			audit_log_format(ab, "saddr=");
1400			audit_log_n_hex(ab, (void *)context->sockaddr,
1401					context->sockaddr_len);
1402			audit_log_end(ab);
1403		}
1404	}
1405
1406	for (aux = context->aux_pids; aux; aux = aux->next) {
1407		struct audit_aux_data_pids *axs = (void *)aux;
1408
1409		for (i = 0; i < axs->pid_count; i++)
1410			if (audit_log_pid_context(context, axs->target_pid[i],
1411						  axs->target_auid[i],
1412						  axs->target_uid[i],
1413						  axs->target_sessionid[i],
1414						  axs->target_sid[i],
1415						  axs->target_comm[i]))
1416				call_panic = 1;
1417	}
1418
1419	if (context->target_pid &&
1420	    audit_log_pid_context(context, context->target_pid,
1421				  context->target_auid, context->target_uid,
1422				  context->target_sessionid,
1423				  context->target_sid, context->target_comm))
1424			call_panic = 1;
1425
1426	if (context->pwd.dentry && context->pwd.mnt) {
1427		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1428		if (ab) {
1429			audit_log_d_path(ab, " cwd=", &context->pwd);
1430			audit_log_end(ab);
1431		}
1432	}
1433
1434	i = 0;
1435	list_for_each_entry(n, &context->names_list, list) {
1436		if (n->hidden)
1437			continue;
1438		audit_log_name(context, n, NULL, i++, &call_panic);
1439	}
1440
1441	audit_log_proctitle(tsk, context);
1442
1443	/* Send end of event record to help user space know we are finished */
1444	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1445	if (ab)
1446		audit_log_end(ab);
1447	if (call_panic)
1448		audit_panic("error converting sid to string");
1449}
1450
1451/**
1452 * audit_free - free a per-task audit context
1453 * @tsk: task whose audit context block to free
1454 *
1455 * Called from copy_process and do_exit
1456 */
1457void __audit_free(struct task_struct *tsk)
1458{
1459	struct audit_context *context;
1460
1461	context = audit_take_context(tsk, 0, 0);
1462	if (!context)
1463		return;
1464
1465	/* Check for system calls that do not go through the exit
1466	 * function (e.g., exit_group), then free context block.
1467	 * We use GFP_ATOMIC here because we might be doing this
1468	 * in the context of the idle thread */
1469	/* that can happen only if we are called from do_exit() */
1470	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1471		audit_log_exit(context, tsk);
1472	if (!list_empty(&context->killed_trees))
1473		audit_kill_trees(&context->killed_trees);
1474
1475	audit_free_context(context);
1476}
1477
1478/**
1479 * audit_syscall_entry - fill in an audit record at syscall entry
1480 * @major: major syscall type (function)
1481 * @a1: additional syscall register 1
1482 * @a2: additional syscall register 2
1483 * @a3: additional syscall register 3
1484 * @a4: additional syscall register 4
1485 *
1486 * Fill in audit context at syscall entry.  This only happens if the
1487 * audit context was created when the task was created and the state or
1488 * filters demand the audit context be built.  If the state from the
1489 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1490 * then the record will be written at syscall exit time (otherwise, it
1491 * will only be written if another part of the kernel requests that it
1492 * be written).
1493 */
1494void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1495			   unsigned long a3, unsigned long a4)
1496{
1497	struct task_struct *tsk = current;
1498	struct audit_context *context = tsk->audit_context;
1499	enum audit_state     state;
1500
1501	if (!context)
1502		return;
1503
1504	BUG_ON(context->in_syscall || context->name_count);
1505
1506	if (!audit_enabled)
1507		return;
1508
1509	context->arch	    = syscall_get_arch();
1510	context->major      = major;
1511	context->argv[0]    = a1;
1512	context->argv[1]    = a2;
1513	context->argv[2]    = a3;
1514	context->argv[3]    = a4;
1515
1516	state = context->state;
1517	context->dummy = !audit_n_rules;
1518	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1519		context->prio = 0;
1520		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1521	}
1522	if (state == AUDIT_DISABLED)
1523		return;
1524
1525	context->serial     = 0;
1526	context->ctime      = CURRENT_TIME;
1527	context->in_syscall = 1;
1528	context->current_state  = state;
1529	context->ppid       = 0;
1530}
1531
1532/**
1533 * audit_syscall_exit - deallocate audit context after a system call
1534 * @success: success value of the syscall
1535 * @return_code: return value of the syscall
1536 *
1537 * Tear down after system call.  If the audit context has been marked as
1538 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1539 * filtering, or because some other part of the kernel wrote an audit
1540 * message), then write out the syscall information.  In call cases,
1541 * free the names stored from getname().
1542 */
1543void __audit_syscall_exit(int success, long return_code)
1544{
1545	struct task_struct *tsk = current;
1546	struct audit_context *context;
1547
1548	if (success)
1549		success = AUDITSC_SUCCESS;
1550	else
1551		success = AUDITSC_FAILURE;
1552
1553	context = audit_take_context(tsk, success, return_code);
1554	if (!context)
1555		return;
1556
1557	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1558		audit_log_exit(context, tsk);
1559
1560	context->in_syscall = 0;
1561	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1562
1563	if (!list_empty(&context->killed_trees))
1564		audit_kill_trees(&context->killed_trees);
1565
1566	audit_free_names(context);
1567	unroll_tree_refs(context, NULL, 0);
1568	audit_free_aux(context);
1569	context->aux = NULL;
1570	context->aux_pids = NULL;
1571	context->target_pid = 0;
1572	context->target_sid = 0;
1573	context->sockaddr_len = 0;
1574	context->type = 0;
1575	context->fds[0] = -1;
1576	if (context->state != AUDIT_RECORD_CONTEXT) {
1577		kfree(context->filterkey);
1578		context->filterkey = NULL;
1579	}
1580	tsk->audit_context = context;
1581}
1582
1583static inline void handle_one(const struct inode *inode)
1584{
1585#ifdef CONFIG_AUDIT_TREE
1586	struct audit_context *context;
1587	struct audit_tree_refs *p;
1588	struct audit_chunk *chunk;
1589	int count;
1590	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1591		return;
1592	context = current->audit_context;
1593	p = context->trees;
1594	count = context->tree_count;
1595	rcu_read_lock();
1596	chunk = audit_tree_lookup(inode);
1597	rcu_read_unlock();
1598	if (!chunk)
1599		return;
1600	if (likely(put_tree_ref(context, chunk)))
1601		return;
1602	if (unlikely(!grow_tree_refs(context))) {
1603		pr_warn("out of memory, audit has lost a tree reference\n");
1604		audit_set_auditable(context);
1605		audit_put_chunk(chunk);
1606		unroll_tree_refs(context, p, count);
1607		return;
1608	}
1609	put_tree_ref(context, chunk);
1610#endif
1611}
1612
1613static void handle_path(const struct dentry *dentry)
1614{
1615#ifdef CONFIG_AUDIT_TREE
1616	struct audit_context *context;
1617	struct audit_tree_refs *p;
1618	const struct dentry *d, *parent;
1619	struct audit_chunk *drop;
1620	unsigned long seq;
1621	int count;
1622
1623	context = current->audit_context;
1624	p = context->trees;
1625	count = context->tree_count;
1626retry:
1627	drop = NULL;
1628	d = dentry;
1629	rcu_read_lock();
1630	seq = read_seqbegin(&rename_lock);
1631	for(;;) {
1632		struct inode *inode = d_backing_inode(d);
1633		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1634			struct audit_chunk *chunk;
1635			chunk = audit_tree_lookup(inode);
1636			if (chunk) {
1637				if (unlikely(!put_tree_ref(context, chunk))) {
1638					drop = chunk;
1639					break;
1640				}
1641			}
1642		}
1643		parent = d->d_parent;
1644		if (parent == d)
1645			break;
1646		d = parent;
1647	}
1648	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1649		rcu_read_unlock();
1650		if (!drop) {
1651			/* just a race with rename */
1652			unroll_tree_refs(context, p, count);
1653			goto retry;
1654		}
1655		audit_put_chunk(drop);
1656		if (grow_tree_refs(context)) {
1657			/* OK, got more space */
1658			unroll_tree_refs(context, p, count);
1659			goto retry;
1660		}
1661		/* too bad */
1662		pr_warn("out of memory, audit has lost a tree reference\n");
1663		unroll_tree_refs(context, p, count);
1664		audit_set_auditable(context);
1665		return;
1666	}
1667	rcu_read_unlock();
1668#endif
1669}
1670
1671static struct audit_names *audit_alloc_name(struct audit_context *context,
1672						unsigned char type)
1673{
1674	struct audit_names *aname;
1675
1676	if (context->name_count < AUDIT_NAMES) {
1677		aname = &context->preallocated_names[context->name_count];
1678		memset(aname, 0, sizeof(*aname));
1679	} else {
1680		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1681		if (!aname)
1682			return NULL;
1683		aname->should_free = true;
1684	}
1685
1686	aname->ino = (unsigned long)-1;
1687	aname->type = type;
1688	list_add_tail(&aname->list, &context->names_list);
1689
1690	context->name_count++;
1691	return aname;
1692}
1693
1694/**
1695 * audit_reusename - fill out filename with info from existing entry
1696 * @uptr: userland ptr to pathname
1697 *
1698 * Search the audit_names list for the current audit context. If there is an
1699 * existing entry with a matching "uptr" then return the filename
1700 * associated with that audit_name. If not, return NULL.
1701 */
1702struct filename *
1703__audit_reusename(const __user char *uptr)
1704{
1705	struct audit_context *context = current->audit_context;
1706	struct audit_names *n;
1707
1708	list_for_each_entry(n, &context->names_list, list) {
1709		if (!n->name)
1710			continue;
1711		if (n->name->uptr == uptr) {
1712			n->name->refcnt++;
1713			return n->name;
1714		}
1715	}
1716	return NULL;
1717}
1718
1719/**
1720 * audit_getname - add a name to the list
1721 * @name: name to add
1722 *
1723 * Add a name to the list of audit names for this context.
1724 * Called from fs/namei.c:getname().
1725 */
1726void __audit_getname(struct filename *name)
1727{
1728	struct audit_context *context = current->audit_context;
1729	struct audit_names *n;
1730
1731	if (!context->in_syscall)
1732		return;
1733
1734	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1735	if (!n)
1736		return;
1737
1738	n->name = name;
1739	n->name_len = AUDIT_NAME_FULL;
1740	name->aname = n;
1741	name->refcnt++;
1742
1743	if (!context->pwd.dentry)
1744		get_fs_pwd(current->fs, &context->pwd);
1745}
1746
1747/**
1748 * __audit_inode - store the inode and device from a lookup
1749 * @name: name being audited
1750 * @dentry: dentry being audited
1751 * @flags: attributes for this particular entry
1752 */
1753void __audit_inode(struct filename *name, const struct dentry *dentry,
1754		   unsigned int flags)
1755{
1756	struct audit_context *context = current->audit_context;
1757	const struct inode *inode = d_backing_inode(dentry);
1758	struct audit_names *n;
1759	bool parent = flags & AUDIT_INODE_PARENT;
1760
1761	if (!context->in_syscall)
1762		return;
1763
1764	if (!name)
1765		goto out_alloc;
1766
1767	/*
1768	 * If we have a pointer to an audit_names entry already, then we can
1769	 * just use it directly if the type is correct.
1770	 */
1771	n = name->aname;
1772	if (n) {
1773		if (parent) {
1774			if (n->type == AUDIT_TYPE_PARENT ||
1775			    n->type == AUDIT_TYPE_UNKNOWN)
1776				goto out;
1777		} else {
1778			if (n->type != AUDIT_TYPE_PARENT)
1779				goto out;
1780		}
1781	}
1782
1783	list_for_each_entry_reverse(n, &context->names_list, list) {
1784		if (n->ino) {
1785			/* valid inode number, use that for the comparison */
1786			if (n->ino != inode->i_ino ||
1787			    n->dev != inode->i_sb->s_dev)
1788				continue;
1789		} else if (n->name) {
1790			/* inode number has not been set, check the name */
1791			if (strcmp(n->name->name, name->name))
1792				continue;
1793		} else
1794			/* no inode and no name (?!) ... this is odd ... */
1795			continue;
1796
1797		/* match the correct record type */
1798		if (parent) {
1799			if (n->type == AUDIT_TYPE_PARENT ||
1800			    n->type == AUDIT_TYPE_UNKNOWN)
1801				goto out;
1802		} else {
1803			if (n->type != AUDIT_TYPE_PARENT)
1804				goto out;
1805		}
1806	}
1807
1808out_alloc:
1809	/* unable to find an entry with both a matching name and type */
1810	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1811	if (!n)
1812		return;
1813	if (name) {
1814		n->name = name;
1815		name->refcnt++;
1816	}
1817
1818out:
1819	if (parent) {
1820		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1821		n->type = AUDIT_TYPE_PARENT;
1822		if (flags & AUDIT_INODE_HIDDEN)
1823			n->hidden = true;
1824	} else {
1825		n->name_len = AUDIT_NAME_FULL;
1826		n->type = AUDIT_TYPE_NORMAL;
1827	}
1828	handle_path(dentry);
1829	audit_copy_inode(n, dentry, inode);
1830}
1831
1832void __audit_file(const struct file *file)
1833{
1834	__audit_inode(NULL, file->f_path.dentry, 0);
1835}
1836
1837/**
1838 * __audit_inode_child - collect inode info for created/removed objects
1839 * @parent: inode of dentry parent
1840 * @dentry: dentry being audited
1841 * @type:   AUDIT_TYPE_* value that we're looking for
1842 *
1843 * For syscalls that create or remove filesystem objects, audit_inode
1844 * can only collect information for the filesystem object's parent.
1845 * This call updates the audit context with the child's information.
1846 * Syscalls that create a new filesystem object must be hooked after
1847 * the object is created.  Syscalls that remove a filesystem object
1848 * must be hooked prior, in order to capture the target inode during
1849 * unsuccessful attempts.
1850 */
1851void __audit_inode_child(const struct inode *parent,
1852			 const struct dentry *dentry,
1853			 const unsigned char type)
1854{
1855	struct audit_context *context = current->audit_context;
1856	const struct inode *inode = d_backing_inode(dentry);
1857	const char *dname = dentry->d_name.name;
1858	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1859
1860	if (!context->in_syscall)
1861		return;
1862
1863	if (inode)
1864		handle_one(inode);
1865
1866	/* look for a parent entry first */
1867	list_for_each_entry(n, &context->names_list, list) {
1868		if (!n->name ||
1869		    (n->type != AUDIT_TYPE_PARENT &&
1870		     n->type != AUDIT_TYPE_UNKNOWN))
1871			continue;
1872
1873		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1874		    !audit_compare_dname_path(dname,
1875					      n->name->name, n->name_len)) {
1876			if (n->type == AUDIT_TYPE_UNKNOWN)
1877				n->type = AUDIT_TYPE_PARENT;
1878			found_parent = n;
1879			break;
1880		}
1881	}
1882
1883	/* is there a matching child entry? */
1884	list_for_each_entry(n, &context->names_list, list) {
1885		/* can only match entries that have a name */
1886		if (!n->name ||
1887		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1888			continue;
1889
1890		if (!strcmp(dname, n->name->name) ||
1891		    !audit_compare_dname_path(dname, n->name->name,
1892						found_parent ?
1893						found_parent->name_len :
1894						AUDIT_NAME_FULL)) {
1895			if (n->type == AUDIT_TYPE_UNKNOWN)
1896				n->type = type;
1897			found_child = n;
1898			break;
1899		}
1900	}
1901
1902	if (!found_parent) {
1903		/* create a new, "anonymous" parent record */
1904		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1905		if (!n)
1906			return;
1907		audit_copy_inode(n, NULL, parent);
1908	}
1909
1910	if (!found_child) {
1911		found_child = audit_alloc_name(context, type);
1912		if (!found_child)
1913			return;
1914
1915		/* Re-use the name belonging to the slot for a matching parent
1916		 * directory. All names for this context are relinquished in
1917		 * audit_free_names() */
1918		if (found_parent) {
1919			found_child->name = found_parent->name;
1920			found_child->name_len = AUDIT_NAME_FULL;
1921			found_child->name->refcnt++;
1922		}
1923	}
1924
1925	if (inode)
1926		audit_copy_inode(found_child, dentry, inode);
1927	else
1928		found_child->ino = (unsigned long)-1;
1929}
1930EXPORT_SYMBOL_GPL(__audit_inode_child);
1931
1932/**
1933 * auditsc_get_stamp - get local copies of audit_context values
1934 * @ctx: audit_context for the task
1935 * @t: timespec to store time recorded in the audit_context
1936 * @serial: serial value that is recorded in the audit_context
1937 *
1938 * Also sets the context as auditable.
1939 */
1940int auditsc_get_stamp(struct audit_context *ctx,
1941		       struct timespec *t, unsigned int *serial)
1942{
1943	if (!ctx->in_syscall)
1944		return 0;
1945	if (!ctx->serial)
1946		ctx->serial = audit_serial();
1947	t->tv_sec  = ctx->ctime.tv_sec;
1948	t->tv_nsec = ctx->ctime.tv_nsec;
1949	*serial    = ctx->serial;
1950	if (!ctx->prio) {
1951		ctx->prio = 1;
1952		ctx->current_state = AUDIT_RECORD_CONTEXT;
1953	}
1954	return 1;
1955}
1956
1957/* global counter which is incremented every time something logs in */
1958static atomic_t session_id = ATOMIC_INIT(0);
1959
1960static int audit_set_loginuid_perm(kuid_t loginuid)
1961{
1962	/* if we are unset, we don't need privs */
1963	if (!audit_loginuid_set(current))
1964		return 0;
1965	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1966	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1967		return -EPERM;
1968	/* it is set, you need permission */
1969	if (!capable(CAP_AUDIT_CONTROL))
1970		return -EPERM;
1971	/* reject if this is not an unset and we don't allow that */
1972	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1973		return -EPERM;
1974	return 0;
1975}
1976
1977static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1978				   unsigned int oldsessionid, unsigned int sessionid,
1979				   int rc)
1980{
1981	struct audit_buffer *ab;
1982	uid_t uid, oldloginuid, loginuid;
1983
1984	if (!audit_enabled)
1985		return;
1986
1987	uid = from_kuid(&init_user_ns, task_uid(current));
1988	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1989	loginuid = from_kuid(&init_user_ns, kloginuid),
1990
1991	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1992	if (!ab)
1993		return;
1994	audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
1995	audit_log_task_context(ab);
1996	audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
1997			 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
1998	audit_log_end(ab);
1999}
2000
2001/**
2002 * audit_set_loginuid - set current task's audit_context loginuid
2003 * @loginuid: loginuid value
2004 *
2005 * Returns 0.
2006 *
2007 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2008 */
2009int audit_set_loginuid(kuid_t loginuid)
2010{
2011	struct task_struct *task = current;
2012	unsigned int oldsessionid, sessionid = (unsigned int)-1;
2013	kuid_t oldloginuid;
2014	int rc;
2015
2016	oldloginuid = audit_get_loginuid(current);
2017	oldsessionid = audit_get_sessionid(current);
2018
2019	rc = audit_set_loginuid_perm(loginuid);
2020	if (rc)
2021		goto out;
2022
2023	/* are we setting or clearing? */
2024	if (uid_valid(loginuid))
2025		sessionid = (unsigned int)atomic_inc_return(&session_id);
2026
2027	task->sessionid = sessionid;
2028	task->loginuid = loginuid;
2029out:
2030	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2031	return rc;
2032}
2033
2034/**
2035 * __audit_mq_open - record audit data for a POSIX MQ open
2036 * @oflag: open flag
2037 * @mode: mode bits
2038 * @attr: queue attributes
2039 *
2040 */
2041void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2042{
2043	struct audit_context *context = current->audit_context;
2044
2045	if (attr)
2046		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2047	else
2048		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2049
2050	context->mq_open.oflag = oflag;
2051	context->mq_open.mode = mode;
2052
2053	context->type = AUDIT_MQ_OPEN;
2054}
2055
2056/**
2057 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2058 * @mqdes: MQ descriptor
2059 * @msg_len: Message length
2060 * @msg_prio: Message priority
2061 * @abs_timeout: Message timeout in absolute time
2062 *
2063 */
2064void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2065			const struct timespec *abs_timeout)
2066{
2067	struct audit_context *context = current->audit_context;
2068	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2069
2070	if (abs_timeout)
2071		memcpy(p, abs_timeout, sizeof(struct timespec));
2072	else
2073		memset(p, 0, sizeof(struct timespec));
2074
2075	context->mq_sendrecv.mqdes = mqdes;
2076	context->mq_sendrecv.msg_len = msg_len;
2077	context->mq_sendrecv.msg_prio = msg_prio;
2078
2079	context->type = AUDIT_MQ_SENDRECV;
2080}
2081
2082/**
2083 * __audit_mq_notify - record audit data for a POSIX MQ notify
2084 * @mqdes: MQ descriptor
2085 * @notification: Notification event
2086 *
2087 */
2088
2089void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2090{
2091	struct audit_context *context = current->audit_context;
2092
2093	if (notification)
2094		context->mq_notify.sigev_signo = notification->sigev_signo;
2095	else
2096		context->mq_notify.sigev_signo = 0;
2097
2098	context->mq_notify.mqdes = mqdes;
2099	context->type = AUDIT_MQ_NOTIFY;
2100}
2101
2102/**
2103 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2104 * @mqdes: MQ descriptor
2105 * @mqstat: MQ flags
2106 *
2107 */
2108void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2109{
2110	struct audit_context *context = current->audit_context;
2111	context->mq_getsetattr.mqdes = mqdes;
2112	context->mq_getsetattr.mqstat = *mqstat;
2113	context->type = AUDIT_MQ_GETSETATTR;
2114}
2115
2116/**
2117 * audit_ipc_obj - record audit data for ipc object
2118 * @ipcp: ipc permissions
2119 *
2120 */
2121void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2122{
2123	struct audit_context *context = current->audit_context;
2124	context->ipc.uid = ipcp->uid;
2125	context->ipc.gid = ipcp->gid;
2126	context->ipc.mode = ipcp->mode;
2127	context->ipc.has_perm = 0;
2128	security_ipc_getsecid(ipcp, &context->ipc.osid);
2129	context->type = AUDIT_IPC;
2130}
2131
2132/**
2133 * audit_ipc_set_perm - record audit data for new ipc permissions
2134 * @qbytes: msgq bytes
2135 * @uid: msgq user id
2136 * @gid: msgq group id
2137 * @mode: msgq mode (permissions)
2138 *
2139 * Called only after audit_ipc_obj().
2140 */
2141void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2142{
2143	struct audit_context *context = current->audit_context;
2144
2145	context->ipc.qbytes = qbytes;
2146	context->ipc.perm_uid = uid;
2147	context->ipc.perm_gid = gid;
2148	context->ipc.perm_mode = mode;
2149	context->ipc.has_perm = 1;
2150}
2151
2152void __audit_bprm(struct linux_binprm *bprm)
2153{
2154	struct audit_context *context = current->audit_context;
2155
2156	context->type = AUDIT_EXECVE;
2157	context->execve.argc = bprm->argc;
2158}
2159
2160
2161/**
2162 * audit_socketcall - record audit data for sys_socketcall
2163 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2164 * @args: args array
2165 *
2166 */
2167int __audit_socketcall(int nargs, unsigned long *args)
2168{
2169	struct audit_context *context = current->audit_context;
2170
2171	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2172		return -EINVAL;
2173	context->type = AUDIT_SOCKETCALL;
2174	context->socketcall.nargs = nargs;
2175	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2176	return 0;
2177}
2178
2179/**
2180 * __audit_fd_pair - record audit data for pipe and socketpair
2181 * @fd1: the first file descriptor
2182 * @fd2: the second file descriptor
2183 *
2184 */
2185void __audit_fd_pair(int fd1, int fd2)
2186{
2187	struct audit_context *context = current->audit_context;
2188	context->fds[0] = fd1;
2189	context->fds[1] = fd2;
2190}
2191
2192/**
2193 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2194 * @len: data length in user space
2195 * @a: data address in kernel space
2196 *
2197 * Returns 0 for success or NULL context or < 0 on error.
2198 */
2199int __audit_sockaddr(int len, void *a)
2200{
2201	struct audit_context *context = current->audit_context;
2202
2203	if (!context->sockaddr) {
2204		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2205		if (!p)
2206			return -ENOMEM;
2207		context->sockaddr = p;
2208	}
2209
2210	context->sockaddr_len = len;
2211	memcpy(context->sockaddr, a, len);
2212	return 0;
2213}
2214
2215void __audit_ptrace(struct task_struct *t)
2216{
2217	struct audit_context *context = current->audit_context;
2218
2219	context->target_pid = task_pid_nr(t);
2220	context->target_auid = audit_get_loginuid(t);
2221	context->target_uid = task_uid(t);
2222	context->target_sessionid = audit_get_sessionid(t);
2223	security_task_getsecid(t, &context->target_sid);
2224	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2225}
2226
2227/**
2228 * audit_signal_info - record signal info for shutting down audit subsystem
2229 * @sig: signal value
2230 * @t: task being signaled
2231 *
2232 * If the audit subsystem is being terminated, record the task (pid)
2233 * and uid that is doing that.
2234 */
2235int __audit_signal_info(int sig, struct task_struct *t)
2236{
2237	struct audit_aux_data_pids *axp;
2238	struct task_struct *tsk = current;
2239	struct audit_context *ctx = tsk->audit_context;
2240	kuid_t uid = current_uid(), t_uid = task_uid(t);
2241
2242	if (audit_pid && t->tgid == audit_pid) {
2243		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2244			audit_sig_pid = task_pid_nr(tsk);
2245			if (uid_valid(tsk->loginuid))
2246				audit_sig_uid = tsk->loginuid;
2247			else
2248				audit_sig_uid = uid;
2249			security_task_getsecid(tsk, &audit_sig_sid);
2250		}
2251		if (!audit_signals || audit_dummy_context())
2252			return 0;
2253	}
2254
2255	/* optimize the common case by putting first signal recipient directly
2256	 * in audit_context */
2257	if (!ctx->target_pid) {
2258		ctx->target_pid = task_tgid_nr(t);
2259		ctx->target_auid = audit_get_loginuid(t);
2260		ctx->target_uid = t_uid;
2261		ctx->target_sessionid = audit_get_sessionid(t);
2262		security_task_getsecid(t, &ctx->target_sid);
2263		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2264		return 0;
2265	}
2266
2267	axp = (void *)ctx->aux_pids;
2268	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2269		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2270		if (!axp)
2271			return -ENOMEM;
2272
2273		axp->d.type = AUDIT_OBJ_PID;
2274		axp->d.next = ctx->aux_pids;
2275		ctx->aux_pids = (void *)axp;
2276	}
2277	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2278
2279	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2280	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2281	axp->target_uid[axp->pid_count] = t_uid;
2282	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2283	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2284	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2285	axp->pid_count++;
2286
2287	return 0;
2288}
2289
2290/**
2291 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2292 * @bprm: pointer to the bprm being processed
2293 * @new: the proposed new credentials
2294 * @old: the old credentials
2295 *
2296 * Simply check if the proc already has the caps given by the file and if not
2297 * store the priv escalation info for later auditing at the end of the syscall
2298 *
2299 * -Eric
2300 */
2301int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2302			   const struct cred *new, const struct cred *old)
2303{
2304	struct audit_aux_data_bprm_fcaps *ax;
2305	struct audit_context *context = current->audit_context;
2306	struct cpu_vfs_cap_data vcaps;
2307
2308	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2309	if (!ax)
2310		return -ENOMEM;
2311
2312	ax->d.type = AUDIT_BPRM_FCAPS;
2313	ax->d.next = context->aux;
2314	context->aux = (void *)ax;
2315
2316	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2317
2318	ax->fcap.permitted = vcaps.permitted;
2319	ax->fcap.inheritable = vcaps.inheritable;
2320	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2321	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2322
2323	ax->old_pcap.permitted   = old->cap_permitted;
2324	ax->old_pcap.inheritable = old->cap_inheritable;
2325	ax->old_pcap.effective   = old->cap_effective;
2326
2327	ax->new_pcap.permitted   = new->cap_permitted;
2328	ax->new_pcap.inheritable = new->cap_inheritable;
2329	ax->new_pcap.effective   = new->cap_effective;
2330	return 0;
2331}
2332
2333/**
2334 * __audit_log_capset - store information about the arguments to the capset syscall
2335 * @new: the new credentials
2336 * @old: the old (current) credentials
2337 *
2338 * Record the arguments userspace sent to sys_capset for later printing by the
2339 * audit system if applicable
2340 */
2341void __audit_log_capset(const struct cred *new, const struct cred *old)
2342{
2343	struct audit_context *context = current->audit_context;
2344	context->capset.pid = task_pid_nr(current);
2345	context->capset.cap.effective   = new->cap_effective;
2346	context->capset.cap.inheritable = new->cap_effective;
2347	context->capset.cap.permitted   = new->cap_permitted;
2348	context->type = AUDIT_CAPSET;
2349}
2350
2351void __audit_mmap_fd(int fd, int flags)
2352{
2353	struct audit_context *context = current->audit_context;
2354	context->mmap.fd = fd;
2355	context->mmap.flags = flags;
2356	context->type = AUDIT_MMAP;
2357}
2358
2359static void audit_log_task(struct audit_buffer *ab)
2360{
2361	kuid_t auid, uid;
2362	kgid_t gid;
2363	unsigned int sessionid;
2364	char comm[sizeof(current->comm)];
2365
2366	auid = audit_get_loginuid(current);
2367	sessionid = audit_get_sessionid(current);
2368	current_uid_gid(&uid, &gid);
2369
2370	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2371			 from_kuid(&init_user_ns, auid),
2372			 from_kuid(&init_user_ns, uid),
2373			 from_kgid(&init_user_ns, gid),
2374			 sessionid);
2375	audit_log_task_context(ab);
2376	audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2377	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2378	audit_log_d_path_exe(ab, current->mm);
2379}
2380
2381/**
2382 * audit_core_dumps - record information about processes that end abnormally
2383 * @signr: signal value
2384 *
2385 * If a process ends with a core dump, something fishy is going on and we
2386 * should record the event for investigation.
2387 */
2388void audit_core_dumps(long signr)
2389{
2390	struct audit_buffer *ab;
2391
2392	if (!audit_enabled)
2393		return;
2394
2395	if (signr == SIGQUIT)	/* don't care for those */
2396		return;
2397
2398	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2399	if (unlikely(!ab))
2400		return;
2401	audit_log_task(ab);
2402	audit_log_format(ab, " sig=%ld", signr);
2403	audit_log_end(ab);
2404}
2405
2406void __audit_seccomp(unsigned long syscall, long signr, int code)
2407{
2408	struct audit_buffer *ab;
2409
2410	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2411	if (unlikely(!ab))
2412		return;
2413	audit_log_task(ab);
2414	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2415			 signr, syscall_get_arch(), syscall, is_compat_task(),
2416			 KSTK_EIP(current), code);
2417	audit_log_end(ab);
2418}
2419
2420struct list_head *audit_killed_trees(void)
2421{
2422	struct audit_context *ctx = current->audit_context;
2423	if (likely(!ctx || !ctx->in_syscall))
2424		return NULL;
2425	return &ctx->killed_trees;
2426}
2427