1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 *
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of version 2 of the GNU General Public
5 * License as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 */
12#include <linux/kernel.h>
13#include <linux/types.h>
14#include <linux/slab.h>
15#include <linux/bpf.h>
16#include <linux/filter.h>
17#include <net/netlink.h>
18#include <linux/file.h>
19#include <linux/vmalloc.h>
20
21/* bpf_check() is a static code analyzer that walks eBPF program
22 * instruction by instruction and updates register/stack state.
23 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
24 *
25 * The first pass is depth-first-search to check that the program is a DAG.
26 * It rejects the following programs:
27 * - larger than BPF_MAXINSNS insns
28 * - if loop is present (detected via back-edge)
29 * - unreachable insns exist (shouldn't be a forest. program = one function)
30 * - out of bounds or malformed jumps
31 * The second pass is all possible path descent from the 1st insn.
32 * Since it's analyzing all pathes through the program, the length of the
33 * analysis is limited to 32k insn, which may be hit even if total number of
34 * insn is less then 4K, but there are too many branches that change stack/regs.
35 * Number of 'branches to be analyzed' is limited to 1k
36 *
37 * On entry to each instruction, each register has a type, and the instruction
38 * changes the types of the registers depending on instruction semantics.
39 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
40 * copied to R1.
41 *
42 * All registers are 64-bit.
43 * R0 - return register
44 * R1-R5 argument passing registers
45 * R6-R9 callee saved registers
46 * R10 - frame pointer read-only
47 *
48 * At the start of BPF program the register R1 contains a pointer to bpf_context
49 * and has type PTR_TO_CTX.
50 *
51 * Verifier tracks arithmetic operations on pointers in case:
52 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
53 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
54 * 1st insn copies R10 (which has FRAME_PTR) type into R1
55 * and 2nd arithmetic instruction is pattern matched to recognize
56 * that it wants to construct a pointer to some element within stack.
57 * So after 2nd insn, the register R1 has type PTR_TO_STACK
58 * (and -20 constant is saved for further stack bounds checking).
59 * Meaning that this reg is a pointer to stack plus known immediate constant.
60 *
61 * Most of the time the registers have UNKNOWN_VALUE type, which
62 * means the register has some value, but it's not a valid pointer.
63 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
64 *
65 * When verifier sees load or store instructions the type of base register
66 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
67 * types recognized by check_mem_access() function.
68 *
69 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
70 * and the range of [ptr, ptr + map's value_size) is accessible.
71 *
72 * registers used to pass values to function calls are checked against
73 * function argument constraints.
74 *
75 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
76 * It means that the register type passed to this function must be
77 * PTR_TO_STACK and it will be used inside the function as
78 * 'pointer to map element key'
79 *
80 * For example the argument constraints for bpf_map_lookup_elem():
81 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
82 *   .arg1_type = ARG_CONST_MAP_PTR,
83 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
84 *
85 * ret_type says that this function returns 'pointer to map elem value or null'
86 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
87 * 2nd argument should be a pointer to stack, which will be used inside
88 * the helper function as a pointer to map element key.
89 *
90 * On the kernel side the helper function looks like:
91 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
92 * {
93 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
94 *    void *key = (void *) (unsigned long) r2;
95 *    void *value;
96 *
97 *    here kernel can access 'key' and 'map' pointers safely, knowing that
98 *    [key, key + map->key_size) bytes are valid and were initialized on
99 *    the stack of eBPF program.
100 * }
101 *
102 * Corresponding eBPF program may look like:
103 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
104 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
105 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
106 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
107 * here verifier looks at prototype of map_lookup_elem() and sees:
108 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
109 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
110 *
111 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
112 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
113 * and were initialized prior to this call.
114 * If it's ok, then verifier allows this BPF_CALL insn and looks at
115 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
116 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
117 * returns ether pointer to map value or NULL.
118 *
119 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
120 * insn, the register holding that pointer in the true branch changes state to
121 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
122 * branch. See check_cond_jmp_op().
123 *
124 * After the call R0 is set to return type of the function and registers R1-R5
125 * are set to NOT_INIT to indicate that they are no longer readable.
126 */
127
128/* types of values stored in eBPF registers */
129enum bpf_reg_type {
130	NOT_INIT = 0,		 /* nothing was written into register */
131	UNKNOWN_VALUE,		 /* reg doesn't contain a valid pointer */
132	PTR_TO_CTX,		 /* reg points to bpf_context */
133	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
134	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
135	PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
136	FRAME_PTR,		 /* reg == frame_pointer */
137	PTR_TO_STACK,		 /* reg == frame_pointer + imm */
138	CONST_IMM,		 /* constant integer value */
139};
140
141struct reg_state {
142	enum bpf_reg_type type;
143	union {
144		/* valid when type == CONST_IMM | PTR_TO_STACK */
145		int imm;
146
147		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
148		 *   PTR_TO_MAP_VALUE_OR_NULL
149		 */
150		struct bpf_map *map_ptr;
151	};
152};
153
154enum bpf_stack_slot_type {
155	STACK_INVALID,    /* nothing was stored in this stack slot */
156	STACK_SPILL,      /* register spilled into stack */
157	STACK_MISC	  /* BPF program wrote some data into this slot */
158};
159
160#define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
161
162/* state of the program:
163 * type of all registers and stack info
164 */
165struct verifier_state {
166	struct reg_state regs[MAX_BPF_REG];
167	u8 stack_slot_type[MAX_BPF_STACK];
168	struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
169};
170
171/* linked list of verifier states used to prune search */
172struct verifier_state_list {
173	struct verifier_state state;
174	struct verifier_state_list *next;
175};
176
177/* verifier_state + insn_idx are pushed to stack when branch is encountered */
178struct verifier_stack_elem {
179	/* verifer state is 'st'
180	 * before processing instruction 'insn_idx'
181	 * and after processing instruction 'prev_insn_idx'
182	 */
183	struct verifier_state st;
184	int insn_idx;
185	int prev_insn_idx;
186	struct verifier_stack_elem *next;
187};
188
189#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
190
191/* single container for all structs
192 * one verifier_env per bpf_check() call
193 */
194struct verifier_env {
195	struct bpf_prog *prog;		/* eBPF program being verified */
196	struct verifier_stack_elem *head; /* stack of verifier states to be processed */
197	int stack_size;			/* number of states to be processed */
198	struct verifier_state cur_state; /* current verifier state */
199	struct verifier_state_list **explored_states; /* search pruning optimization */
200	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
201	u32 used_map_cnt;		/* number of used maps */
202};
203
204/* verbose verifier prints what it's seeing
205 * bpf_check() is called under lock, so no race to access these global vars
206 */
207static u32 log_level, log_size, log_len;
208static char *log_buf;
209
210static DEFINE_MUTEX(bpf_verifier_lock);
211
212/* log_level controls verbosity level of eBPF verifier.
213 * verbose() is used to dump the verification trace to the log, so the user
214 * can figure out what's wrong with the program
215 */
216static void verbose(const char *fmt, ...)
217{
218	va_list args;
219
220	if (log_level == 0 || log_len >= log_size - 1)
221		return;
222
223	va_start(args, fmt);
224	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
225	va_end(args);
226}
227
228/* string representation of 'enum bpf_reg_type' */
229static const char * const reg_type_str[] = {
230	[NOT_INIT]		= "?",
231	[UNKNOWN_VALUE]		= "inv",
232	[PTR_TO_CTX]		= "ctx",
233	[CONST_PTR_TO_MAP]	= "map_ptr",
234	[PTR_TO_MAP_VALUE]	= "map_value",
235	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
236	[FRAME_PTR]		= "fp",
237	[PTR_TO_STACK]		= "fp",
238	[CONST_IMM]		= "imm",
239};
240
241static void print_verifier_state(struct verifier_env *env)
242{
243	enum bpf_reg_type t;
244	int i;
245
246	for (i = 0; i < MAX_BPF_REG; i++) {
247		t = env->cur_state.regs[i].type;
248		if (t == NOT_INIT)
249			continue;
250		verbose(" R%d=%s", i, reg_type_str[t]);
251		if (t == CONST_IMM || t == PTR_TO_STACK)
252			verbose("%d", env->cur_state.regs[i].imm);
253		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
254			 t == PTR_TO_MAP_VALUE_OR_NULL)
255			verbose("(ks=%d,vs=%d)",
256				env->cur_state.regs[i].map_ptr->key_size,
257				env->cur_state.regs[i].map_ptr->value_size);
258	}
259	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
260		if (env->cur_state.stack_slot_type[i] == STACK_SPILL)
261			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
262				reg_type_str[env->cur_state.spilled_regs[i / BPF_REG_SIZE].type]);
263	}
264	verbose("\n");
265}
266
267static const char *const bpf_class_string[] = {
268	[BPF_LD]    = "ld",
269	[BPF_LDX]   = "ldx",
270	[BPF_ST]    = "st",
271	[BPF_STX]   = "stx",
272	[BPF_ALU]   = "alu",
273	[BPF_JMP]   = "jmp",
274	[BPF_RET]   = "BUG",
275	[BPF_ALU64] = "alu64",
276};
277
278static const char *const bpf_alu_string[] = {
279	[BPF_ADD >> 4]  = "+=",
280	[BPF_SUB >> 4]  = "-=",
281	[BPF_MUL >> 4]  = "*=",
282	[BPF_DIV >> 4]  = "/=",
283	[BPF_OR  >> 4]  = "|=",
284	[BPF_AND >> 4]  = "&=",
285	[BPF_LSH >> 4]  = "<<=",
286	[BPF_RSH >> 4]  = ">>=",
287	[BPF_NEG >> 4]  = "neg",
288	[BPF_MOD >> 4]  = "%=",
289	[BPF_XOR >> 4]  = "^=",
290	[BPF_MOV >> 4]  = "=",
291	[BPF_ARSH >> 4] = "s>>=",
292	[BPF_END >> 4]  = "endian",
293};
294
295static const char *const bpf_ldst_string[] = {
296	[BPF_W >> 3]  = "u32",
297	[BPF_H >> 3]  = "u16",
298	[BPF_B >> 3]  = "u8",
299	[BPF_DW >> 3] = "u64",
300};
301
302static const char *const bpf_jmp_string[] = {
303	[BPF_JA >> 4]   = "jmp",
304	[BPF_JEQ >> 4]  = "==",
305	[BPF_JGT >> 4]  = ">",
306	[BPF_JGE >> 4]  = ">=",
307	[BPF_JSET >> 4] = "&",
308	[BPF_JNE >> 4]  = "!=",
309	[BPF_JSGT >> 4] = "s>",
310	[BPF_JSGE >> 4] = "s>=",
311	[BPF_CALL >> 4] = "call",
312	[BPF_EXIT >> 4] = "exit",
313};
314
315static void print_bpf_insn(struct bpf_insn *insn)
316{
317	u8 class = BPF_CLASS(insn->code);
318
319	if (class == BPF_ALU || class == BPF_ALU64) {
320		if (BPF_SRC(insn->code) == BPF_X)
321			verbose("(%02x) %sr%d %s %sr%d\n",
322				insn->code, class == BPF_ALU ? "(u32) " : "",
323				insn->dst_reg,
324				bpf_alu_string[BPF_OP(insn->code) >> 4],
325				class == BPF_ALU ? "(u32) " : "",
326				insn->src_reg);
327		else
328			verbose("(%02x) %sr%d %s %s%d\n",
329				insn->code, class == BPF_ALU ? "(u32) " : "",
330				insn->dst_reg,
331				bpf_alu_string[BPF_OP(insn->code) >> 4],
332				class == BPF_ALU ? "(u32) " : "",
333				insn->imm);
334	} else if (class == BPF_STX) {
335		if (BPF_MODE(insn->code) == BPF_MEM)
336			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
337				insn->code,
338				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
339				insn->dst_reg,
340				insn->off, insn->src_reg);
341		else if (BPF_MODE(insn->code) == BPF_XADD)
342			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
343				insn->code,
344				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
345				insn->dst_reg, insn->off,
346				insn->src_reg);
347		else
348			verbose("BUG_%02x\n", insn->code);
349	} else if (class == BPF_ST) {
350		if (BPF_MODE(insn->code) != BPF_MEM) {
351			verbose("BUG_st_%02x\n", insn->code);
352			return;
353		}
354		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
355			insn->code,
356			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
357			insn->dst_reg,
358			insn->off, insn->imm);
359	} else if (class == BPF_LDX) {
360		if (BPF_MODE(insn->code) != BPF_MEM) {
361			verbose("BUG_ldx_%02x\n", insn->code);
362			return;
363		}
364		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
365			insn->code, insn->dst_reg,
366			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
367			insn->src_reg, insn->off);
368	} else if (class == BPF_LD) {
369		if (BPF_MODE(insn->code) == BPF_ABS) {
370			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
371				insn->code,
372				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
373				insn->imm);
374		} else if (BPF_MODE(insn->code) == BPF_IND) {
375			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
376				insn->code,
377				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
378				insn->src_reg, insn->imm);
379		} else if (BPF_MODE(insn->code) == BPF_IMM) {
380			verbose("(%02x) r%d = 0x%x\n",
381				insn->code, insn->dst_reg, insn->imm);
382		} else {
383			verbose("BUG_ld_%02x\n", insn->code);
384			return;
385		}
386	} else if (class == BPF_JMP) {
387		u8 opcode = BPF_OP(insn->code);
388
389		if (opcode == BPF_CALL) {
390			verbose("(%02x) call %d\n", insn->code, insn->imm);
391		} else if (insn->code == (BPF_JMP | BPF_JA)) {
392			verbose("(%02x) goto pc%+d\n",
393				insn->code, insn->off);
394		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
395			verbose("(%02x) exit\n", insn->code);
396		} else if (BPF_SRC(insn->code) == BPF_X) {
397			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
398				insn->code, insn->dst_reg,
399				bpf_jmp_string[BPF_OP(insn->code) >> 4],
400				insn->src_reg, insn->off);
401		} else {
402			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
403				insn->code, insn->dst_reg,
404				bpf_jmp_string[BPF_OP(insn->code) >> 4],
405				insn->imm, insn->off);
406		}
407	} else {
408		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
409	}
410}
411
412static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
413{
414	struct verifier_stack_elem *elem;
415	int insn_idx;
416
417	if (env->head == NULL)
418		return -1;
419
420	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
421	insn_idx = env->head->insn_idx;
422	if (prev_insn_idx)
423		*prev_insn_idx = env->head->prev_insn_idx;
424	elem = env->head->next;
425	kfree(env->head);
426	env->head = elem;
427	env->stack_size--;
428	return insn_idx;
429}
430
431static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
432					 int prev_insn_idx)
433{
434	struct verifier_stack_elem *elem;
435
436	elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
437	if (!elem)
438		goto err;
439
440	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
441	elem->insn_idx = insn_idx;
442	elem->prev_insn_idx = prev_insn_idx;
443	elem->next = env->head;
444	env->head = elem;
445	env->stack_size++;
446	if (env->stack_size > 1024) {
447		verbose("BPF program is too complex\n");
448		goto err;
449	}
450	return &elem->st;
451err:
452	/* pop all elements and return */
453	while (pop_stack(env, NULL) >= 0);
454	return NULL;
455}
456
457#define CALLER_SAVED_REGS 6
458static const int caller_saved[CALLER_SAVED_REGS] = {
459	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
460};
461
462static void init_reg_state(struct reg_state *regs)
463{
464	int i;
465
466	for (i = 0; i < MAX_BPF_REG; i++) {
467		regs[i].type = NOT_INIT;
468		regs[i].imm = 0;
469		regs[i].map_ptr = NULL;
470	}
471
472	/* frame pointer */
473	regs[BPF_REG_FP].type = FRAME_PTR;
474
475	/* 1st arg to a function */
476	regs[BPF_REG_1].type = PTR_TO_CTX;
477}
478
479static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
480{
481	BUG_ON(regno >= MAX_BPF_REG);
482	regs[regno].type = UNKNOWN_VALUE;
483	regs[regno].imm = 0;
484	regs[regno].map_ptr = NULL;
485}
486
487enum reg_arg_type {
488	SRC_OP,		/* register is used as source operand */
489	DST_OP,		/* register is used as destination operand */
490	DST_OP_NO_MARK	/* same as above, check only, don't mark */
491};
492
493static int check_reg_arg(struct reg_state *regs, u32 regno,
494			 enum reg_arg_type t)
495{
496	if (regno >= MAX_BPF_REG) {
497		verbose("R%d is invalid\n", regno);
498		return -EINVAL;
499	}
500
501	if (t == SRC_OP) {
502		/* check whether register used as source operand can be read */
503		if (regs[regno].type == NOT_INIT) {
504			verbose("R%d !read_ok\n", regno);
505			return -EACCES;
506		}
507	} else {
508		/* check whether register used as dest operand can be written to */
509		if (regno == BPF_REG_FP) {
510			verbose("frame pointer is read only\n");
511			return -EACCES;
512		}
513		if (t == DST_OP)
514			mark_reg_unknown_value(regs, regno);
515	}
516	return 0;
517}
518
519static int bpf_size_to_bytes(int bpf_size)
520{
521	if (bpf_size == BPF_W)
522		return 4;
523	else if (bpf_size == BPF_H)
524		return 2;
525	else if (bpf_size == BPF_B)
526		return 1;
527	else if (bpf_size == BPF_DW)
528		return 8;
529	else
530		return -EINVAL;
531}
532
533/* check_stack_read/write functions track spill/fill of registers,
534 * stack boundary and alignment are checked in check_mem_access()
535 */
536static int check_stack_write(struct verifier_state *state, int off, int size,
537			     int value_regno)
538{
539	int i;
540	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
541	 * so it's aligned access and [off, off + size) are within stack limits
542	 */
543
544	if (value_regno >= 0 &&
545	    (state->regs[value_regno].type == PTR_TO_MAP_VALUE ||
546	     state->regs[value_regno].type == PTR_TO_STACK ||
547	     state->regs[value_regno].type == PTR_TO_CTX)) {
548
549		/* register containing pointer is being spilled into stack */
550		if (size != BPF_REG_SIZE) {
551			verbose("invalid size of register spill\n");
552			return -EACCES;
553		}
554
555		/* save register state */
556		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
557			state->regs[value_regno];
558
559		for (i = 0; i < BPF_REG_SIZE; i++)
560			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
561	} else {
562		/* regular write of data into stack */
563		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
564			(struct reg_state) {};
565
566		for (i = 0; i < size; i++)
567			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
568	}
569	return 0;
570}
571
572static int check_stack_read(struct verifier_state *state, int off, int size,
573			    int value_regno)
574{
575	u8 *slot_type;
576	int i;
577
578	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
579
580	if (slot_type[0] == STACK_SPILL) {
581		if (size != BPF_REG_SIZE) {
582			verbose("invalid size of register spill\n");
583			return -EACCES;
584		}
585		for (i = 1; i < BPF_REG_SIZE; i++) {
586			if (slot_type[i] != STACK_SPILL) {
587				verbose("corrupted spill memory\n");
588				return -EACCES;
589			}
590		}
591
592		if (value_regno >= 0)
593			/* restore register state from stack */
594			state->regs[value_regno] =
595				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
596		return 0;
597	} else {
598		for (i = 0; i < size; i++) {
599			if (slot_type[i] != STACK_MISC) {
600				verbose("invalid read from stack off %d+%d size %d\n",
601					off, i, size);
602				return -EACCES;
603			}
604		}
605		if (value_regno >= 0)
606			/* have read misc data from the stack */
607			mark_reg_unknown_value(state->regs, value_regno);
608		return 0;
609	}
610}
611
612/* check read/write into map element returned by bpf_map_lookup_elem() */
613static int check_map_access(struct verifier_env *env, u32 regno, int off,
614			    int size)
615{
616	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
617
618	if (off < 0 || off + size > map->value_size) {
619		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
620			map->value_size, off, size);
621		return -EACCES;
622	}
623	return 0;
624}
625
626/* check access to 'struct bpf_context' fields */
627static int check_ctx_access(struct verifier_env *env, int off, int size,
628			    enum bpf_access_type t)
629{
630	if (env->prog->aux->ops->is_valid_access &&
631	    env->prog->aux->ops->is_valid_access(off, size, t))
632		return 0;
633
634	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
635	return -EACCES;
636}
637
638/* check whether memory at (regno + off) is accessible for t = (read | write)
639 * if t==write, value_regno is a register which value is stored into memory
640 * if t==read, value_regno is a register which will receive the value from memory
641 * if t==write && value_regno==-1, some unknown value is stored into memory
642 * if t==read && value_regno==-1, don't care what we read from memory
643 */
644static int check_mem_access(struct verifier_env *env, u32 regno, int off,
645			    int bpf_size, enum bpf_access_type t,
646			    int value_regno)
647{
648	struct verifier_state *state = &env->cur_state;
649	int size, err = 0;
650
651	size = bpf_size_to_bytes(bpf_size);
652	if (size < 0)
653		return size;
654
655	if (off % size != 0) {
656		verbose("misaligned access off %d size %d\n", off, size);
657		return -EACCES;
658	}
659
660	if (state->regs[regno].type == PTR_TO_MAP_VALUE) {
661		err = check_map_access(env, regno, off, size);
662		if (!err && t == BPF_READ && value_regno >= 0)
663			mark_reg_unknown_value(state->regs, value_regno);
664
665	} else if (state->regs[regno].type == PTR_TO_CTX) {
666		err = check_ctx_access(env, off, size, t);
667		if (!err && t == BPF_READ && value_regno >= 0)
668			mark_reg_unknown_value(state->regs, value_regno);
669
670	} else if (state->regs[regno].type == FRAME_PTR) {
671		if (off >= 0 || off < -MAX_BPF_STACK) {
672			verbose("invalid stack off=%d size=%d\n", off, size);
673			return -EACCES;
674		}
675		if (t == BPF_WRITE)
676			err = check_stack_write(state, off, size, value_regno);
677		else
678			err = check_stack_read(state, off, size, value_regno);
679	} else {
680		verbose("R%d invalid mem access '%s'\n",
681			regno, reg_type_str[state->regs[regno].type]);
682		return -EACCES;
683	}
684	return err;
685}
686
687static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
688{
689	struct reg_state *regs = env->cur_state.regs;
690	int err;
691
692	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
693	    insn->imm != 0) {
694		verbose("BPF_XADD uses reserved fields\n");
695		return -EINVAL;
696	}
697
698	/* check src1 operand */
699	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
700	if (err)
701		return err;
702
703	/* check src2 operand */
704	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
705	if (err)
706		return err;
707
708	/* check whether atomic_add can read the memory */
709	err = check_mem_access(env, insn->dst_reg, insn->off,
710			       BPF_SIZE(insn->code), BPF_READ, -1);
711	if (err)
712		return err;
713
714	/* check whether atomic_add can write into the same memory */
715	return check_mem_access(env, insn->dst_reg, insn->off,
716				BPF_SIZE(insn->code), BPF_WRITE, -1);
717}
718
719/* when register 'regno' is passed into function that will read 'access_size'
720 * bytes from that pointer, make sure that it's within stack boundary
721 * and all elements of stack are initialized
722 */
723static int check_stack_boundary(struct verifier_env *env,
724				int regno, int access_size)
725{
726	struct verifier_state *state = &env->cur_state;
727	struct reg_state *regs = state->regs;
728	int off, i;
729
730	if (regs[regno].type != PTR_TO_STACK)
731		return -EACCES;
732
733	off = regs[regno].imm;
734	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
735	    access_size <= 0) {
736		verbose("invalid stack type R%d off=%d access_size=%d\n",
737			regno, off, access_size);
738		return -EACCES;
739	}
740
741	for (i = 0; i < access_size; i++) {
742		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
743			verbose("invalid indirect read from stack off %d+%d size %d\n",
744				off, i, access_size);
745			return -EACCES;
746		}
747	}
748	return 0;
749}
750
751static int check_func_arg(struct verifier_env *env, u32 regno,
752			  enum bpf_arg_type arg_type, struct bpf_map **mapp)
753{
754	struct reg_state *reg = env->cur_state.regs + regno;
755	enum bpf_reg_type expected_type;
756	int err = 0;
757
758	if (arg_type == ARG_DONTCARE)
759		return 0;
760
761	if (reg->type == NOT_INIT) {
762		verbose("R%d !read_ok\n", regno);
763		return -EACCES;
764	}
765
766	if (arg_type == ARG_ANYTHING)
767		return 0;
768
769	if (arg_type == ARG_PTR_TO_STACK || arg_type == ARG_PTR_TO_MAP_KEY ||
770	    arg_type == ARG_PTR_TO_MAP_VALUE) {
771		expected_type = PTR_TO_STACK;
772	} else if (arg_type == ARG_CONST_STACK_SIZE) {
773		expected_type = CONST_IMM;
774	} else if (arg_type == ARG_CONST_MAP_PTR) {
775		expected_type = CONST_PTR_TO_MAP;
776	} else if (arg_type == ARG_PTR_TO_CTX) {
777		expected_type = PTR_TO_CTX;
778	} else {
779		verbose("unsupported arg_type %d\n", arg_type);
780		return -EFAULT;
781	}
782
783	if (reg->type != expected_type) {
784		verbose("R%d type=%s expected=%s\n", regno,
785			reg_type_str[reg->type], reg_type_str[expected_type]);
786		return -EACCES;
787	}
788
789	if (arg_type == ARG_CONST_MAP_PTR) {
790		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
791		*mapp = reg->map_ptr;
792
793	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
794		/* bpf_map_xxx(..., map_ptr, ..., key) call:
795		 * check that [key, key + map->key_size) are within
796		 * stack limits and initialized
797		 */
798		if (!*mapp) {
799			/* in function declaration map_ptr must come before
800			 * map_key, so that it's verified and known before
801			 * we have to check map_key here. Otherwise it means
802			 * that kernel subsystem misconfigured verifier
803			 */
804			verbose("invalid map_ptr to access map->key\n");
805			return -EACCES;
806		}
807		err = check_stack_boundary(env, regno, (*mapp)->key_size);
808
809	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
810		/* bpf_map_xxx(..., map_ptr, ..., value) call:
811		 * check [value, value + map->value_size) validity
812		 */
813		if (!*mapp) {
814			/* kernel subsystem misconfigured verifier */
815			verbose("invalid map_ptr to access map->value\n");
816			return -EACCES;
817		}
818		err = check_stack_boundary(env, regno, (*mapp)->value_size);
819
820	} else if (arg_type == ARG_CONST_STACK_SIZE) {
821		/* bpf_xxx(..., buf, len) call will access 'len' bytes
822		 * from stack pointer 'buf'. Check it
823		 * note: regno == len, regno - 1 == buf
824		 */
825		if (regno == 0) {
826			/* kernel subsystem misconfigured verifier */
827			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
828			return -EACCES;
829		}
830		err = check_stack_boundary(env, regno - 1, reg->imm);
831	}
832
833	return err;
834}
835
836static int check_call(struct verifier_env *env, int func_id)
837{
838	struct verifier_state *state = &env->cur_state;
839	const struct bpf_func_proto *fn = NULL;
840	struct reg_state *regs = state->regs;
841	struct bpf_map *map = NULL;
842	struct reg_state *reg;
843	int i, err;
844
845	/* find function prototype */
846	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
847		verbose("invalid func %d\n", func_id);
848		return -EINVAL;
849	}
850
851	if (env->prog->aux->ops->get_func_proto)
852		fn = env->prog->aux->ops->get_func_proto(func_id);
853
854	if (!fn) {
855		verbose("unknown func %d\n", func_id);
856		return -EINVAL;
857	}
858
859	/* eBPF programs must be GPL compatible to use GPL-ed functions */
860	if (!env->prog->gpl_compatible && fn->gpl_only) {
861		verbose("cannot call GPL only function from proprietary program\n");
862		return -EINVAL;
863	}
864
865	/* check args */
866	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map);
867	if (err)
868		return err;
869	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
870	if (err)
871		return err;
872	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
873	if (err)
874		return err;
875	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map);
876	if (err)
877		return err;
878	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map);
879	if (err)
880		return err;
881
882	/* reset caller saved regs */
883	for (i = 0; i < CALLER_SAVED_REGS; i++) {
884		reg = regs + caller_saved[i];
885		reg->type = NOT_INIT;
886		reg->imm = 0;
887	}
888
889	/* update return register */
890	if (fn->ret_type == RET_INTEGER) {
891		regs[BPF_REG_0].type = UNKNOWN_VALUE;
892	} else if (fn->ret_type == RET_VOID) {
893		regs[BPF_REG_0].type = NOT_INIT;
894	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
895		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
896		/* remember map_ptr, so that check_map_access()
897		 * can check 'value_size' boundary of memory access
898		 * to map element returned from bpf_map_lookup_elem()
899		 */
900		if (map == NULL) {
901			verbose("kernel subsystem misconfigured verifier\n");
902			return -EINVAL;
903		}
904		regs[BPF_REG_0].map_ptr = map;
905	} else {
906		verbose("unknown return type %d of func %d\n",
907			fn->ret_type, func_id);
908		return -EINVAL;
909	}
910	return 0;
911}
912
913/* check validity of 32-bit and 64-bit arithmetic operations */
914static int check_alu_op(struct reg_state *regs, struct bpf_insn *insn)
915{
916	u8 opcode = BPF_OP(insn->code);
917	int err;
918
919	if (opcode == BPF_END || opcode == BPF_NEG) {
920		if (opcode == BPF_NEG) {
921			if (BPF_SRC(insn->code) != 0 ||
922			    insn->src_reg != BPF_REG_0 ||
923			    insn->off != 0 || insn->imm != 0) {
924				verbose("BPF_NEG uses reserved fields\n");
925				return -EINVAL;
926			}
927		} else {
928			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
929			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
930				verbose("BPF_END uses reserved fields\n");
931				return -EINVAL;
932			}
933		}
934
935		/* check src operand */
936		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
937		if (err)
938			return err;
939
940		/* check dest operand */
941		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
942		if (err)
943			return err;
944
945	} else if (opcode == BPF_MOV) {
946
947		if (BPF_SRC(insn->code) == BPF_X) {
948			if (insn->imm != 0 || insn->off != 0) {
949				verbose("BPF_MOV uses reserved fields\n");
950				return -EINVAL;
951			}
952
953			/* check src operand */
954			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
955			if (err)
956				return err;
957		} else {
958			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
959				verbose("BPF_MOV uses reserved fields\n");
960				return -EINVAL;
961			}
962		}
963
964		/* check dest operand */
965		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
966		if (err)
967			return err;
968
969		if (BPF_SRC(insn->code) == BPF_X) {
970			if (BPF_CLASS(insn->code) == BPF_ALU64) {
971				/* case: R1 = R2
972				 * copy register state to dest reg
973				 */
974				regs[insn->dst_reg] = regs[insn->src_reg];
975			} else {
976				regs[insn->dst_reg].type = UNKNOWN_VALUE;
977				regs[insn->dst_reg].map_ptr = NULL;
978			}
979		} else {
980			/* case: R = imm
981			 * remember the value we stored into this reg
982			 */
983			regs[insn->dst_reg].type = CONST_IMM;
984			regs[insn->dst_reg].imm = insn->imm;
985		}
986
987	} else if (opcode > BPF_END) {
988		verbose("invalid BPF_ALU opcode %x\n", opcode);
989		return -EINVAL;
990
991	} else {	/* all other ALU ops: and, sub, xor, add, ... */
992
993		bool stack_relative = false;
994
995		if (BPF_SRC(insn->code) == BPF_X) {
996			if (insn->imm != 0 || insn->off != 0) {
997				verbose("BPF_ALU uses reserved fields\n");
998				return -EINVAL;
999			}
1000			/* check src1 operand */
1001			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1002			if (err)
1003				return err;
1004		} else {
1005			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1006				verbose("BPF_ALU uses reserved fields\n");
1007				return -EINVAL;
1008			}
1009		}
1010
1011		/* check src2 operand */
1012		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1013		if (err)
1014			return err;
1015
1016		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1017		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1018			verbose("div by zero\n");
1019			return -EINVAL;
1020		}
1021
1022		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1023		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1024			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1025
1026			if (insn->imm < 0 || insn->imm >= size) {
1027				verbose("invalid shift %d\n", insn->imm);
1028				return -EINVAL;
1029			}
1030		}
1031
1032		/* pattern match 'bpf_add Rx, imm' instruction */
1033		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1034		    regs[insn->dst_reg].type == FRAME_PTR &&
1035		    BPF_SRC(insn->code) == BPF_K)
1036			stack_relative = true;
1037
1038		/* check dest operand */
1039		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1040		if (err)
1041			return err;
1042
1043		if (stack_relative) {
1044			regs[insn->dst_reg].type = PTR_TO_STACK;
1045			regs[insn->dst_reg].imm = insn->imm;
1046		}
1047	}
1048
1049	return 0;
1050}
1051
1052static int check_cond_jmp_op(struct verifier_env *env,
1053			     struct bpf_insn *insn, int *insn_idx)
1054{
1055	struct reg_state *regs = env->cur_state.regs;
1056	struct verifier_state *other_branch;
1057	u8 opcode = BPF_OP(insn->code);
1058	int err;
1059
1060	if (opcode > BPF_EXIT) {
1061		verbose("invalid BPF_JMP opcode %x\n", opcode);
1062		return -EINVAL;
1063	}
1064
1065	if (BPF_SRC(insn->code) == BPF_X) {
1066		if (insn->imm != 0) {
1067			verbose("BPF_JMP uses reserved fields\n");
1068			return -EINVAL;
1069		}
1070
1071		/* check src1 operand */
1072		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1073		if (err)
1074			return err;
1075	} else {
1076		if (insn->src_reg != BPF_REG_0) {
1077			verbose("BPF_JMP uses reserved fields\n");
1078			return -EINVAL;
1079		}
1080	}
1081
1082	/* check src2 operand */
1083	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1084	if (err)
1085		return err;
1086
1087	/* detect if R == 0 where R was initialized to zero earlier */
1088	if (BPF_SRC(insn->code) == BPF_K &&
1089	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1090	    regs[insn->dst_reg].type == CONST_IMM &&
1091	    regs[insn->dst_reg].imm == insn->imm) {
1092		if (opcode == BPF_JEQ) {
1093			/* if (imm == imm) goto pc+off;
1094			 * only follow the goto, ignore fall-through
1095			 */
1096			*insn_idx += insn->off;
1097			return 0;
1098		} else {
1099			/* if (imm != imm) goto pc+off;
1100			 * only follow fall-through branch, since
1101			 * that's where the program will go
1102			 */
1103			return 0;
1104		}
1105	}
1106
1107	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1108	if (!other_branch)
1109		return -EFAULT;
1110
1111	/* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
1112	if (BPF_SRC(insn->code) == BPF_K &&
1113	    insn->imm == 0 && (opcode == BPF_JEQ ||
1114			       opcode == BPF_JNE) &&
1115	    regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) {
1116		if (opcode == BPF_JEQ) {
1117			/* next fallthrough insn can access memory via
1118			 * this register
1119			 */
1120			regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1121			/* branch targer cannot access it, since reg == 0 */
1122			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1123			other_branch->regs[insn->dst_reg].imm = 0;
1124		} else {
1125			other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1126			regs[insn->dst_reg].type = CONST_IMM;
1127			regs[insn->dst_reg].imm = 0;
1128		}
1129	} else if (BPF_SRC(insn->code) == BPF_K &&
1130		   (opcode == BPF_JEQ || opcode == BPF_JNE)) {
1131
1132		if (opcode == BPF_JEQ) {
1133			/* detect if (R == imm) goto
1134			 * and in the target state recognize that R = imm
1135			 */
1136			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1137			other_branch->regs[insn->dst_reg].imm = insn->imm;
1138		} else {
1139			/* detect if (R != imm) goto
1140			 * and in the fall-through state recognize that R = imm
1141			 */
1142			regs[insn->dst_reg].type = CONST_IMM;
1143			regs[insn->dst_reg].imm = insn->imm;
1144		}
1145	}
1146	if (log_level)
1147		print_verifier_state(env);
1148	return 0;
1149}
1150
1151/* return the map pointer stored inside BPF_LD_IMM64 instruction */
1152static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1153{
1154	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1155
1156	return (struct bpf_map *) (unsigned long) imm64;
1157}
1158
1159/* verify BPF_LD_IMM64 instruction */
1160static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
1161{
1162	struct reg_state *regs = env->cur_state.regs;
1163	int err;
1164
1165	if (BPF_SIZE(insn->code) != BPF_DW) {
1166		verbose("invalid BPF_LD_IMM insn\n");
1167		return -EINVAL;
1168	}
1169	if (insn->off != 0) {
1170		verbose("BPF_LD_IMM64 uses reserved fields\n");
1171		return -EINVAL;
1172	}
1173
1174	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1175	if (err)
1176		return err;
1177
1178	if (insn->src_reg == 0)
1179		/* generic move 64-bit immediate into a register */
1180		return 0;
1181
1182	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1183	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1184
1185	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1186	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1187	return 0;
1188}
1189
1190static bool may_access_skb(enum bpf_prog_type type)
1191{
1192	switch (type) {
1193	case BPF_PROG_TYPE_SOCKET_FILTER:
1194	case BPF_PROG_TYPE_SCHED_CLS:
1195	case BPF_PROG_TYPE_SCHED_ACT:
1196		return true;
1197	default:
1198		return false;
1199	}
1200}
1201
1202/* verify safety of LD_ABS|LD_IND instructions:
1203 * - they can only appear in the programs where ctx == skb
1204 * - since they are wrappers of function calls, they scratch R1-R5 registers,
1205 *   preserve R6-R9, and store return value into R0
1206 *
1207 * Implicit input:
1208 *   ctx == skb == R6 == CTX
1209 *
1210 * Explicit input:
1211 *   SRC == any register
1212 *   IMM == 32-bit immediate
1213 *
1214 * Output:
1215 *   R0 - 8/16/32-bit skb data converted to cpu endianness
1216 */
1217static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
1218{
1219	struct reg_state *regs = env->cur_state.regs;
1220	u8 mode = BPF_MODE(insn->code);
1221	struct reg_state *reg;
1222	int i, err;
1223
1224	if (!may_access_skb(env->prog->type)) {
1225		verbose("BPF_LD_ABS|IND instructions not allowed for this program type\n");
1226		return -EINVAL;
1227	}
1228
1229	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
1230	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1231		verbose("BPF_LD_ABS uses reserved fields\n");
1232		return -EINVAL;
1233	}
1234
1235	/* check whether implicit source operand (register R6) is readable */
1236	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
1237	if (err)
1238		return err;
1239
1240	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
1241		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1242		return -EINVAL;
1243	}
1244
1245	if (mode == BPF_IND) {
1246		/* check explicit source operand */
1247		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1248		if (err)
1249			return err;
1250	}
1251
1252	/* reset caller saved regs to unreadable */
1253	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1254		reg = regs + caller_saved[i];
1255		reg->type = NOT_INIT;
1256		reg->imm = 0;
1257	}
1258
1259	/* mark destination R0 register as readable, since it contains
1260	 * the value fetched from the packet
1261	 */
1262	regs[BPF_REG_0].type = UNKNOWN_VALUE;
1263	return 0;
1264}
1265
1266/* non-recursive DFS pseudo code
1267 * 1  procedure DFS-iterative(G,v):
1268 * 2      label v as discovered
1269 * 3      let S be a stack
1270 * 4      S.push(v)
1271 * 5      while S is not empty
1272 * 6            t <- S.pop()
1273 * 7            if t is what we're looking for:
1274 * 8                return t
1275 * 9            for all edges e in G.adjacentEdges(t) do
1276 * 10               if edge e is already labelled
1277 * 11                   continue with the next edge
1278 * 12               w <- G.adjacentVertex(t,e)
1279 * 13               if vertex w is not discovered and not explored
1280 * 14                   label e as tree-edge
1281 * 15                   label w as discovered
1282 * 16                   S.push(w)
1283 * 17                   continue at 5
1284 * 18               else if vertex w is discovered
1285 * 19                   label e as back-edge
1286 * 20               else
1287 * 21                   // vertex w is explored
1288 * 22                   label e as forward- or cross-edge
1289 * 23           label t as explored
1290 * 24           S.pop()
1291 *
1292 * convention:
1293 * 0x10 - discovered
1294 * 0x11 - discovered and fall-through edge labelled
1295 * 0x12 - discovered and fall-through and branch edges labelled
1296 * 0x20 - explored
1297 */
1298
1299enum {
1300	DISCOVERED = 0x10,
1301	EXPLORED = 0x20,
1302	FALLTHROUGH = 1,
1303	BRANCH = 2,
1304};
1305
1306#define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1307
1308static int *insn_stack;	/* stack of insns to process */
1309static int cur_stack;	/* current stack index */
1310static int *insn_state;
1311
1312/* t, w, e - match pseudo-code above:
1313 * t - index of current instruction
1314 * w - next instruction
1315 * e - edge
1316 */
1317static int push_insn(int t, int w, int e, struct verifier_env *env)
1318{
1319	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1320		return 0;
1321
1322	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1323		return 0;
1324
1325	if (w < 0 || w >= env->prog->len) {
1326		verbose("jump out of range from insn %d to %d\n", t, w);
1327		return -EINVAL;
1328	}
1329
1330	if (e == BRANCH)
1331		/* mark branch target for state pruning */
1332		env->explored_states[w] = STATE_LIST_MARK;
1333
1334	if (insn_state[w] == 0) {
1335		/* tree-edge */
1336		insn_state[t] = DISCOVERED | e;
1337		insn_state[w] = DISCOVERED;
1338		if (cur_stack >= env->prog->len)
1339			return -E2BIG;
1340		insn_stack[cur_stack++] = w;
1341		return 1;
1342	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1343		verbose("back-edge from insn %d to %d\n", t, w);
1344		return -EINVAL;
1345	} else if (insn_state[w] == EXPLORED) {
1346		/* forward- or cross-edge */
1347		insn_state[t] = DISCOVERED | e;
1348	} else {
1349		verbose("insn state internal bug\n");
1350		return -EFAULT;
1351	}
1352	return 0;
1353}
1354
1355/* non-recursive depth-first-search to detect loops in BPF program
1356 * loop == back-edge in directed graph
1357 */
1358static int check_cfg(struct verifier_env *env)
1359{
1360	struct bpf_insn *insns = env->prog->insnsi;
1361	int insn_cnt = env->prog->len;
1362	int ret = 0;
1363	int i, t;
1364
1365	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1366	if (!insn_state)
1367		return -ENOMEM;
1368
1369	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1370	if (!insn_stack) {
1371		kfree(insn_state);
1372		return -ENOMEM;
1373	}
1374
1375	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
1376	insn_stack[0] = 0; /* 0 is the first instruction */
1377	cur_stack = 1;
1378
1379peek_stack:
1380	if (cur_stack == 0)
1381		goto check_state;
1382	t = insn_stack[cur_stack - 1];
1383
1384	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
1385		u8 opcode = BPF_OP(insns[t].code);
1386
1387		if (opcode == BPF_EXIT) {
1388			goto mark_explored;
1389		} else if (opcode == BPF_CALL) {
1390			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1391			if (ret == 1)
1392				goto peek_stack;
1393			else if (ret < 0)
1394				goto err_free;
1395		} else if (opcode == BPF_JA) {
1396			if (BPF_SRC(insns[t].code) != BPF_K) {
1397				ret = -EINVAL;
1398				goto err_free;
1399			}
1400			/* unconditional jump with single edge */
1401			ret = push_insn(t, t + insns[t].off + 1,
1402					FALLTHROUGH, env);
1403			if (ret == 1)
1404				goto peek_stack;
1405			else if (ret < 0)
1406				goto err_free;
1407			/* tell verifier to check for equivalent states
1408			 * after every call and jump
1409			 */
1410			if (t + 1 < insn_cnt)
1411				env->explored_states[t + 1] = STATE_LIST_MARK;
1412		} else {
1413			/* conditional jump with two edges */
1414			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1415			if (ret == 1)
1416				goto peek_stack;
1417			else if (ret < 0)
1418				goto err_free;
1419
1420			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
1421			if (ret == 1)
1422				goto peek_stack;
1423			else if (ret < 0)
1424				goto err_free;
1425		}
1426	} else {
1427		/* all other non-branch instructions with single
1428		 * fall-through edge
1429		 */
1430		ret = push_insn(t, t + 1, FALLTHROUGH, env);
1431		if (ret == 1)
1432			goto peek_stack;
1433		else if (ret < 0)
1434			goto err_free;
1435	}
1436
1437mark_explored:
1438	insn_state[t] = EXPLORED;
1439	if (cur_stack-- <= 0) {
1440		verbose("pop stack internal bug\n");
1441		ret = -EFAULT;
1442		goto err_free;
1443	}
1444	goto peek_stack;
1445
1446check_state:
1447	for (i = 0; i < insn_cnt; i++) {
1448		if (insn_state[i] != EXPLORED) {
1449			verbose("unreachable insn %d\n", i);
1450			ret = -EINVAL;
1451			goto err_free;
1452		}
1453	}
1454	ret = 0; /* cfg looks good */
1455
1456err_free:
1457	kfree(insn_state);
1458	kfree(insn_stack);
1459	return ret;
1460}
1461
1462/* compare two verifier states
1463 *
1464 * all states stored in state_list are known to be valid, since
1465 * verifier reached 'bpf_exit' instruction through them
1466 *
1467 * this function is called when verifier exploring different branches of
1468 * execution popped from the state stack. If it sees an old state that has
1469 * more strict register state and more strict stack state then this execution
1470 * branch doesn't need to be explored further, since verifier already
1471 * concluded that more strict state leads to valid finish.
1472 *
1473 * Therefore two states are equivalent if register state is more conservative
1474 * and explored stack state is more conservative than the current one.
1475 * Example:
1476 *       explored                   current
1477 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
1478 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
1479 *
1480 * In other words if current stack state (one being explored) has more
1481 * valid slots than old one that already passed validation, it means
1482 * the verifier can stop exploring and conclude that current state is valid too
1483 *
1484 * Similarly with registers. If explored state has register type as invalid
1485 * whereas register type in current state is meaningful, it means that
1486 * the current state will reach 'bpf_exit' instruction safely
1487 */
1488static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
1489{
1490	int i;
1491
1492	for (i = 0; i < MAX_BPF_REG; i++) {
1493		if (memcmp(&old->regs[i], &cur->regs[i],
1494			   sizeof(old->regs[0])) != 0) {
1495			if (old->regs[i].type == NOT_INIT ||
1496			    (old->regs[i].type == UNKNOWN_VALUE &&
1497			     cur->regs[i].type != NOT_INIT))
1498				continue;
1499			return false;
1500		}
1501	}
1502
1503	for (i = 0; i < MAX_BPF_STACK; i++) {
1504		if (old->stack_slot_type[i] == STACK_INVALID)
1505			continue;
1506		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
1507			/* Ex: old explored (safe) state has STACK_SPILL in
1508			 * this stack slot, but current has has STACK_MISC ->
1509			 * this verifier states are not equivalent,
1510			 * return false to continue verification of this path
1511			 */
1512			return false;
1513		if (i % BPF_REG_SIZE)
1514			continue;
1515		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
1516			   &cur->spilled_regs[i / BPF_REG_SIZE],
1517			   sizeof(old->spilled_regs[0])))
1518			/* when explored and current stack slot types are
1519			 * the same, check that stored pointers types
1520			 * are the same as well.
1521			 * Ex: explored safe path could have stored
1522			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
1523			 * but current path has stored:
1524			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
1525			 * such verifier states are not equivalent.
1526			 * return false to continue verification of this path
1527			 */
1528			return false;
1529		else
1530			continue;
1531	}
1532	return true;
1533}
1534
1535static int is_state_visited(struct verifier_env *env, int insn_idx)
1536{
1537	struct verifier_state_list *new_sl;
1538	struct verifier_state_list *sl;
1539
1540	sl = env->explored_states[insn_idx];
1541	if (!sl)
1542		/* this 'insn_idx' instruction wasn't marked, so we will not
1543		 * be doing state search here
1544		 */
1545		return 0;
1546
1547	while (sl != STATE_LIST_MARK) {
1548		if (states_equal(&sl->state, &env->cur_state))
1549			/* reached equivalent register/stack state,
1550			 * prune the search
1551			 */
1552			return 1;
1553		sl = sl->next;
1554	}
1555
1556	/* there were no equivalent states, remember current one.
1557	 * technically the current state is not proven to be safe yet,
1558	 * but it will either reach bpf_exit (which means it's safe) or
1559	 * it will be rejected. Since there are no loops, we won't be
1560	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
1561	 */
1562	new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
1563	if (!new_sl)
1564		return -ENOMEM;
1565
1566	/* add new state to the head of linked list */
1567	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
1568	new_sl->next = env->explored_states[insn_idx];
1569	env->explored_states[insn_idx] = new_sl;
1570	return 0;
1571}
1572
1573static int do_check(struct verifier_env *env)
1574{
1575	struct verifier_state *state = &env->cur_state;
1576	struct bpf_insn *insns = env->prog->insnsi;
1577	struct reg_state *regs = state->regs;
1578	int insn_cnt = env->prog->len;
1579	int insn_idx, prev_insn_idx = 0;
1580	int insn_processed = 0;
1581	bool do_print_state = false;
1582
1583	init_reg_state(regs);
1584	insn_idx = 0;
1585	for (;;) {
1586		struct bpf_insn *insn;
1587		u8 class;
1588		int err;
1589
1590		if (insn_idx >= insn_cnt) {
1591			verbose("invalid insn idx %d insn_cnt %d\n",
1592				insn_idx, insn_cnt);
1593			return -EFAULT;
1594		}
1595
1596		insn = &insns[insn_idx];
1597		class = BPF_CLASS(insn->code);
1598
1599		if (++insn_processed > 32768) {
1600			verbose("BPF program is too large. Proccessed %d insn\n",
1601				insn_processed);
1602			return -E2BIG;
1603		}
1604
1605		err = is_state_visited(env, insn_idx);
1606		if (err < 0)
1607			return err;
1608		if (err == 1) {
1609			/* found equivalent state, can prune the search */
1610			if (log_level) {
1611				if (do_print_state)
1612					verbose("\nfrom %d to %d: safe\n",
1613						prev_insn_idx, insn_idx);
1614				else
1615					verbose("%d: safe\n", insn_idx);
1616			}
1617			goto process_bpf_exit;
1618		}
1619
1620		if (log_level && do_print_state) {
1621			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1622			print_verifier_state(env);
1623			do_print_state = false;
1624		}
1625
1626		if (log_level) {
1627			verbose("%d: ", insn_idx);
1628			print_bpf_insn(insn);
1629		}
1630
1631		if (class == BPF_ALU || class == BPF_ALU64) {
1632			err = check_alu_op(regs, insn);
1633			if (err)
1634				return err;
1635
1636		} else if (class == BPF_LDX) {
1637			enum bpf_reg_type src_reg_type;
1638
1639			/* check for reserved fields is already done */
1640
1641			/* check src operand */
1642			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1643			if (err)
1644				return err;
1645
1646			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1647			if (err)
1648				return err;
1649
1650			src_reg_type = regs[insn->src_reg].type;
1651
1652			/* check that memory (src_reg + off) is readable,
1653			 * the state of dst_reg will be updated by this func
1654			 */
1655			err = check_mem_access(env, insn->src_reg, insn->off,
1656					       BPF_SIZE(insn->code), BPF_READ,
1657					       insn->dst_reg);
1658			if (err)
1659				return err;
1660
1661			if (BPF_SIZE(insn->code) != BPF_W) {
1662				insn_idx++;
1663				continue;
1664			}
1665
1666			if (insn->imm == 0) {
1667				/* saw a valid insn
1668				 * dst_reg = *(u32 *)(src_reg + off)
1669				 * use reserved 'imm' field to mark this insn
1670				 */
1671				insn->imm = src_reg_type;
1672
1673			} else if (src_reg_type != insn->imm &&
1674				   (src_reg_type == PTR_TO_CTX ||
1675				    insn->imm == PTR_TO_CTX)) {
1676				/* ABuser program is trying to use the same insn
1677				 * dst_reg = *(u32*) (src_reg + off)
1678				 * with different pointer types:
1679				 * src_reg == ctx in one branch and
1680				 * src_reg == stack|map in some other branch.
1681				 * Reject it.
1682				 */
1683				verbose("same insn cannot be used with different pointers\n");
1684				return -EINVAL;
1685			}
1686
1687		} else if (class == BPF_STX) {
1688			if (BPF_MODE(insn->code) == BPF_XADD) {
1689				err = check_xadd(env, insn);
1690				if (err)
1691					return err;
1692				insn_idx++;
1693				continue;
1694			}
1695
1696			if (BPF_MODE(insn->code) != BPF_MEM ||
1697			    insn->imm != 0) {
1698				verbose("BPF_STX uses reserved fields\n");
1699				return -EINVAL;
1700			}
1701			/* check src1 operand */
1702			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1703			if (err)
1704				return err;
1705			/* check src2 operand */
1706			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1707			if (err)
1708				return err;
1709
1710			/* check that memory (dst_reg + off) is writeable */
1711			err = check_mem_access(env, insn->dst_reg, insn->off,
1712					       BPF_SIZE(insn->code), BPF_WRITE,
1713					       insn->src_reg);
1714			if (err)
1715				return err;
1716
1717		} else if (class == BPF_ST) {
1718			if (BPF_MODE(insn->code) != BPF_MEM ||
1719			    insn->src_reg != BPF_REG_0) {
1720				verbose("BPF_ST uses reserved fields\n");
1721				return -EINVAL;
1722			}
1723			/* check src operand */
1724			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1725			if (err)
1726				return err;
1727
1728			/* check that memory (dst_reg + off) is writeable */
1729			err = check_mem_access(env, insn->dst_reg, insn->off,
1730					       BPF_SIZE(insn->code), BPF_WRITE,
1731					       -1);
1732			if (err)
1733				return err;
1734
1735		} else if (class == BPF_JMP) {
1736			u8 opcode = BPF_OP(insn->code);
1737
1738			if (opcode == BPF_CALL) {
1739				if (BPF_SRC(insn->code) != BPF_K ||
1740				    insn->off != 0 ||
1741				    insn->src_reg != BPF_REG_0 ||
1742				    insn->dst_reg != BPF_REG_0) {
1743					verbose("BPF_CALL uses reserved fields\n");
1744					return -EINVAL;
1745				}
1746
1747				err = check_call(env, insn->imm);
1748				if (err)
1749					return err;
1750
1751			} else if (opcode == BPF_JA) {
1752				if (BPF_SRC(insn->code) != BPF_K ||
1753				    insn->imm != 0 ||
1754				    insn->src_reg != BPF_REG_0 ||
1755				    insn->dst_reg != BPF_REG_0) {
1756					verbose("BPF_JA uses reserved fields\n");
1757					return -EINVAL;
1758				}
1759
1760				insn_idx += insn->off + 1;
1761				continue;
1762
1763			} else if (opcode == BPF_EXIT) {
1764				if (BPF_SRC(insn->code) != BPF_K ||
1765				    insn->imm != 0 ||
1766				    insn->src_reg != BPF_REG_0 ||
1767				    insn->dst_reg != BPF_REG_0) {
1768					verbose("BPF_EXIT uses reserved fields\n");
1769					return -EINVAL;
1770				}
1771
1772				/* eBPF calling convetion is such that R0 is used
1773				 * to return the value from eBPF program.
1774				 * Make sure that it's readable at this time
1775				 * of bpf_exit, which means that program wrote
1776				 * something into it earlier
1777				 */
1778				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
1779				if (err)
1780					return err;
1781
1782process_bpf_exit:
1783				insn_idx = pop_stack(env, &prev_insn_idx);
1784				if (insn_idx < 0) {
1785					break;
1786				} else {
1787					do_print_state = true;
1788					continue;
1789				}
1790			} else {
1791				err = check_cond_jmp_op(env, insn, &insn_idx);
1792				if (err)
1793					return err;
1794			}
1795		} else if (class == BPF_LD) {
1796			u8 mode = BPF_MODE(insn->code);
1797
1798			if (mode == BPF_ABS || mode == BPF_IND) {
1799				err = check_ld_abs(env, insn);
1800				if (err)
1801					return err;
1802
1803			} else if (mode == BPF_IMM) {
1804				err = check_ld_imm(env, insn);
1805				if (err)
1806					return err;
1807
1808				insn_idx++;
1809			} else {
1810				verbose("invalid BPF_LD mode\n");
1811				return -EINVAL;
1812			}
1813		} else {
1814			verbose("unknown insn class %d\n", class);
1815			return -EINVAL;
1816		}
1817
1818		insn_idx++;
1819	}
1820
1821	return 0;
1822}
1823
1824/* look for pseudo eBPF instructions that access map FDs and
1825 * replace them with actual map pointers
1826 */
1827static int replace_map_fd_with_map_ptr(struct verifier_env *env)
1828{
1829	struct bpf_insn *insn = env->prog->insnsi;
1830	int insn_cnt = env->prog->len;
1831	int i, j;
1832
1833	for (i = 0; i < insn_cnt; i++, insn++) {
1834		if (BPF_CLASS(insn->code) == BPF_LDX &&
1835		    (BPF_MODE(insn->code) != BPF_MEM ||
1836		     insn->imm != 0)) {
1837			verbose("BPF_LDX uses reserved fields\n");
1838			return -EINVAL;
1839		}
1840
1841		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
1842			struct bpf_map *map;
1843			struct fd f;
1844
1845			if (i == insn_cnt - 1 || insn[1].code != 0 ||
1846			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
1847			    insn[1].off != 0) {
1848				verbose("invalid bpf_ld_imm64 insn\n");
1849				return -EINVAL;
1850			}
1851
1852			if (insn->src_reg == 0)
1853				/* valid generic load 64-bit imm */
1854				goto next_insn;
1855
1856			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
1857				verbose("unrecognized bpf_ld_imm64 insn\n");
1858				return -EINVAL;
1859			}
1860
1861			f = fdget(insn->imm);
1862
1863			map = bpf_map_get(f);
1864			if (IS_ERR(map)) {
1865				verbose("fd %d is not pointing to valid bpf_map\n",
1866					insn->imm);
1867				fdput(f);
1868				return PTR_ERR(map);
1869			}
1870
1871			/* store map pointer inside BPF_LD_IMM64 instruction */
1872			insn[0].imm = (u32) (unsigned long) map;
1873			insn[1].imm = ((u64) (unsigned long) map) >> 32;
1874
1875			/* check whether we recorded this map already */
1876			for (j = 0; j < env->used_map_cnt; j++)
1877				if (env->used_maps[j] == map) {
1878					fdput(f);
1879					goto next_insn;
1880				}
1881
1882			if (env->used_map_cnt >= MAX_USED_MAPS) {
1883				fdput(f);
1884				return -E2BIG;
1885			}
1886
1887			/* remember this map */
1888			env->used_maps[env->used_map_cnt++] = map;
1889
1890			/* hold the map. If the program is rejected by verifier,
1891			 * the map will be released by release_maps() or it
1892			 * will be used by the valid program until it's unloaded
1893			 * and all maps are released in free_bpf_prog_info()
1894			 */
1895			atomic_inc(&map->refcnt);
1896
1897			fdput(f);
1898next_insn:
1899			insn++;
1900			i++;
1901		}
1902	}
1903
1904	/* now all pseudo BPF_LD_IMM64 instructions load valid
1905	 * 'struct bpf_map *' into a register instead of user map_fd.
1906	 * These pointers will be used later by verifier to validate map access.
1907	 */
1908	return 0;
1909}
1910
1911/* drop refcnt of maps used by the rejected program */
1912static void release_maps(struct verifier_env *env)
1913{
1914	int i;
1915
1916	for (i = 0; i < env->used_map_cnt; i++)
1917		bpf_map_put(env->used_maps[i]);
1918}
1919
1920/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
1921static void convert_pseudo_ld_imm64(struct verifier_env *env)
1922{
1923	struct bpf_insn *insn = env->prog->insnsi;
1924	int insn_cnt = env->prog->len;
1925	int i;
1926
1927	for (i = 0; i < insn_cnt; i++, insn++)
1928		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
1929			insn->src_reg = 0;
1930}
1931
1932static void adjust_branches(struct bpf_prog *prog, int pos, int delta)
1933{
1934	struct bpf_insn *insn = prog->insnsi;
1935	int insn_cnt = prog->len;
1936	int i;
1937
1938	for (i = 0; i < insn_cnt; i++, insn++) {
1939		if (BPF_CLASS(insn->code) != BPF_JMP ||
1940		    BPF_OP(insn->code) == BPF_CALL ||
1941		    BPF_OP(insn->code) == BPF_EXIT)
1942			continue;
1943
1944		/* adjust offset of jmps if necessary */
1945		if (i < pos && i + insn->off + 1 > pos)
1946			insn->off += delta;
1947		else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
1948			insn->off -= delta;
1949	}
1950}
1951
1952/* convert load instructions that access fields of 'struct __sk_buff'
1953 * into sequence of instructions that access fields of 'struct sk_buff'
1954 */
1955static int convert_ctx_accesses(struct verifier_env *env)
1956{
1957	struct bpf_insn *insn = env->prog->insnsi;
1958	int insn_cnt = env->prog->len;
1959	struct bpf_insn insn_buf[16];
1960	struct bpf_prog *new_prog;
1961	u32 cnt;
1962	int i;
1963
1964	if (!env->prog->aux->ops->convert_ctx_access)
1965		return 0;
1966
1967	for (i = 0; i < insn_cnt; i++, insn++) {
1968		if (insn->code != (BPF_LDX | BPF_MEM | BPF_W))
1969			continue;
1970
1971		if (insn->imm != PTR_TO_CTX) {
1972			/* clear internal mark */
1973			insn->imm = 0;
1974			continue;
1975		}
1976
1977		cnt = env->prog->aux->ops->
1978			convert_ctx_access(insn->dst_reg, insn->src_reg,
1979					   insn->off, insn_buf);
1980		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
1981			verbose("bpf verifier is misconfigured\n");
1982			return -EINVAL;
1983		}
1984
1985		if (cnt == 1) {
1986			memcpy(insn, insn_buf, sizeof(*insn));
1987			continue;
1988		}
1989
1990		/* several new insns need to be inserted. Make room for them */
1991		insn_cnt += cnt - 1;
1992		new_prog = bpf_prog_realloc(env->prog,
1993					    bpf_prog_size(insn_cnt),
1994					    GFP_USER);
1995		if (!new_prog)
1996			return -ENOMEM;
1997
1998		new_prog->len = insn_cnt;
1999
2000		memmove(new_prog->insnsi + i + cnt, new_prog->insns + i + 1,
2001			sizeof(*insn) * (insn_cnt - i - cnt));
2002
2003		/* copy substitute insns in place of load instruction */
2004		memcpy(new_prog->insnsi + i, insn_buf, sizeof(*insn) * cnt);
2005
2006		/* adjust branches in the whole program */
2007		adjust_branches(new_prog, i, cnt - 1);
2008
2009		/* keep walking new program and skip insns we just inserted */
2010		env->prog = new_prog;
2011		insn = new_prog->insnsi + i + cnt - 1;
2012		i += cnt - 1;
2013	}
2014
2015	return 0;
2016}
2017
2018static void free_states(struct verifier_env *env)
2019{
2020	struct verifier_state_list *sl, *sln;
2021	int i;
2022
2023	if (!env->explored_states)
2024		return;
2025
2026	for (i = 0; i < env->prog->len; i++) {
2027		sl = env->explored_states[i];
2028
2029		if (sl)
2030			while (sl != STATE_LIST_MARK) {
2031				sln = sl->next;
2032				kfree(sl);
2033				sl = sln;
2034			}
2035	}
2036
2037	kfree(env->explored_states);
2038}
2039
2040int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
2041{
2042	char __user *log_ubuf = NULL;
2043	struct verifier_env *env;
2044	int ret = -EINVAL;
2045
2046	if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
2047		return -E2BIG;
2048
2049	/* 'struct verifier_env' can be global, but since it's not small,
2050	 * allocate/free it every time bpf_check() is called
2051	 */
2052	env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
2053	if (!env)
2054		return -ENOMEM;
2055
2056	env->prog = *prog;
2057
2058	/* grab the mutex to protect few globals used by verifier */
2059	mutex_lock(&bpf_verifier_lock);
2060
2061	if (attr->log_level || attr->log_buf || attr->log_size) {
2062		/* user requested verbose verifier output
2063		 * and supplied buffer to store the verification trace
2064		 */
2065		log_level = attr->log_level;
2066		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
2067		log_size = attr->log_size;
2068		log_len = 0;
2069
2070		ret = -EINVAL;
2071		/* log_* values have to be sane */
2072		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
2073		    log_level == 0 || log_ubuf == NULL)
2074			goto free_env;
2075
2076		ret = -ENOMEM;
2077		log_buf = vmalloc(log_size);
2078		if (!log_buf)
2079			goto free_env;
2080	} else {
2081		log_level = 0;
2082	}
2083
2084	ret = replace_map_fd_with_map_ptr(env);
2085	if (ret < 0)
2086		goto skip_full_check;
2087
2088	env->explored_states = kcalloc(env->prog->len,
2089				       sizeof(struct verifier_state_list *),
2090				       GFP_USER);
2091	ret = -ENOMEM;
2092	if (!env->explored_states)
2093		goto skip_full_check;
2094
2095	ret = check_cfg(env);
2096	if (ret < 0)
2097		goto skip_full_check;
2098
2099	ret = do_check(env);
2100
2101skip_full_check:
2102	while (pop_stack(env, NULL) >= 0);
2103	free_states(env);
2104
2105	if (ret == 0)
2106		/* program is valid, convert *(u32*)(ctx + off) accesses */
2107		ret = convert_ctx_accesses(env);
2108
2109	if (log_level && log_len >= log_size - 1) {
2110		BUG_ON(log_len >= log_size);
2111		/* verifier log exceeded user supplied buffer */
2112		ret = -ENOSPC;
2113		/* fall through to return what was recorded */
2114	}
2115
2116	/* copy verifier log back to user space including trailing zero */
2117	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
2118		ret = -EFAULT;
2119		goto free_log_buf;
2120	}
2121
2122	if (ret == 0 && env->used_map_cnt) {
2123		/* if program passed verifier, update used_maps in bpf_prog_info */
2124		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
2125							  sizeof(env->used_maps[0]),
2126							  GFP_KERNEL);
2127
2128		if (!env->prog->aux->used_maps) {
2129			ret = -ENOMEM;
2130			goto free_log_buf;
2131		}
2132
2133		memcpy(env->prog->aux->used_maps, env->used_maps,
2134		       sizeof(env->used_maps[0]) * env->used_map_cnt);
2135		env->prog->aux->used_map_cnt = env->used_map_cnt;
2136
2137		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
2138		 * bpf_ld_imm64 instructions
2139		 */
2140		convert_pseudo_ld_imm64(env);
2141	}
2142
2143free_log_buf:
2144	if (log_level)
2145		vfree(log_buf);
2146free_env:
2147	if (!env->prog->aux->used_maps)
2148		/* if we didn't copy map pointers into bpf_prog_info, release
2149		 * them now. Otherwise free_bpf_prog_info() will release them.
2150		 */
2151		release_maps(env);
2152	*prog = env->prog;
2153	kfree(env);
2154	mutex_unlock(&bpf_verifier_lock);
2155	return ret;
2156}
2157