1/* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25#include <linux/cpu.h> 26#include <linux/cpumask.h> 27#include <linux/cpuset.h> 28#include <linux/err.h> 29#include <linux/errno.h> 30#include <linux/file.h> 31#include <linux/fs.h> 32#include <linux/init.h> 33#include <linux/interrupt.h> 34#include <linux/kernel.h> 35#include <linux/kmod.h> 36#include <linux/list.h> 37#include <linux/mempolicy.h> 38#include <linux/mm.h> 39#include <linux/memory.h> 40#include <linux/export.h> 41#include <linux/mount.h> 42#include <linux/namei.h> 43#include <linux/pagemap.h> 44#include <linux/proc_fs.h> 45#include <linux/rcupdate.h> 46#include <linux/sched.h> 47#include <linux/seq_file.h> 48#include <linux/security.h> 49#include <linux/slab.h> 50#include <linux/spinlock.h> 51#include <linux/stat.h> 52#include <linux/string.h> 53#include <linux/time.h> 54#include <linux/backing-dev.h> 55#include <linux/sort.h> 56 57#include <asm/uaccess.h> 58#include <linux/atomic.h> 59#include <linux/mutex.h> 60#include <linux/workqueue.h> 61#include <linux/cgroup.h> 62#include <linux/wait.h> 63 64struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE; 65 66/* See "Frequency meter" comments, below. */ 67 68struct fmeter { 69 int cnt; /* unprocessed events count */ 70 int val; /* most recent output value */ 71 time_t time; /* clock (secs) when val computed */ 72 spinlock_t lock; /* guards read or write of above */ 73}; 74 75struct cpuset { 76 struct cgroup_subsys_state css; 77 78 unsigned long flags; /* "unsigned long" so bitops work */ 79 80 /* 81 * On default hierarchy: 82 * 83 * The user-configured masks can only be changed by writing to 84 * cpuset.cpus and cpuset.mems, and won't be limited by the 85 * parent masks. 86 * 87 * The effective masks is the real masks that apply to the tasks 88 * in the cpuset. They may be changed if the configured masks are 89 * changed or hotplug happens. 90 * 91 * effective_mask == configured_mask & parent's effective_mask, 92 * and if it ends up empty, it will inherit the parent's mask. 93 * 94 * 95 * On legacy hierachy: 96 * 97 * The user-configured masks are always the same with effective masks. 98 */ 99 100 /* user-configured CPUs and Memory Nodes allow to tasks */ 101 cpumask_var_t cpus_allowed; 102 nodemask_t mems_allowed; 103 104 /* effective CPUs and Memory Nodes allow to tasks */ 105 cpumask_var_t effective_cpus; 106 nodemask_t effective_mems; 107 108 /* 109 * This is old Memory Nodes tasks took on. 110 * 111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 112 * - A new cpuset's old_mems_allowed is initialized when some 113 * task is moved into it. 114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 115 * cpuset.mems_allowed and have tasks' nodemask updated, and 116 * then old_mems_allowed is updated to mems_allowed. 117 */ 118 nodemask_t old_mems_allowed; 119 120 struct fmeter fmeter; /* memory_pressure filter */ 121 122 /* 123 * Tasks are being attached to this cpuset. Used to prevent 124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 125 */ 126 int attach_in_progress; 127 128 /* partition number for rebuild_sched_domains() */ 129 int pn; 130 131 /* for custom sched domain */ 132 int relax_domain_level; 133}; 134 135static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 136{ 137 return css ? container_of(css, struct cpuset, css) : NULL; 138} 139 140/* Retrieve the cpuset for a task */ 141static inline struct cpuset *task_cs(struct task_struct *task) 142{ 143 return css_cs(task_css(task, cpuset_cgrp_id)); 144} 145 146static inline struct cpuset *parent_cs(struct cpuset *cs) 147{ 148 return css_cs(cs->css.parent); 149} 150 151#ifdef CONFIG_NUMA 152static inline bool task_has_mempolicy(struct task_struct *task) 153{ 154 return task->mempolicy; 155} 156#else 157static inline bool task_has_mempolicy(struct task_struct *task) 158{ 159 return false; 160} 161#endif 162 163 164/* bits in struct cpuset flags field */ 165typedef enum { 166 CS_ONLINE, 167 CS_CPU_EXCLUSIVE, 168 CS_MEM_EXCLUSIVE, 169 CS_MEM_HARDWALL, 170 CS_MEMORY_MIGRATE, 171 CS_SCHED_LOAD_BALANCE, 172 CS_SPREAD_PAGE, 173 CS_SPREAD_SLAB, 174} cpuset_flagbits_t; 175 176/* convenient tests for these bits */ 177static inline bool is_cpuset_online(const struct cpuset *cs) 178{ 179 return test_bit(CS_ONLINE, &cs->flags); 180} 181 182static inline int is_cpu_exclusive(const struct cpuset *cs) 183{ 184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 185} 186 187static inline int is_mem_exclusive(const struct cpuset *cs) 188{ 189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 190} 191 192static inline int is_mem_hardwall(const struct cpuset *cs) 193{ 194 return test_bit(CS_MEM_HARDWALL, &cs->flags); 195} 196 197static inline int is_sched_load_balance(const struct cpuset *cs) 198{ 199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 200} 201 202static inline int is_memory_migrate(const struct cpuset *cs) 203{ 204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 205} 206 207static inline int is_spread_page(const struct cpuset *cs) 208{ 209 return test_bit(CS_SPREAD_PAGE, &cs->flags); 210} 211 212static inline int is_spread_slab(const struct cpuset *cs) 213{ 214 return test_bit(CS_SPREAD_SLAB, &cs->flags); 215} 216 217static struct cpuset top_cpuset = { 218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 219 (1 << CS_MEM_EXCLUSIVE)), 220}; 221 222/** 223 * cpuset_for_each_child - traverse online children of a cpuset 224 * @child_cs: loop cursor pointing to the current child 225 * @pos_css: used for iteration 226 * @parent_cs: target cpuset to walk children of 227 * 228 * Walk @child_cs through the online children of @parent_cs. Must be used 229 * with RCU read locked. 230 */ 231#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 232 css_for_each_child((pos_css), &(parent_cs)->css) \ 233 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 234 235/** 236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 237 * @des_cs: loop cursor pointing to the current descendant 238 * @pos_css: used for iteration 239 * @root_cs: target cpuset to walk ancestor of 240 * 241 * Walk @des_cs through the online descendants of @root_cs. Must be used 242 * with RCU read locked. The caller may modify @pos_css by calling 243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 244 * iteration and the first node to be visited. 245 */ 246#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 248 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 249 250/* 251 * There are two global locks guarding cpuset structures - cpuset_mutex and 252 * callback_lock. We also require taking task_lock() when dereferencing a 253 * task's cpuset pointer. See "The task_lock() exception", at the end of this 254 * comment. 255 * 256 * A task must hold both locks to modify cpusets. If a task holds 257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it 258 * is the only task able to also acquire callback_lock and be able to 259 * modify cpusets. It can perform various checks on the cpuset structure 260 * first, knowing nothing will change. It can also allocate memory while 261 * just holding cpuset_mutex. While it is performing these checks, various 262 * callback routines can briefly acquire callback_lock to query cpusets. 263 * Once it is ready to make the changes, it takes callback_lock, blocking 264 * everyone else. 265 * 266 * Calls to the kernel memory allocator can not be made while holding 267 * callback_lock, as that would risk double tripping on callback_lock 268 * from one of the callbacks into the cpuset code from within 269 * __alloc_pages(). 270 * 271 * If a task is only holding callback_lock, then it has read-only 272 * access to cpusets. 273 * 274 * Now, the task_struct fields mems_allowed and mempolicy may be changed 275 * by other task, we use alloc_lock in the task_struct fields to protect 276 * them. 277 * 278 * The cpuset_common_file_read() handlers only hold callback_lock across 279 * small pieces of code, such as when reading out possibly multi-word 280 * cpumasks and nodemasks. 281 * 282 * Accessing a task's cpuset should be done in accordance with the 283 * guidelines for accessing subsystem state in kernel/cgroup.c 284 */ 285 286static DEFINE_MUTEX(cpuset_mutex); 287static DEFINE_SPINLOCK(callback_lock); 288 289/* 290 * CPU / memory hotplug is handled asynchronously. 291 */ 292static void cpuset_hotplug_workfn(struct work_struct *work); 293static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 294 295static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 296 297/* 298 * This is ugly, but preserves the userspace API for existing cpuset 299 * users. If someone tries to mount the "cpuset" filesystem, we 300 * silently switch it to mount "cgroup" instead 301 */ 302static struct dentry *cpuset_mount(struct file_system_type *fs_type, 303 int flags, const char *unused_dev_name, void *data) 304{ 305 struct file_system_type *cgroup_fs = get_fs_type("cgroup"); 306 struct dentry *ret = ERR_PTR(-ENODEV); 307 if (cgroup_fs) { 308 char mountopts[] = 309 "cpuset,noprefix," 310 "release_agent=/sbin/cpuset_release_agent"; 311 ret = cgroup_fs->mount(cgroup_fs, flags, 312 unused_dev_name, mountopts); 313 put_filesystem(cgroup_fs); 314 } 315 return ret; 316} 317 318static struct file_system_type cpuset_fs_type = { 319 .name = "cpuset", 320 .mount = cpuset_mount, 321}; 322 323/* 324 * Return in pmask the portion of a cpusets's cpus_allowed that 325 * are online. If none are online, walk up the cpuset hierarchy 326 * until we find one that does have some online cpus. The top 327 * cpuset always has some cpus online. 328 * 329 * One way or another, we guarantee to return some non-empty subset 330 * of cpu_online_mask. 331 * 332 * Call with callback_lock or cpuset_mutex held. 333 */ 334static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) 335{ 336 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) 337 cs = parent_cs(cs); 338 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); 339} 340 341/* 342 * Return in *pmask the portion of a cpusets's mems_allowed that 343 * are online, with memory. If none are online with memory, walk 344 * up the cpuset hierarchy until we find one that does have some 345 * online mems. The top cpuset always has some mems online. 346 * 347 * One way or another, we guarantee to return some non-empty subset 348 * of node_states[N_MEMORY]. 349 * 350 * Call with callback_lock or cpuset_mutex held. 351 */ 352static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 353{ 354 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 355 cs = parent_cs(cs); 356 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 357} 358 359/* 360 * update task's spread flag if cpuset's page/slab spread flag is set 361 * 362 * Call with callback_lock or cpuset_mutex held. 363 */ 364static void cpuset_update_task_spread_flag(struct cpuset *cs, 365 struct task_struct *tsk) 366{ 367 if (is_spread_page(cs)) 368 task_set_spread_page(tsk); 369 else 370 task_clear_spread_page(tsk); 371 372 if (is_spread_slab(cs)) 373 task_set_spread_slab(tsk); 374 else 375 task_clear_spread_slab(tsk); 376} 377 378/* 379 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 380 * 381 * One cpuset is a subset of another if all its allowed CPUs and 382 * Memory Nodes are a subset of the other, and its exclusive flags 383 * are only set if the other's are set. Call holding cpuset_mutex. 384 */ 385 386static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 387{ 388 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 389 nodes_subset(p->mems_allowed, q->mems_allowed) && 390 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 391 is_mem_exclusive(p) <= is_mem_exclusive(q); 392} 393 394/** 395 * alloc_trial_cpuset - allocate a trial cpuset 396 * @cs: the cpuset that the trial cpuset duplicates 397 */ 398static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 399{ 400 struct cpuset *trial; 401 402 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 403 if (!trial) 404 return NULL; 405 406 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) 407 goto free_cs; 408 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL)) 409 goto free_cpus; 410 411 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 412 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 413 return trial; 414 415free_cpus: 416 free_cpumask_var(trial->cpus_allowed); 417free_cs: 418 kfree(trial); 419 return NULL; 420} 421 422/** 423 * free_trial_cpuset - free the trial cpuset 424 * @trial: the trial cpuset to be freed 425 */ 426static void free_trial_cpuset(struct cpuset *trial) 427{ 428 free_cpumask_var(trial->effective_cpus); 429 free_cpumask_var(trial->cpus_allowed); 430 kfree(trial); 431} 432 433/* 434 * validate_change() - Used to validate that any proposed cpuset change 435 * follows the structural rules for cpusets. 436 * 437 * If we replaced the flag and mask values of the current cpuset 438 * (cur) with those values in the trial cpuset (trial), would 439 * our various subset and exclusive rules still be valid? Presumes 440 * cpuset_mutex held. 441 * 442 * 'cur' is the address of an actual, in-use cpuset. Operations 443 * such as list traversal that depend on the actual address of the 444 * cpuset in the list must use cur below, not trial. 445 * 446 * 'trial' is the address of bulk structure copy of cur, with 447 * perhaps one or more of the fields cpus_allowed, mems_allowed, 448 * or flags changed to new, trial values. 449 * 450 * Return 0 if valid, -errno if not. 451 */ 452 453static int validate_change(struct cpuset *cur, struct cpuset *trial) 454{ 455 struct cgroup_subsys_state *css; 456 struct cpuset *c, *par; 457 int ret; 458 459 rcu_read_lock(); 460 461 /* Each of our child cpusets must be a subset of us */ 462 ret = -EBUSY; 463 cpuset_for_each_child(c, css, cur) 464 if (!is_cpuset_subset(c, trial)) 465 goto out; 466 467 /* Remaining checks don't apply to root cpuset */ 468 ret = 0; 469 if (cur == &top_cpuset) 470 goto out; 471 472 par = parent_cs(cur); 473 474 /* On legacy hiearchy, we must be a subset of our parent cpuset. */ 475 ret = -EACCES; 476 if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par)) 477 goto out; 478 479 /* 480 * If either I or some sibling (!= me) is exclusive, we can't 481 * overlap 482 */ 483 ret = -EINVAL; 484 cpuset_for_each_child(c, css, par) { 485 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 486 c != cur && 487 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 488 goto out; 489 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 490 c != cur && 491 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 492 goto out; 493 } 494 495 /* 496 * Cpusets with tasks - existing or newly being attached - can't 497 * be changed to have empty cpus_allowed or mems_allowed. 498 */ 499 ret = -ENOSPC; 500 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) { 501 if (!cpumask_empty(cur->cpus_allowed) && 502 cpumask_empty(trial->cpus_allowed)) 503 goto out; 504 if (!nodes_empty(cur->mems_allowed) && 505 nodes_empty(trial->mems_allowed)) 506 goto out; 507 } 508 509 /* 510 * We can't shrink if we won't have enough room for SCHED_DEADLINE 511 * tasks. 512 */ 513 ret = -EBUSY; 514 if (is_cpu_exclusive(cur) && 515 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 516 trial->cpus_allowed)) 517 goto out; 518 519 ret = 0; 520out: 521 rcu_read_unlock(); 522 return ret; 523} 524 525#ifdef CONFIG_SMP 526/* 527 * Helper routine for generate_sched_domains(). 528 * Do cpusets a, b have overlapping effective cpus_allowed masks? 529 */ 530static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 531{ 532 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 533} 534 535static void 536update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 537{ 538 if (dattr->relax_domain_level < c->relax_domain_level) 539 dattr->relax_domain_level = c->relax_domain_level; 540 return; 541} 542 543static void update_domain_attr_tree(struct sched_domain_attr *dattr, 544 struct cpuset *root_cs) 545{ 546 struct cpuset *cp; 547 struct cgroup_subsys_state *pos_css; 548 549 rcu_read_lock(); 550 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 551 /* skip the whole subtree if @cp doesn't have any CPU */ 552 if (cpumask_empty(cp->cpus_allowed)) { 553 pos_css = css_rightmost_descendant(pos_css); 554 continue; 555 } 556 557 if (is_sched_load_balance(cp)) 558 update_domain_attr(dattr, cp); 559 } 560 rcu_read_unlock(); 561} 562 563/* 564 * generate_sched_domains() 565 * 566 * This function builds a partial partition of the systems CPUs 567 * A 'partial partition' is a set of non-overlapping subsets whose 568 * union is a subset of that set. 569 * The output of this function needs to be passed to kernel/sched/core.c 570 * partition_sched_domains() routine, which will rebuild the scheduler's 571 * load balancing domains (sched domains) as specified by that partial 572 * partition. 573 * 574 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt 575 * for a background explanation of this. 576 * 577 * Does not return errors, on the theory that the callers of this 578 * routine would rather not worry about failures to rebuild sched 579 * domains when operating in the severe memory shortage situations 580 * that could cause allocation failures below. 581 * 582 * Must be called with cpuset_mutex held. 583 * 584 * The three key local variables below are: 585 * q - a linked-list queue of cpuset pointers, used to implement a 586 * top-down scan of all cpusets. This scan loads a pointer 587 * to each cpuset marked is_sched_load_balance into the 588 * array 'csa'. For our purposes, rebuilding the schedulers 589 * sched domains, we can ignore !is_sched_load_balance cpusets. 590 * csa - (for CpuSet Array) Array of pointers to all the cpusets 591 * that need to be load balanced, for convenient iterative 592 * access by the subsequent code that finds the best partition, 593 * i.e the set of domains (subsets) of CPUs such that the 594 * cpus_allowed of every cpuset marked is_sched_load_balance 595 * is a subset of one of these domains, while there are as 596 * many such domains as possible, each as small as possible. 597 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 598 * the kernel/sched/core.c routine partition_sched_domains() in a 599 * convenient format, that can be easily compared to the prior 600 * value to determine what partition elements (sched domains) 601 * were changed (added or removed.) 602 * 603 * Finding the best partition (set of domains): 604 * The triple nested loops below over i, j, k scan over the 605 * load balanced cpusets (using the array of cpuset pointers in 606 * csa[]) looking for pairs of cpusets that have overlapping 607 * cpus_allowed, but which don't have the same 'pn' partition 608 * number and gives them in the same partition number. It keeps 609 * looping on the 'restart' label until it can no longer find 610 * any such pairs. 611 * 612 * The union of the cpus_allowed masks from the set of 613 * all cpusets having the same 'pn' value then form the one 614 * element of the partition (one sched domain) to be passed to 615 * partition_sched_domains(). 616 */ 617static int generate_sched_domains(cpumask_var_t **domains, 618 struct sched_domain_attr **attributes) 619{ 620 struct cpuset *cp; /* scans q */ 621 struct cpuset **csa; /* array of all cpuset ptrs */ 622 int csn; /* how many cpuset ptrs in csa so far */ 623 int i, j, k; /* indices for partition finding loops */ 624 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 625 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */ 626 struct sched_domain_attr *dattr; /* attributes for custom domains */ 627 int ndoms = 0; /* number of sched domains in result */ 628 int nslot; /* next empty doms[] struct cpumask slot */ 629 struct cgroup_subsys_state *pos_css; 630 631 doms = NULL; 632 dattr = NULL; 633 csa = NULL; 634 635 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL)) 636 goto done; 637 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 638 639 /* Special case for the 99% of systems with one, full, sched domain */ 640 if (is_sched_load_balance(&top_cpuset)) { 641 ndoms = 1; 642 doms = alloc_sched_domains(ndoms); 643 if (!doms) 644 goto done; 645 646 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 647 if (dattr) { 648 *dattr = SD_ATTR_INIT; 649 update_domain_attr_tree(dattr, &top_cpuset); 650 } 651 cpumask_and(doms[0], top_cpuset.effective_cpus, 652 non_isolated_cpus); 653 654 goto done; 655 } 656 657 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL); 658 if (!csa) 659 goto done; 660 csn = 0; 661 662 rcu_read_lock(); 663 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 664 if (cp == &top_cpuset) 665 continue; 666 /* 667 * Continue traversing beyond @cp iff @cp has some CPUs and 668 * isn't load balancing. The former is obvious. The 669 * latter: All child cpusets contain a subset of the 670 * parent's cpus, so just skip them, and then we call 671 * update_domain_attr_tree() to calc relax_domain_level of 672 * the corresponding sched domain. 673 */ 674 if (!cpumask_empty(cp->cpus_allowed) && 675 !(is_sched_load_balance(cp) && 676 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus))) 677 continue; 678 679 if (is_sched_load_balance(cp)) 680 csa[csn++] = cp; 681 682 /* skip @cp's subtree */ 683 pos_css = css_rightmost_descendant(pos_css); 684 } 685 rcu_read_unlock(); 686 687 for (i = 0; i < csn; i++) 688 csa[i]->pn = i; 689 ndoms = csn; 690 691restart: 692 /* Find the best partition (set of sched domains) */ 693 for (i = 0; i < csn; i++) { 694 struct cpuset *a = csa[i]; 695 int apn = a->pn; 696 697 for (j = 0; j < csn; j++) { 698 struct cpuset *b = csa[j]; 699 int bpn = b->pn; 700 701 if (apn != bpn && cpusets_overlap(a, b)) { 702 for (k = 0; k < csn; k++) { 703 struct cpuset *c = csa[k]; 704 705 if (c->pn == bpn) 706 c->pn = apn; 707 } 708 ndoms--; /* one less element */ 709 goto restart; 710 } 711 } 712 } 713 714 /* 715 * Now we know how many domains to create. 716 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 717 */ 718 doms = alloc_sched_domains(ndoms); 719 if (!doms) 720 goto done; 721 722 /* 723 * The rest of the code, including the scheduler, can deal with 724 * dattr==NULL case. No need to abort if alloc fails. 725 */ 726 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); 727 728 for (nslot = 0, i = 0; i < csn; i++) { 729 struct cpuset *a = csa[i]; 730 struct cpumask *dp; 731 int apn = a->pn; 732 733 if (apn < 0) { 734 /* Skip completed partitions */ 735 continue; 736 } 737 738 dp = doms[nslot]; 739 740 if (nslot == ndoms) { 741 static int warnings = 10; 742 if (warnings) { 743 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 744 nslot, ndoms, csn, i, apn); 745 warnings--; 746 } 747 continue; 748 } 749 750 cpumask_clear(dp); 751 if (dattr) 752 *(dattr + nslot) = SD_ATTR_INIT; 753 for (j = i; j < csn; j++) { 754 struct cpuset *b = csa[j]; 755 756 if (apn == b->pn) { 757 cpumask_or(dp, dp, b->effective_cpus); 758 cpumask_and(dp, dp, non_isolated_cpus); 759 if (dattr) 760 update_domain_attr_tree(dattr + nslot, b); 761 762 /* Done with this partition */ 763 b->pn = -1; 764 } 765 } 766 nslot++; 767 } 768 BUG_ON(nslot != ndoms); 769 770done: 771 free_cpumask_var(non_isolated_cpus); 772 kfree(csa); 773 774 /* 775 * Fallback to the default domain if kmalloc() failed. 776 * See comments in partition_sched_domains(). 777 */ 778 if (doms == NULL) 779 ndoms = 1; 780 781 *domains = doms; 782 *attributes = dattr; 783 return ndoms; 784} 785 786/* 787 * Rebuild scheduler domains. 788 * 789 * If the flag 'sched_load_balance' of any cpuset with non-empty 790 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 791 * which has that flag enabled, or if any cpuset with a non-empty 792 * 'cpus' is removed, then call this routine to rebuild the 793 * scheduler's dynamic sched domains. 794 * 795 * Call with cpuset_mutex held. Takes get_online_cpus(). 796 */ 797static void rebuild_sched_domains_locked(void) 798{ 799 struct sched_domain_attr *attr; 800 cpumask_var_t *doms; 801 int ndoms; 802 803 lockdep_assert_held(&cpuset_mutex); 804 get_online_cpus(); 805 806 /* 807 * We have raced with CPU hotplug. Don't do anything to avoid 808 * passing doms with offlined cpu to partition_sched_domains(). 809 * Anyways, hotplug work item will rebuild sched domains. 810 */ 811 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 812 goto out; 813 814 /* Generate domain masks and attrs */ 815 ndoms = generate_sched_domains(&doms, &attr); 816 817 /* Have scheduler rebuild the domains */ 818 partition_sched_domains(ndoms, doms, attr); 819out: 820 put_online_cpus(); 821} 822#else /* !CONFIG_SMP */ 823static void rebuild_sched_domains_locked(void) 824{ 825} 826#endif /* CONFIG_SMP */ 827 828void rebuild_sched_domains(void) 829{ 830 mutex_lock(&cpuset_mutex); 831 rebuild_sched_domains_locked(); 832 mutex_unlock(&cpuset_mutex); 833} 834 835/** 836 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 837 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 838 * 839 * Iterate through each task of @cs updating its cpus_allowed to the 840 * effective cpuset's. As this function is called with cpuset_mutex held, 841 * cpuset membership stays stable. 842 */ 843static void update_tasks_cpumask(struct cpuset *cs) 844{ 845 struct css_task_iter it; 846 struct task_struct *task; 847 848 css_task_iter_start(&cs->css, &it); 849 while ((task = css_task_iter_next(&it))) 850 set_cpus_allowed_ptr(task, cs->effective_cpus); 851 css_task_iter_end(&it); 852} 853 854/* 855 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 856 * @cs: the cpuset to consider 857 * @new_cpus: temp variable for calculating new effective_cpus 858 * 859 * When congifured cpumask is changed, the effective cpumasks of this cpuset 860 * and all its descendants need to be updated. 861 * 862 * On legacy hierachy, effective_cpus will be the same with cpu_allowed. 863 * 864 * Called with cpuset_mutex held 865 */ 866static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus) 867{ 868 struct cpuset *cp; 869 struct cgroup_subsys_state *pos_css; 870 bool need_rebuild_sched_domains = false; 871 872 rcu_read_lock(); 873 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 874 struct cpuset *parent = parent_cs(cp); 875 876 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus); 877 878 /* 879 * If it becomes empty, inherit the effective mask of the 880 * parent, which is guaranteed to have some CPUs. 881 */ 882 if (cgroup_on_dfl(cp->css.cgroup) && cpumask_empty(new_cpus)) 883 cpumask_copy(new_cpus, parent->effective_cpus); 884 885 /* Skip the whole subtree if the cpumask remains the same. */ 886 if (cpumask_equal(new_cpus, cp->effective_cpus)) { 887 pos_css = css_rightmost_descendant(pos_css); 888 continue; 889 } 890 891 if (!css_tryget_online(&cp->css)) 892 continue; 893 rcu_read_unlock(); 894 895 spin_lock_irq(&callback_lock); 896 cpumask_copy(cp->effective_cpus, new_cpus); 897 spin_unlock_irq(&callback_lock); 898 899 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) && 900 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 901 902 update_tasks_cpumask(cp); 903 904 /* 905 * If the effective cpumask of any non-empty cpuset is changed, 906 * we need to rebuild sched domains. 907 */ 908 if (!cpumask_empty(cp->cpus_allowed) && 909 is_sched_load_balance(cp)) 910 need_rebuild_sched_domains = true; 911 912 rcu_read_lock(); 913 css_put(&cp->css); 914 } 915 rcu_read_unlock(); 916 917 if (need_rebuild_sched_domains) 918 rebuild_sched_domains_locked(); 919} 920 921/** 922 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 923 * @cs: the cpuset to consider 924 * @trialcs: trial cpuset 925 * @buf: buffer of cpu numbers written to this cpuset 926 */ 927static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 928 const char *buf) 929{ 930 int retval; 931 932 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 933 if (cs == &top_cpuset) 934 return -EACCES; 935 936 /* 937 * An empty cpus_allowed is ok only if the cpuset has no tasks. 938 * Since cpulist_parse() fails on an empty mask, we special case 939 * that parsing. The validate_change() call ensures that cpusets 940 * with tasks have cpus. 941 */ 942 if (!*buf) { 943 cpumask_clear(trialcs->cpus_allowed); 944 } else { 945 retval = cpulist_parse(buf, trialcs->cpus_allowed); 946 if (retval < 0) 947 return retval; 948 949 if (!cpumask_subset(trialcs->cpus_allowed, 950 top_cpuset.cpus_allowed)) 951 return -EINVAL; 952 } 953 954 /* Nothing to do if the cpus didn't change */ 955 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 956 return 0; 957 958 retval = validate_change(cs, trialcs); 959 if (retval < 0) 960 return retval; 961 962 spin_lock_irq(&callback_lock); 963 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 964 spin_unlock_irq(&callback_lock); 965 966 /* use trialcs->cpus_allowed as a temp variable */ 967 update_cpumasks_hier(cs, trialcs->cpus_allowed); 968 return 0; 969} 970 971/* 972 * cpuset_migrate_mm 973 * 974 * Migrate memory region from one set of nodes to another. 975 * 976 * Temporarilly set tasks mems_allowed to target nodes of migration, 977 * so that the migration code can allocate pages on these nodes. 978 * 979 * While the mm_struct we are migrating is typically from some 980 * other task, the task_struct mems_allowed that we are hacking 981 * is for our current task, which must allocate new pages for that 982 * migrating memory region. 983 */ 984 985static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 986 const nodemask_t *to) 987{ 988 struct task_struct *tsk = current; 989 990 tsk->mems_allowed = *to; 991 992 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); 993 994 rcu_read_lock(); 995 guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed); 996 rcu_read_unlock(); 997} 998 999/* 1000 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1001 * @tsk: the task to change 1002 * @newmems: new nodes that the task will be set 1003 * 1004 * In order to avoid seeing no nodes if the old and new nodes are disjoint, 1005 * we structure updates as setting all new allowed nodes, then clearing newly 1006 * disallowed ones. 1007 */ 1008static void cpuset_change_task_nodemask(struct task_struct *tsk, 1009 nodemask_t *newmems) 1010{ 1011 bool need_loop; 1012 1013 /* 1014 * Allow tasks that have access to memory reserves because they have 1015 * been OOM killed to get memory anywhere. 1016 */ 1017 if (unlikely(test_thread_flag(TIF_MEMDIE))) 1018 return; 1019 if (current->flags & PF_EXITING) /* Let dying task have memory */ 1020 return; 1021 1022 task_lock(tsk); 1023 /* 1024 * Determine if a loop is necessary if another thread is doing 1025 * read_mems_allowed_begin(). If at least one node remains unchanged and 1026 * tsk does not have a mempolicy, then an empty nodemask will not be 1027 * possible when mems_allowed is larger than a word. 1028 */ 1029 need_loop = task_has_mempolicy(tsk) || 1030 !nodes_intersects(*newmems, tsk->mems_allowed); 1031 1032 if (need_loop) { 1033 local_irq_disable(); 1034 write_seqcount_begin(&tsk->mems_allowed_seq); 1035 } 1036 1037 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1038 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1); 1039 1040 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2); 1041 tsk->mems_allowed = *newmems; 1042 1043 if (need_loop) { 1044 write_seqcount_end(&tsk->mems_allowed_seq); 1045 local_irq_enable(); 1046 } 1047 1048 task_unlock(tsk); 1049} 1050 1051static void *cpuset_being_rebound; 1052 1053/** 1054 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1055 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1056 * 1057 * Iterate through each task of @cs updating its mems_allowed to the 1058 * effective cpuset's. As this function is called with cpuset_mutex held, 1059 * cpuset membership stays stable. 1060 */ 1061static void update_tasks_nodemask(struct cpuset *cs) 1062{ 1063 static nodemask_t newmems; /* protected by cpuset_mutex */ 1064 struct css_task_iter it; 1065 struct task_struct *task; 1066 1067 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1068 1069 guarantee_online_mems(cs, &newmems); 1070 1071 /* 1072 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't 1073 * take while holding tasklist_lock. Forks can happen - the 1074 * mpol_dup() cpuset_being_rebound check will catch such forks, 1075 * and rebind their vma mempolicies too. Because we still hold 1076 * the global cpuset_mutex, we know that no other rebind effort 1077 * will be contending for the global variable cpuset_being_rebound. 1078 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1079 * is idempotent. Also migrate pages in each mm to new nodes. 1080 */ 1081 css_task_iter_start(&cs->css, &it); 1082 while ((task = css_task_iter_next(&it))) { 1083 struct mm_struct *mm; 1084 bool migrate; 1085 1086 cpuset_change_task_nodemask(task, &newmems); 1087 1088 mm = get_task_mm(task); 1089 if (!mm) 1090 continue; 1091 1092 migrate = is_memory_migrate(cs); 1093 1094 mpol_rebind_mm(mm, &cs->mems_allowed); 1095 if (migrate) 1096 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1097 mmput(mm); 1098 } 1099 css_task_iter_end(&it); 1100 1101 /* 1102 * All the tasks' nodemasks have been updated, update 1103 * cs->old_mems_allowed. 1104 */ 1105 cs->old_mems_allowed = newmems; 1106 1107 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1108 cpuset_being_rebound = NULL; 1109} 1110 1111/* 1112 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1113 * @cs: the cpuset to consider 1114 * @new_mems: a temp variable for calculating new effective_mems 1115 * 1116 * When configured nodemask is changed, the effective nodemasks of this cpuset 1117 * and all its descendants need to be updated. 1118 * 1119 * On legacy hiearchy, effective_mems will be the same with mems_allowed. 1120 * 1121 * Called with cpuset_mutex held 1122 */ 1123static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1124{ 1125 struct cpuset *cp; 1126 struct cgroup_subsys_state *pos_css; 1127 1128 rcu_read_lock(); 1129 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1130 struct cpuset *parent = parent_cs(cp); 1131 1132 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1133 1134 /* 1135 * If it becomes empty, inherit the effective mask of the 1136 * parent, which is guaranteed to have some MEMs. 1137 */ 1138 if (cgroup_on_dfl(cp->css.cgroup) && nodes_empty(*new_mems)) 1139 *new_mems = parent->effective_mems; 1140 1141 /* Skip the whole subtree if the nodemask remains the same. */ 1142 if (nodes_equal(*new_mems, cp->effective_mems)) { 1143 pos_css = css_rightmost_descendant(pos_css); 1144 continue; 1145 } 1146 1147 if (!css_tryget_online(&cp->css)) 1148 continue; 1149 rcu_read_unlock(); 1150 1151 spin_lock_irq(&callback_lock); 1152 cp->effective_mems = *new_mems; 1153 spin_unlock_irq(&callback_lock); 1154 1155 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) && 1156 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1157 1158 update_tasks_nodemask(cp); 1159 1160 rcu_read_lock(); 1161 css_put(&cp->css); 1162 } 1163 rcu_read_unlock(); 1164} 1165 1166/* 1167 * Handle user request to change the 'mems' memory placement 1168 * of a cpuset. Needs to validate the request, update the 1169 * cpusets mems_allowed, and for each task in the cpuset, 1170 * update mems_allowed and rebind task's mempolicy and any vma 1171 * mempolicies and if the cpuset is marked 'memory_migrate', 1172 * migrate the tasks pages to the new memory. 1173 * 1174 * Call with cpuset_mutex held. May take callback_lock during call. 1175 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1176 * lock each such tasks mm->mmap_sem, scan its vma's and rebind 1177 * their mempolicies to the cpusets new mems_allowed. 1178 */ 1179static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1180 const char *buf) 1181{ 1182 int retval; 1183 1184 /* 1185 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1186 * it's read-only 1187 */ 1188 if (cs == &top_cpuset) { 1189 retval = -EACCES; 1190 goto done; 1191 } 1192 1193 /* 1194 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1195 * Since nodelist_parse() fails on an empty mask, we special case 1196 * that parsing. The validate_change() call ensures that cpusets 1197 * with tasks have memory. 1198 */ 1199 if (!*buf) { 1200 nodes_clear(trialcs->mems_allowed); 1201 } else { 1202 retval = nodelist_parse(buf, trialcs->mems_allowed); 1203 if (retval < 0) 1204 goto done; 1205 1206 if (!nodes_subset(trialcs->mems_allowed, 1207 top_cpuset.mems_allowed)) { 1208 retval = -EINVAL; 1209 goto done; 1210 } 1211 } 1212 1213 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1214 retval = 0; /* Too easy - nothing to do */ 1215 goto done; 1216 } 1217 retval = validate_change(cs, trialcs); 1218 if (retval < 0) 1219 goto done; 1220 1221 spin_lock_irq(&callback_lock); 1222 cs->mems_allowed = trialcs->mems_allowed; 1223 spin_unlock_irq(&callback_lock); 1224 1225 /* use trialcs->mems_allowed as a temp variable */ 1226 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1227done: 1228 return retval; 1229} 1230 1231int current_cpuset_is_being_rebound(void) 1232{ 1233 int ret; 1234 1235 rcu_read_lock(); 1236 ret = task_cs(current) == cpuset_being_rebound; 1237 rcu_read_unlock(); 1238 1239 return ret; 1240} 1241 1242static int update_relax_domain_level(struct cpuset *cs, s64 val) 1243{ 1244#ifdef CONFIG_SMP 1245 if (val < -1 || val >= sched_domain_level_max) 1246 return -EINVAL; 1247#endif 1248 1249 if (val != cs->relax_domain_level) { 1250 cs->relax_domain_level = val; 1251 if (!cpumask_empty(cs->cpus_allowed) && 1252 is_sched_load_balance(cs)) 1253 rebuild_sched_domains_locked(); 1254 } 1255 1256 return 0; 1257} 1258 1259/** 1260 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1261 * @cs: the cpuset in which each task's spread flags needs to be changed 1262 * 1263 * Iterate through each task of @cs updating its spread flags. As this 1264 * function is called with cpuset_mutex held, cpuset membership stays 1265 * stable. 1266 */ 1267static void update_tasks_flags(struct cpuset *cs) 1268{ 1269 struct css_task_iter it; 1270 struct task_struct *task; 1271 1272 css_task_iter_start(&cs->css, &it); 1273 while ((task = css_task_iter_next(&it))) 1274 cpuset_update_task_spread_flag(cs, task); 1275 css_task_iter_end(&it); 1276} 1277 1278/* 1279 * update_flag - read a 0 or a 1 in a file and update associated flag 1280 * bit: the bit to update (see cpuset_flagbits_t) 1281 * cs: the cpuset to update 1282 * turning_on: whether the flag is being set or cleared 1283 * 1284 * Call with cpuset_mutex held. 1285 */ 1286 1287static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1288 int turning_on) 1289{ 1290 struct cpuset *trialcs; 1291 int balance_flag_changed; 1292 int spread_flag_changed; 1293 int err; 1294 1295 trialcs = alloc_trial_cpuset(cs); 1296 if (!trialcs) 1297 return -ENOMEM; 1298 1299 if (turning_on) 1300 set_bit(bit, &trialcs->flags); 1301 else 1302 clear_bit(bit, &trialcs->flags); 1303 1304 err = validate_change(cs, trialcs); 1305 if (err < 0) 1306 goto out; 1307 1308 balance_flag_changed = (is_sched_load_balance(cs) != 1309 is_sched_load_balance(trialcs)); 1310 1311 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1312 || (is_spread_page(cs) != is_spread_page(trialcs))); 1313 1314 spin_lock_irq(&callback_lock); 1315 cs->flags = trialcs->flags; 1316 spin_unlock_irq(&callback_lock); 1317 1318 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1319 rebuild_sched_domains_locked(); 1320 1321 if (spread_flag_changed) 1322 update_tasks_flags(cs); 1323out: 1324 free_trial_cpuset(trialcs); 1325 return err; 1326} 1327 1328/* 1329 * Frequency meter - How fast is some event occurring? 1330 * 1331 * These routines manage a digitally filtered, constant time based, 1332 * event frequency meter. There are four routines: 1333 * fmeter_init() - initialize a frequency meter. 1334 * fmeter_markevent() - called each time the event happens. 1335 * fmeter_getrate() - returns the recent rate of such events. 1336 * fmeter_update() - internal routine used to update fmeter. 1337 * 1338 * A common data structure is passed to each of these routines, 1339 * which is used to keep track of the state required to manage the 1340 * frequency meter and its digital filter. 1341 * 1342 * The filter works on the number of events marked per unit time. 1343 * The filter is single-pole low-pass recursive (IIR). The time unit 1344 * is 1 second. Arithmetic is done using 32-bit integers scaled to 1345 * simulate 3 decimal digits of precision (multiplied by 1000). 1346 * 1347 * With an FM_COEF of 933, and a time base of 1 second, the filter 1348 * has a half-life of 10 seconds, meaning that if the events quit 1349 * happening, then the rate returned from the fmeter_getrate() 1350 * will be cut in half each 10 seconds, until it converges to zero. 1351 * 1352 * It is not worth doing a real infinitely recursive filter. If more 1353 * than FM_MAXTICKS ticks have elapsed since the last filter event, 1354 * just compute FM_MAXTICKS ticks worth, by which point the level 1355 * will be stable. 1356 * 1357 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 1358 * arithmetic overflow in the fmeter_update() routine. 1359 * 1360 * Given the simple 32 bit integer arithmetic used, this meter works 1361 * best for reporting rates between one per millisecond (msec) and 1362 * one per 32 (approx) seconds. At constant rates faster than one 1363 * per msec it maxes out at values just under 1,000,000. At constant 1364 * rates between one per msec, and one per second it will stabilize 1365 * to a value N*1000, where N is the rate of events per second. 1366 * At constant rates between one per second and one per 32 seconds, 1367 * it will be choppy, moving up on the seconds that have an event, 1368 * and then decaying until the next event. At rates slower than 1369 * about one in 32 seconds, it decays all the way back to zero between 1370 * each event. 1371 */ 1372 1373#define FM_COEF 933 /* coefficient for half-life of 10 secs */ 1374#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */ 1375#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 1376#define FM_SCALE 1000 /* faux fixed point scale */ 1377 1378/* Initialize a frequency meter */ 1379static void fmeter_init(struct fmeter *fmp) 1380{ 1381 fmp->cnt = 0; 1382 fmp->val = 0; 1383 fmp->time = 0; 1384 spin_lock_init(&fmp->lock); 1385} 1386 1387/* Internal meter update - process cnt events and update value */ 1388static void fmeter_update(struct fmeter *fmp) 1389{ 1390 time_t now = get_seconds(); 1391 time_t ticks = now - fmp->time; 1392 1393 if (ticks == 0) 1394 return; 1395 1396 ticks = min(FM_MAXTICKS, ticks); 1397 while (ticks-- > 0) 1398 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 1399 fmp->time = now; 1400 1401 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 1402 fmp->cnt = 0; 1403} 1404 1405/* Process any previous ticks, then bump cnt by one (times scale). */ 1406static void fmeter_markevent(struct fmeter *fmp) 1407{ 1408 spin_lock(&fmp->lock); 1409 fmeter_update(fmp); 1410 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 1411 spin_unlock(&fmp->lock); 1412} 1413 1414/* Process any previous ticks, then return current value. */ 1415static int fmeter_getrate(struct fmeter *fmp) 1416{ 1417 int val; 1418 1419 spin_lock(&fmp->lock); 1420 fmeter_update(fmp); 1421 val = fmp->val; 1422 spin_unlock(&fmp->lock); 1423 return val; 1424} 1425 1426static struct cpuset *cpuset_attach_old_cs; 1427 1428/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 1429static int cpuset_can_attach(struct cgroup_subsys_state *css, 1430 struct cgroup_taskset *tset) 1431{ 1432 struct cpuset *cs = css_cs(css); 1433 struct task_struct *task; 1434 int ret; 1435 1436 /* used later by cpuset_attach() */ 1437 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset)); 1438 1439 mutex_lock(&cpuset_mutex); 1440 1441 /* allow moving tasks into an empty cpuset if on default hierarchy */ 1442 ret = -ENOSPC; 1443 if (!cgroup_on_dfl(css->cgroup) && 1444 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 1445 goto out_unlock; 1446 1447 cgroup_taskset_for_each(task, tset) { 1448 ret = task_can_attach(task, cs->cpus_allowed); 1449 if (ret) 1450 goto out_unlock; 1451 ret = security_task_setscheduler(task); 1452 if (ret) 1453 goto out_unlock; 1454 } 1455 1456 /* 1457 * Mark attach is in progress. This makes validate_change() fail 1458 * changes which zero cpus/mems_allowed. 1459 */ 1460 cs->attach_in_progress++; 1461 ret = 0; 1462out_unlock: 1463 mutex_unlock(&cpuset_mutex); 1464 return ret; 1465} 1466 1467static void cpuset_cancel_attach(struct cgroup_subsys_state *css, 1468 struct cgroup_taskset *tset) 1469{ 1470 mutex_lock(&cpuset_mutex); 1471 css_cs(css)->attach_in_progress--; 1472 mutex_unlock(&cpuset_mutex); 1473} 1474 1475/* 1476 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() 1477 * but we can't allocate it dynamically there. Define it global and 1478 * allocate from cpuset_init(). 1479 */ 1480static cpumask_var_t cpus_attach; 1481 1482static void cpuset_attach(struct cgroup_subsys_state *css, 1483 struct cgroup_taskset *tset) 1484{ 1485 /* static buf protected by cpuset_mutex */ 1486 static nodemask_t cpuset_attach_nodemask_to; 1487 struct mm_struct *mm; 1488 struct task_struct *task; 1489 struct task_struct *leader = cgroup_taskset_first(tset); 1490 struct cpuset *cs = css_cs(css); 1491 struct cpuset *oldcs = cpuset_attach_old_cs; 1492 1493 mutex_lock(&cpuset_mutex); 1494 1495 /* prepare for attach */ 1496 if (cs == &top_cpuset) 1497 cpumask_copy(cpus_attach, cpu_possible_mask); 1498 else 1499 guarantee_online_cpus(cs, cpus_attach); 1500 1501 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 1502 1503 cgroup_taskset_for_each(task, tset) { 1504 /* 1505 * can_attach beforehand should guarantee that this doesn't 1506 * fail. TODO: have a better way to handle failure here 1507 */ 1508 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 1509 1510 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 1511 cpuset_update_task_spread_flag(cs, task); 1512 } 1513 1514 /* 1515 * Change mm, possibly for multiple threads in a threadgroup. This is 1516 * expensive and may sleep. 1517 */ 1518 cpuset_attach_nodemask_to = cs->effective_mems; 1519 mm = get_task_mm(leader); 1520 if (mm) { 1521 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 1522 1523 /* 1524 * old_mems_allowed is the same with mems_allowed here, except 1525 * if this task is being moved automatically due to hotplug. 1526 * In that case @mems_allowed has been updated and is empty, 1527 * so @old_mems_allowed is the right nodesets that we migrate 1528 * mm from. 1529 */ 1530 if (is_memory_migrate(cs)) { 1531 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 1532 &cpuset_attach_nodemask_to); 1533 } 1534 mmput(mm); 1535 } 1536 1537 cs->old_mems_allowed = cpuset_attach_nodemask_to; 1538 1539 cs->attach_in_progress--; 1540 if (!cs->attach_in_progress) 1541 wake_up(&cpuset_attach_wq); 1542 1543 mutex_unlock(&cpuset_mutex); 1544} 1545 1546/* The various types of files and directories in a cpuset file system */ 1547 1548typedef enum { 1549 FILE_MEMORY_MIGRATE, 1550 FILE_CPULIST, 1551 FILE_MEMLIST, 1552 FILE_EFFECTIVE_CPULIST, 1553 FILE_EFFECTIVE_MEMLIST, 1554 FILE_CPU_EXCLUSIVE, 1555 FILE_MEM_EXCLUSIVE, 1556 FILE_MEM_HARDWALL, 1557 FILE_SCHED_LOAD_BALANCE, 1558 FILE_SCHED_RELAX_DOMAIN_LEVEL, 1559 FILE_MEMORY_PRESSURE_ENABLED, 1560 FILE_MEMORY_PRESSURE, 1561 FILE_SPREAD_PAGE, 1562 FILE_SPREAD_SLAB, 1563} cpuset_filetype_t; 1564 1565static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 1566 u64 val) 1567{ 1568 struct cpuset *cs = css_cs(css); 1569 cpuset_filetype_t type = cft->private; 1570 int retval = 0; 1571 1572 mutex_lock(&cpuset_mutex); 1573 if (!is_cpuset_online(cs)) { 1574 retval = -ENODEV; 1575 goto out_unlock; 1576 } 1577 1578 switch (type) { 1579 case FILE_CPU_EXCLUSIVE: 1580 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 1581 break; 1582 case FILE_MEM_EXCLUSIVE: 1583 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 1584 break; 1585 case FILE_MEM_HARDWALL: 1586 retval = update_flag(CS_MEM_HARDWALL, cs, val); 1587 break; 1588 case FILE_SCHED_LOAD_BALANCE: 1589 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 1590 break; 1591 case FILE_MEMORY_MIGRATE: 1592 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 1593 break; 1594 case FILE_MEMORY_PRESSURE_ENABLED: 1595 cpuset_memory_pressure_enabled = !!val; 1596 break; 1597 case FILE_MEMORY_PRESSURE: 1598 retval = -EACCES; 1599 break; 1600 case FILE_SPREAD_PAGE: 1601 retval = update_flag(CS_SPREAD_PAGE, cs, val); 1602 break; 1603 case FILE_SPREAD_SLAB: 1604 retval = update_flag(CS_SPREAD_SLAB, cs, val); 1605 break; 1606 default: 1607 retval = -EINVAL; 1608 break; 1609 } 1610out_unlock: 1611 mutex_unlock(&cpuset_mutex); 1612 return retval; 1613} 1614 1615static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 1616 s64 val) 1617{ 1618 struct cpuset *cs = css_cs(css); 1619 cpuset_filetype_t type = cft->private; 1620 int retval = -ENODEV; 1621 1622 mutex_lock(&cpuset_mutex); 1623 if (!is_cpuset_online(cs)) 1624 goto out_unlock; 1625 1626 switch (type) { 1627 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 1628 retval = update_relax_domain_level(cs, val); 1629 break; 1630 default: 1631 retval = -EINVAL; 1632 break; 1633 } 1634out_unlock: 1635 mutex_unlock(&cpuset_mutex); 1636 return retval; 1637} 1638 1639/* 1640 * Common handling for a write to a "cpus" or "mems" file. 1641 */ 1642static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 1643 char *buf, size_t nbytes, loff_t off) 1644{ 1645 struct cpuset *cs = css_cs(of_css(of)); 1646 struct cpuset *trialcs; 1647 int retval = -ENODEV; 1648 1649 buf = strstrip(buf); 1650 1651 /* 1652 * CPU or memory hotunplug may leave @cs w/o any execution 1653 * resources, in which case the hotplug code asynchronously updates 1654 * configuration and transfers all tasks to the nearest ancestor 1655 * which can execute. 1656 * 1657 * As writes to "cpus" or "mems" may restore @cs's execution 1658 * resources, wait for the previously scheduled operations before 1659 * proceeding, so that we don't end up keep removing tasks added 1660 * after execution capability is restored. 1661 * 1662 * cpuset_hotplug_work calls back into cgroup core via 1663 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 1664 * operation like this one can lead to a deadlock through kernfs 1665 * active_ref protection. Let's break the protection. Losing the 1666 * protection is okay as we check whether @cs is online after 1667 * grabbing cpuset_mutex anyway. This only happens on the legacy 1668 * hierarchies. 1669 */ 1670 css_get(&cs->css); 1671 kernfs_break_active_protection(of->kn); 1672 flush_work(&cpuset_hotplug_work); 1673 1674 mutex_lock(&cpuset_mutex); 1675 if (!is_cpuset_online(cs)) 1676 goto out_unlock; 1677 1678 trialcs = alloc_trial_cpuset(cs); 1679 if (!trialcs) { 1680 retval = -ENOMEM; 1681 goto out_unlock; 1682 } 1683 1684 switch (of_cft(of)->private) { 1685 case FILE_CPULIST: 1686 retval = update_cpumask(cs, trialcs, buf); 1687 break; 1688 case FILE_MEMLIST: 1689 retval = update_nodemask(cs, trialcs, buf); 1690 break; 1691 default: 1692 retval = -EINVAL; 1693 break; 1694 } 1695 1696 free_trial_cpuset(trialcs); 1697out_unlock: 1698 mutex_unlock(&cpuset_mutex); 1699 kernfs_unbreak_active_protection(of->kn); 1700 css_put(&cs->css); 1701 return retval ?: nbytes; 1702} 1703 1704/* 1705 * These ascii lists should be read in a single call, by using a user 1706 * buffer large enough to hold the entire map. If read in smaller 1707 * chunks, there is no guarantee of atomicity. Since the display format 1708 * used, list of ranges of sequential numbers, is variable length, 1709 * and since these maps can change value dynamically, one could read 1710 * gibberish by doing partial reads while a list was changing. 1711 */ 1712static int cpuset_common_seq_show(struct seq_file *sf, void *v) 1713{ 1714 struct cpuset *cs = css_cs(seq_css(sf)); 1715 cpuset_filetype_t type = seq_cft(sf)->private; 1716 int ret = 0; 1717 1718 spin_lock_irq(&callback_lock); 1719 1720 switch (type) { 1721 case FILE_CPULIST: 1722 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 1723 break; 1724 case FILE_MEMLIST: 1725 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 1726 break; 1727 case FILE_EFFECTIVE_CPULIST: 1728 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 1729 break; 1730 case FILE_EFFECTIVE_MEMLIST: 1731 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 1732 break; 1733 default: 1734 ret = -EINVAL; 1735 } 1736 1737 spin_unlock_irq(&callback_lock); 1738 return ret; 1739} 1740 1741static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 1742{ 1743 struct cpuset *cs = css_cs(css); 1744 cpuset_filetype_t type = cft->private; 1745 switch (type) { 1746 case FILE_CPU_EXCLUSIVE: 1747 return is_cpu_exclusive(cs); 1748 case FILE_MEM_EXCLUSIVE: 1749 return is_mem_exclusive(cs); 1750 case FILE_MEM_HARDWALL: 1751 return is_mem_hardwall(cs); 1752 case FILE_SCHED_LOAD_BALANCE: 1753 return is_sched_load_balance(cs); 1754 case FILE_MEMORY_MIGRATE: 1755 return is_memory_migrate(cs); 1756 case FILE_MEMORY_PRESSURE_ENABLED: 1757 return cpuset_memory_pressure_enabled; 1758 case FILE_MEMORY_PRESSURE: 1759 return fmeter_getrate(&cs->fmeter); 1760 case FILE_SPREAD_PAGE: 1761 return is_spread_page(cs); 1762 case FILE_SPREAD_SLAB: 1763 return is_spread_slab(cs); 1764 default: 1765 BUG(); 1766 } 1767 1768 /* Unreachable but makes gcc happy */ 1769 return 0; 1770} 1771 1772static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 1773{ 1774 struct cpuset *cs = css_cs(css); 1775 cpuset_filetype_t type = cft->private; 1776 switch (type) { 1777 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 1778 return cs->relax_domain_level; 1779 default: 1780 BUG(); 1781 } 1782 1783 /* Unrechable but makes gcc happy */ 1784 return 0; 1785} 1786 1787 1788/* 1789 * for the common functions, 'private' gives the type of file 1790 */ 1791 1792static struct cftype files[] = { 1793 { 1794 .name = "cpus", 1795 .seq_show = cpuset_common_seq_show, 1796 .write = cpuset_write_resmask, 1797 .max_write_len = (100U + 6 * NR_CPUS), 1798 .private = FILE_CPULIST, 1799 }, 1800 1801 { 1802 .name = "mems", 1803 .seq_show = cpuset_common_seq_show, 1804 .write = cpuset_write_resmask, 1805 .max_write_len = (100U + 6 * MAX_NUMNODES), 1806 .private = FILE_MEMLIST, 1807 }, 1808 1809 { 1810 .name = "effective_cpus", 1811 .seq_show = cpuset_common_seq_show, 1812 .private = FILE_EFFECTIVE_CPULIST, 1813 }, 1814 1815 { 1816 .name = "effective_mems", 1817 .seq_show = cpuset_common_seq_show, 1818 .private = FILE_EFFECTIVE_MEMLIST, 1819 }, 1820 1821 { 1822 .name = "cpu_exclusive", 1823 .read_u64 = cpuset_read_u64, 1824 .write_u64 = cpuset_write_u64, 1825 .private = FILE_CPU_EXCLUSIVE, 1826 }, 1827 1828 { 1829 .name = "mem_exclusive", 1830 .read_u64 = cpuset_read_u64, 1831 .write_u64 = cpuset_write_u64, 1832 .private = FILE_MEM_EXCLUSIVE, 1833 }, 1834 1835 { 1836 .name = "mem_hardwall", 1837 .read_u64 = cpuset_read_u64, 1838 .write_u64 = cpuset_write_u64, 1839 .private = FILE_MEM_HARDWALL, 1840 }, 1841 1842 { 1843 .name = "sched_load_balance", 1844 .read_u64 = cpuset_read_u64, 1845 .write_u64 = cpuset_write_u64, 1846 .private = FILE_SCHED_LOAD_BALANCE, 1847 }, 1848 1849 { 1850 .name = "sched_relax_domain_level", 1851 .read_s64 = cpuset_read_s64, 1852 .write_s64 = cpuset_write_s64, 1853 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 1854 }, 1855 1856 { 1857 .name = "memory_migrate", 1858 .read_u64 = cpuset_read_u64, 1859 .write_u64 = cpuset_write_u64, 1860 .private = FILE_MEMORY_MIGRATE, 1861 }, 1862 1863 { 1864 .name = "memory_pressure", 1865 .read_u64 = cpuset_read_u64, 1866 .write_u64 = cpuset_write_u64, 1867 .private = FILE_MEMORY_PRESSURE, 1868 .mode = S_IRUGO, 1869 }, 1870 1871 { 1872 .name = "memory_spread_page", 1873 .read_u64 = cpuset_read_u64, 1874 .write_u64 = cpuset_write_u64, 1875 .private = FILE_SPREAD_PAGE, 1876 }, 1877 1878 { 1879 .name = "memory_spread_slab", 1880 .read_u64 = cpuset_read_u64, 1881 .write_u64 = cpuset_write_u64, 1882 .private = FILE_SPREAD_SLAB, 1883 }, 1884 1885 { 1886 .name = "memory_pressure_enabled", 1887 .flags = CFTYPE_ONLY_ON_ROOT, 1888 .read_u64 = cpuset_read_u64, 1889 .write_u64 = cpuset_write_u64, 1890 .private = FILE_MEMORY_PRESSURE_ENABLED, 1891 }, 1892 1893 { } /* terminate */ 1894}; 1895 1896/* 1897 * cpuset_css_alloc - allocate a cpuset css 1898 * cgrp: control group that the new cpuset will be part of 1899 */ 1900 1901static struct cgroup_subsys_state * 1902cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 1903{ 1904 struct cpuset *cs; 1905 1906 if (!parent_css) 1907 return &top_cpuset.css; 1908 1909 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 1910 if (!cs) 1911 return ERR_PTR(-ENOMEM); 1912 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) 1913 goto free_cs; 1914 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL)) 1915 goto free_cpus; 1916 1917 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1918 cpumask_clear(cs->cpus_allowed); 1919 nodes_clear(cs->mems_allowed); 1920 cpumask_clear(cs->effective_cpus); 1921 nodes_clear(cs->effective_mems); 1922 fmeter_init(&cs->fmeter); 1923 cs->relax_domain_level = -1; 1924 1925 return &cs->css; 1926 1927free_cpus: 1928 free_cpumask_var(cs->cpus_allowed); 1929free_cs: 1930 kfree(cs); 1931 return ERR_PTR(-ENOMEM); 1932} 1933 1934static int cpuset_css_online(struct cgroup_subsys_state *css) 1935{ 1936 struct cpuset *cs = css_cs(css); 1937 struct cpuset *parent = parent_cs(cs); 1938 struct cpuset *tmp_cs; 1939 struct cgroup_subsys_state *pos_css; 1940 1941 if (!parent) 1942 return 0; 1943 1944 mutex_lock(&cpuset_mutex); 1945 1946 set_bit(CS_ONLINE, &cs->flags); 1947 if (is_spread_page(parent)) 1948 set_bit(CS_SPREAD_PAGE, &cs->flags); 1949 if (is_spread_slab(parent)) 1950 set_bit(CS_SPREAD_SLAB, &cs->flags); 1951 1952 cpuset_inc(); 1953 1954 spin_lock_irq(&callback_lock); 1955 if (cgroup_on_dfl(cs->css.cgroup)) { 1956 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1957 cs->effective_mems = parent->effective_mems; 1958 } 1959 spin_unlock_irq(&callback_lock); 1960 1961 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 1962 goto out_unlock; 1963 1964 /* 1965 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 1966 * set. This flag handling is implemented in cgroup core for 1967 * histrical reasons - the flag may be specified during mount. 1968 * 1969 * Currently, if any sibling cpusets have exclusive cpus or mem, we 1970 * refuse to clone the configuration - thereby refusing the task to 1971 * be entered, and as a result refusing the sys_unshare() or 1972 * clone() which initiated it. If this becomes a problem for some 1973 * users who wish to allow that scenario, then this could be 1974 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 1975 * (and likewise for mems) to the new cgroup. 1976 */ 1977 rcu_read_lock(); 1978 cpuset_for_each_child(tmp_cs, pos_css, parent) { 1979 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 1980 rcu_read_unlock(); 1981 goto out_unlock; 1982 } 1983 } 1984 rcu_read_unlock(); 1985 1986 spin_lock_irq(&callback_lock); 1987 cs->mems_allowed = parent->mems_allowed; 1988 cs->effective_mems = parent->mems_allowed; 1989 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 1990 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 1991 spin_unlock_irq(&callback_lock); 1992out_unlock: 1993 mutex_unlock(&cpuset_mutex); 1994 return 0; 1995} 1996 1997/* 1998 * If the cpuset being removed has its flag 'sched_load_balance' 1999 * enabled, then simulate turning sched_load_balance off, which 2000 * will call rebuild_sched_domains_locked(). 2001 */ 2002 2003static void cpuset_css_offline(struct cgroup_subsys_state *css) 2004{ 2005 struct cpuset *cs = css_cs(css); 2006 2007 mutex_lock(&cpuset_mutex); 2008 2009 if (is_sched_load_balance(cs)) 2010 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2011 2012 cpuset_dec(); 2013 clear_bit(CS_ONLINE, &cs->flags); 2014 2015 mutex_unlock(&cpuset_mutex); 2016} 2017 2018static void cpuset_css_free(struct cgroup_subsys_state *css) 2019{ 2020 struct cpuset *cs = css_cs(css); 2021 2022 free_cpumask_var(cs->effective_cpus); 2023 free_cpumask_var(cs->cpus_allowed); 2024 kfree(cs); 2025} 2026 2027static void cpuset_bind(struct cgroup_subsys_state *root_css) 2028{ 2029 mutex_lock(&cpuset_mutex); 2030 spin_lock_irq(&callback_lock); 2031 2032 if (cgroup_on_dfl(root_css->cgroup)) { 2033 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2034 top_cpuset.mems_allowed = node_possible_map; 2035 } else { 2036 cpumask_copy(top_cpuset.cpus_allowed, 2037 top_cpuset.effective_cpus); 2038 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2039 } 2040 2041 spin_unlock_irq(&callback_lock); 2042 mutex_unlock(&cpuset_mutex); 2043} 2044 2045struct cgroup_subsys cpuset_cgrp_subsys = { 2046 .css_alloc = cpuset_css_alloc, 2047 .css_online = cpuset_css_online, 2048 .css_offline = cpuset_css_offline, 2049 .css_free = cpuset_css_free, 2050 .can_attach = cpuset_can_attach, 2051 .cancel_attach = cpuset_cancel_attach, 2052 .attach = cpuset_attach, 2053 .bind = cpuset_bind, 2054 .legacy_cftypes = files, 2055 .early_init = 1, 2056}; 2057 2058/** 2059 * cpuset_init - initialize cpusets at system boot 2060 * 2061 * Description: Initialize top_cpuset and the cpuset internal file system, 2062 **/ 2063 2064int __init cpuset_init(void) 2065{ 2066 int err = 0; 2067 2068 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)) 2069 BUG(); 2070 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)) 2071 BUG(); 2072 2073 cpumask_setall(top_cpuset.cpus_allowed); 2074 nodes_setall(top_cpuset.mems_allowed); 2075 cpumask_setall(top_cpuset.effective_cpus); 2076 nodes_setall(top_cpuset.effective_mems); 2077 2078 fmeter_init(&top_cpuset.fmeter); 2079 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2080 top_cpuset.relax_domain_level = -1; 2081 2082 err = register_filesystem(&cpuset_fs_type); 2083 if (err < 0) 2084 return err; 2085 2086 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) 2087 BUG(); 2088 2089 return 0; 2090} 2091 2092/* 2093 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2094 * or memory nodes, we need to walk over the cpuset hierarchy, 2095 * removing that CPU or node from all cpusets. If this removes the 2096 * last CPU or node from a cpuset, then move the tasks in the empty 2097 * cpuset to its next-highest non-empty parent. 2098 */ 2099static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2100{ 2101 struct cpuset *parent; 2102 2103 /* 2104 * Find its next-highest non-empty parent, (top cpuset 2105 * has online cpus, so can't be empty). 2106 */ 2107 parent = parent_cs(cs); 2108 while (cpumask_empty(parent->cpus_allowed) || 2109 nodes_empty(parent->mems_allowed)) 2110 parent = parent_cs(parent); 2111 2112 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 2113 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 2114 pr_cont_cgroup_name(cs->css.cgroup); 2115 pr_cont("\n"); 2116 } 2117} 2118 2119static void 2120hotplug_update_tasks_legacy(struct cpuset *cs, 2121 struct cpumask *new_cpus, nodemask_t *new_mems, 2122 bool cpus_updated, bool mems_updated) 2123{ 2124 bool is_empty; 2125 2126 spin_lock_irq(&callback_lock); 2127 cpumask_copy(cs->cpus_allowed, new_cpus); 2128 cpumask_copy(cs->effective_cpus, new_cpus); 2129 cs->mems_allowed = *new_mems; 2130 cs->effective_mems = *new_mems; 2131 spin_unlock_irq(&callback_lock); 2132 2133 /* 2134 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 2135 * as the tasks will be migratecd to an ancestor. 2136 */ 2137 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 2138 update_tasks_cpumask(cs); 2139 if (mems_updated && !nodes_empty(cs->mems_allowed)) 2140 update_tasks_nodemask(cs); 2141 2142 is_empty = cpumask_empty(cs->cpus_allowed) || 2143 nodes_empty(cs->mems_allowed); 2144 2145 mutex_unlock(&cpuset_mutex); 2146 2147 /* 2148 * Move tasks to the nearest ancestor with execution resources, 2149 * This is full cgroup operation which will also call back into 2150 * cpuset. Should be done outside any lock. 2151 */ 2152 if (is_empty) 2153 remove_tasks_in_empty_cpuset(cs); 2154 2155 mutex_lock(&cpuset_mutex); 2156} 2157 2158static void 2159hotplug_update_tasks(struct cpuset *cs, 2160 struct cpumask *new_cpus, nodemask_t *new_mems, 2161 bool cpus_updated, bool mems_updated) 2162{ 2163 if (cpumask_empty(new_cpus)) 2164 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 2165 if (nodes_empty(*new_mems)) 2166 *new_mems = parent_cs(cs)->effective_mems; 2167 2168 spin_lock_irq(&callback_lock); 2169 cpumask_copy(cs->effective_cpus, new_cpus); 2170 cs->effective_mems = *new_mems; 2171 spin_unlock_irq(&callback_lock); 2172 2173 if (cpus_updated) 2174 update_tasks_cpumask(cs); 2175 if (mems_updated) 2176 update_tasks_nodemask(cs); 2177} 2178 2179/** 2180 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 2181 * @cs: cpuset in interest 2182 * 2183 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 2184 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 2185 * all its tasks are moved to the nearest ancestor with both resources. 2186 */ 2187static void cpuset_hotplug_update_tasks(struct cpuset *cs) 2188{ 2189 static cpumask_t new_cpus; 2190 static nodemask_t new_mems; 2191 bool cpus_updated; 2192 bool mems_updated; 2193retry: 2194 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 2195 2196 mutex_lock(&cpuset_mutex); 2197 2198 /* 2199 * We have raced with task attaching. We wait until attaching 2200 * is finished, so we won't attach a task to an empty cpuset. 2201 */ 2202 if (cs->attach_in_progress) { 2203 mutex_unlock(&cpuset_mutex); 2204 goto retry; 2205 } 2206 2207 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus); 2208 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems); 2209 2210 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 2211 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 2212 2213 if (cgroup_on_dfl(cs->css.cgroup)) 2214 hotplug_update_tasks(cs, &new_cpus, &new_mems, 2215 cpus_updated, mems_updated); 2216 else 2217 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 2218 cpus_updated, mems_updated); 2219 2220 mutex_unlock(&cpuset_mutex); 2221} 2222 2223/** 2224 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 2225 * 2226 * This function is called after either CPU or memory configuration has 2227 * changed and updates cpuset accordingly. The top_cpuset is always 2228 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 2229 * order to make cpusets transparent (of no affect) on systems that are 2230 * actively using CPU hotplug but making no active use of cpusets. 2231 * 2232 * Non-root cpusets are only affected by offlining. If any CPUs or memory 2233 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 2234 * all descendants. 2235 * 2236 * Note that CPU offlining during suspend is ignored. We don't modify 2237 * cpusets across suspend/resume cycles at all. 2238 */ 2239static void cpuset_hotplug_workfn(struct work_struct *work) 2240{ 2241 static cpumask_t new_cpus; 2242 static nodemask_t new_mems; 2243 bool cpus_updated, mems_updated; 2244 bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup); 2245 2246 mutex_lock(&cpuset_mutex); 2247 2248 /* fetch the available cpus/mems and find out which changed how */ 2249 cpumask_copy(&new_cpus, cpu_active_mask); 2250 new_mems = node_states[N_MEMORY]; 2251 2252 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 2253 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 2254 2255 /* synchronize cpus_allowed to cpu_active_mask */ 2256 if (cpus_updated) { 2257 spin_lock_irq(&callback_lock); 2258 if (!on_dfl) 2259 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 2260 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 2261 spin_unlock_irq(&callback_lock); 2262 /* we don't mess with cpumasks of tasks in top_cpuset */ 2263 } 2264 2265 /* synchronize mems_allowed to N_MEMORY */ 2266 if (mems_updated) { 2267 spin_lock_irq(&callback_lock); 2268 if (!on_dfl) 2269 top_cpuset.mems_allowed = new_mems; 2270 top_cpuset.effective_mems = new_mems; 2271 spin_unlock_irq(&callback_lock); 2272 update_tasks_nodemask(&top_cpuset); 2273 } 2274 2275 mutex_unlock(&cpuset_mutex); 2276 2277 /* if cpus or mems changed, we need to propagate to descendants */ 2278 if (cpus_updated || mems_updated) { 2279 struct cpuset *cs; 2280 struct cgroup_subsys_state *pos_css; 2281 2282 rcu_read_lock(); 2283 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 2284 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 2285 continue; 2286 rcu_read_unlock(); 2287 2288 cpuset_hotplug_update_tasks(cs); 2289 2290 rcu_read_lock(); 2291 css_put(&cs->css); 2292 } 2293 rcu_read_unlock(); 2294 } 2295 2296 /* rebuild sched domains if cpus_allowed has changed */ 2297 if (cpus_updated) 2298 rebuild_sched_domains(); 2299} 2300 2301void cpuset_update_active_cpus(bool cpu_online) 2302{ 2303 /* 2304 * We're inside cpu hotplug critical region which usually nests 2305 * inside cgroup synchronization. Bounce actual hotplug processing 2306 * to a work item to avoid reverse locking order. 2307 * 2308 * We still need to do partition_sched_domains() synchronously; 2309 * otherwise, the scheduler will get confused and put tasks to the 2310 * dead CPU. Fall back to the default single domain. 2311 * cpuset_hotplug_workfn() will rebuild it as necessary. 2312 */ 2313 partition_sched_domains(1, NULL, NULL); 2314 schedule_work(&cpuset_hotplug_work); 2315} 2316 2317/* 2318 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 2319 * Call this routine anytime after node_states[N_MEMORY] changes. 2320 * See cpuset_update_active_cpus() for CPU hotplug handling. 2321 */ 2322static int cpuset_track_online_nodes(struct notifier_block *self, 2323 unsigned long action, void *arg) 2324{ 2325 schedule_work(&cpuset_hotplug_work); 2326 return NOTIFY_OK; 2327} 2328 2329static struct notifier_block cpuset_track_online_nodes_nb = { 2330 .notifier_call = cpuset_track_online_nodes, 2331 .priority = 10, /* ??! */ 2332}; 2333 2334/** 2335 * cpuset_init_smp - initialize cpus_allowed 2336 * 2337 * Description: Finish top cpuset after cpu, node maps are initialized 2338 */ 2339void __init cpuset_init_smp(void) 2340{ 2341 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 2342 top_cpuset.mems_allowed = node_states[N_MEMORY]; 2343 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 2344 2345 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 2346 top_cpuset.effective_mems = node_states[N_MEMORY]; 2347 2348 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 2349} 2350 2351/** 2352 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 2353 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 2354 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 2355 * 2356 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 2357 * attached to the specified @tsk. Guaranteed to return some non-empty 2358 * subset of cpu_online_mask, even if this means going outside the 2359 * tasks cpuset. 2360 **/ 2361 2362void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 2363{ 2364 unsigned long flags; 2365 2366 spin_lock_irqsave(&callback_lock, flags); 2367 rcu_read_lock(); 2368 guarantee_online_cpus(task_cs(tsk), pmask); 2369 rcu_read_unlock(); 2370 spin_unlock_irqrestore(&callback_lock, flags); 2371} 2372 2373void cpuset_cpus_allowed_fallback(struct task_struct *tsk) 2374{ 2375 rcu_read_lock(); 2376 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus); 2377 rcu_read_unlock(); 2378 2379 /* 2380 * We own tsk->cpus_allowed, nobody can change it under us. 2381 * 2382 * But we used cs && cs->cpus_allowed lockless and thus can 2383 * race with cgroup_attach_task() or update_cpumask() and get 2384 * the wrong tsk->cpus_allowed. However, both cases imply the 2385 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 2386 * which takes task_rq_lock(). 2387 * 2388 * If we are called after it dropped the lock we must see all 2389 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 2390 * set any mask even if it is not right from task_cs() pov, 2391 * the pending set_cpus_allowed_ptr() will fix things. 2392 * 2393 * select_fallback_rq() will fix things ups and set cpu_possible_mask 2394 * if required. 2395 */ 2396} 2397 2398void __init cpuset_init_current_mems_allowed(void) 2399{ 2400 nodes_setall(current->mems_allowed); 2401} 2402 2403/** 2404 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 2405 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 2406 * 2407 * Description: Returns the nodemask_t mems_allowed of the cpuset 2408 * attached to the specified @tsk. Guaranteed to return some non-empty 2409 * subset of node_states[N_MEMORY], even if this means going outside the 2410 * tasks cpuset. 2411 **/ 2412 2413nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 2414{ 2415 nodemask_t mask; 2416 unsigned long flags; 2417 2418 spin_lock_irqsave(&callback_lock, flags); 2419 rcu_read_lock(); 2420 guarantee_online_mems(task_cs(tsk), &mask); 2421 rcu_read_unlock(); 2422 spin_unlock_irqrestore(&callback_lock, flags); 2423 2424 return mask; 2425} 2426 2427/** 2428 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed 2429 * @nodemask: the nodemask to be checked 2430 * 2431 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 2432 */ 2433int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 2434{ 2435 return nodes_intersects(*nodemask, current->mems_allowed); 2436} 2437 2438/* 2439 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 2440 * mem_hardwall ancestor to the specified cpuset. Call holding 2441 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 2442 * (an unusual configuration), then returns the root cpuset. 2443 */ 2444static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 2445{ 2446 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 2447 cs = parent_cs(cs); 2448 return cs; 2449} 2450 2451/** 2452 * cpuset_node_allowed - Can we allocate on a memory node? 2453 * @node: is this an allowed node? 2454 * @gfp_mask: memory allocation flags 2455 * 2456 * If we're in interrupt, yes, we can always allocate. If @node is set in 2457 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 2458 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 2459 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes. 2460 * Otherwise, no. 2461 * 2462 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 2463 * and do not allow allocations outside the current tasks cpuset 2464 * unless the task has been OOM killed as is marked TIF_MEMDIE. 2465 * GFP_KERNEL allocations are not so marked, so can escape to the 2466 * nearest enclosing hardwalled ancestor cpuset. 2467 * 2468 * Scanning up parent cpusets requires callback_lock. The 2469 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 2470 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 2471 * current tasks mems_allowed came up empty on the first pass over 2472 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 2473 * cpuset are short of memory, might require taking the callback_lock. 2474 * 2475 * The first call here from mm/page_alloc:get_page_from_freelist() 2476 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 2477 * so no allocation on a node outside the cpuset is allowed (unless 2478 * in interrupt, of course). 2479 * 2480 * The second pass through get_page_from_freelist() doesn't even call 2481 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 2482 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 2483 * in alloc_flags. That logic and the checks below have the combined 2484 * affect that: 2485 * in_interrupt - any node ok (current task context irrelevant) 2486 * GFP_ATOMIC - any node ok 2487 * TIF_MEMDIE - any node ok 2488 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 2489 * GFP_USER - only nodes in current tasks mems allowed ok. 2490 */ 2491int __cpuset_node_allowed(int node, gfp_t gfp_mask) 2492{ 2493 struct cpuset *cs; /* current cpuset ancestors */ 2494 int allowed; /* is allocation in zone z allowed? */ 2495 unsigned long flags; 2496 2497 if (in_interrupt()) 2498 return 1; 2499 if (node_isset(node, current->mems_allowed)) 2500 return 1; 2501 /* 2502 * Allow tasks that have access to memory reserves because they have 2503 * been OOM killed to get memory anywhere. 2504 */ 2505 if (unlikely(test_thread_flag(TIF_MEMDIE))) 2506 return 1; 2507 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 2508 return 0; 2509 2510 if (current->flags & PF_EXITING) /* Let dying task have memory */ 2511 return 1; 2512 2513 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 2514 spin_lock_irqsave(&callback_lock, flags); 2515 2516 rcu_read_lock(); 2517 cs = nearest_hardwall_ancestor(task_cs(current)); 2518 allowed = node_isset(node, cs->mems_allowed); 2519 rcu_read_unlock(); 2520 2521 spin_unlock_irqrestore(&callback_lock, flags); 2522 return allowed; 2523} 2524 2525/** 2526 * cpuset_mem_spread_node() - On which node to begin search for a file page 2527 * cpuset_slab_spread_node() - On which node to begin search for a slab page 2528 * 2529 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 2530 * tasks in a cpuset with is_spread_page or is_spread_slab set), 2531 * and if the memory allocation used cpuset_mem_spread_node() 2532 * to determine on which node to start looking, as it will for 2533 * certain page cache or slab cache pages such as used for file 2534 * system buffers and inode caches, then instead of starting on the 2535 * local node to look for a free page, rather spread the starting 2536 * node around the tasks mems_allowed nodes. 2537 * 2538 * We don't have to worry about the returned node being offline 2539 * because "it can't happen", and even if it did, it would be ok. 2540 * 2541 * The routines calling guarantee_online_mems() are careful to 2542 * only set nodes in task->mems_allowed that are online. So it 2543 * should not be possible for the following code to return an 2544 * offline node. But if it did, that would be ok, as this routine 2545 * is not returning the node where the allocation must be, only 2546 * the node where the search should start. The zonelist passed to 2547 * __alloc_pages() will include all nodes. If the slab allocator 2548 * is passed an offline node, it will fall back to the local node. 2549 * See kmem_cache_alloc_node(). 2550 */ 2551 2552static int cpuset_spread_node(int *rotor) 2553{ 2554 int node; 2555 2556 node = next_node(*rotor, current->mems_allowed); 2557 if (node == MAX_NUMNODES) 2558 node = first_node(current->mems_allowed); 2559 *rotor = node; 2560 return node; 2561} 2562 2563int cpuset_mem_spread_node(void) 2564{ 2565 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 2566 current->cpuset_mem_spread_rotor = 2567 node_random(¤t->mems_allowed); 2568 2569 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 2570} 2571 2572int cpuset_slab_spread_node(void) 2573{ 2574 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 2575 current->cpuset_slab_spread_rotor = 2576 node_random(¤t->mems_allowed); 2577 2578 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 2579} 2580 2581EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 2582 2583/** 2584 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 2585 * @tsk1: pointer to task_struct of some task. 2586 * @tsk2: pointer to task_struct of some other task. 2587 * 2588 * Description: Return true if @tsk1's mems_allowed intersects the 2589 * mems_allowed of @tsk2. Used by the OOM killer to determine if 2590 * one of the task's memory usage might impact the memory available 2591 * to the other. 2592 **/ 2593 2594int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 2595 const struct task_struct *tsk2) 2596{ 2597 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 2598} 2599 2600/** 2601 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed 2602 * @tsk: pointer to task_struct of some task. 2603 * 2604 * Description: Prints @task's name, cpuset name, and cached copy of its 2605 * mems_allowed to the kernel log. 2606 */ 2607void cpuset_print_task_mems_allowed(struct task_struct *tsk) 2608{ 2609 struct cgroup *cgrp; 2610 2611 rcu_read_lock(); 2612 2613 cgrp = task_cs(tsk)->css.cgroup; 2614 pr_info("%s cpuset=", tsk->comm); 2615 pr_cont_cgroup_name(cgrp); 2616 pr_cont(" mems_allowed=%*pbl\n", nodemask_pr_args(&tsk->mems_allowed)); 2617 2618 rcu_read_unlock(); 2619} 2620 2621/* 2622 * Collection of memory_pressure is suppressed unless 2623 * this flag is enabled by writing "1" to the special 2624 * cpuset file 'memory_pressure_enabled' in the root cpuset. 2625 */ 2626 2627int cpuset_memory_pressure_enabled __read_mostly; 2628 2629/** 2630 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 2631 * 2632 * Keep a running average of the rate of synchronous (direct) 2633 * page reclaim efforts initiated by tasks in each cpuset. 2634 * 2635 * This represents the rate at which some task in the cpuset 2636 * ran low on memory on all nodes it was allowed to use, and 2637 * had to enter the kernels page reclaim code in an effort to 2638 * create more free memory by tossing clean pages or swapping 2639 * or writing dirty pages. 2640 * 2641 * Display to user space in the per-cpuset read-only file 2642 * "memory_pressure". Value displayed is an integer 2643 * representing the recent rate of entry into the synchronous 2644 * (direct) page reclaim by any task attached to the cpuset. 2645 **/ 2646 2647void __cpuset_memory_pressure_bump(void) 2648{ 2649 rcu_read_lock(); 2650 fmeter_markevent(&task_cs(current)->fmeter); 2651 rcu_read_unlock(); 2652} 2653 2654#ifdef CONFIG_PROC_PID_CPUSET 2655/* 2656 * proc_cpuset_show() 2657 * - Print tasks cpuset path into seq_file. 2658 * - Used for /proc/<pid>/cpuset. 2659 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 2660 * doesn't really matter if tsk->cpuset changes after we read it, 2661 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 2662 * anyway. 2663 */ 2664int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 2665 struct pid *pid, struct task_struct *tsk) 2666{ 2667 char *buf, *p; 2668 struct cgroup_subsys_state *css; 2669 int retval; 2670 2671 retval = -ENOMEM; 2672 buf = kmalloc(PATH_MAX, GFP_KERNEL); 2673 if (!buf) 2674 goto out; 2675 2676 retval = -ENAMETOOLONG; 2677 rcu_read_lock(); 2678 css = task_css(tsk, cpuset_cgrp_id); 2679 p = cgroup_path(css->cgroup, buf, PATH_MAX); 2680 rcu_read_unlock(); 2681 if (!p) 2682 goto out_free; 2683 seq_puts(m, p); 2684 seq_putc(m, '\n'); 2685 retval = 0; 2686out_free: 2687 kfree(buf); 2688out: 2689 return retval; 2690} 2691#endif /* CONFIG_PROC_PID_CPUSET */ 2692 2693/* Display task mems_allowed in /proc/<pid>/status file. */ 2694void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 2695{ 2696 seq_printf(m, "Mems_allowed:\t%*pb\n", 2697 nodemask_pr_args(&task->mems_allowed)); 2698 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 2699 nodemask_pr_args(&task->mems_allowed)); 2700} 2701