1/* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12#include <linux/fs.h> 13#include <linux/mm.h> 14#include <linux/cpu.h> 15#include <linux/smp.h> 16#include <linux/idr.h> 17#include <linux/file.h> 18#include <linux/poll.h> 19#include <linux/slab.h> 20#include <linux/hash.h> 21#include <linux/tick.h> 22#include <linux/sysfs.h> 23#include <linux/dcache.h> 24#include <linux/percpu.h> 25#include <linux/ptrace.h> 26#include <linux/reboot.h> 27#include <linux/vmstat.h> 28#include <linux/device.h> 29#include <linux/export.h> 30#include <linux/vmalloc.h> 31#include <linux/hardirq.h> 32#include <linux/rculist.h> 33#include <linux/uaccess.h> 34#include <linux/syscalls.h> 35#include <linux/anon_inodes.h> 36#include <linux/kernel_stat.h> 37#include <linux/cgroup.h> 38#include <linux/perf_event.h> 39#include <linux/ftrace_event.h> 40#include <linux/hw_breakpoint.h> 41#include <linux/mm_types.h> 42#include <linux/module.h> 43#include <linux/mman.h> 44#include <linux/compat.h> 45#include <linux/bpf.h> 46#include <linux/filter.h> 47 48#include "internal.h" 49 50#include <asm/irq_regs.h> 51 52static struct workqueue_struct *perf_wq; 53 54struct remote_function_call { 55 struct task_struct *p; 56 int (*func)(void *info); 57 void *info; 58 int ret; 59}; 60 61static void remote_function(void *data) 62{ 63 struct remote_function_call *tfc = data; 64 struct task_struct *p = tfc->p; 65 66 if (p) { 67 tfc->ret = -EAGAIN; 68 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 69 return; 70 } 71 72 tfc->ret = tfc->func(tfc->info); 73} 74 75/** 76 * task_function_call - call a function on the cpu on which a task runs 77 * @p: the task to evaluate 78 * @func: the function to be called 79 * @info: the function call argument 80 * 81 * Calls the function @func when the task is currently running. This might 82 * be on the current CPU, which just calls the function directly 83 * 84 * returns: @func return value, or 85 * -ESRCH - when the process isn't running 86 * -EAGAIN - when the process moved away 87 */ 88static int 89task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 90{ 91 struct remote_function_call data = { 92 .p = p, 93 .func = func, 94 .info = info, 95 .ret = -ESRCH, /* No such (running) process */ 96 }; 97 98 if (task_curr(p)) 99 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 100 101 return data.ret; 102} 103 104/** 105 * cpu_function_call - call a function on the cpu 106 * @func: the function to be called 107 * @info: the function call argument 108 * 109 * Calls the function @func on the remote cpu. 110 * 111 * returns: @func return value or -ENXIO when the cpu is offline 112 */ 113static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 114{ 115 struct remote_function_call data = { 116 .p = NULL, 117 .func = func, 118 .info = info, 119 .ret = -ENXIO, /* No such CPU */ 120 }; 121 122 smp_call_function_single(cpu, remote_function, &data, 1); 123 124 return data.ret; 125} 126 127#define EVENT_OWNER_KERNEL ((void *) -1) 128 129static bool is_kernel_event(struct perf_event *event) 130{ 131 return event->owner == EVENT_OWNER_KERNEL; 132} 133 134#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 135 PERF_FLAG_FD_OUTPUT |\ 136 PERF_FLAG_PID_CGROUP |\ 137 PERF_FLAG_FD_CLOEXEC) 138 139/* 140 * branch priv levels that need permission checks 141 */ 142#define PERF_SAMPLE_BRANCH_PERM_PLM \ 143 (PERF_SAMPLE_BRANCH_KERNEL |\ 144 PERF_SAMPLE_BRANCH_HV) 145 146enum event_type_t { 147 EVENT_FLEXIBLE = 0x1, 148 EVENT_PINNED = 0x2, 149 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 150}; 151 152/* 153 * perf_sched_events : >0 events exist 154 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 155 */ 156struct static_key_deferred perf_sched_events __read_mostly; 157static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 158static DEFINE_PER_CPU(int, perf_sched_cb_usages); 159 160static atomic_t nr_mmap_events __read_mostly; 161static atomic_t nr_comm_events __read_mostly; 162static atomic_t nr_task_events __read_mostly; 163static atomic_t nr_freq_events __read_mostly; 164 165static LIST_HEAD(pmus); 166static DEFINE_MUTEX(pmus_lock); 167static struct srcu_struct pmus_srcu; 168 169/* 170 * perf event paranoia level: 171 * -1 - not paranoid at all 172 * 0 - disallow raw tracepoint access for unpriv 173 * 1 - disallow cpu events for unpriv 174 * 2 - disallow kernel profiling for unpriv 175 */ 176int sysctl_perf_event_paranoid __read_mostly = 1; 177 178/* Minimum for 512 kiB + 1 user control page */ 179int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 180 181/* 182 * max perf event sample rate 183 */ 184#define DEFAULT_MAX_SAMPLE_RATE 100000 185#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 186#define DEFAULT_CPU_TIME_MAX_PERCENT 25 187 188int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 189 190static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 191static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 192 193static int perf_sample_allowed_ns __read_mostly = 194 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 195 196void update_perf_cpu_limits(void) 197{ 198 u64 tmp = perf_sample_period_ns; 199 200 tmp *= sysctl_perf_cpu_time_max_percent; 201 do_div(tmp, 100); 202 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 203} 204 205static int perf_rotate_context(struct perf_cpu_context *cpuctx); 206 207int perf_proc_update_handler(struct ctl_table *table, int write, 208 void __user *buffer, size_t *lenp, 209 loff_t *ppos) 210{ 211 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 212 213 if (ret || !write) 214 return ret; 215 216 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 217 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 218 update_perf_cpu_limits(); 219 220 return 0; 221} 222 223int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 224 225int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 226 void __user *buffer, size_t *lenp, 227 loff_t *ppos) 228{ 229 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 230 231 if (ret || !write) 232 return ret; 233 234 update_perf_cpu_limits(); 235 236 return 0; 237} 238 239/* 240 * perf samples are done in some very critical code paths (NMIs). 241 * If they take too much CPU time, the system can lock up and not 242 * get any real work done. This will drop the sample rate when 243 * we detect that events are taking too long. 244 */ 245#define NR_ACCUMULATED_SAMPLES 128 246static DEFINE_PER_CPU(u64, running_sample_length); 247 248static void perf_duration_warn(struct irq_work *w) 249{ 250 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 251 u64 avg_local_sample_len; 252 u64 local_samples_len; 253 254 local_samples_len = __this_cpu_read(running_sample_length); 255 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 256 257 printk_ratelimited(KERN_WARNING 258 "perf interrupt took too long (%lld > %lld), lowering " 259 "kernel.perf_event_max_sample_rate to %d\n", 260 avg_local_sample_len, allowed_ns >> 1, 261 sysctl_perf_event_sample_rate); 262} 263 264static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 265 266void perf_sample_event_took(u64 sample_len_ns) 267{ 268 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 269 u64 avg_local_sample_len; 270 u64 local_samples_len; 271 272 if (allowed_ns == 0) 273 return; 274 275 /* decay the counter by 1 average sample */ 276 local_samples_len = __this_cpu_read(running_sample_length); 277 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 278 local_samples_len += sample_len_ns; 279 __this_cpu_write(running_sample_length, local_samples_len); 280 281 /* 282 * note: this will be biased artifically low until we have 283 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 284 * from having to maintain a count. 285 */ 286 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 287 288 if (avg_local_sample_len <= allowed_ns) 289 return; 290 291 if (max_samples_per_tick <= 1) 292 return; 293 294 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 295 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 296 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 297 298 update_perf_cpu_limits(); 299 300 if (!irq_work_queue(&perf_duration_work)) { 301 early_printk("perf interrupt took too long (%lld > %lld), lowering " 302 "kernel.perf_event_max_sample_rate to %d\n", 303 avg_local_sample_len, allowed_ns >> 1, 304 sysctl_perf_event_sample_rate); 305 } 306} 307 308static atomic64_t perf_event_id; 309 310static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 311 enum event_type_t event_type); 312 313static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 314 enum event_type_t event_type, 315 struct task_struct *task); 316 317static void update_context_time(struct perf_event_context *ctx); 318static u64 perf_event_time(struct perf_event *event); 319 320void __weak perf_event_print_debug(void) { } 321 322extern __weak const char *perf_pmu_name(void) 323{ 324 return "pmu"; 325} 326 327static inline u64 perf_clock(void) 328{ 329 return local_clock(); 330} 331 332static inline u64 perf_event_clock(struct perf_event *event) 333{ 334 return event->clock(); 335} 336 337static inline struct perf_cpu_context * 338__get_cpu_context(struct perf_event_context *ctx) 339{ 340 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 341} 342 343static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 344 struct perf_event_context *ctx) 345{ 346 raw_spin_lock(&cpuctx->ctx.lock); 347 if (ctx) 348 raw_spin_lock(&ctx->lock); 349} 350 351static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 352 struct perf_event_context *ctx) 353{ 354 if (ctx) 355 raw_spin_unlock(&ctx->lock); 356 raw_spin_unlock(&cpuctx->ctx.lock); 357} 358 359#ifdef CONFIG_CGROUP_PERF 360 361static inline bool 362perf_cgroup_match(struct perf_event *event) 363{ 364 struct perf_event_context *ctx = event->ctx; 365 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 366 367 /* @event doesn't care about cgroup */ 368 if (!event->cgrp) 369 return true; 370 371 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 372 if (!cpuctx->cgrp) 373 return false; 374 375 /* 376 * Cgroup scoping is recursive. An event enabled for a cgroup is 377 * also enabled for all its descendant cgroups. If @cpuctx's 378 * cgroup is a descendant of @event's (the test covers identity 379 * case), it's a match. 380 */ 381 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 382 event->cgrp->css.cgroup); 383} 384 385static inline void perf_detach_cgroup(struct perf_event *event) 386{ 387 css_put(&event->cgrp->css); 388 event->cgrp = NULL; 389} 390 391static inline int is_cgroup_event(struct perf_event *event) 392{ 393 return event->cgrp != NULL; 394} 395 396static inline u64 perf_cgroup_event_time(struct perf_event *event) 397{ 398 struct perf_cgroup_info *t; 399 400 t = per_cpu_ptr(event->cgrp->info, event->cpu); 401 return t->time; 402} 403 404static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 405{ 406 struct perf_cgroup_info *info; 407 u64 now; 408 409 now = perf_clock(); 410 411 info = this_cpu_ptr(cgrp->info); 412 413 info->time += now - info->timestamp; 414 info->timestamp = now; 415} 416 417static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 418{ 419 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 420 if (cgrp_out) 421 __update_cgrp_time(cgrp_out); 422} 423 424static inline void update_cgrp_time_from_event(struct perf_event *event) 425{ 426 struct perf_cgroup *cgrp; 427 428 /* 429 * ensure we access cgroup data only when needed and 430 * when we know the cgroup is pinned (css_get) 431 */ 432 if (!is_cgroup_event(event)) 433 return; 434 435 cgrp = perf_cgroup_from_task(current); 436 /* 437 * Do not update time when cgroup is not active 438 */ 439 if (cgrp == event->cgrp) 440 __update_cgrp_time(event->cgrp); 441} 442 443static inline void 444perf_cgroup_set_timestamp(struct task_struct *task, 445 struct perf_event_context *ctx) 446{ 447 struct perf_cgroup *cgrp; 448 struct perf_cgroup_info *info; 449 450 /* 451 * ctx->lock held by caller 452 * ensure we do not access cgroup data 453 * unless we have the cgroup pinned (css_get) 454 */ 455 if (!task || !ctx->nr_cgroups) 456 return; 457 458 cgrp = perf_cgroup_from_task(task); 459 info = this_cpu_ptr(cgrp->info); 460 info->timestamp = ctx->timestamp; 461} 462 463#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 464#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 465 466/* 467 * reschedule events based on the cgroup constraint of task. 468 * 469 * mode SWOUT : schedule out everything 470 * mode SWIN : schedule in based on cgroup for next 471 */ 472void perf_cgroup_switch(struct task_struct *task, int mode) 473{ 474 struct perf_cpu_context *cpuctx; 475 struct pmu *pmu; 476 unsigned long flags; 477 478 /* 479 * disable interrupts to avoid geting nr_cgroup 480 * changes via __perf_event_disable(). Also 481 * avoids preemption. 482 */ 483 local_irq_save(flags); 484 485 /* 486 * we reschedule only in the presence of cgroup 487 * constrained events. 488 */ 489 rcu_read_lock(); 490 491 list_for_each_entry_rcu(pmu, &pmus, entry) { 492 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 493 if (cpuctx->unique_pmu != pmu) 494 continue; /* ensure we process each cpuctx once */ 495 496 /* 497 * perf_cgroup_events says at least one 498 * context on this CPU has cgroup events. 499 * 500 * ctx->nr_cgroups reports the number of cgroup 501 * events for a context. 502 */ 503 if (cpuctx->ctx.nr_cgroups > 0) { 504 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 505 perf_pmu_disable(cpuctx->ctx.pmu); 506 507 if (mode & PERF_CGROUP_SWOUT) { 508 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 509 /* 510 * must not be done before ctxswout due 511 * to event_filter_match() in event_sched_out() 512 */ 513 cpuctx->cgrp = NULL; 514 } 515 516 if (mode & PERF_CGROUP_SWIN) { 517 WARN_ON_ONCE(cpuctx->cgrp); 518 /* 519 * set cgrp before ctxsw in to allow 520 * event_filter_match() to not have to pass 521 * task around 522 */ 523 cpuctx->cgrp = perf_cgroup_from_task(task); 524 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 525 } 526 perf_pmu_enable(cpuctx->ctx.pmu); 527 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 528 } 529 } 530 531 rcu_read_unlock(); 532 533 local_irq_restore(flags); 534} 535 536static inline void perf_cgroup_sched_out(struct task_struct *task, 537 struct task_struct *next) 538{ 539 struct perf_cgroup *cgrp1; 540 struct perf_cgroup *cgrp2 = NULL; 541 542 /* 543 * we come here when we know perf_cgroup_events > 0 544 */ 545 cgrp1 = perf_cgroup_from_task(task); 546 547 /* 548 * next is NULL when called from perf_event_enable_on_exec() 549 * that will systematically cause a cgroup_switch() 550 */ 551 if (next) 552 cgrp2 = perf_cgroup_from_task(next); 553 554 /* 555 * only schedule out current cgroup events if we know 556 * that we are switching to a different cgroup. Otherwise, 557 * do no touch the cgroup events. 558 */ 559 if (cgrp1 != cgrp2) 560 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 561} 562 563static inline void perf_cgroup_sched_in(struct task_struct *prev, 564 struct task_struct *task) 565{ 566 struct perf_cgroup *cgrp1; 567 struct perf_cgroup *cgrp2 = NULL; 568 569 /* 570 * we come here when we know perf_cgroup_events > 0 571 */ 572 cgrp1 = perf_cgroup_from_task(task); 573 574 /* prev can never be NULL */ 575 cgrp2 = perf_cgroup_from_task(prev); 576 577 /* 578 * only need to schedule in cgroup events if we are changing 579 * cgroup during ctxsw. Cgroup events were not scheduled 580 * out of ctxsw out if that was not the case. 581 */ 582 if (cgrp1 != cgrp2) 583 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 584} 585 586static inline int perf_cgroup_connect(int fd, struct perf_event *event, 587 struct perf_event_attr *attr, 588 struct perf_event *group_leader) 589{ 590 struct perf_cgroup *cgrp; 591 struct cgroup_subsys_state *css; 592 struct fd f = fdget(fd); 593 int ret = 0; 594 595 if (!f.file) 596 return -EBADF; 597 598 css = css_tryget_online_from_dir(f.file->f_path.dentry, 599 &perf_event_cgrp_subsys); 600 if (IS_ERR(css)) { 601 ret = PTR_ERR(css); 602 goto out; 603 } 604 605 cgrp = container_of(css, struct perf_cgroup, css); 606 event->cgrp = cgrp; 607 608 /* 609 * all events in a group must monitor 610 * the same cgroup because a task belongs 611 * to only one perf cgroup at a time 612 */ 613 if (group_leader && group_leader->cgrp != cgrp) { 614 perf_detach_cgroup(event); 615 ret = -EINVAL; 616 } 617out: 618 fdput(f); 619 return ret; 620} 621 622static inline void 623perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 624{ 625 struct perf_cgroup_info *t; 626 t = per_cpu_ptr(event->cgrp->info, event->cpu); 627 event->shadow_ctx_time = now - t->timestamp; 628} 629 630static inline void 631perf_cgroup_defer_enabled(struct perf_event *event) 632{ 633 /* 634 * when the current task's perf cgroup does not match 635 * the event's, we need to remember to call the 636 * perf_mark_enable() function the first time a task with 637 * a matching perf cgroup is scheduled in. 638 */ 639 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 640 event->cgrp_defer_enabled = 1; 641} 642 643static inline void 644perf_cgroup_mark_enabled(struct perf_event *event, 645 struct perf_event_context *ctx) 646{ 647 struct perf_event *sub; 648 u64 tstamp = perf_event_time(event); 649 650 if (!event->cgrp_defer_enabled) 651 return; 652 653 event->cgrp_defer_enabled = 0; 654 655 event->tstamp_enabled = tstamp - event->total_time_enabled; 656 list_for_each_entry(sub, &event->sibling_list, group_entry) { 657 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 658 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 659 sub->cgrp_defer_enabled = 0; 660 } 661 } 662} 663#else /* !CONFIG_CGROUP_PERF */ 664 665static inline bool 666perf_cgroup_match(struct perf_event *event) 667{ 668 return true; 669} 670 671static inline void perf_detach_cgroup(struct perf_event *event) 672{} 673 674static inline int is_cgroup_event(struct perf_event *event) 675{ 676 return 0; 677} 678 679static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 680{ 681 return 0; 682} 683 684static inline void update_cgrp_time_from_event(struct perf_event *event) 685{ 686} 687 688static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 689{ 690} 691 692static inline void perf_cgroup_sched_out(struct task_struct *task, 693 struct task_struct *next) 694{ 695} 696 697static inline void perf_cgroup_sched_in(struct task_struct *prev, 698 struct task_struct *task) 699{ 700} 701 702static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 703 struct perf_event_attr *attr, 704 struct perf_event *group_leader) 705{ 706 return -EINVAL; 707} 708 709static inline void 710perf_cgroup_set_timestamp(struct task_struct *task, 711 struct perf_event_context *ctx) 712{ 713} 714 715void 716perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 717{ 718} 719 720static inline void 721perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 722{ 723} 724 725static inline u64 perf_cgroup_event_time(struct perf_event *event) 726{ 727 return 0; 728} 729 730static inline void 731perf_cgroup_defer_enabled(struct perf_event *event) 732{ 733} 734 735static inline void 736perf_cgroup_mark_enabled(struct perf_event *event, 737 struct perf_event_context *ctx) 738{ 739} 740#endif 741 742/* 743 * set default to be dependent on timer tick just 744 * like original code 745 */ 746#define PERF_CPU_HRTIMER (1000 / HZ) 747/* 748 * function must be called with interrupts disbled 749 */ 750static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 751{ 752 struct perf_cpu_context *cpuctx; 753 enum hrtimer_restart ret = HRTIMER_NORESTART; 754 int rotations = 0; 755 756 WARN_ON(!irqs_disabled()); 757 758 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 759 760 rotations = perf_rotate_context(cpuctx); 761 762 /* 763 * arm timer if needed 764 */ 765 if (rotations) { 766 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 767 ret = HRTIMER_RESTART; 768 } 769 770 return ret; 771} 772 773/* CPU is going down */ 774void perf_cpu_hrtimer_cancel(int cpu) 775{ 776 struct perf_cpu_context *cpuctx; 777 struct pmu *pmu; 778 unsigned long flags; 779 780 if (WARN_ON(cpu != smp_processor_id())) 781 return; 782 783 local_irq_save(flags); 784 785 rcu_read_lock(); 786 787 list_for_each_entry_rcu(pmu, &pmus, entry) { 788 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 789 790 if (pmu->task_ctx_nr == perf_sw_context) 791 continue; 792 793 hrtimer_cancel(&cpuctx->hrtimer); 794 } 795 796 rcu_read_unlock(); 797 798 local_irq_restore(flags); 799} 800 801static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 802{ 803 struct hrtimer *hr = &cpuctx->hrtimer; 804 struct pmu *pmu = cpuctx->ctx.pmu; 805 int timer; 806 807 /* no multiplexing needed for SW PMU */ 808 if (pmu->task_ctx_nr == perf_sw_context) 809 return; 810 811 /* 812 * check default is sane, if not set then force to 813 * default interval (1/tick) 814 */ 815 timer = pmu->hrtimer_interval_ms; 816 if (timer < 1) 817 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 818 819 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 820 821 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 822 hr->function = perf_cpu_hrtimer_handler; 823} 824 825static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 826{ 827 struct hrtimer *hr = &cpuctx->hrtimer; 828 struct pmu *pmu = cpuctx->ctx.pmu; 829 830 /* not for SW PMU */ 831 if (pmu->task_ctx_nr == perf_sw_context) 832 return; 833 834 if (hrtimer_active(hr)) 835 return; 836 837 if (!hrtimer_callback_running(hr)) 838 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 839 0, HRTIMER_MODE_REL_PINNED, 0); 840} 841 842void perf_pmu_disable(struct pmu *pmu) 843{ 844 int *count = this_cpu_ptr(pmu->pmu_disable_count); 845 if (!(*count)++) 846 pmu->pmu_disable(pmu); 847} 848 849void perf_pmu_enable(struct pmu *pmu) 850{ 851 int *count = this_cpu_ptr(pmu->pmu_disable_count); 852 if (!--(*count)) 853 pmu->pmu_enable(pmu); 854} 855 856static DEFINE_PER_CPU(struct list_head, active_ctx_list); 857 858/* 859 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 860 * perf_event_task_tick() are fully serialized because they're strictly cpu 861 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 862 * disabled, while perf_event_task_tick is called from IRQ context. 863 */ 864static void perf_event_ctx_activate(struct perf_event_context *ctx) 865{ 866 struct list_head *head = this_cpu_ptr(&active_ctx_list); 867 868 WARN_ON(!irqs_disabled()); 869 870 WARN_ON(!list_empty(&ctx->active_ctx_list)); 871 872 list_add(&ctx->active_ctx_list, head); 873} 874 875static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 876{ 877 WARN_ON(!irqs_disabled()); 878 879 WARN_ON(list_empty(&ctx->active_ctx_list)); 880 881 list_del_init(&ctx->active_ctx_list); 882} 883 884static void get_ctx(struct perf_event_context *ctx) 885{ 886 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 887} 888 889static void free_ctx(struct rcu_head *head) 890{ 891 struct perf_event_context *ctx; 892 893 ctx = container_of(head, struct perf_event_context, rcu_head); 894 kfree(ctx->task_ctx_data); 895 kfree(ctx); 896} 897 898static void put_ctx(struct perf_event_context *ctx) 899{ 900 if (atomic_dec_and_test(&ctx->refcount)) { 901 if (ctx->parent_ctx) 902 put_ctx(ctx->parent_ctx); 903 if (ctx->task) 904 put_task_struct(ctx->task); 905 call_rcu(&ctx->rcu_head, free_ctx); 906 } 907} 908 909/* 910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 911 * perf_pmu_migrate_context() we need some magic. 912 * 913 * Those places that change perf_event::ctx will hold both 914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 915 * 916 * Lock ordering is by mutex address. There are two other sites where 917 * perf_event_context::mutex nests and those are: 918 * 919 * - perf_event_exit_task_context() [ child , 0 ] 920 * __perf_event_exit_task() 921 * sync_child_event() 922 * put_event() [ parent, 1 ] 923 * 924 * - perf_event_init_context() [ parent, 0 ] 925 * inherit_task_group() 926 * inherit_group() 927 * inherit_event() 928 * perf_event_alloc() 929 * perf_init_event() 930 * perf_try_init_event() [ child , 1 ] 931 * 932 * While it appears there is an obvious deadlock here -- the parent and child 933 * nesting levels are inverted between the two. This is in fact safe because 934 * life-time rules separate them. That is an exiting task cannot fork, and a 935 * spawning task cannot (yet) exit. 936 * 937 * But remember that that these are parent<->child context relations, and 938 * migration does not affect children, therefore these two orderings should not 939 * interact. 940 * 941 * The change in perf_event::ctx does not affect children (as claimed above) 942 * because the sys_perf_event_open() case will install a new event and break 943 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 944 * concerned with cpuctx and that doesn't have children. 945 * 946 * The places that change perf_event::ctx will issue: 947 * 948 * perf_remove_from_context(); 949 * synchronize_rcu(); 950 * perf_install_in_context(); 951 * 952 * to affect the change. The remove_from_context() + synchronize_rcu() should 953 * quiesce the event, after which we can install it in the new location. This 954 * means that only external vectors (perf_fops, prctl) can perturb the event 955 * while in transit. Therefore all such accessors should also acquire 956 * perf_event_context::mutex to serialize against this. 957 * 958 * However; because event->ctx can change while we're waiting to acquire 959 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 960 * function. 961 * 962 * Lock order: 963 * task_struct::perf_event_mutex 964 * perf_event_context::mutex 965 * perf_event_context::lock 966 * perf_event::child_mutex; 967 * perf_event::mmap_mutex 968 * mmap_sem 969 */ 970static struct perf_event_context * 971perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 972{ 973 struct perf_event_context *ctx; 974 975again: 976 rcu_read_lock(); 977 ctx = ACCESS_ONCE(event->ctx); 978 if (!atomic_inc_not_zero(&ctx->refcount)) { 979 rcu_read_unlock(); 980 goto again; 981 } 982 rcu_read_unlock(); 983 984 mutex_lock_nested(&ctx->mutex, nesting); 985 if (event->ctx != ctx) { 986 mutex_unlock(&ctx->mutex); 987 put_ctx(ctx); 988 goto again; 989 } 990 991 return ctx; 992} 993 994static inline struct perf_event_context * 995perf_event_ctx_lock(struct perf_event *event) 996{ 997 return perf_event_ctx_lock_nested(event, 0); 998} 999 1000static void perf_event_ctx_unlock(struct perf_event *event, 1001 struct perf_event_context *ctx) 1002{ 1003 mutex_unlock(&ctx->mutex); 1004 put_ctx(ctx); 1005} 1006 1007/* 1008 * This must be done under the ctx->lock, such as to serialize against 1009 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1010 * calling scheduler related locks and ctx->lock nests inside those. 1011 */ 1012static __must_check struct perf_event_context * 1013unclone_ctx(struct perf_event_context *ctx) 1014{ 1015 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1016 1017 lockdep_assert_held(&ctx->lock); 1018 1019 if (parent_ctx) 1020 ctx->parent_ctx = NULL; 1021 ctx->generation++; 1022 1023 return parent_ctx; 1024} 1025 1026static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1027{ 1028 /* 1029 * only top level events have the pid namespace they were created in 1030 */ 1031 if (event->parent) 1032 event = event->parent; 1033 1034 return task_tgid_nr_ns(p, event->ns); 1035} 1036 1037static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1038{ 1039 /* 1040 * only top level events have the pid namespace they were created in 1041 */ 1042 if (event->parent) 1043 event = event->parent; 1044 1045 return task_pid_nr_ns(p, event->ns); 1046} 1047 1048/* 1049 * If we inherit events we want to return the parent event id 1050 * to userspace. 1051 */ 1052static u64 primary_event_id(struct perf_event *event) 1053{ 1054 u64 id = event->id; 1055 1056 if (event->parent) 1057 id = event->parent->id; 1058 1059 return id; 1060} 1061 1062/* 1063 * Get the perf_event_context for a task and lock it. 1064 * This has to cope with with the fact that until it is locked, 1065 * the context could get moved to another task. 1066 */ 1067static struct perf_event_context * 1068perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1069{ 1070 struct perf_event_context *ctx; 1071 1072retry: 1073 /* 1074 * One of the few rules of preemptible RCU is that one cannot do 1075 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1076 * part of the read side critical section was preemptible -- see 1077 * rcu_read_unlock_special(). 1078 * 1079 * Since ctx->lock nests under rq->lock we must ensure the entire read 1080 * side critical section is non-preemptible. 1081 */ 1082 preempt_disable(); 1083 rcu_read_lock(); 1084 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1085 if (ctx) { 1086 /* 1087 * If this context is a clone of another, it might 1088 * get swapped for another underneath us by 1089 * perf_event_task_sched_out, though the 1090 * rcu_read_lock() protects us from any context 1091 * getting freed. Lock the context and check if it 1092 * got swapped before we could get the lock, and retry 1093 * if so. If we locked the right context, then it 1094 * can't get swapped on us any more. 1095 */ 1096 raw_spin_lock_irqsave(&ctx->lock, *flags); 1097 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1098 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1099 rcu_read_unlock(); 1100 preempt_enable(); 1101 goto retry; 1102 } 1103 1104 if (!atomic_inc_not_zero(&ctx->refcount)) { 1105 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1106 ctx = NULL; 1107 } 1108 } 1109 rcu_read_unlock(); 1110 preempt_enable(); 1111 return ctx; 1112} 1113 1114/* 1115 * Get the context for a task and increment its pin_count so it 1116 * can't get swapped to another task. This also increments its 1117 * reference count so that the context can't get freed. 1118 */ 1119static struct perf_event_context * 1120perf_pin_task_context(struct task_struct *task, int ctxn) 1121{ 1122 struct perf_event_context *ctx; 1123 unsigned long flags; 1124 1125 ctx = perf_lock_task_context(task, ctxn, &flags); 1126 if (ctx) { 1127 ++ctx->pin_count; 1128 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1129 } 1130 return ctx; 1131} 1132 1133static void perf_unpin_context(struct perf_event_context *ctx) 1134{ 1135 unsigned long flags; 1136 1137 raw_spin_lock_irqsave(&ctx->lock, flags); 1138 --ctx->pin_count; 1139 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1140} 1141 1142/* 1143 * Update the record of the current time in a context. 1144 */ 1145static void update_context_time(struct perf_event_context *ctx) 1146{ 1147 u64 now = perf_clock(); 1148 1149 ctx->time += now - ctx->timestamp; 1150 ctx->timestamp = now; 1151} 1152 1153static u64 perf_event_time(struct perf_event *event) 1154{ 1155 struct perf_event_context *ctx = event->ctx; 1156 1157 if (is_cgroup_event(event)) 1158 return perf_cgroup_event_time(event); 1159 1160 return ctx ? ctx->time : 0; 1161} 1162 1163/* 1164 * Update the total_time_enabled and total_time_running fields for a event. 1165 * The caller of this function needs to hold the ctx->lock. 1166 */ 1167static void update_event_times(struct perf_event *event) 1168{ 1169 struct perf_event_context *ctx = event->ctx; 1170 u64 run_end; 1171 1172 if (event->state < PERF_EVENT_STATE_INACTIVE || 1173 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1174 return; 1175 /* 1176 * in cgroup mode, time_enabled represents 1177 * the time the event was enabled AND active 1178 * tasks were in the monitored cgroup. This is 1179 * independent of the activity of the context as 1180 * there may be a mix of cgroup and non-cgroup events. 1181 * 1182 * That is why we treat cgroup events differently 1183 * here. 1184 */ 1185 if (is_cgroup_event(event)) 1186 run_end = perf_cgroup_event_time(event); 1187 else if (ctx->is_active) 1188 run_end = ctx->time; 1189 else 1190 run_end = event->tstamp_stopped; 1191 1192 event->total_time_enabled = run_end - event->tstamp_enabled; 1193 1194 if (event->state == PERF_EVENT_STATE_INACTIVE) 1195 run_end = event->tstamp_stopped; 1196 else 1197 run_end = perf_event_time(event); 1198 1199 event->total_time_running = run_end - event->tstamp_running; 1200 1201} 1202 1203/* 1204 * Update total_time_enabled and total_time_running for all events in a group. 1205 */ 1206static void update_group_times(struct perf_event *leader) 1207{ 1208 struct perf_event *event; 1209 1210 update_event_times(leader); 1211 list_for_each_entry(event, &leader->sibling_list, group_entry) 1212 update_event_times(event); 1213} 1214 1215static struct list_head * 1216ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1217{ 1218 if (event->attr.pinned) 1219 return &ctx->pinned_groups; 1220 else 1221 return &ctx->flexible_groups; 1222} 1223 1224/* 1225 * Add a event from the lists for its context. 1226 * Must be called with ctx->mutex and ctx->lock held. 1227 */ 1228static void 1229list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1230{ 1231 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1232 event->attach_state |= PERF_ATTACH_CONTEXT; 1233 1234 /* 1235 * If we're a stand alone event or group leader, we go to the context 1236 * list, group events are kept attached to the group so that 1237 * perf_group_detach can, at all times, locate all siblings. 1238 */ 1239 if (event->group_leader == event) { 1240 struct list_head *list; 1241 1242 if (is_software_event(event)) 1243 event->group_flags |= PERF_GROUP_SOFTWARE; 1244 1245 list = ctx_group_list(event, ctx); 1246 list_add_tail(&event->group_entry, list); 1247 } 1248 1249 if (is_cgroup_event(event)) 1250 ctx->nr_cgroups++; 1251 1252 list_add_rcu(&event->event_entry, &ctx->event_list); 1253 ctx->nr_events++; 1254 if (event->attr.inherit_stat) 1255 ctx->nr_stat++; 1256 1257 ctx->generation++; 1258} 1259 1260/* 1261 * Initialize event state based on the perf_event_attr::disabled. 1262 */ 1263static inline void perf_event__state_init(struct perf_event *event) 1264{ 1265 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1266 PERF_EVENT_STATE_INACTIVE; 1267} 1268 1269/* 1270 * Called at perf_event creation and when events are attached/detached from a 1271 * group. 1272 */ 1273static void perf_event__read_size(struct perf_event *event) 1274{ 1275 int entry = sizeof(u64); /* value */ 1276 int size = 0; 1277 int nr = 1; 1278 1279 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1280 size += sizeof(u64); 1281 1282 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1283 size += sizeof(u64); 1284 1285 if (event->attr.read_format & PERF_FORMAT_ID) 1286 entry += sizeof(u64); 1287 1288 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1289 nr += event->group_leader->nr_siblings; 1290 size += sizeof(u64); 1291 } 1292 1293 size += entry * nr; 1294 event->read_size = size; 1295} 1296 1297static void perf_event__header_size(struct perf_event *event) 1298{ 1299 struct perf_sample_data *data; 1300 u64 sample_type = event->attr.sample_type; 1301 u16 size = 0; 1302 1303 perf_event__read_size(event); 1304 1305 if (sample_type & PERF_SAMPLE_IP) 1306 size += sizeof(data->ip); 1307 1308 if (sample_type & PERF_SAMPLE_ADDR) 1309 size += sizeof(data->addr); 1310 1311 if (sample_type & PERF_SAMPLE_PERIOD) 1312 size += sizeof(data->period); 1313 1314 if (sample_type & PERF_SAMPLE_WEIGHT) 1315 size += sizeof(data->weight); 1316 1317 if (sample_type & PERF_SAMPLE_READ) 1318 size += event->read_size; 1319 1320 if (sample_type & PERF_SAMPLE_DATA_SRC) 1321 size += sizeof(data->data_src.val); 1322 1323 if (sample_type & PERF_SAMPLE_TRANSACTION) 1324 size += sizeof(data->txn); 1325 1326 event->header_size = size; 1327} 1328 1329static void perf_event__id_header_size(struct perf_event *event) 1330{ 1331 struct perf_sample_data *data; 1332 u64 sample_type = event->attr.sample_type; 1333 u16 size = 0; 1334 1335 if (sample_type & PERF_SAMPLE_TID) 1336 size += sizeof(data->tid_entry); 1337 1338 if (sample_type & PERF_SAMPLE_TIME) 1339 size += sizeof(data->time); 1340 1341 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1342 size += sizeof(data->id); 1343 1344 if (sample_type & PERF_SAMPLE_ID) 1345 size += sizeof(data->id); 1346 1347 if (sample_type & PERF_SAMPLE_STREAM_ID) 1348 size += sizeof(data->stream_id); 1349 1350 if (sample_type & PERF_SAMPLE_CPU) 1351 size += sizeof(data->cpu_entry); 1352 1353 event->id_header_size = size; 1354} 1355 1356static void perf_group_attach(struct perf_event *event) 1357{ 1358 struct perf_event *group_leader = event->group_leader, *pos; 1359 1360 /* 1361 * We can have double attach due to group movement in perf_event_open. 1362 */ 1363 if (event->attach_state & PERF_ATTACH_GROUP) 1364 return; 1365 1366 event->attach_state |= PERF_ATTACH_GROUP; 1367 1368 if (group_leader == event) 1369 return; 1370 1371 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1372 1373 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1374 !is_software_event(event)) 1375 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1376 1377 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1378 group_leader->nr_siblings++; 1379 1380 perf_event__header_size(group_leader); 1381 1382 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1383 perf_event__header_size(pos); 1384} 1385 1386/* 1387 * Remove a event from the lists for its context. 1388 * Must be called with ctx->mutex and ctx->lock held. 1389 */ 1390static void 1391list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1392{ 1393 struct perf_cpu_context *cpuctx; 1394 1395 WARN_ON_ONCE(event->ctx != ctx); 1396 lockdep_assert_held(&ctx->lock); 1397 1398 /* 1399 * We can have double detach due to exit/hot-unplug + close. 1400 */ 1401 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1402 return; 1403 1404 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1405 1406 if (is_cgroup_event(event)) { 1407 ctx->nr_cgroups--; 1408 cpuctx = __get_cpu_context(ctx); 1409 /* 1410 * if there are no more cgroup events 1411 * then cler cgrp to avoid stale pointer 1412 * in update_cgrp_time_from_cpuctx() 1413 */ 1414 if (!ctx->nr_cgroups) 1415 cpuctx->cgrp = NULL; 1416 } 1417 1418 ctx->nr_events--; 1419 if (event->attr.inherit_stat) 1420 ctx->nr_stat--; 1421 1422 list_del_rcu(&event->event_entry); 1423 1424 if (event->group_leader == event) 1425 list_del_init(&event->group_entry); 1426 1427 update_group_times(event); 1428 1429 /* 1430 * If event was in error state, then keep it 1431 * that way, otherwise bogus counts will be 1432 * returned on read(). The only way to get out 1433 * of error state is by explicit re-enabling 1434 * of the event 1435 */ 1436 if (event->state > PERF_EVENT_STATE_OFF) 1437 event->state = PERF_EVENT_STATE_OFF; 1438 1439 ctx->generation++; 1440} 1441 1442static void perf_group_detach(struct perf_event *event) 1443{ 1444 struct perf_event *sibling, *tmp; 1445 struct list_head *list = NULL; 1446 1447 /* 1448 * We can have double detach due to exit/hot-unplug + close. 1449 */ 1450 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1451 return; 1452 1453 event->attach_state &= ~PERF_ATTACH_GROUP; 1454 1455 /* 1456 * If this is a sibling, remove it from its group. 1457 */ 1458 if (event->group_leader != event) { 1459 list_del_init(&event->group_entry); 1460 event->group_leader->nr_siblings--; 1461 goto out; 1462 } 1463 1464 if (!list_empty(&event->group_entry)) 1465 list = &event->group_entry; 1466 1467 /* 1468 * If this was a group event with sibling events then 1469 * upgrade the siblings to singleton events by adding them 1470 * to whatever list we are on. 1471 */ 1472 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1473 if (list) 1474 list_move_tail(&sibling->group_entry, list); 1475 sibling->group_leader = sibling; 1476 1477 /* Inherit group flags from the previous leader */ 1478 sibling->group_flags = event->group_flags; 1479 1480 WARN_ON_ONCE(sibling->ctx != event->ctx); 1481 } 1482 1483out: 1484 perf_event__header_size(event->group_leader); 1485 1486 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1487 perf_event__header_size(tmp); 1488} 1489 1490/* 1491 * User event without the task. 1492 */ 1493static bool is_orphaned_event(struct perf_event *event) 1494{ 1495 return event && !is_kernel_event(event) && !event->owner; 1496} 1497 1498/* 1499 * Event has a parent but parent's task finished and it's 1500 * alive only because of children holding refference. 1501 */ 1502static bool is_orphaned_child(struct perf_event *event) 1503{ 1504 return is_orphaned_event(event->parent); 1505} 1506 1507static void orphans_remove_work(struct work_struct *work); 1508 1509static void schedule_orphans_remove(struct perf_event_context *ctx) 1510{ 1511 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq) 1512 return; 1513 1514 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) { 1515 get_ctx(ctx); 1516 ctx->orphans_remove_sched = true; 1517 } 1518} 1519 1520static int __init perf_workqueue_init(void) 1521{ 1522 perf_wq = create_singlethread_workqueue("perf"); 1523 WARN(!perf_wq, "failed to create perf workqueue\n"); 1524 return perf_wq ? 0 : -1; 1525} 1526 1527core_initcall(perf_workqueue_init); 1528 1529static inline int 1530event_filter_match(struct perf_event *event) 1531{ 1532 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1533 && perf_cgroup_match(event); 1534} 1535 1536static void 1537event_sched_out(struct perf_event *event, 1538 struct perf_cpu_context *cpuctx, 1539 struct perf_event_context *ctx) 1540{ 1541 u64 tstamp = perf_event_time(event); 1542 u64 delta; 1543 1544 WARN_ON_ONCE(event->ctx != ctx); 1545 lockdep_assert_held(&ctx->lock); 1546 1547 /* 1548 * An event which could not be activated because of 1549 * filter mismatch still needs to have its timings 1550 * maintained, otherwise bogus information is return 1551 * via read() for time_enabled, time_running: 1552 */ 1553 if (event->state == PERF_EVENT_STATE_INACTIVE 1554 && !event_filter_match(event)) { 1555 delta = tstamp - event->tstamp_stopped; 1556 event->tstamp_running += delta; 1557 event->tstamp_stopped = tstamp; 1558 } 1559 1560 if (event->state != PERF_EVENT_STATE_ACTIVE) 1561 return; 1562 1563 perf_pmu_disable(event->pmu); 1564 1565 event->tstamp_stopped = tstamp; 1566 event->pmu->del(event, 0); 1567 event->oncpu = -1; 1568 event->state = PERF_EVENT_STATE_INACTIVE; 1569 if (event->pending_disable) { 1570 event->pending_disable = 0; 1571 event->state = PERF_EVENT_STATE_OFF; 1572 } 1573 1574 if (!is_software_event(event)) 1575 cpuctx->active_oncpu--; 1576 if (!--ctx->nr_active) 1577 perf_event_ctx_deactivate(ctx); 1578 if (event->attr.freq && event->attr.sample_freq) 1579 ctx->nr_freq--; 1580 if (event->attr.exclusive || !cpuctx->active_oncpu) 1581 cpuctx->exclusive = 0; 1582 1583 if (is_orphaned_child(event)) 1584 schedule_orphans_remove(ctx); 1585 1586 perf_pmu_enable(event->pmu); 1587} 1588 1589static void 1590group_sched_out(struct perf_event *group_event, 1591 struct perf_cpu_context *cpuctx, 1592 struct perf_event_context *ctx) 1593{ 1594 struct perf_event *event; 1595 int state = group_event->state; 1596 1597 event_sched_out(group_event, cpuctx, ctx); 1598 1599 /* 1600 * Schedule out siblings (if any): 1601 */ 1602 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1603 event_sched_out(event, cpuctx, ctx); 1604 1605 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1606 cpuctx->exclusive = 0; 1607} 1608 1609struct remove_event { 1610 struct perf_event *event; 1611 bool detach_group; 1612}; 1613 1614/* 1615 * Cross CPU call to remove a performance event 1616 * 1617 * We disable the event on the hardware level first. After that we 1618 * remove it from the context list. 1619 */ 1620static int __perf_remove_from_context(void *info) 1621{ 1622 struct remove_event *re = info; 1623 struct perf_event *event = re->event; 1624 struct perf_event_context *ctx = event->ctx; 1625 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1626 1627 raw_spin_lock(&ctx->lock); 1628 event_sched_out(event, cpuctx, ctx); 1629 if (re->detach_group) 1630 perf_group_detach(event); 1631 list_del_event(event, ctx); 1632 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1633 ctx->is_active = 0; 1634 cpuctx->task_ctx = NULL; 1635 } 1636 raw_spin_unlock(&ctx->lock); 1637 1638 return 0; 1639} 1640 1641 1642/* 1643 * Remove the event from a task's (or a CPU's) list of events. 1644 * 1645 * CPU events are removed with a smp call. For task events we only 1646 * call when the task is on a CPU. 1647 * 1648 * If event->ctx is a cloned context, callers must make sure that 1649 * every task struct that event->ctx->task could possibly point to 1650 * remains valid. This is OK when called from perf_release since 1651 * that only calls us on the top-level context, which can't be a clone. 1652 * When called from perf_event_exit_task, it's OK because the 1653 * context has been detached from its task. 1654 */ 1655static void perf_remove_from_context(struct perf_event *event, bool detach_group) 1656{ 1657 struct perf_event_context *ctx = event->ctx; 1658 struct task_struct *task = ctx->task; 1659 struct remove_event re = { 1660 .event = event, 1661 .detach_group = detach_group, 1662 }; 1663 1664 lockdep_assert_held(&ctx->mutex); 1665 1666 if (!task) { 1667 /* 1668 * Per cpu events are removed via an smp call. The removal can 1669 * fail if the CPU is currently offline, but in that case we 1670 * already called __perf_remove_from_context from 1671 * perf_event_exit_cpu. 1672 */ 1673 cpu_function_call(event->cpu, __perf_remove_from_context, &re); 1674 return; 1675 } 1676 1677retry: 1678 if (!task_function_call(task, __perf_remove_from_context, &re)) 1679 return; 1680 1681 raw_spin_lock_irq(&ctx->lock); 1682 /* 1683 * If we failed to find a running task, but find the context active now 1684 * that we've acquired the ctx->lock, retry. 1685 */ 1686 if (ctx->is_active) { 1687 raw_spin_unlock_irq(&ctx->lock); 1688 /* 1689 * Reload the task pointer, it might have been changed by 1690 * a concurrent perf_event_context_sched_out(). 1691 */ 1692 task = ctx->task; 1693 goto retry; 1694 } 1695 1696 /* 1697 * Since the task isn't running, its safe to remove the event, us 1698 * holding the ctx->lock ensures the task won't get scheduled in. 1699 */ 1700 if (detach_group) 1701 perf_group_detach(event); 1702 list_del_event(event, ctx); 1703 raw_spin_unlock_irq(&ctx->lock); 1704} 1705 1706/* 1707 * Cross CPU call to disable a performance event 1708 */ 1709int __perf_event_disable(void *info) 1710{ 1711 struct perf_event *event = info; 1712 struct perf_event_context *ctx = event->ctx; 1713 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1714 1715 /* 1716 * If this is a per-task event, need to check whether this 1717 * event's task is the current task on this cpu. 1718 * 1719 * Can trigger due to concurrent perf_event_context_sched_out() 1720 * flipping contexts around. 1721 */ 1722 if (ctx->task && cpuctx->task_ctx != ctx) 1723 return -EINVAL; 1724 1725 raw_spin_lock(&ctx->lock); 1726 1727 /* 1728 * If the event is on, turn it off. 1729 * If it is in error state, leave it in error state. 1730 */ 1731 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1732 update_context_time(ctx); 1733 update_cgrp_time_from_event(event); 1734 update_group_times(event); 1735 if (event == event->group_leader) 1736 group_sched_out(event, cpuctx, ctx); 1737 else 1738 event_sched_out(event, cpuctx, ctx); 1739 event->state = PERF_EVENT_STATE_OFF; 1740 } 1741 1742 raw_spin_unlock(&ctx->lock); 1743 1744 return 0; 1745} 1746 1747/* 1748 * Disable a event. 1749 * 1750 * If event->ctx is a cloned context, callers must make sure that 1751 * every task struct that event->ctx->task could possibly point to 1752 * remains valid. This condition is satisifed when called through 1753 * perf_event_for_each_child or perf_event_for_each because they 1754 * hold the top-level event's child_mutex, so any descendant that 1755 * goes to exit will block in sync_child_event. 1756 * When called from perf_pending_event it's OK because event->ctx 1757 * is the current context on this CPU and preemption is disabled, 1758 * hence we can't get into perf_event_task_sched_out for this context. 1759 */ 1760static void _perf_event_disable(struct perf_event *event) 1761{ 1762 struct perf_event_context *ctx = event->ctx; 1763 struct task_struct *task = ctx->task; 1764 1765 if (!task) { 1766 /* 1767 * Disable the event on the cpu that it's on 1768 */ 1769 cpu_function_call(event->cpu, __perf_event_disable, event); 1770 return; 1771 } 1772 1773retry: 1774 if (!task_function_call(task, __perf_event_disable, event)) 1775 return; 1776 1777 raw_spin_lock_irq(&ctx->lock); 1778 /* 1779 * If the event is still active, we need to retry the cross-call. 1780 */ 1781 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1782 raw_spin_unlock_irq(&ctx->lock); 1783 /* 1784 * Reload the task pointer, it might have been changed by 1785 * a concurrent perf_event_context_sched_out(). 1786 */ 1787 task = ctx->task; 1788 goto retry; 1789 } 1790 1791 /* 1792 * Since we have the lock this context can't be scheduled 1793 * in, so we can change the state safely. 1794 */ 1795 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1796 update_group_times(event); 1797 event->state = PERF_EVENT_STATE_OFF; 1798 } 1799 raw_spin_unlock_irq(&ctx->lock); 1800} 1801 1802/* 1803 * Strictly speaking kernel users cannot create groups and therefore this 1804 * interface does not need the perf_event_ctx_lock() magic. 1805 */ 1806void perf_event_disable(struct perf_event *event) 1807{ 1808 struct perf_event_context *ctx; 1809 1810 ctx = perf_event_ctx_lock(event); 1811 _perf_event_disable(event); 1812 perf_event_ctx_unlock(event, ctx); 1813} 1814EXPORT_SYMBOL_GPL(perf_event_disable); 1815 1816static void perf_set_shadow_time(struct perf_event *event, 1817 struct perf_event_context *ctx, 1818 u64 tstamp) 1819{ 1820 /* 1821 * use the correct time source for the time snapshot 1822 * 1823 * We could get by without this by leveraging the 1824 * fact that to get to this function, the caller 1825 * has most likely already called update_context_time() 1826 * and update_cgrp_time_xx() and thus both timestamp 1827 * are identical (or very close). Given that tstamp is, 1828 * already adjusted for cgroup, we could say that: 1829 * tstamp - ctx->timestamp 1830 * is equivalent to 1831 * tstamp - cgrp->timestamp. 1832 * 1833 * Then, in perf_output_read(), the calculation would 1834 * work with no changes because: 1835 * - event is guaranteed scheduled in 1836 * - no scheduled out in between 1837 * - thus the timestamp would be the same 1838 * 1839 * But this is a bit hairy. 1840 * 1841 * So instead, we have an explicit cgroup call to remain 1842 * within the time time source all along. We believe it 1843 * is cleaner and simpler to understand. 1844 */ 1845 if (is_cgroup_event(event)) 1846 perf_cgroup_set_shadow_time(event, tstamp); 1847 else 1848 event->shadow_ctx_time = tstamp - ctx->timestamp; 1849} 1850 1851#define MAX_INTERRUPTS (~0ULL) 1852 1853static void perf_log_throttle(struct perf_event *event, int enable); 1854static void perf_log_itrace_start(struct perf_event *event); 1855 1856static int 1857event_sched_in(struct perf_event *event, 1858 struct perf_cpu_context *cpuctx, 1859 struct perf_event_context *ctx) 1860{ 1861 u64 tstamp = perf_event_time(event); 1862 int ret = 0; 1863 1864 lockdep_assert_held(&ctx->lock); 1865 1866 if (event->state <= PERF_EVENT_STATE_OFF) 1867 return 0; 1868 1869 event->state = PERF_EVENT_STATE_ACTIVE; 1870 event->oncpu = smp_processor_id(); 1871 1872 /* 1873 * Unthrottle events, since we scheduled we might have missed several 1874 * ticks already, also for a heavily scheduling task there is little 1875 * guarantee it'll get a tick in a timely manner. 1876 */ 1877 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1878 perf_log_throttle(event, 1); 1879 event->hw.interrupts = 0; 1880 } 1881 1882 /* 1883 * The new state must be visible before we turn it on in the hardware: 1884 */ 1885 smp_wmb(); 1886 1887 perf_pmu_disable(event->pmu); 1888 1889 perf_set_shadow_time(event, ctx, tstamp); 1890 1891 perf_log_itrace_start(event); 1892 1893 if (event->pmu->add(event, PERF_EF_START)) { 1894 event->state = PERF_EVENT_STATE_INACTIVE; 1895 event->oncpu = -1; 1896 ret = -EAGAIN; 1897 goto out; 1898 } 1899 1900 event->tstamp_running += tstamp - event->tstamp_stopped; 1901 1902 if (!is_software_event(event)) 1903 cpuctx->active_oncpu++; 1904 if (!ctx->nr_active++) 1905 perf_event_ctx_activate(ctx); 1906 if (event->attr.freq && event->attr.sample_freq) 1907 ctx->nr_freq++; 1908 1909 if (event->attr.exclusive) 1910 cpuctx->exclusive = 1; 1911 1912 if (is_orphaned_child(event)) 1913 schedule_orphans_remove(ctx); 1914 1915out: 1916 perf_pmu_enable(event->pmu); 1917 1918 return ret; 1919} 1920 1921static int 1922group_sched_in(struct perf_event *group_event, 1923 struct perf_cpu_context *cpuctx, 1924 struct perf_event_context *ctx) 1925{ 1926 struct perf_event *event, *partial_group = NULL; 1927 struct pmu *pmu = ctx->pmu; 1928 u64 now = ctx->time; 1929 bool simulate = false; 1930 1931 if (group_event->state == PERF_EVENT_STATE_OFF) 1932 return 0; 1933 1934 pmu->start_txn(pmu); 1935 1936 if (event_sched_in(group_event, cpuctx, ctx)) { 1937 pmu->cancel_txn(pmu); 1938 perf_cpu_hrtimer_restart(cpuctx); 1939 return -EAGAIN; 1940 } 1941 1942 /* 1943 * Schedule in siblings as one group (if any): 1944 */ 1945 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1946 if (event_sched_in(event, cpuctx, ctx)) { 1947 partial_group = event; 1948 goto group_error; 1949 } 1950 } 1951 1952 if (!pmu->commit_txn(pmu)) 1953 return 0; 1954 1955group_error: 1956 /* 1957 * Groups can be scheduled in as one unit only, so undo any 1958 * partial group before returning: 1959 * The events up to the failed event are scheduled out normally, 1960 * tstamp_stopped will be updated. 1961 * 1962 * The failed events and the remaining siblings need to have 1963 * their timings updated as if they had gone thru event_sched_in() 1964 * and event_sched_out(). This is required to get consistent timings 1965 * across the group. This also takes care of the case where the group 1966 * could never be scheduled by ensuring tstamp_stopped is set to mark 1967 * the time the event was actually stopped, such that time delta 1968 * calculation in update_event_times() is correct. 1969 */ 1970 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1971 if (event == partial_group) 1972 simulate = true; 1973 1974 if (simulate) { 1975 event->tstamp_running += now - event->tstamp_stopped; 1976 event->tstamp_stopped = now; 1977 } else { 1978 event_sched_out(event, cpuctx, ctx); 1979 } 1980 } 1981 event_sched_out(group_event, cpuctx, ctx); 1982 1983 pmu->cancel_txn(pmu); 1984 1985 perf_cpu_hrtimer_restart(cpuctx); 1986 1987 return -EAGAIN; 1988} 1989 1990/* 1991 * Work out whether we can put this event group on the CPU now. 1992 */ 1993static int group_can_go_on(struct perf_event *event, 1994 struct perf_cpu_context *cpuctx, 1995 int can_add_hw) 1996{ 1997 /* 1998 * Groups consisting entirely of software events can always go on. 1999 */ 2000 if (event->group_flags & PERF_GROUP_SOFTWARE) 2001 return 1; 2002 /* 2003 * If an exclusive group is already on, no other hardware 2004 * events can go on. 2005 */ 2006 if (cpuctx->exclusive) 2007 return 0; 2008 /* 2009 * If this group is exclusive and there are already 2010 * events on the CPU, it can't go on. 2011 */ 2012 if (event->attr.exclusive && cpuctx->active_oncpu) 2013 return 0; 2014 /* 2015 * Otherwise, try to add it if all previous groups were able 2016 * to go on. 2017 */ 2018 return can_add_hw; 2019} 2020 2021static void add_event_to_ctx(struct perf_event *event, 2022 struct perf_event_context *ctx) 2023{ 2024 u64 tstamp = perf_event_time(event); 2025 2026 list_add_event(event, ctx); 2027 perf_group_attach(event); 2028 event->tstamp_enabled = tstamp; 2029 event->tstamp_running = tstamp; 2030 event->tstamp_stopped = tstamp; 2031} 2032 2033static void task_ctx_sched_out(struct perf_event_context *ctx); 2034static void 2035ctx_sched_in(struct perf_event_context *ctx, 2036 struct perf_cpu_context *cpuctx, 2037 enum event_type_t event_type, 2038 struct task_struct *task); 2039 2040static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2041 struct perf_event_context *ctx, 2042 struct task_struct *task) 2043{ 2044 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2045 if (ctx) 2046 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2047 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2048 if (ctx) 2049 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2050} 2051 2052/* 2053 * Cross CPU call to install and enable a performance event 2054 * 2055 * Must be called with ctx->mutex held 2056 */ 2057static int __perf_install_in_context(void *info) 2058{ 2059 struct perf_event *event = info; 2060 struct perf_event_context *ctx = event->ctx; 2061 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2062 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2063 struct task_struct *task = current; 2064 2065 perf_ctx_lock(cpuctx, task_ctx); 2066 perf_pmu_disable(cpuctx->ctx.pmu); 2067 2068 /* 2069 * If there was an active task_ctx schedule it out. 2070 */ 2071 if (task_ctx) 2072 task_ctx_sched_out(task_ctx); 2073 2074 /* 2075 * If the context we're installing events in is not the 2076 * active task_ctx, flip them. 2077 */ 2078 if (ctx->task && task_ctx != ctx) { 2079 if (task_ctx) 2080 raw_spin_unlock(&task_ctx->lock); 2081 raw_spin_lock(&ctx->lock); 2082 task_ctx = ctx; 2083 } 2084 2085 if (task_ctx) { 2086 cpuctx->task_ctx = task_ctx; 2087 task = task_ctx->task; 2088 } 2089 2090 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2091 2092 update_context_time(ctx); 2093 /* 2094 * update cgrp time only if current cgrp 2095 * matches event->cgrp. Must be done before 2096 * calling add_event_to_ctx() 2097 */ 2098 update_cgrp_time_from_event(event); 2099 2100 add_event_to_ctx(event, ctx); 2101 2102 /* 2103 * Schedule everything back in 2104 */ 2105 perf_event_sched_in(cpuctx, task_ctx, task); 2106 2107 perf_pmu_enable(cpuctx->ctx.pmu); 2108 perf_ctx_unlock(cpuctx, task_ctx); 2109 2110 return 0; 2111} 2112 2113/* 2114 * Attach a performance event to a context 2115 * 2116 * First we add the event to the list with the hardware enable bit 2117 * in event->hw_config cleared. 2118 * 2119 * If the event is attached to a task which is on a CPU we use a smp 2120 * call to enable it in the task context. The task might have been 2121 * scheduled away, but we check this in the smp call again. 2122 */ 2123static void 2124perf_install_in_context(struct perf_event_context *ctx, 2125 struct perf_event *event, 2126 int cpu) 2127{ 2128 struct task_struct *task = ctx->task; 2129 2130 lockdep_assert_held(&ctx->mutex); 2131 2132 event->ctx = ctx; 2133 if (event->cpu != -1) 2134 event->cpu = cpu; 2135 2136 if (!task) { 2137 /* 2138 * Per cpu events are installed via an smp call and 2139 * the install is always successful. 2140 */ 2141 cpu_function_call(cpu, __perf_install_in_context, event); 2142 return; 2143 } 2144 2145retry: 2146 if (!task_function_call(task, __perf_install_in_context, event)) 2147 return; 2148 2149 raw_spin_lock_irq(&ctx->lock); 2150 /* 2151 * If we failed to find a running task, but find the context active now 2152 * that we've acquired the ctx->lock, retry. 2153 */ 2154 if (ctx->is_active) { 2155 raw_spin_unlock_irq(&ctx->lock); 2156 /* 2157 * Reload the task pointer, it might have been changed by 2158 * a concurrent perf_event_context_sched_out(). 2159 */ 2160 task = ctx->task; 2161 goto retry; 2162 } 2163 2164 /* 2165 * Since the task isn't running, its safe to add the event, us holding 2166 * the ctx->lock ensures the task won't get scheduled in. 2167 */ 2168 add_event_to_ctx(event, ctx); 2169 raw_spin_unlock_irq(&ctx->lock); 2170} 2171 2172/* 2173 * Put a event into inactive state and update time fields. 2174 * Enabling the leader of a group effectively enables all 2175 * the group members that aren't explicitly disabled, so we 2176 * have to update their ->tstamp_enabled also. 2177 * Note: this works for group members as well as group leaders 2178 * since the non-leader members' sibling_lists will be empty. 2179 */ 2180static void __perf_event_mark_enabled(struct perf_event *event) 2181{ 2182 struct perf_event *sub; 2183 u64 tstamp = perf_event_time(event); 2184 2185 event->state = PERF_EVENT_STATE_INACTIVE; 2186 event->tstamp_enabled = tstamp - event->total_time_enabled; 2187 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2188 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2189 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2190 } 2191} 2192 2193/* 2194 * Cross CPU call to enable a performance event 2195 */ 2196static int __perf_event_enable(void *info) 2197{ 2198 struct perf_event *event = info; 2199 struct perf_event_context *ctx = event->ctx; 2200 struct perf_event *leader = event->group_leader; 2201 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2202 int err; 2203 2204 /* 2205 * There's a time window between 'ctx->is_active' check 2206 * in perf_event_enable function and this place having: 2207 * - IRQs on 2208 * - ctx->lock unlocked 2209 * 2210 * where the task could be killed and 'ctx' deactivated 2211 * by perf_event_exit_task. 2212 */ 2213 if (!ctx->is_active) 2214 return -EINVAL; 2215 2216 raw_spin_lock(&ctx->lock); 2217 update_context_time(ctx); 2218 2219 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2220 goto unlock; 2221 2222 /* 2223 * set current task's cgroup time reference point 2224 */ 2225 perf_cgroup_set_timestamp(current, ctx); 2226 2227 __perf_event_mark_enabled(event); 2228 2229 if (!event_filter_match(event)) { 2230 if (is_cgroup_event(event)) 2231 perf_cgroup_defer_enabled(event); 2232 goto unlock; 2233 } 2234 2235 /* 2236 * If the event is in a group and isn't the group leader, 2237 * then don't put it on unless the group is on. 2238 */ 2239 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2240 goto unlock; 2241 2242 if (!group_can_go_on(event, cpuctx, 1)) { 2243 err = -EEXIST; 2244 } else { 2245 if (event == leader) 2246 err = group_sched_in(event, cpuctx, ctx); 2247 else 2248 err = event_sched_in(event, cpuctx, ctx); 2249 } 2250 2251 if (err) { 2252 /* 2253 * If this event can't go on and it's part of a 2254 * group, then the whole group has to come off. 2255 */ 2256 if (leader != event) { 2257 group_sched_out(leader, cpuctx, ctx); 2258 perf_cpu_hrtimer_restart(cpuctx); 2259 } 2260 if (leader->attr.pinned) { 2261 update_group_times(leader); 2262 leader->state = PERF_EVENT_STATE_ERROR; 2263 } 2264 } 2265 2266unlock: 2267 raw_spin_unlock(&ctx->lock); 2268 2269 return 0; 2270} 2271 2272/* 2273 * Enable a event. 2274 * 2275 * If event->ctx is a cloned context, callers must make sure that 2276 * every task struct that event->ctx->task could possibly point to 2277 * remains valid. This condition is satisfied when called through 2278 * perf_event_for_each_child or perf_event_for_each as described 2279 * for perf_event_disable. 2280 */ 2281static void _perf_event_enable(struct perf_event *event) 2282{ 2283 struct perf_event_context *ctx = event->ctx; 2284 struct task_struct *task = ctx->task; 2285 2286 if (!task) { 2287 /* 2288 * Enable the event on the cpu that it's on 2289 */ 2290 cpu_function_call(event->cpu, __perf_event_enable, event); 2291 return; 2292 } 2293 2294 raw_spin_lock_irq(&ctx->lock); 2295 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2296 goto out; 2297 2298 /* 2299 * If the event is in error state, clear that first. 2300 * That way, if we see the event in error state below, we 2301 * know that it has gone back into error state, as distinct 2302 * from the task having been scheduled away before the 2303 * cross-call arrived. 2304 */ 2305 if (event->state == PERF_EVENT_STATE_ERROR) 2306 event->state = PERF_EVENT_STATE_OFF; 2307 2308retry: 2309 if (!ctx->is_active) { 2310 __perf_event_mark_enabled(event); 2311 goto out; 2312 } 2313 2314 raw_spin_unlock_irq(&ctx->lock); 2315 2316 if (!task_function_call(task, __perf_event_enable, event)) 2317 return; 2318 2319 raw_spin_lock_irq(&ctx->lock); 2320 2321 /* 2322 * If the context is active and the event is still off, 2323 * we need to retry the cross-call. 2324 */ 2325 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2326 /* 2327 * task could have been flipped by a concurrent 2328 * perf_event_context_sched_out() 2329 */ 2330 task = ctx->task; 2331 goto retry; 2332 } 2333 2334out: 2335 raw_spin_unlock_irq(&ctx->lock); 2336} 2337 2338/* 2339 * See perf_event_disable(); 2340 */ 2341void perf_event_enable(struct perf_event *event) 2342{ 2343 struct perf_event_context *ctx; 2344 2345 ctx = perf_event_ctx_lock(event); 2346 _perf_event_enable(event); 2347 perf_event_ctx_unlock(event, ctx); 2348} 2349EXPORT_SYMBOL_GPL(perf_event_enable); 2350 2351static int _perf_event_refresh(struct perf_event *event, int refresh) 2352{ 2353 /* 2354 * not supported on inherited events 2355 */ 2356 if (event->attr.inherit || !is_sampling_event(event)) 2357 return -EINVAL; 2358 2359 atomic_add(refresh, &event->event_limit); 2360 _perf_event_enable(event); 2361 2362 return 0; 2363} 2364 2365/* 2366 * See perf_event_disable() 2367 */ 2368int perf_event_refresh(struct perf_event *event, int refresh) 2369{ 2370 struct perf_event_context *ctx; 2371 int ret; 2372 2373 ctx = perf_event_ctx_lock(event); 2374 ret = _perf_event_refresh(event, refresh); 2375 perf_event_ctx_unlock(event, ctx); 2376 2377 return ret; 2378} 2379EXPORT_SYMBOL_GPL(perf_event_refresh); 2380 2381static void ctx_sched_out(struct perf_event_context *ctx, 2382 struct perf_cpu_context *cpuctx, 2383 enum event_type_t event_type) 2384{ 2385 struct perf_event *event; 2386 int is_active = ctx->is_active; 2387 2388 ctx->is_active &= ~event_type; 2389 if (likely(!ctx->nr_events)) 2390 return; 2391 2392 update_context_time(ctx); 2393 update_cgrp_time_from_cpuctx(cpuctx); 2394 if (!ctx->nr_active) 2395 return; 2396 2397 perf_pmu_disable(ctx->pmu); 2398 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2399 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2400 group_sched_out(event, cpuctx, ctx); 2401 } 2402 2403 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2404 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2405 group_sched_out(event, cpuctx, ctx); 2406 } 2407 perf_pmu_enable(ctx->pmu); 2408} 2409 2410/* 2411 * Test whether two contexts are equivalent, i.e. whether they have both been 2412 * cloned from the same version of the same context. 2413 * 2414 * Equivalence is measured using a generation number in the context that is 2415 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2416 * and list_del_event(). 2417 */ 2418static int context_equiv(struct perf_event_context *ctx1, 2419 struct perf_event_context *ctx2) 2420{ 2421 lockdep_assert_held(&ctx1->lock); 2422 lockdep_assert_held(&ctx2->lock); 2423 2424 /* Pinning disables the swap optimization */ 2425 if (ctx1->pin_count || ctx2->pin_count) 2426 return 0; 2427 2428 /* If ctx1 is the parent of ctx2 */ 2429 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2430 return 1; 2431 2432 /* If ctx2 is the parent of ctx1 */ 2433 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2434 return 1; 2435 2436 /* 2437 * If ctx1 and ctx2 have the same parent; we flatten the parent 2438 * hierarchy, see perf_event_init_context(). 2439 */ 2440 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2441 ctx1->parent_gen == ctx2->parent_gen) 2442 return 1; 2443 2444 /* Unmatched */ 2445 return 0; 2446} 2447 2448static void __perf_event_sync_stat(struct perf_event *event, 2449 struct perf_event *next_event) 2450{ 2451 u64 value; 2452 2453 if (!event->attr.inherit_stat) 2454 return; 2455 2456 /* 2457 * Update the event value, we cannot use perf_event_read() 2458 * because we're in the middle of a context switch and have IRQs 2459 * disabled, which upsets smp_call_function_single(), however 2460 * we know the event must be on the current CPU, therefore we 2461 * don't need to use it. 2462 */ 2463 switch (event->state) { 2464 case PERF_EVENT_STATE_ACTIVE: 2465 event->pmu->read(event); 2466 /* fall-through */ 2467 2468 case PERF_EVENT_STATE_INACTIVE: 2469 update_event_times(event); 2470 break; 2471 2472 default: 2473 break; 2474 } 2475 2476 /* 2477 * In order to keep per-task stats reliable we need to flip the event 2478 * values when we flip the contexts. 2479 */ 2480 value = local64_read(&next_event->count); 2481 value = local64_xchg(&event->count, value); 2482 local64_set(&next_event->count, value); 2483 2484 swap(event->total_time_enabled, next_event->total_time_enabled); 2485 swap(event->total_time_running, next_event->total_time_running); 2486 2487 /* 2488 * Since we swizzled the values, update the user visible data too. 2489 */ 2490 perf_event_update_userpage(event); 2491 perf_event_update_userpage(next_event); 2492} 2493 2494static void perf_event_sync_stat(struct perf_event_context *ctx, 2495 struct perf_event_context *next_ctx) 2496{ 2497 struct perf_event *event, *next_event; 2498 2499 if (!ctx->nr_stat) 2500 return; 2501 2502 update_context_time(ctx); 2503 2504 event = list_first_entry(&ctx->event_list, 2505 struct perf_event, event_entry); 2506 2507 next_event = list_first_entry(&next_ctx->event_list, 2508 struct perf_event, event_entry); 2509 2510 while (&event->event_entry != &ctx->event_list && 2511 &next_event->event_entry != &next_ctx->event_list) { 2512 2513 __perf_event_sync_stat(event, next_event); 2514 2515 event = list_next_entry(event, event_entry); 2516 next_event = list_next_entry(next_event, event_entry); 2517 } 2518} 2519 2520static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2521 struct task_struct *next) 2522{ 2523 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2524 struct perf_event_context *next_ctx; 2525 struct perf_event_context *parent, *next_parent; 2526 struct perf_cpu_context *cpuctx; 2527 int do_switch = 1; 2528 2529 if (likely(!ctx)) 2530 return; 2531 2532 cpuctx = __get_cpu_context(ctx); 2533 if (!cpuctx->task_ctx) 2534 return; 2535 2536 rcu_read_lock(); 2537 next_ctx = next->perf_event_ctxp[ctxn]; 2538 if (!next_ctx) 2539 goto unlock; 2540 2541 parent = rcu_dereference(ctx->parent_ctx); 2542 next_parent = rcu_dereference(next_ctx->parent_ctx); 2543 2544 /* If neither context have a parent context; they cannot be clones. */ 2545 if (!parent && !next_parent) 2546 goto unlock; 2547 2548 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2549 /* 2550 * Looks like the two contexts are clones, so we might be 2551 * able to optimize the context switch. We lock both 2552 * contexts and check that they are clones under the 2553 * lock (including re-checking that neither has been 2554 * uncloned in the meantime). It doesn't matter which 2555 * order we take the locks because no other cpu could 2556 * be trying to lock both of these tasks. 2557 */ 2558 raw_spin_lock(&ctx->lock); 2559 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2560 if (context_equiv(ctx, next_ctx)) { 2561 /* 2562 * XXX do we need a memory barrier of sorts 2563 * wrt to rcu_dereference() of perf_event_ctxp 2564 */ 2565 task->perf_event_ctxp[ctxn] = next_ctx; 2566 next->perf_event_ctxp[ctxn] = ctx; 2567 ctx->task = next; 2568 next_ctx->task = task; 2569 2570 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2571 2572 do_switch = 0; 2573 2574 perf_event_sync_stat(ctx, next_ctx); 2575 } 2576 raw_spin_unlock(&next_ctx->lock); 2577 raw_spin_unlock(&ctx->lock); 2578 } 2579unlock: 2580 rcu_read_unlock(); 2581 2582 if (do_switch) { 2583 raw_spin_lock(&ctx->lock); 2584 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2585 cpuctx->task_ctx = NULL; 2586 raw_spin_unlock(&ctx->lock); 2587 } 2588} 2589 2590void perf_sched_cb_dec(struct pmu *pmu) 2591{ 2592 this_cpu_dec(perf_sched_cb_usages); 2593} 2594 2595void perf_sched_cb_inc(struct pmu *pmu) 2596{ 2597 this_cpu_inc(perf_sched_cb_usages); 2598} 2599 2600/* 2601 * This function provides the context switch callback to the lower code 2602 * layer. It is invoked ONLY when the context switch callback is enabled. 2603 */ 2604static void perf_pmu_sched_task(struct task_struct *prev, 2605 struct task_struct *next, 2606 bool sched_in) 2607{ 2608 struct perf_cpu_context *cpuctx; 2609 struct pmu *pmu; 2610 unsigned long flags; 2611 2612 if (prev == next) 2613 return; 2614 2615 local_irq_save(flags); 2616 2617 rcu_read_lock(); 2618 2619 list_for_each_entry_rcu(pmu, &pmus, entry) { 2620 if (pmu->sched_task) { 2621 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2622 2623 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2624 2625 perf_pmu_disable(pmu); 2626 2627 pmu->sched_task(cpuctx->task_ctx, sched_in); 2628 2629 perf_pmu_enable(pmu); 2630 2631 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2632 } 2633 } 2634 2635 rcu_read_unlock(); 2636 2637 local_irq_restore(flags); 2638} 2639 2640#define for_each_task_context_nr(ctxn) \ 2641 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2642 2643/* 2644 * Called from scheduler to remove the events of the current task, 2645 * with interrupts disabled. 2646 * 2647 * We stop each event and update the event value in event->count. 2648 * 2649 * This does not protect us against NMI, but disable() 2650 * sets the disabled bit in the control field of event _before_ 2651 * accessing the event control register. If a NMI hits, then it will 2652 * not restart the event. 2653 */ 2654void __perf_event_task_sched_out(struct task_struct *task, 2655 struct task_struct *next) 2656{ 2657 int ctxn; 2658 2659 if (__this_cpu_read(perf_sched_cb_usages)) 2660 perf_pmu_sched_task(task, next, false); 2661 2662 for_each_task_context_nr(ctxn) 2663 perf_event_context_sched_out(task, ctxn, next); 2664 2665 /* 2666 * if cgroup events exist on this CPU, then we need 2667 * to check if we have to switch out PMU state. 2668 * cgroup event are system-wide mode only 2669 */ 2670 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2671 perf_cgroup_sched_out(task, next); 2672} 2673 2674static void task_ctx_sched_out(struct perf_event_context *ctx) 2675{ 2676 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2677 2678 if (!cpuctx->task_ctx) 2679 return; 2680 2681 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2682 return; 2683 2684 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2685 cpuctx->task_ctx = NULL; 2686} 2687 2688/* 2689 * Called with IRQs disabled 2690 */ 2691static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2692 enum event_type_t event_type) 2693{ 2694 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2695} 2696 2697static void 2698ctx_pinned_sched_in(struct perf_event_context *ctx, 2699 struct perf_cpu_context *cpuctx) 2700{ 2701 struct perf_event *event; 2702 2703 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2704 if (event->state <= PERF_EVENT_STATE_OFF) 2705 continue; 2706 if (!event_filter_match(event)) 2707 continue; 2708 2709 /* may need to reset tstamp_enabled */ 2710 if (is_cgroup_event(event)) 2711 perf_cgroup_mark_enabled(event, ctx); 2712 2713 if (group_can_go_on(event, cpuctx, 1)) 2714 group_sched_in(event, cpuctx, ctx); 2715 2716 /* 2717 * If this pinned group hasn't been scheduled, 2718 * put it in error state. 2719 */ 2720 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2721 update_group_times(event); 2722 event->state = PERF_EVENT_STATE_ERROR; 2723 } 2724 } 2725} 2726 2727static void 2728ctx_flexible_sched_in(struct perf_event_context *ctx, 2729 struct perf_cpu_context *cpuctx) 2730{ 2731 struct perf_event *event; 2732 int can_add_hw = 1; 2733 2734 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2735 /* Ignore events in OFF or ERROR state */ 2736 if (event->state <= PERF_EVENT_STATE_OFF) 2737 continue; 2738 /* 2739 * Listen to the 'cpu' scheduling filter constraint 2740 * of events: 2741 */ 2742 if (!event_filter_match(event)) 2743 continue; 2744 2745 /* may need to reset tstamp_enabled */ 2746 if (is_cgroup_event(event)) 2747 perf_cgroup_mark_enabled(event, ctx); 2748 2749 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2750 if (group_sched_in(event, cpuctx, ctx)) 2751 can_add_hw = 0; 2752 } 2753 } 2754} 2755 2756static void 2757ctx_sched_in(struct perf_event_context *ctx, 2758 struct perf_cpu_context *cpuctx, 2759 enum event_type_t event_type, 2760 struct task_struct *task) 2761{ 2762 u64 now; 2763 int is_active = ctx->is_active; 2764 2765 ctx->is_active |= event_type; 2766 if (likely(!ctx->nr_events)) 2767 return; 2768 2769 now = perf_clock(); 2770 ctx->timestamp = now; 2771 perf_cgroup_set_timestamp(task, ctx); 2772 /* 2773 * First go through the list and put on any pinned groups 2774 * in order to give them the best chance of going on. 2775 */ 2776 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2777 ctx_pinned_sched_in(ctx, cpuctx); 2778 2779 /* Then walk through the lower prio flexible groups */ 2780 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2781 ctx_flexible_sched_in(ctx, cpuctx); 2782} 2783 2784static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2785 enum event_type_t event_type, 2786 struct task_struct *task) 2787{ 2788 struct perf_event_context *ctx = &cpuctx->ctx; 2789 2790 ctx_sched_in(ctx, cpuctx, event_type, task); 2791} 2792 2793static void perf_event_context_sched_in(struct perf_event_context *ctx, 2794 struct task_struct *task) 2795{ 2796 struct perf_cpu_context *cpuctx; 2797 2798 cpuctx = __get_cpu_context(ctx); 2799 if (cpuctx->task_ctx == ctx) 2800 return; 2801 2802 perf_ctx_lock(cpuctx, ctx); 2803 perf_pmu_disable(ctx->pmu); 2804 /* 2805 * We want to keep the following priority order: 2806 * cpu pinned (that don't need to move), task pinned, 2807 * cpu flexible, task flexible. 2808 */ 2809 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2810 2811 if (ctx->nr_events) 2812 cpuctx->task_ctx = ctx; 2813 2814 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2815 2816 perf_pmu_enable(ctx->pmu); 2817 perf_ctx_unlock(cpuctx, ctx); 2818} 2819 2820/* 2821 * Called from scheduler to add the events of the current task 2822 * with interrupts disabled. 2823 * 2824 * We restore the event value and then enable it. 2825 * 2826 * This does not protect us against NMI, but enable() 2827 * sets the enabled bit in the control field of event _before_ 2828 * accessing the event control register. If a NMI hits, then it will 2829 * keep the event running. 2830 */ 2831void __perf_event_task_sched_in(struct task_struct *prev, 2832 struct task_struct *task) 2833{ 2834 struct perf_event_context *ctx; 2835 int ctxn; 2836 2837 for_each_task_context_nr(ctxn) { 2838 ctx = task->perf_event_ctxp[ctxn]; 2839 if (likely(!ctx)) 2840 continue; 2841 2842 perf_event_context_sched_in(ctx, task); 2843 } 2844 /* 2845 * if cgroup events exist on this CPU, then we need 2846 * to check if we have to switch in PMU state. 2847 * cgroup event are system-wide mode only 2848 */ 2849 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2850 perf_cgroup_sched_in(prev, task); 2851 2852 if (__this_cpu_read(perf_sched_cb_usages)) 2853 perf_pmu_sched_task(prev, task, true); 2854} 2855 2856static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2857{ 2858 u64 frequency = event->attr.sample_freq; 2859 u64 sec = NSEC_PER_SEC; 2860 u64 divisor, dividend; 2861 2862 int count_fls, nsec_fls, frequency_fls, sec_fls; 2863 2864 count_fls = fls64(count); 2865 nsec_fls = fls64(nsec); 2866 frequency_fls = fls64(frequency); 2867 sec_fls = 30; 2868 2869 /* 2870 * We got @count in @nsec, with a target of sample_freq HZ 2871 * the target period becomes: 2872 * 2873 * @count * 10^9 2874 * period = ------------------- 2875 * @nsec * sample_freq 2876 * 2877 */ 2878 2879 /* 2880 * Reduce accuracy by one bit such that @a and @b converge 2881 * to a similar magnitude. 2882 */ 2883#define REDUCE_FLS(a, b) \ 2884do { \ 2885 if (a##_fls > b##_fls) { \ 2886 a >>= 1; \ 2887 a##_fls--; \ 2888 } else { \ 2889 b >>= 1; \ 2890 b##_fls--; \ 2891 } \ 2892} while (0) 2893 2894 /* 2895 * Reduce accuracy until either term fits in a u64, then proceed with 2896 * the other, so that finally we can do a u64/u64 division. 2897 */ 2898 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2899 REDUCE_FLS(nsec, frequency); 2900 REDUCE_FLS(sec, count); 2901 } 2902 2903 if (count_fls + sec_fls > 64) { 2904 divisor = nsec * frequency; 2905 2906 while (count_fls + sec_fls > 64) { 2907 REDUCE_FLS(count, sec); 2908 divisor >>= 1; 2909 } 2910 2911 dividend = count * sec; 2912 } else { 2913 dividend = count * sec; 2914 2915 while (nsec_fls + frequency_fls > 64) { 2916 REDUCE_FLS(nsec, frequency); 2917 dividend >>= 1; 2918 } 2919 2920 divisor = nsec * frequency; 2921 } 2922 2923 if (!divisor) 2924 return dividend; 2925 2926 return div64_u64(dividend, divisor); 2927} 2928 2929static DEFINE_PER_CPU(int, perf_throttled_count); 2930static DEFINE_PER_CPU(u64, perf_throttled_seq); 2931 2932static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2933{ 2934 struct hw_perf_event *hwc = &event->hw; 2935 s64 period, sample_period; 2936 s64 delta; 2937 2938 period = perf_calculate_period(event, nsec, count); 2939 2940 delta = (s64)(period - hwc->sample_period); 2941 delta = (delta + 7) / 8; /* low pass filter */ 2942 2943 sample_period = hwc->sample_period + delta; 2944 2945 if (!sample_period) 2946 sample_period = 1; 2947 2948 hwc->sample_period = sample_period; 2949 2950 if (local64_read(&hwc->period_left) > 8*sample_period) { 2951 if (disable) 2952 event->pmu->stop(event, PERF_EF_UPDATE); 2953 2954 local64_set(&hwc->period_left, 0); 2955 2956 if (disable) 2957 event->pmu->start(event, PERF_EF_RELOAD); 2958 } 2959} 2960 2961/* 2962 * combine freq adjustment with unthrottling to avoid two passes over the 2963 * events. At the same time, make sure, having freq events does not change 2964 * the rate of unthrottling as that would introduce bias. 2965 */ 2966static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2967 int needs_unthr) 2968{ 2969 struct perf_event *event; 2970 struct hw_perf_event *hwc; 2971 u64 now, period = TICK_NSEC; 2972 s64 delta; 2973 2974 /* 2975 * only need to iterate over all events iff: 2976 * - context have events in frequency mode (needs freq adjust) 2977 * - there are events to unthrottle on this cpu 2978 */ 2979 if (!(ctx->nr_freq || needs_unthr)) 2980 return; 2981 2982 raw_spin_lock(&ctx->lock); 2983 perf_pmu_disable(ctx->pmu); 2984 2985 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2986 if (event->state != PERF_EVENT_STATE_ACTIVE) 2987 continue; 2988 2989 if (!event_filter_match(event)) 2990 continue; 2991 2992 perf_pmu_disable(event->pmu); 2993 2994 hwc = &event->hw; 2995 2996 if (hwc->interrupts == MAX_INTERRUPTS) { 2997 hwc->interrupts = 0; 2998 perf_log_throttle(event, 1); 2999 event->pmu->start(event, 0); 3000 } 3001 3002 if (!event->attr.freq || !event->attr.sample_freq) 3003 goto next; 3004 3005 /* 3006 * stop the event and update event->count 3007 */ 3008 event->pmu->stop(event, PERF_EF_UPDATE); 3009 3010 now = local64_read(&event->count); 3011 delta = now - hwc->freq_count_stamp; 3012 hwc->freq_count_stamp = now; 3013 3014 /* 3015 * restart the event 3016 * reload only if value has changed 3017 * we have stopped the event so tell that 3018 * to perf_adjust_period() to avoid stopping it 3019 * twice. 3020 */ 3021 if (delta > 0) 3022 perf_adjust_period(event, period, delta, false); 3023 3024 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3025 next: 3026 perf_pmu_enable(event->pmu); 3027 } 3028 3029 perf_pmu_enable(ctx->pmu); 3030 raw_spin_unlock(&ctx->lock); 3031} 3032 3033/* 3034 * Round-robin a context's events: 3035 */ 3036static void rotate_ctx(struct perf_event_context *ctx) 3037{ 3038 /* 3039 * Rotate the first entry last of non-pinned groups. Rotation might be 3040 * disabled by the inheritance code. 3041 */ 3042 if (!ctx->rotate_disable) 3043 list_rotate_left(&ctx->flexible_groups); 3044} 3045 3046static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3047{ 3048 struct perf_event_context *ctx = NULL; 3049 int rotate = 0; 3050 3051 if (cpuctx->ctx.nr_events) { 3052 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3053 rotate = 1; 3054 } 3055 3056 ctx = cpuctx->task_ctx; 3057 if (ctx && ctx->nr_events) { 3058 if (ctx->nr_events != ctx->nr_active) 3059 rotate = 1; 3060 } 3061 3062 if (!rotate) 3063 goto done; 3064 3065 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3066 perf_pmu_disable(cpuctx->ctx.pmu); 3067 3068 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3069 if (ctx) 3070 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3071 3072 rotate_ctx(&cpuctx->ctx); 3073 if (ctx) 3074 rotate_ctx(ctx); 3075 3076 perf_event_sched_in(cpuctx, ctx, current); 3077 3078 perf_pmu_enable(cpuctx->ctx.pmu); 3079 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3080done: 3081 3082 return rotate; 3083} 3084 3085#ifdef CONFIG_NO_HZ_FULL 3086bool perf_event_can_stop_tick(void) 3087{ 3088 if (atomic_read(&nr_freq_events) || 3089 __this_cpu_read(perf_throttled_count)) 3090 return false; 3091 else 3092 return true; 3093} 3094#endif 3095 3096void perf_event_task_tick(void) 3097{ 3098 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3099 struct perf_event_context *ctx, *tmp; 3100 int throttled; 3101 3102 WARN_ON(!irqs_disabled()); 3103 3104 __this_cpu_inc(perf_throttled_seq); 3105 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3106 3107 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3108 perf_adjust_freq_unthr_context(ctx, throttled); 3109} 3110 3111static int event_enable_on_exec(struct perf_event *event, 3112 struct perf_event_context *ctx) 3113{ 3114 if (!event->attr.enable_on_exec) 3115 return 0; 3116 3117 event->attr.enable_on_exec = 0; 3118 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3119 return 0; 3120 3121 __perf_event_mark_enabled(event); 3122 3123 return 1; 3124} 3125 3126/* 3127 * Enable all of a task's events that have been marked enable-on-exec. 3128 * This expects task == current. 3129 */ 3130static void perf_event_enable_on_exec(struct perf_event_context *ctx) 3131{ 3132 struct perf_event_context *clone_ctx = NULL; 3133 struct perf_event *event; 3134 unsigned long flags; 3135 int enabled = 0; 3136 int ret; 3137 3138 local_irq_save(flags); 3139 if (!ctx || !ctx->nr_events) 3140 goto out; 3141 3142 /* 3143 * We must ctxsw out cgroup events to avoid conflict 3144 * when invoking perf_task_event_sched_in() later on 3145 * in this function. Otherwise we end up trying to 3146 * ctxswin cgroup events which are already scheduled 3147 * in. 3148 */ 3149 perf_cgroup_sched_out(current, NULL); 3150 3151 raw_spin_lock(&ctx->lock); 3152 task_ctx_sched_out(ctx); 3153 3154 list_for_each_entry(event, &ctx->event_list, event_entry) { 3155 ret = event_enable_on_exec(event, ctx); 3156 if (ret) 3157 enabled = 1; 3158 } 3159 3160 /* 3161 * Unclone this context if we enabled any event. 3162 */ 3163 if (enabled) 3164 clone_ctx = unclone_ctx(ctx); 3165 3166 raw_spin_unlock(&ctx->lock); 3167 3168 /* 3169 * Also calls ctxswin for cgroup events, if any: 3170 */ 3171 perf_event_context_sched_in(ctx, ctx->task); 3172out: 3173 local_irq_restore(flags); 3174 3175 if (clone_ctx) 3176 put_ctx(clone_ctx); 3177} 3178 3179void perf_event_exec(void) 3180{ 3181 struct perf_event_context *ctx; 3182 int ctxn; 3183 3184 rcu_read_lock(); 3185 for_each_task_context_nr(ctxn) { 3186 ctx = current->perf_event_ctxp[ctxn]; 3187 if (!ctx) 3188 continue; 3189 3190 perf_event_enable_on_exec(ctx); 3191 } 3192 rcu_read_unlock(); 3193} 3194 3195/* 3196 * Cross CPU call to read the hardware event 3197 */ 3198static void __perf_event_read(void *info) 3199{ 3200 struct perf_event *event = info; 3201 struct perf_event_context *ctx = event->ctx; 3202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3203 3204 /* 3205 * If this is a task context, we need to check whether it is 3206 * the current task context of this cpu. If not it has been 3207 * scheduled out before the smp call arrived. In that case 3208 * event->count would have been updated to a recent sample 3209 * when the event was scheduled out. 3210 */ 3211 if (ctx->task && cpuctx->task_ctx != ctx) 3212 return; 3213 3214 raw_spin_lock(&ctx->lock); 3215 if (ctx->is_active) { 3216 update_context_time(ctx); 3217 update_cgrp_time_from_event(event); 3218 } 3219 update_event_times(event); 3220 if (event->state == PERF_EVENT_STATE_ACTIVE) 3221 event->pmu->read(event); 3222 raw_spin_unlock(&ctx->lock); 3223} 3224 3225static inline u64 perf_event_count(struct perf_event *event) 3226{ 3227 if (event->pmu->count) 3228 return event->pmu->count(event); 3229 3230 return __perf_event_count(event); 3231} 3232 3233static u64 perf_event_read(struct perf_event *event) 3234{ 3235 /* 3236 * If event is enabled and currently active on a CPU, update the 3237 * value in the event structure: 3238 */ 3239 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3240 smp_call_function_single(event->oncpu, 3241 __perf_event_read, event, 1); 3242 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3243 struct perf_event_context *ctx = event->ctx; 3244 unsigned long flags; 3245 3246 raw_spin_lock_irqsave(&ctx->lock, flags); 3247 /* 3248 * may read while context is not active 3249 * (e.g., thread is blocked), in that case 3250 * we cannot update context time 3251 */ 3252 if (ctx->is_active) { 3253 update_context_time(ctx); 3254 update_cgrp_time_from_event(event); 3255 } 3256 update_event_times(event); 3257 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3258 } 3259 3260 return perf_event_count(event); 3261} 3262 3263/* 3264 * Initialize the perf_event context in a task_struct: 3265 */ 3266static void __perf_event_init_context(struct perf_event_context *ctx) 3267{ 3268 raw_spin_lock_init(&ctx->lock); 3269 mutex_init(&ctx->mutex); 3270 INIT_LIST_HEAD(&ctx->active_ctx_list); 3271 INIT_LIST_HEAD(&ctx->pinned_groups); 3272 INIT_LIST_HEAD(&ctx->flexible_groups); 3273 INIT_LIST_HEAD(&ctx->event_list); 3274 atomic_set(&ctx->refcount, 1); 3275 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work); 3276} 3277 3278static struct perf_event_context * 3279alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3280{ 3281 struct perf_event_context *ctx; 3282 3283 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3284 if (!ctx) 3285 return NULL; 3286 3287 __perf_event_init_context(ctx); 3288 if (task) { 3289 ctx->task = task; 3290 get_task_struct(task); 3291 } 3292 ctx->pmu = pmu; 3293 3294 return ctx; 3295} 3296 3297static struct task_struct * 3298find_lively_task_by_vpid(pid_t vpid) 3299{ 3300 struct task_struct *task; 3301 int err; 3302 3303 rcu_read_lock(); 3304 if (!vpid) 3305 task = current; 3306 else 3307 task = find_task_by_vpid(vpid); 3308 if (task) 3309 get_task_struct(task); 3310 rcu_read_unlock(); 3311 3312 if (!task) 3313 return ERR_PTR(-ESRCH); 3314 3315 /* Reuse ptrace permission checks for now. */ 3316 err = -EACCES; 3317 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 3318 goto errout; 3319 3320 return task; 3321errout: 3322 put_task_struct(task); 3323 return ERR_PTR(err); 3324 3325} 3326 3327/* 3328 * Returns a matching context with refcount and pincount. 3329 */ 3330static struct perf_event_context * 3331find_get_context(struct pmu *pmu, struct task_struct *task, 3332 struct perf_event *event) 3333{ 3334 struct perf_event_context *ctx, *clone_ctx = NULL; 3335 struct perf_cpu_context *cpuctx; 3336 void *task_ctx_data = NULL; 3337 unsigned long flags; 3338 int ctxn, err; 3339 int cpu = event->cpu; 3340 3341 if (!task) { 3342 /* Must be root to operate on a CPU event: */ 3343 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3344 return ERR_PTR(-EACCES); 3345 3346 /* 3347 * We could be clever and allow to attach a event to an 3348 * offline CPU and activate it when the CPU comes up, but 3349 * that's for later. 3350 */ 3351 if (!cpu_online(cpu)) 3352 return ERR_PTR(-ENODEV); 3353 3354 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3355 ctx = &cpuctx->ctx; 3356 get_ctx(ctx); 3357 ++ctx->pin_count; 3358 3359 return ctx; 3360 } 3361 3362 err = -EINVAL; 3363 ctxn = pmu->task_ctx_nr; 3364 if (ctxn < 0) 3365 goto errout; 3366 3367 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3368 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3369 if (!task_ctx_data) { 3370 err = -ENOMEM; 3371 goto errout; 3372 } 3373 } 3374 3375retry: 3376 ctx = perf_lock_task_context(task, ctxn, &flags); 3377 if (ctx) { 3378 clone_ctx = unclone_ctx(ctx); 3379 ++ctx->pin_count; 3380 3381 if (task_ctx_data && !ctx->task_ctx_data) { 3382 ctx->task_ctx_data = task_ctx_data; 3383 task_ctx_data = NULL; 3384 } 3385 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3386 3387 if (clone_ctx) 3388 put_ctx(clone_ctx); 3389 } else { 3390 ctx = alloc_perf_context(pmu, task); 3391 err = -ENOMEM; 3392 if (!ctx) 3393 goto errout; 3394 3395 if (task_ctx_data) { 3396 ctx->task_ctx_data = task_ctx_data; 3397 task_ctx_data = NULL; 3398 } 3399 3400 err = 0; 3401 mutex_lock(&task->perf_event_mutex); 3402 /* 3403 * If it has already passed perf_event_exit_task(). 3404 * we must see PF_EXITING, it takes this mutex too. 3405 */ 3406 if (task->flags & PF_EXITING) 3407 err = -ESRCH; 3408 else if (task->perf_event_ctxp[ctxn]) 3409 err = -EAGAIN; 3410 else { 3411 get_ctx(ctx); 3412 ++ctx->pin_count; 3413 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3414 } 3415 mutex_unlock(&task->perf_event_mutex); 3416 3417 if (unlikely(err)) { 3418 put_ctx(ctx); 3419 3420 if (err == -EAGAIN) 3421 goto retry; 3422 goto errout; 3423 } 3424 } 3425 3426 kfree(task_ctx_data); 3427 return ctx; 3428 3429errout: 3430 kfree(task_ctx_data); 3431 return ERR_PTR(err); 3432} 3433 3434static void perf_event_free_filter(struct perf_event *event); 3435static void perf_event_free_bpf_prog(struct perf_event *event); 3436 3437static void free_event_rcu(struct rcu_head *head) 3438{ 3439 struct perf_event *event; 3440 3441 event = container_of(head, struct perf_event, rcu_head); 3442 if (event->ns) 3443 put_pid_ns(event->ns); 3444 perf_event_free_filter(event); 3445 kfree(event); 3446} 3447 3448static void ring_buffer_attach(struct perf_event *event, 3449 struct ring_buffer *rb); 3450 3451static void unaccount_event_cpu(struct perf_event *event, int cpu) 3452{ 3453 if (event->parent) 3454 return; 3455 3456 if (is_cgroup_event(event)) 3457 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3458} 3459 3460static void unaccount_event(struct perf_event *event) 3461{ 3462 if (event->parent) 3463 return; 3464 3465 if (event->attach_state & PERF_ATTACH_TASK) 3466 static_key_slow_dec_deferred(&perf_sched_events); 3467 if (event->attr.mmap || event->attr.mmap_data) 3468 atomic_dec(&nr_mmap_events); 3469 if (event->attr.comm) 3470 atomic_dec(&nr_comm_events); 3471 if (event->attr.task) 3472 atomic_dec(&nr_task_events); 3473 if (event->attr.freq) 3474 atomic_dec(&nr_freq_events); 3475 if (is_cgroup_event(event)) 3476 static_key_slow_dec_deferred(&perf_sched_events); 3477 if (has_branch_stack(event)) 3478 static_key_slow_dec_deferred(&perf_sched_events); 3479 3480 unaccount_event_cpu(event, event->cpu); 3481} 3482 3483/* 3484 * The following implement mutual exclusion of events on "exclusive" pmus 3485 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3486 * at a time, so we disallow creating events that might conflict, namely: 3487 * 3488 * 1) cpu-wide events in the presence of per-task events, 3489 * 2) per-task events in the presence of cpu-wide events, 3490 * 3) two matching events on the same context. 3491 * 3492 * The former two cases are handled in the allocation path (perf_event_alloc(), 3493 * __free_event()), the latter -- before the first perf_install_in_context(). 3494 */ 3495static int exclusive_event_init(struct perf_event *event) 3496{ 3497 struct pmu *pmu = event->pmu; 3498 3499 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3500 return 0; 3501 3502 /* 3503 * Prevent co-existence of per-task and cpu-wide events on the 3504 * same exclusive pmu. 3505 * 3506 * Negative pmu::exclusive_cnt means there are cpu-wide 3507 * events on this "exclusive" pmu, positive means there are 3508 * per-task events. 3509 * 3510 * Since this is called in perf_event_alloc() path, event::ctx 3511 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3512 * to mean "per-task event", because unlike other attach states it 3513 * never gets cleared. 3514 */ 3515 if (event->attach_state & PERF_ATTACH_TASK) { 3516 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3517 return -EBUSY; 3518 } else { 3519 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3520 return -EBUSY; 3521 } 3522 3523 return 0; 3524} 3525 3526static void exclusive_event_destroy(struct perf_event *event) 3527{ 3528 struct pmu *pmu = event->pmu; 3529 3530 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3531 return; 3532 3533 /* see comment in exclusive_event_init() */ 3534 if (event->attach_state & PERF_ATTACH_TASK) 3535 atomic_dec(&pmu->exclusive_cnt); 3536 else 3537 atomic_inc(&pmu->exclusive_cnt); 3538} 3539 3540static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3541{ 3542 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3543 (e1->cpu == e2->cpu || 3544 e1->cpu == -1 || 3545 e2->cpu == -1)) 3546 return true; 3547 return false; 3548} 3549 3550/* Called under the same ctx::mutex as perf_install_in_context() */ 3551static bool exclusive_event_installable(struct perf_event *event, 3552 struct perf_event_context *ctx) 3553{ 3554 struct perf_event *iter_event; 3555 struct pmu *pmu = event->pmu; 3556 3557 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3558 return true; 3559 3560 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3561 if (exclusive_event_match(iter_event, event)) 3562 return false; 3563 } 3564 3565 return true; 3566} 3567 3568static void __free_event(struct perf_event *event) 3569{ 3570 if (!event->parent) { 3571 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3572 put_callchain_buffers(); 3573 } 3574 3575 perf_event_free_bpf_prog(event); 3576 3577 if (event->destroy) 3578 event->destroy(event); 3579 3580 if (event->ctx) 3581 put_ctx(event->ctx); 3582 3583 if (event->pmu) { 3584 exclusive_event_destroy(event); 3585 module_put(event->pmu->module); 3586 } 3587 3588 call_rcu(&event->rcu_head, free_event_rcu); 3589} 3590 3591static void _free_event(struct perf_event *event) 3592{ 3593 irq_work_sync(&event->pending); 3594 3595 unaccount_event(event); 3596 3597 if (event->rb) { 3598 /* 3599 * Can happen when we close an event with re-directed output. 3600 * 3601 * Since we have a 0 refcount, perf_mmap_close() will skip 3602 * over us; possibly making our ring_buffer_put() the last. 3603 */ 3604 mutex_lock(&event->mmap_mutex); 3605 ring_buffer_attach(event, NULL); 3606 mutex_unlock(&event->mmap_mutex); 3607 } 3608 3609 if (is_cgroup_event(event)) 3610 perf_detach_cgroup(event); 3611 3612 __free_event(event); 3613} 3614 3615/* 3616 * Used to free events which have a known refcount of 1, such as in error paths 3617 * where the event isn't exposed yet and inherited events. 3618 */ 3619static void free_event(struct perf_event *event) 3620{ 3621 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3622 "unexpected event refcount: %ld; ptr=%p\n", 3623 atomic_long_read(&event->refcount), event)) { 3624 /* leak to avoid use-after-free */ 3625 return; 3626 } 3627 3628 _free_event(event); 3629} 3630 3631/* 3632 * Remove user event from the owner task. 3633 */ 3634static void perf_remove_from_owner(struct perf_event *event) 3635{ 3636 struct task_struct *owner; 3637 3638 rcu_read_lock(); 3639 owner = ACCESS_ONCE(event->owner); 3640 /* 3641 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3642 * !owner it means the list deletion is complete and we can indeed 3643 * free this event, otherwise we need to serialize on 3644 * owner->perf_event_mutex. 3645 */ 3646 smp_read_barrier_depends(); 3647 if (owner) { 3648 /* 3649 * Since delayed_put_task_struct() also drops the last 3650 * task reference we can safely take a new reference 3651 * while holding the rcu_read_lock(). 3652 */ 3653 get_task_struct(owner); 3654 } 3655 rcu_read_unlock(); 3656 3657 if (owner) { 3658 /* 3659 * If we're here through perf_event_exit_task() we're already 3660 * holding ctx->mutex which would be an inversion wrt. the 3661 * normal lock order. 3662 * 3663 * However we can safely take this lock because its the child 3664 * ctx->mutex. 3665 */ 3666 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3667 3668 /* 3669 * We have to re-check the event->owner field, if it is cleared 3670 * we raced with perf_event_exit_task(), acquiring the mutex 3671 * ensured they're done, and we can proceed with freeing the 3672 * event. 3673 */ 3674 if (event->owner) 3675 list_del_init(&event->owner_entry); 3676 mutex_unlock(&owner->perf_event_mutex); 3677 put_task_struct(owner); 3678 } 3679} 3680 3681static void put_event(struct perf_event *event) 3682{ 3683 struct perf_event_context *ctx; 3684 3685 if (!atomic_long_dec_and_test(&event->refcount)) 3686 return; 3687 3688 if (!is_kernel_event(event)) 3689 perf_remove_from_owner(event); 3690 3691 /* 3692 * There are two ways this annotation is useful: 3693 * 3694 * 1) there is a lock recursion from perf_event_exit_task 3695 * see the comment there. 3696 * 3697 * 2) there is a lock-inversion with mmap_sem through 3698 * perf_event_read_group(), which takes faults while 3699 * holding ctx->mutex, however this is called after 3700 * the last filedesc died, so there is no possibility 3701 * to trigger the AB-BA case. 3702 */ 3703 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING); 3704 WARN_ON_ONCE(ctx->parent_ctx); 3705 perf_remove_from_context(event, true); 3706 perf_event_ctx_unlock(event, ctx); 3707 3708 _free_event(event); 3709} 3710 3711int perf_event_release_kernel(struct perf_event *event) 3712{ 3713 put_event(event); 3714 return 0; 3715} 3716EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3717 3718/* 3719 * Called when the last reference to the file is gone. 3720 */ 3721static int perf_release(struct inode *inode, struct file *file) 3722{ 3723 put_event(file->private_data); 3724 return 0; 3725} 3726 3727/* 3728 * Remove all orphanes events from the context. 3729 */ 3730static void orphans_remove_work(struct work_struct *work) 3731{ 3732 struct perf_event_context *ctx; 3733 struct perf_event *event, *tmp; 3734 3735 ctx = container_of(work, struct perf_event_context, 3736 orphans_remove.work); 3737 3738 mutex_lock(&ctx->mutex); 3739 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) { 3740 struct perf_event *parent_event = event->parent; 3741 3742 if (!is_orphaned_child(event)) 3743 continue; 3744 3745 perf_remove_from_context(event, true); 3746 3747 mutex_lock(&parent_event->child_mutex); 3748 list_del_init(&event->child_list); 3749 mutex_unlock(&parent_event->child_mutex); 3750 3751 free_event(event); 3752 put_event(parent_event); 3753 } 3754 3755 raw_spin_lock_irq(&ctx->lock); 3756 ctx->orphans_remove_sched = false; 3757 raw_spin_unlock_irq(&ctx->lock); 3758 mutex_unlock(&ctx->mutex); 3759 3760 put_ctx(ctx); 3761} 3762 3763u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3764{ 3765 struct perf_event *child; 3766 u64 total = 0; 3767 3768 *enabled = 0; 3769 *running = 0; 3770 3771 mutex_lock(&event->child_mutex); 3772 total += perf_event_read(event); 3773 *enabled += event->total_time_enabled + 3774 atomic64_read(&event->child_total_time_enabled); 3775 *running += event->total_time_running + 3776 atomic64_read(&event->child_total_time_running); 3777 3778 list_for_each_entry(child, &event->child_list, child_list) { 3779 total += perf_event_read(child); 3780 *enabled += child->total_time_enabled; 3781 *running += child->total_time_running; 3782 } 3783 mutex_unlock(&event->child_mutex); 3784 3785 return total; 3786} 3787EXPORT_SYMBOL_GPL(perf_event_read_value); 3788 3789static int perf_event_read_group(struct perf_event *event, 3790 u64 read_format, char __user *buf) 3791{ 3792 struct perf_event *leader = event->group_leader, *sub; 3793 struct perf_event_context *ctx = leader->ctx; 3794 int n = 0, size = 0, ret; 3795 u64 count, enabled, running; 3796 u64 values[5]; 3797 3798 lockdep_assert_held(&ctx->mutex); 3799 3800 count = perf_event_read_value(leader, &enabled, &running); 3801 3802 values[n++] = 1 + leader->nr_siblings; 3803 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3804 values[n++] = enabled; 3805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3806 values[n++] = running; 3807 values[n++] = count; 3808 if (read_format & PERF_FORMAT_ID) 3809 values[n++] = primary_event_id(leader); 3810 3811 size = n * sizeof(u64); 3812 3813 if (copy_to_user(buf, values, size)) 3814 return -EFAULT; 3815 3816 ret = size; 3817 3818 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3819 n = 0; 3820 3821 values[n++] = perf_event_read_value(sub, &enabled, &running); 3822 if (read_format & PERF_FORMAT_ID) 3823 values[n++] = primary_event_id(sub); 3824 3825 size = n * sizeof(u64); 3826 3827 if (copy_to_user(buf + ret, values, size)) { 3828 return -EFAULT; 3829 } 3830 3831 ret += size; 3832 } 3833 3834 return ret; 3835} 3836 3837static int perf_event_read_one(struct perf_event *event, 3838 u64 read_format, char __user *buf) 3839{ 3840 u64 enabled, running; 3841 u64 values[4]; 3842 int n = 0; 3843 3844 values[n++] = perf_event_read_value(event, &enabled, &running); 3845 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3846 values[n++] = enabled; 3847 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3848 values[n++] = running; 3849 if (read_format & PERF_FORMAT_ID) 3850 values[n++] = primary_event_id(event); 3851 3852 if (copy_to_user(buf, values, n * sizeof(u64))) 3853 return -EFAULT; 3854 3855 return n * sizeof(u64); 3856} 3857 3858static bool is_event_hup(struct perf_event *event) 3859{ 3860 bool no_children; 3861 3862 if (event->state != PERF_EVENT_STATE_EXIT) 3863 return false; 3864 3865 mutex_lock(&event->child_mutex); 3866 no_children = list_empty(&event->child_list); 3867 mutex_unlock(&event->child_mutex); 3868 return no_children; 3869} 3870 3871/* 3872 * Read the performance event - simple non blocking version for now 3873 */ 3874static ssize_t 3875perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3876{ 3877 u64 read_format = event->attr.read_format; 3878 int ret; 3879 3880 /* 3881 * Return end-of-file for a read on a event that is in 3882 * error state (i.e. because it was pinned but it couldn't be 3883 * scheduled on to the CPU at some point). 3884 */ 3885 if (event->state == PERF_EVENT_STATE_ERROR) 3886 return 0; 3887 3888 if (count < event->read_size) 3889 return -ENOSPC; 3890 3891 WARN_ON_ONCE(event->ctx->parent_ctx); 3892 if (read_format & PERF_FORMAT_GROUP) 3893 ret = perf_event_read_group(event, read_format, buf); 3894 else 3895 ret = perf_event_read_one(event, read_format, buf); 3896 3897 return ret; 3898} 3899 3900static ssize_t 3901perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3902{ 3903 struct perf_event *event = file->private_data; 3904 struct perf_event_context *ctx; 3905 int ret; 3906 3907 ctx = perf_event_ctx_lock(event); 3908 ret = perf_read_hw(event, buf, count); 3909 perf_event_ctx_unlock(event, ctx); 3910 3911 return ret; 3912} 3913 3914static unsigned int perf_poll(struct file *file, poll_table *wait) 3915{ 3916 struct perf_event *event = file->private_data; 3917 struct ring_buffer *rb; 3918 unsigned int events = POLLHUP; 3919 3920 poll_wait(file, &event->waitq, wait); 3921 3922 if (is_event_hup(event)) 3923 return events; 3924 3925 /* 3926 * Pin the event->rb by taking event->mmap_mutex; otherwise 3927 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3928 */ 3929 mutex_lock(&event->mmap_mutex); 3930 rb = event->rb; 3931 if (rb) 3932 events = atomic_xchg(&rb->poll, 0); 3933 mutex_unlock(&event->mmap_mutex); 3934 return events; 3935} 3936 3937static void _perf_event_reset(struct perf_event *event) 3938{ 3939 (void)perf_event_read(event); 3940 local64_set(&event->count, 0); 3941 perf_event_update_userpage(event); 3942} 3943 3944/* 3945 * Holding the top-level event's child_mutex means that any 3946 * descendant process that has inherited this event will block 3947 * in sync_child_event if it goes to exit, thus satisfying the 3948 * task existence requirements of perf_event_enable/disable. 3949 */ 3950static void perf_event_for_each_child(struct perf_event *event, 3951 void (*func)(struct perf_event *)) 3952{ 3953 struct perf_event *child; 3954 3955 WARN_ON_ONCE(event->ctx->parent_ctx); 3956 3957 mutex_lock(&event->child_mutex); 3958 func(event); 3959 list_for_each_entry(child, &event->child_list, child_list) 3960 func(child); 3961 mutex_unlock(&event->child_mutex); 3962} 3963 3964static void perf_event_for_each(struct perf_event *event, 3965 void (*func)(struct perf_event *)) 3966{ 3967 struct perf_event_context *ctx = event->ctx; 3968 struct perf_event *sibling; 3969 3970 lockdep_assert_held(&ctx->mutex); 3971 3972 event = event->group_leader; 3973 3974 perf_event_for_each_child(event, func); 3975 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3976 perf_event_for_each_child(sibling, func); 3977} 3978 3979struct period_event { 3980 struct perf_event *event; 3981 u64 value; 3982}; 3983 3984static int __perf_event_period(void *info) 3985{ 3986 struct period_event *pe = info; 3987 struct perf_event *event = pe->event; 3988 struct perf_event_context *ctx = event->ctx; 3989 u64 value = pe->value; 3990 bool active; 3991 3992 raw_spin_lock(&ctx->lock); 3993 if (event->attr.freq) { 3994 event->attr.sample_freq = value; 3995 } else { 3996 event->attr.sample_period = value; 3997 event->hw.sample_period = value; 3998 } 3999 4000 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4001 if (active) { 4002 perf_pmu_disable(ctx->pmu); 4003 event->pmu->stop(event, PERF_EF_UPDATE); 4004 } 4005 4006 local64_set(&event->hw.period_left, 0); 4007 4008 if (active) { 4009 event->pmu->start(event, PERF_EF_RELOAD); 4010 perf_pmu_enable(ctx->pmu); 4011 } 4012 raw_spin_unlock(&ctx->lock); 4013 4014 return 0; 4015} 4016 4017static int perf_event_period(struct perf_event *event, u64 __user *arg) 4018{ 4019 struct period_event pe = { .event = event, }; 4020 struct perf_event_context *ctx = event->ctx; 4021 struct task_struct *task; 4022 u64 value; 4023 4024 if (!is_sampling_event(event)) 4025 return -EINVAL; 4026 4027 if (copy_from_user(&value, arg, sizeof(value))) 4028 return -EFAULT; 4029 4030 if (!value) 4031 return -EINVAL; 4032 4033 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4034 return -EINVAL; 4035 4036 task = ctx->task; 4037 pe.value = value; 4038 4039 if (!task) { 4040 cpu_function_call(event->cpu, __perf_event_period, &pe); 4041 return 0; 4042 } 4043 4044retry: 4045 if (!task_function_call(task, __perf_event_period, &pe)) 4046 return 0; 4047 4048 raw_spin_lock_irq(&ctx->lock); 4049 if (ctx->is_active) { 4050 raw_spin_unlock_irq(&ctx->lock); 4051 task = ctx->task; 4052 goto retry; 4053 } 4054 4055 __perf_event_period(&pe); 4056 raw_spin_unlock_irq(&ctx->lock); 4057 4058 return 0; 4059} 4060 4061static const struct file_operations perf_fops; 4062 4063static inline int perf_fget_light(int fd, struct fd *p) 4064{ 4065 struct fd f = fdget(fd); 4066 if (!f.file) 4067 return -EBADF; 4068 4069 if (f.file->f_op != &perf_fops) { 4070 fdput(f); 4071 return -EBADF; 4072 } 4073 *p = f; 4074 return 0; 4075} 4076 4077static int perf_event_set_output(struct perf_event *event, 4078 struct perf_event *output_event); 4079static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4080static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4081 4082static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4083{ 4084 void (*func)(struct perf_event *); 4085 u32 flags = arg; 4086 4087 switch (cmd) { 4088 case PERF_EVENT_IOC_ENABLE: 4089 func = _perf_event_enable; 4090 break; 4091 case PERF_EVENT_IOC_DISABLE: 4092 func = _perf_event_disable; 4093 break; 4094 case PERF_EVENT_IOC_RESET: 4095 func = _perf_event_reset; 4096 break; 4097 4098 case PERF_EVENT_IOC_REFRESH: 4099 return _perf_event_refresh(event, arg); 4100 4101 case PERF_EVENT_IOC_PERIOD: 4102 return perf_event_period(event, (u64 __user *)arg); 4103 4104 case PERF_EVENT_IOC_ID: 4105 { 4106 u64 id = primary_event_id(event); 4107 4108 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4109 return -EFAULT; 4110 return 0; 4111 } 4112 4113 case PERF_EVENT_IOC_SET_OUTPUT: 4114 { 4115 int ret; 4116 if (arg != -1) { 4117 struct perf_event *output_event; 4118 struct fd output; 4119 ret = perf_fget_light(arg, &output); 4120 if (ret) 4121 return ret; 4122 output_event = output.file->private_data; 4123 ret = perf_event_set_output(event, output_event); 4124 fdput(output); 4125 } else { 4126 ret = perf_event_set_output(event, NULL); 4127 } 4128 return ret; 4129 } 4130 4131 case PERF_EVENT_IOC_SET_FILTER: 4132 return perf_event_set_filter(event, (void __user *)arg); 4133 4134 case PERF_EVENT_IOC_SET_BPF: 4135 return perf_event_set_bpf_prog(event, arg); 4136 4137 default: 4138 return -ENOTTY; 4139 } 4140 4141 if (flags & PERF_IOC_FLAG_GROUP) 4142 perf_event_for_each(event, func); 4143 else 4144 perf_event_for_each_child(event, func); 4145 4146 return 0; 4147} 4148 4149static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4150{ 4151 struct perf_event *event = file->private_data; 4152 struct perf_event_context *ctx; 4153 long ret; 4154 4155 ctx = perf_event_ctx_lock(event); 4156 ret = _perf_ioctl(event, cmd, arg); 4157 perf_event_ctx_unlock(event, ctx); 4158 4159 return ret; 4160} 4161 4162#ifdef CONFIG_COMPAT 4163static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4164 unsigned long arg) 4165{ 4166 switch (_IOC_NR(cmd)) { 4167 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4168 case _IOC_NR(PERF_EVENT_IOC_ID): 4169 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4170 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4171 cmd &= ~IOCSIZE_MASK; 4172 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4173 } 4174 break; 4175 } 4176 return perf_ioctl(file, cmd, arg); 4177} 4178#else 4179# define perf_compat_ioctl NULL 4180#endif 4181 4182int perf_event_task_enable(void) 4183{ 4184 struct perf_event_context *ctx; 4185 struct perf_event *event; 4186 4187 mutex_lock(¤t->perf_event_mutex); 4188 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4189 ctx = perf_event_ctx_lock(event); 4190 perf_event_for_each_child(event, _perf_event_enable); 4191 perf_event_ctx_unlock(event, ctx); 4192 } 4193 mutex_unlock(¤t->perf_event_mutex); 4194 4195 return 0; 4196} 4197 4198int perf_event_task_disable(void) 4199{ 4200 struct perf_event_context *ctx; 4201 struct perf_event *event; 4202 4203 mutex_lock(¤t->perf_event_mutex); 4204 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4205 ctx = perf_event_ctx_lock(event); 4206 perf_event_for_each_child(event, _perf_event_disable); 4207 perf_event_ctx_unlock(event, ctx); 4208 } 4209 mutex_unlock(¤t->perf_event_mutex); 4210 4211 return 0; 4212} 4213 4214static int perf_event_index(struct perf_event *event) 4215{ 4216 if (event->hw.state & PERF_HES_STOPPED) 4217 return 0; 4218 4219 if (event->state != PERF_EVENT_STATE_ACTIVE) 4220 return 0; 4221 4222 return event->pmu->event_idx(event); 4223} 4224 4225static void calc_timer_values(struct perf_event *event, 4226 u64 *now, 4227 u64 *enabled, 4228 u64 *running) 4229{ 4230 u64 ctx_time; 4231 4232 *now = perf_clock(); 4233 ctx_time = event->shadow_ctx_time + *now; 4234 *enabled = ctx_time - event->tstamp_enabled; 4235 *running = ctx_time - event->tstamp_running; 4236} 4237 4238static void perf_event_init_userpage(struct perf_event *event) 4239{ 4240 struct perf_event_mmap_page *userpg; 4241 struct ring_buffer *rb; 4242 4243 rcu_read_lock(); 4244 rb = rcu_dereference(event->rb); 4245 if (!rb) 4246 goto unlock; 4247 4248 userpg = rb->user_page; 4249 4250 /* Allow new userspace to detect that bit 0 is deprecated */ 4251 userpg->cap_bit0_is_deprecated = 1; 4252 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4253 userpg->data_offset = PAGE_SIZE; 4254 userpg->data_size = perf_data_size(rb); 4255 4256unlock: 4257 rcu_read_unlock(); 4258} 4259 4260void __weak arch_perf_update_userpage( 4261 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4262{ 4263} 4264 4265/* 4266 * Callers need to ensure there can be no nesting of this function, otherwise 4267 * the seqlock logic goes bad. We can not serialize this because the arch 4268 * code calls this from NMI context. 4269 */ 4270void perf_event_update_userpage(struct perf_event *event) 4271{ 4272 struct perf_event_mmap_page *userpg; 4273 struct ring_buffer *rb; 4274 u64 enabled, running, now; 4275 4276 rcu_read_lock(); 4277 rb = rcu_dereference(event->rb); 4278 if (!rb) 4279 goto unlock; 4280 4281 /* 4282 * compute total_time_enabled, total_time_running 4283 * based on snapshot values taken when the event 4284 * was last scheduled in. 4285 * 4286 * we cannot simply called update_context_time() 4287 * because of locking issue as we can be called in 4288 * NMI context 4289 */ 4290 calc_timer_values(event, &now, &enabled, &running); 4291 4292 userpg = rb->user_page; 4293 /* 4294 * Disable preemption so as to not let the corresponding user-space 4295 * spin too long if we get preempted. 4296 */ 4297 preempt_disable(); 4298 ++userpg->lock; 4299 barrier(); 4300 userpg->index = perf_event_index(event); 4301 userpg->offset = perf_event_count(event); 4302 if (userpg->index) 4303 userpg->offset -= local64_read(&event->hw.prev_count); 4304 4305 userpg->time_enabled = enabled + 4306 atomic64_read(&event->child_total_time_enabled); 4307 4308 userpg->time_running = running + 4309 atomic64_read(&event->child_total_time_running); 4310 4311 arch_perf_update_userpage(event, userpg, now); 4312 4313 barrier(); 4314 ++userpg->lock; 4315 preempt_enable(); 4316unlock: 4317 rcu_read_unlock(); 4318} 4319 4320static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4321{ 4322 struct perf_event *event = vma->vm_file->private_data; 4323 struct ring_buffer *rb; 4324 int ret = VM_FAULT_SIGBUS; 4325 4326 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4327 if (vmf->pgoff == 0) 4328 ret = 0; 4329 return ret; 4330 } 4331 4332 rcu_read_lock(); 4333 rb = rcu_dereference(event->rb); 4334 if (!rb) 4335 goto unlock; 4336 4337 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4338 goto unlock; 4339 4340 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4341 if (!vmf->page) 4342 goto unlock; 4343 4344 get_page(vmf->page); 4345 vmf->page->mapping = vma->vm_file->f_mapping; 4346 vmf->page->index = vmf->pgoff; 4347 4348 ret = 0; 4349unlock: 4350 rcu_read_unlock(); 4351 4352 return ret; 4353} 4354 4355static void ring_buffer_attach(struct perf_event *event, 4356 struct ring_buffer *rb) 4357{ 4358 struct ring_buffer *old_rb = NULL; 4359 unsigned long flags; 4360 4361 if (event->rb) { 4362 /* 4363 * Should be impossible, we set this when removing 4364 * event->rb_entry and wait/clear when adding event->rb_entry. 4365 */ 4366 WARN_ON_ONCE(event->rcu_pending); 4367 4368 old_rb = event->rb; 4369 spin_lock_irqsave(&old_rb->event_lock, flags); 4370 list_del_rcu(&event->rb_entry); 4371 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4372 4373 event->rcu_batches = get_state_synchronize_rcu(); 4374 event->rcu_pending = 1; 4375 } 4376 4377 if (rb) { 4378 if (event->rcu_pending) { 4379 cond_synchronize_rcu(event->rcu_batches); 4380 event->rcu_pending = 0; 4381 } 4382 4383 spin_lock_irqsave(&rb->event_lock, flags); 4384 list_add_rcu(&event->rb_entry, &rb->event_list); 4385 spin_unlock_irqrestore(&rb->event_lock, flags); 4386 } 4387 4388 rcu_assign_pointer(event->rb, rb); 4389 4390 if (old_rb) { 4391 ring_buffer_put(old_rb); 4392 /* 4393 * Since we detached before setting the new rb, so that we 4394 * could attach the new rb, we could have missed a wakeup. 4395 * Provide it now. 4396 */ 4397 wake_up_all(&event->waitq); 4398 } 4399} 4400 4401static void ring_buffer_wakeup(struct perf_event *event) 4402{ 4403 struct ring_buffer *rb; 4404 4405 rcu_read_lock(); 4406 rb = rcu_dereference(event->rb); 4407 if (rb) { 4408 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4409 wake_up_all(&event->waitq); 4410 } 4411 rcu_read_unlock(); 4412} 4413 4414struct ring_buffer *ring_buffer_get(struct perf_event *event) 4415{ 4416 struct ring_buffer *rb; 4417 4418 rcu_read_lock(); 4419 rb = rcu_dereference(event->rb); 4420 if (rb) { 4421 if (!atomic_inc_not_zero(&rb->refcount)) 4422 rb = NULL; 4423 } 4424 rcu_read_unlock(); 4425 4426 return rb; 4427} 4428 4429void ring_buffer_put(struct ring_buffer *rb) 4430{ 4431 if (!atomic_dec_and_test(&rb->refcount)) 4432 return; 4433 4434 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4435 4436 call_rcu(&rb->rcu_head, rb_free_rcu); 4437} 4438 4439static void perf_mmap_open(struct vm_area_struct *vma) 4440{ 4441 struct perf_event *event = vma->vm_file->private_data; 4442 4443 atomic_inc(&event->mmap_count); 4444 atomic_inc(&event->rb->mmap_count); 4445 4446 if (vma->vm_pgoff) 4447 atomic_inc(&event->rb->aux_mmap_count); 4448 4449 if (event->pmu->event_mapped) 4450 event->pmu->event_mapped(event); 4451} 4452 4453/* 4454 * A buffer can be mmap()ed multiple times; either directly through the same 4455 * event, or through other events by use of perf_event_set_output(). 4456 * 4457 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4458 * the buffer here, where we still have a VM context. This means we need 4459 * to detach all events redirecting to us. 4460 */ 4461static void perf_mmap_close(struct vm_area_struct *vma) 4462{ 4463 struct perf_event *event = vma->vm_file->private_data; 4464 4465 struct ring_buffer *rb = ring_buffer_get(event); 4466 struct user_struct *mmap_user = rb->mmap_user; 4467 int mmap_locked = rb->mmap_locked; 4468 unsigned long size = perf_data_size(rb); 4469 4470 if (event->pmu->event_unmapped) 4471 event->pmu->event_unmapped(event); 4472 4473 /* 4474 * rb->aux_mmap_count will always drop before rb->mmap_count and 4475 * event->mmap_count, so it is ok to use event->mmap_mutex to 4476 * serialize with perf_mmap here. 4477 */ 4478 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4479 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4480 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4481 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4482 4483 rb_free_aux(rb); 4484 mutex_unlock(&event->mmap_mutex); 4485 } 4486 4487 atomic_dec(&rb->mmap_count); 4488 4489 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4490 goto out_put; 4491 4492 ring_buffer_attach(event, NULL); 4493 mutex_unlock(&event->mmap_mutex); 4494 4495 /* If there's still other mmap()s of this buffer, we're done. */ 4496 if (atomic_read(&rb->mmap_count)) 4497 goto out_put; 4498 4499 /* 4500 * No other mmap()s, detach from all other events that might redirect 4501 * into the now unreachable buffer. Somewhat complicated by the 4502 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4503 */ 4504again: 4505 rcu_read_lock(); 4506 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4507 if (!atomic_long_inc_not_zero(&event->refcount)) { 4508 /* 4509 * This event is en-route to free_event() which will 4510 * detach it and remove it from the list. 4511 */ 4512 continue; 4513 } 4514 rcu_read_unlock(); 4515 4516 mutex_lock(&event->mmap_mutex); 4517 /* 4518 * Check we didn't race with perf_event_set_output() which can 4519 * swizzle the rb from under us while we were waiting to 4520 * acquire mmap_mutex. 4521 * 4522 * If we find a different rb; ignore this event, a next 4523 * iteration will no longer find it on the list. We have to 4524 * still restart the iteration to make sure we're not now 4525 * iterating the wrong list. 4526 */ 4527 if (event->rb == rb) 4528 ring_buffer_attach(event, NULL); 4529 4530 mutex_unlock(&event->mmap_mutex); 4531 put_event(event); 4532 4533 /* 4534 * Restart the iteration; either we're on the wrong list or 4535 * destroyed its integrity by doing a deletion. 4536 */ 4537 goto again; 4538 } 4539 rcu_read_unlock(); 4540 4541 /* 4542 * It could be there's still a few 0-ref events on the list; they'll 4543 * get cleaned up by free_event() -- they'll also still have their 4544 * ref on the rb and will free it whenever they are done with it. 4545 * 4546 * Aside from that, this buffer is 'fully' detached and unmapped, 4547 * undo the VM accounting. 4548 */ 4549 4550 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4551 vma->vm_mm->pinned_vm -= mmap_locked; 4552 free_uid(mmap_user); 4553 4554out_put: 4555 ring_buffer_put(rb); /* could be last */ 4556} 4557 4558static const struct vm_operations_struct perf_mmap_vmops = { 4559 .open = perf_mmap_open, 4560 .close = perf_mmap_close, /* non mergable */ 4561 .fault = perf_mmap_fault, 4562 .page_mkwrite = perf_mmap_fault, 4563}; 4564 4565static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4566{ 4567 struct perf_event *event = file->private_data; 4568 unsigned long user_locked, user_lock_limit; 4569 struct user_struct *user = current_user(); 4570 unsigned long locked, lock_limit; 4571 struct ring_buffer *rb = NULL; 4572 unsigned long vma_size; 4573 unsigned long nr_pages; 4574 long user_extra = 0, extra = 0; 4575 int ret = 0, flags = 0; 4576 4577 /* 4578 * Don't allow mmap() of inherited per-task counters. This would 4579 * create a performance issue due to all children writing to the 4580 * same rb. 4581 */ 4582 if (event->cpu == -1 && event->attr.inherit) 4583 return -EINVAL; 4584 4585 if (!(vma->vm_flags & VM_SHARED)) 4586 return -EINVAL; 4587 4588 vma_size = vma->vm_end - vma->vm_start; 4589 4590 if (vma->vm_pgoff == 0) { 4591 nr_pages = (vma_size / PAGE_SIZE) - 1; 4592 } else { 4593 /* 4594 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4595 * mapped, all subsequent mappings should have the same size 4596 * and offset. Must be above the normal perf buffer. 4597 */ 4598 u64 aux_offset, aux_size; 4599 4600 if (!event->rb) 4601 return -EINVAL; 4602 4603 nr_pages = vma_size / PAGE_SIZE; 4604 4605 mutex_lock(&event->mmap_mutex); 4606 ret = -EINVAL; 4607 4608 rb = event->rb; 4609 if (!rb) 4610 goto aux_unlock; 4611 4612 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4613 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4614 4615 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4616 goto aux_unlock; 4617 4618 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4619 goto aux_unlock; 4620 4621 /* already mapped with a different offset */ 4622 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4623 goto aux_unlock; 4624 4625 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4626 goto aux_unlock; 4627 4628 /* already mapped with a different size */ 4629 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4630 goto aux_unlock; 4631 4632 if (!is_power_of_2(nr_pages)) 4633 goto aux_unlock; 4634 4635 if (!atomic_inc_not_zero(&rb->mmap_count)) 4636 goto aux_unlock; 4637 4638 if (rb_has_aux(rb)) { 4639 atomic_inc(&rb->aux_mmap_count); 4640 ret = 0; 4641 goto unlock; 4642 } 4643 4644 atomic_set(&rb->aux_mmap_count, 1); 4645 user_extra = nr_pages; 4646 4647 goto accounting; 4648 } 4649 4650 /* 4651 * If we have rb pages ensure they're a power-of-two number, so we 4652 * can do bitmasks instead of modulo. 4653 */ 4654 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4655 return -EINVAL; 4656 4657 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4658 return -EINVAL; 4659 4660 WARN_ON_ONCE(event->ctx->parent_ctx); 4661again: 4662 mutex_lock(&event->mmap_mutex); 4663 if (event->rb) { 4664 if (event->rb->nr_pages != nr_pages) { 4665 ret = -EINVAL; 4666 goto unlock; 4667 } 4668 4669 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4670 /* 4671 * Raced against perf_mmap_close() through 4672 * perf_event_set_output(). Try again, hope for better 4673 * luck. 4674 */ 4675 mutex_unlock(&event->mmap_mutex); 4676 goto again; 4677 } 4678 4679 goto unlock; 4680 } 4681 4682 user_extra = nr_pages + 1; 4683 4684accounting: 4685 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4686 4687 /* 4688 * Increase the limit linearly with more CPUs: 4689 */ 4690 user_lock_limit *= num_online_cpus(); 4691 4692 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4693 4694 if (user_locked > user_lock_limit) 4695 extra = user_locked - user_lock_limit; 4696 4697 lock_limit = rlimit(RLIMIT_MEMLOCK); 4698 lock_limit >>= PAGE_SHIFT; 4699 locked = vma->vm_mm->pinned_vm + extra; 4700 4701 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4702 !capable(CAP_IPC_LOCK)) { 4703 ret = -EPERM; 4704 goto unlock; 4705 } 4706 4707 WARN_ON(!rb && event->rb); 4708 4709 if (vma->vm_flags & VM_WRITE) 4710 flags |= RING_BUFFER_WRITABLE; 4711 4712 if (!rb) { 4713 rb = rb_alloc(nr_pages, 4714 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4715 event->cpu, flags); 4716 4717 if (!rb) { 4718 ret = -ENOMEM; 4719 goto unlock; 4720 } 4721 4722 atomic_set(&rb->mmap_count, 1); 4723 rb->mmap_user = get_current_user(); 4724 rb->mmap_locked = extra; 4725 4726 ring_buffer_attach(event, rb); 4727 4728 perf_event_init_userpage(event); 4729 perf_event_update_userpage(event); 4730 } else { 4731 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 4732 event->attr.aux_watermark, flags); 4733 if (!ret) 4734 rb->aux_mmap_locked = extra; 4735 } 4736 4737unlock: 4738 if (!ret) { 4739 atomic_long_add(user_extra, &user->locked_vm); 4740 vma->vm_mm->pinned_vm += extra; 4741 4742 atomic_inc(&event->mmap_count); 4743 } else if (rb) { 4744 atomic_dec(&rb->mmap_count); 4745 } 4746aux_unlock: 4747 mutex_unlock(&event->mmap_mutex); 4748 4749 /* 4750 * Since pinned accounting is per vm we cannot allow fork() to copy our 4751 * vma. 4752 */ 4753 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4754 vma->vm_ops = &perf_mmap_vmops; 4755 4756 if (event->pmu->event_mapped) 4757 event->pmu->event_mapped(event); 4758 4759 return ret; 4760} 4761 4762static int perf_fasync(int fd, struct file *filp, int on) 4763{ 4764 struct inode *inode = file_inode(filp); 4765 struct perf_event *event = filp->private_data; 4766 int retval; 4767 4768 mutex_lock(&inode->i_mutex); 4769 retval = fasync_helper(fd, filp, on, &event->fasync); 4770 mutex_unlock(&inode->i_mutex); 4771 4772 if (retval < 0) 4773 return retval; 4774 4775 return 0; 4776} 4777 4778static const struct file_operations perf_fops = { 4779 .llseek = no_llseek, 4780 .release = perf_release, 4781 .read = perf_read, 4782 .poll = perf_poll, 4783 .unlocked_ioctl = perf_ioctl, 4784 .compat_ioctl = perf_compat_ioctl, 4785 .mmap = perf_mmap, 4786 .fasync = perf_fasync, 4787}; 4788 4789/* 4790 * Perf event wakeup 4791 * 4792 * If there's data, ensure we set the poll() state and publish everything 4793 * to user-space before waking everybody up. 4794 */ 4795 4796static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 4797{ 4798 /* only the parent has fasync state */ 4799 if (event->parent) 4800 event = event->parent; 4801 return &event->fasync; 4802} 4803 4804void perf_event_wakeup(struct perf_event *event) 4805{ 4806 ring_buffer_wakeup(event); 4807 4808 if (event->pending_kill) { 4809 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 4810 event->pending_kill = 0; 4811 } 4812} 4813 4814static void perf_pending_event(struct irq_work *entry) 4815{ 4816 struct perf_event *event = container_of(entry, 4817 struct perf_event, pending); 4818 int rctx; 4819 4820 rctx = perf_swevent_get_recursion_context(); 4821 /* 4822 * If we 'fail' here, that's OK, it means recursion is already disabled 4823 * and we won't recurse 'further'. 4824 */ 4825 4826 if (event->pending_disable) { 4827 event->pending_disable = 0; 4828 __perf_event_disable(event); 4829 } 4830 4831 if (event->pending_wakeup) { 4832 event->pending_wakeup = 0; 4833 perf_event_wakeup(event); 4834 } 4835 4836 if (rctx >= 0) 4837 perf_swevent_put_recursion_context(rctx); 4838} 4839 4840/* 4841 * We assume there is only KVM supporting the callbacks. 4842 * Later on, we might change it to a list if there is 4843 * another virtualization implementation supporting the callbacks. 4844 */ 4845struct perf_guest_info_callbacks *perf_guest_cbs; 4846 4847int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4848{ 4849 perf_guest_cbs = cbs; 4850 return 0; 4851} 4852EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4853 4854int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4855{ 4856 perf_guest_cbs = NULL; 4857 return 0; 4858} 4859EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4860 4861static void 4862perf_output_sample_regs(struct perf_output_handle *handle, 4863 struct pt_regs *regs, u64 mask) 4864{ 4865 int bit; 4866 4867 for_each_set_bit(bit, (const unsigned long *) &mask, 4868 sizeof(mask) * BITS_PER_BYTE) { 4869 u64 val; 4870 4871 val = perf_reg_value(regs, bit); 4872 perf_output_put(handle, val); 4873 } 4874} 4875 4876static void perf_sample_regs_user(struct perf_regs *regs_user, 4877 struct pt_regs *regs, 4878 struct pt_regs *regs_user_copy) 4879{ 4880 if (user_mode(regs)) { 4881 regs_user->abi = perf_reg_abi(current); 4882 regs_user->regs = regs; 4883 } else if (current->mm) { 4884 perf_get_regs_user(regs_user, regs, regs_user_copy); 4885 } else { 4886 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 4887 regs_user->regs = NULL; 4888 } 4889} 4890 4891static void perf_sample_regs_intr(struct perf_regs *regs_intr, 4892 struct pt_regs *regs) 4893{ 4894 regs_intr->regs = regs; 4895 regs_intr->abi = perf_reg_abi(current); 4896} 4897 4898 4899/* 4900 * Get remaining task size from user stack pointer. 4901 * 4902 * It'd be better to take stack vma map and limit this more 4903 * precisly, but there's no way to get it safely under interrupt, 4904 * so using TASK_SIZE as limit. 4905 */ 4906static u64 perf_ustack_task_size(struct pt_regs *regs) 4907{ 4908 unsigned long addr = perf_user_stack_pointer(regs); 4909 4910 if (!addr || addr >= TASK_SIZE) 4911 return 0; 4912 4913 return TASK_SIZE - addr; 4914} 4915 4916static u16 4917perf_sample_ustack_size(u16 stack_size, u16 header_size, 4918 struct pt_regs *regs) 4919{ 4920 u64 task_size; 4921 4922 /* No regs, no stack pointer, no dump. */ 4923 if (!regs) 4924 return 0; 4925 4926 /* 4927 * Check if we fit in with the requested stack size into the: 4928 * - TASK_SIZE 4929 * If we don't, we limit the size to the TASK_SIZE. 4930 * 4931 * - remaining sample size 4932 * If we don't, we customize the stack size to 4933 * fit in to the remaining sample size. 4934 */ 4935 4936 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4937 stack_size = min(stack_size, (u16) task_size); 4938 4939 /* Current header size plus static size and dynamic size. */ 4940 header_size += 2 * sizeof(u64); 4941 4942 /* Do we fit in with the current stack dump size? */ 4943 if ((u16) (header_size + stack_size) < header_size) { 4944 /* 4945 * If we overflow the maximum size for the sample, 4946 * we customize the stack dump size to fit in. 4947 */ 4948 stack_size = USHRT_MAX - header_size - sizeof(u64); 4949 stack_size = round_up(stack_size, sizeof(u64)); 4950 } 4951 4952 return stack_size; 4953} 4954 4955static void 4956perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4957 struct pt_regs *regs) 4958{ 4959 /* Case of a kernel thread, nothing to dump */ 4960 if (!regs) { 4961 u64 size = 0; 4962 perf_output_put(handle, size); 4963 } else { 4964 unsigned long sp; 4965 unsigned int rem; 4966 u64 dyn_size; 4967 4968 /* 4969 * We dump: 4970 * static size 4971 * - the size requested by user or the best one we can fit 4972 * in to the sample max size 4973 * data 4974 * - user stack dump data 4975 * dynamic size 4976 * - the actual dumped size 4977 */ 4978 4979 /* Static size. */ 4980 perf_output_put(handle, dump_size); 4981 4982 /* Data. */ 4983 sp = perf_user_stack_pointer(regs); 4984 rem = __output_copy_user(handle, (void *) sp, dump_size); 4985 dyn_size = dump_size - rem; 4986 4987 perf_output_skip(handle, rem); 4988 4989 /* Dynamic size. */ 4990 perf_output_put(handle, dyn_size); 4991 } 4992} 4993 4994static void __perf_event_header__init_id(struct perf_event_header *header, 4995 struct perf_sample_data *data, 4996 struct perf_event *event) 4997{ 4998 u64 sample_type = event->attr.sample_type; 4999 5000 data->type = sample_type; 5001 header->size += event->id_header_size; 5002 5003 if (sample_type & PERF_SAMPLE_TID) { 5004 /* namespace issues */ 5005 data->tid_entry.pid = perf_event_pid(event, current); 5006 data->tid_entry.tid = perf_event_tid(event, current); 5007 } 5008 5009 if (sample_type & PERF_SAMPLE_TIME) 5010 data->time = perf_event_clock(event); 5011 5012 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5013 data->id = primary_event_id(event); 5014 5015 if (sample_type & PERF_SAMPLE_STREAM_ID) 5016 data->stream_id = event->id; 5017 5018 if (sample_type & PERF_SAMPLE_CPU) { 5019 data->cpu_entry.cpu = raw_smp_processor_id(); 5020 data->cpu_entry.reserved = 0; 5021 } 5022} 5023 5024void perf_event_header__init_id(struct perf_event_header *header, 5025 struct perf_sample_data *data, 5026 struct perf_event *event) 5027{ 5028 if (event->attr.sample_id_all) 5029 __perf_event_header__init_id(header, data, event); 5030} 5031 5032static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5033 struct perf_sample_data *data) 5034{ 5035 u64 sample_type = data->type; 5036 5037 if (sample_type & PERF_SAMPLE_TID) 5038 perf_output_put(handle, data->tid_entry); 5039 5040 if (sample_type & PERF_SAMPLE_TIME) 5041 perf_output_put(handle, data->time); 5042 5043 if (sample_type & PERF_SAMPLE_ID) 5044 perf_output_put(handle, data->id); 5045 5046 if (sample_type & PERF_SAMPLE_STREAM_ID) 5047 perf_output_put(handle, data->stream_id); 5048 5049 if (sample_type & PERF_SAMPLE_CPU) 5050 perf_output_put(handle, data->cpu_entry); 5051 5052 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5053 perf_output_put(handle, data->id); 5054} 5055 5056void perf_event__output_id_sample(struct perf_event *event, 5057 struct perf_output_handle *handle, 5058 struct perf_sample_data *sample) 5059{ 5060 if (event->attr.sample_id_all) 5061 __perf_event__output_id_sample(handle, sample); 5062} 5063 5064static void perf_output_read_one(struct perf_output_handle *handle, 5065 struct perf_event *event, 5066 u64 enabled, u64 running) 5067{ 5068 u64 read_format = event->attr.read_format; 5069 u64 values[4]; 5070 int n = 0; 5071 5072 values[n++] = perf_event_count(event); 5073 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5074 values[n++] = enabled + 5075 atomic64_read(&event->child_total_time_enabled); 5076 } 5077 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5078 values[n++] = running + 5079 atomic64_read(&event->child_total_time_running); 5080 } 5081 if (read_format & PERF_FORMAT_ID) 5082 values[n++] = primary_event_id(event); 5083 5084 __output_copy(handle, values, n * sizeof(u64)); 5085} 5086 5087/* 5088 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5089 */ 5090static void perf_output_read_group(struct perf_output_handle *handle, 5091 struct perf_event *event, 5092 u64 enabled, u64 running) 5093{ 5094 struct perf_event *leader = event->group_leader, *sub; 5095 u64 read_format = event->attr.read_format; 5096 u64 values[5]; 5097 int n = 0; 5098 5099 values[n++] = 1 + leader->nr_siblings; 5100 5101 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5102 values[n++] = enabled; 5103 5104 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5105 values[n++] = running; 5106 5107 if (leader != event) 5108 leader->pmu->read(leader); 5109 5110 values[n++] = perf_event_count(leader); 5111 if (read_format & PERF_FORMAT_ID) 5112 values[n++] = primary_event_id(leader); 5113 5114 __output_copy(handle, values, n * sizeof(u64)); 5115 5116 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5117 n = 0; 5118 5119 if ((sub != event) && 5120 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5121 sub->pmu->read(sub); 5122 5123 values[n++] = perf_event_count(sub); 5124 if (read_format & PERF_FORMAT_ID) 5125 values[n++] = primary_event_id(sub); 5126 5127 __output_copy(handle, values, n * sizeof(u64)); 5128 } 5129} 5130 5131#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5132 PERF_FORMAT_TOTAL_TIME_RUNNING) 5133 5134static void perf_output_read(struct perf_output_handle *handle, 5135 struct perf_event *event) 5136{ 5137 u64 enabled = 0, running = 0, now; 5138 u64 read_format = event->attr.read_format; 5139 5140 /* 5141 * compute total_time_enabled, total_time_running 5142 * based on snapshot values taken when the event 5143 * was last scheduled in. 5144 * 5145 * we cannot simply called update_context_time() 5146 * because of locking issue as we are called in 5147 * NMI context 5148 */ 5149 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5150 calc_timer_values(event, &now, &enabled, &running); 5151 5152 if (event->attr.read_format & PERF_FORMAT_GROUP) 5153 perf_output_read_group(handle, event, enabled, running); 5154 else 5155 perf_output_read_one(handle, event, enabled, running); 5156} 5157 5158void perf_output_sample(struct perf_output_handle *handle, 5159 struct perf_event_header *header, 5160 struct perf_sample_data *data, 5161 struct perf_event *event) 5162{ 5163 u64 sample_type = data->type; 5164 5165 perf_output_put(handle, *header); 5166 5167 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5168 perf_output_put(handle, data->id); 5169 5170 if (sample_type & PERF_SAMPLE_IP) 5171 perf_output_put(handle, data->ip); 5172 5173 if (sample_type & PERF_SAMPLE_TID) 5174 perf_output_put(handle, data->tid_entry); 5175 5176 if (sample_type & PERF_SAMPLE_TIME) 5177 perf_output_put(handle, data->time); 5178 5179 if (sample_type & PERF_SAMPLE_ADDR) 5180 perf_output_put(handle, data->addr); 5181 5182 if (sample_type & PERF_SAMPLE_ID) 5183 perf_output_put(handle, data->id); 5184 5185 if (sample_type & PERF_SAMPLE_STREAM_ID) 5186 perf_output_put(handle, data->stream_id); 5187 5188 if (sample_type & PERF_SAMPLE_CPU) 5189 perf_output_put(handle, data->cpu_entry); 5190 5191 if (sample_type & PERF_SAMPLE_PERIOD) 5192 perf_output_put(handle, data->period); 5193 5194 if (sample_type & PERF_SAMPLE_READ) 5195 perf_output_read(handle, event); 5196 5197 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5198 if (data->callchain) { 5199 int size = 1; 5200 5201 if (data->callchain) 5202 size += data->callchain->nr; 5203 5204 size *= sizeof(u64); 5205 5206 __output_copy(handle, data->callchain, size); 5207 } else { 5208 u64 nr = 0; 5209 perf_output_put(handle, nr); 5210 } 5211 } 5212 5213 if (sample_type & PERF_SAMPLE_RAW) { 5214 if (data->raw) { 5215 perf_output_put(handle, data->raw->size); 5216 __output_copy(handle, data->raw->data, 5217 data->raw->size); 5218 } else { 5219 struct { 5220 u32 size; 5221 u32 data; 5222 } raw = { 5223 .size = sizeof(u32), 5224 .data = 0, 5225 }; 5226 perf_output_put(handle, raw); 5227 } 5228 } 5229 5230 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5231 if (data->br_stack) { 5232 size_t size; 5233 5234 size = data->br_stack->nr 5235 * sizeof(struct perf_branch_entry); 5236 5237 perf_output_put(handle, data->br_stack->nr); 5238 perf_output_copy(handle, data->br_stack->entries, size); 5239 } else { 5240 /* 5241 * we always store at least the value of nr 5242 */ 5243 u64 nr = 0; 5244 perf_output_put(handle, nr); 5245 } 5246 } 5247 5248 if (sample_type & PERF_SAMPLE_REGS_USER) { 5249 u64 abi = data->regs_user.abi; 5250 5251 /* 5252 * If there are no regs to dump, notice it through 5253 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5254 */ 5255 perf_output_put(handle, abi); 5256 5257 if (abi) { 5258 u64 mask = event->attr.sample_regs_user; 5259 perf_output_sample_regs(handle, 5260 data->regs_user.regs, 5261 mask); 5262 } 5263 } 5264 5265 if (sample_type & PERF_SAMPLE_STACK_USER) { 5266 perf_output_sample_ustack(handle, 5267 data->stack_user_size, 5268 data->regs_user.regs); 5269 } 5270 5271 if (sample_type & PERF_SAMPLE_WEIGHT) 5272 perf_output_put(handle, data->weight); 5273 5274 if (sample_type & PERF_SAMPLE_DATA_SRC) 5275 perf_output_put(handle, data->data_src.val); 5276 5277 if (sample_type & PERF_SAMPLE_TRANSACTION) 5278 perf_output_put(handle, data->txn); 5279 5280 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5281 u64 abi = data->regs_intr.abi; 5282 /* 5283 * If there are no regs to dump, notice it through 5284 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5285 */ 5286 perf_output_put(handle, abi); 5287 5288 if (abi) { 5289 u64 mask = event->attr.sample_regs_intr; 5290 5291 perf_output_sample_regs(handle, 5292 data->regs_intr.regs, 5293 mask); 5294 } 5295 } 5296 5297 if (!event->attr.watermark) { 5298 int wakeup_events = event->attr.wakeup_events; 5299 5300 if (wakeup_events) { 5301 struct ring_buffer *rb = handle->rb; 5302 int events = local_inc_return(&rb->events); 5303 5304 if (events >= wakeup_events) { 5305 local_sub(wakeup_events, &rb->events); 5306 local_inc(&rb->wakeup); 5307 } 5308 } 5309 } 5310} 5311 5312void perf_prepare_sample(struct perf_event_header *header, 5313 struct perf_sample_data *data, 5314 struct perf_event *event, 5315 struct pt_regs *regs) 5316{ 5317 u64 sample_type = event->attr.sample_type; 5318 5319 header->type = PERF_RECORD_SAMPLE; 5320 header->size = sizeof(*header) + event->header_size; 5321 5322 header->misc = 0; 5323 header->misc |= perf_misc_flags(regs); 5324 5325 __perf_event_header__init_id(header, data, event); 5326 5327 if (sample_type & PERF_SAMPLE_IP) 5328 data->ip = perf_instruction_pointer(regs); 5329 5330 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5331 int size = 1; 5332 5333 data->callchain = perf_callchain(event, regs); 5334 5335 if (data->callchain) 5336 size += data->callchain->nr; 5337 5338 header->size += size * sizeof(u64); 5339 } 5340 5341 if (sample_type & PERF_SAMPLE_RAW) { 5342 int size = sizeof(u32); 5343 5344 if (data->raw) 5345 size += data->raw->size; 5346 else 5347 size += sizeof(u32); 5348 5349 WARN_ON_ONCE(size & (sizeof(u64)-1)); 5350 header->size += size; 5351 } 5352 5353 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5354 int size = sizeof(u64); /* nr */ 5355 if (data->br_stack) { 5356 size += data->br_stack->nr 5357 * sizeof(struct perf_branch_entry); 5358 } 5359 header->size += size; 5360 } 5361 5362 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5363 perf_sample_regs_user(&data->regs_user, regs, 5364 &data->regs_user_copy); 5365 5366 if (sample_type & PERF_SAMPLE_REGS_USER) { 5367 /* regs dump ABI info */ 5368 int size = sizeof(u64); 5369 5370 if (data->regs_user.regs) { 5371 u64 mask = event->attr.sample_regs_user; 5372 size += hweight64(mask) * sizeof(u64); 5373 } 5374 5375 header->size += size; 5376 } 5377 5378 if (sample_type & PERF_SAMPLE_STACK_USER) { 5379 /* 5380 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5381 * processed as the last one or have additional check added 5382 * in case new sample type is added, because we could eat 5383 * up the rest of the sample size. 5384 */ 5385 u16 stack_size = event->attr.sample_stack_user; 5386 u16 size = sizeof(u64); 5387 5388 stack_size = perf_sample_ustack_size(stack_size, header->size, 5389 data->regs_user.regs); 5390 5391 /* 5392 * If there is something to dump, add space for the dump 5393 * itself and for the field that tells the dynamic size, 5394 * which is how many have been actually dumped. 5395 */ 5396 if (stack_size) 5397 size += sizeof(u64) + stack_size; 5398 5399 data->stack_user_size = stack_size; 5400 header->size += size; 5401 } 5402 5403 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5404 /* regs dump ABI info */ 5405 int size = sizeof(u64); 5406 5407 perf_sample_regs_intr(&data->regs_intr, regs); 5408 5409 if (data->regs_intr.regs) { 5410 u64 mask = event->attr.sample_regs_intr; 5411 5412 size += hweight64(mask) * sizeof(u64); 5413 } 5414 5415 header->size += size; 5416 } 5417} 5418 5419static void perf_event_output(struct perf_event *event, 5420 struct perf_sample_data *data, 5421 struct pt_regs *regs) 5422{ 5423 struct perf_output_handle handle; 5424 struct perf_event_header header; 5425 5426 /* protect the callchain buffers */ 5427 rcu_read_lock(); 5428 5429 perf_prepare_sample(&header, data, event, regs); 5430 5431 if (perf_output_begin(&handle, event, header.size)) 5432 goto exit; 5433 5434 perf_output_sample(&handle, &header, data, event); 5435 5436 perf_output_end(&handle); 5437 5438exit: 5439 rcu_read_unlock(); 5440} 5441 5442/* 5443 * read event_id 5444 */ 5445 5446struct perf_read_event { 5447 struct perf_event_header header; 5448 5449 u32 pid; 5450 u32 tid; 5451}; 5452 5453static void 5454perf_event_read_event(struct perf_event *event, 5455 struct task_struct *task) 5456{ 5457 struct perf_output_handle handle; 5458 struct perf_sample_data sample; 5459 struct perf_read_event read_event = { 5460 .header = { 5461 .type = PERF_RECORD_READ, 5462 .misc = 0, 5463 .size = sizeof(read_event) + event->read_size, 5464 }, 5465 .pid = perf_event_pid(event, task), 5466 .tid = perf_event_tid(event, task), 5467 }; 5468 int ret; 5469 5470 perf_event_header__init_id(&read_event.header, &sample, event); 5471 ret = perf_output_begin(&handle, event, read_event.header.size); 5472 if (ret) 5473 return; 5474 5475 perf_output_put(&handle, read_event); 5476 perf_output_read(&handle, event); 5477 perf_event__output_id_sample(event, &handle, &sample); 5478 5479 perf_output_end(&handle); 5480} 5481 5482typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5483 5484static void 5485perf_event_aux_ctx(struct perf_event_context *ctx, 5486 perf_event_aux_output_cb output, 5487 void *data) 5488{ 5489 struct perf_event *event; 5490 5491 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5492 if (event->state < PERF_EVENT_STATE_INACTIVE) 5493 continue; 5494 if (!event_filter_match(event)) 5495 continue; 5496 output(event, data); 5497 } 5498} 5499 5500static void 5501perf_event_aux(perf_event_aux_output_cb output, void *data, 5502 struct perf_event_context *task_ctx) 5503{ 5504 struct perf_cpu_context *cpuctx; 5505 struct perf_event_context *ctx; 5506 struct pmu *pmu; 5507 int ctxn; 5508 5509 rcu_read_lock(); 5510 list_for_each_entry_rcu(pmu, &pmus, entry) { 5511 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5512 if (cpuctx->unique_pmu != pmu) 5513 goto next; 5514 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5515 if (task_ctx) 5516 goto next; 5517 ctxn = pmu->task_ctx_nr; 5518 if (ctxn < 0) 5519 goto next; 5520 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5521 if (ctx) 5522 perf_event_aux_ctx(ctx, output, data); 5523next: 5524 put_cpu_ptr(pmu->pmu_cpu_context); 5525 } 5526 5527 if (task_ctx) { 5528 preempt_disable(); 5529 perf_event_aux_ctx(task_ctx, output, data); 5530 preempt_enable(); 5531 } 5532 rcu_read_unlock(); 5533} 5534 5535/* 5536 * task tracking -- fork/exit 5537 * 5538 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5539 */ 5540 5541struct perf_task_event { 5542 struct task_struct *task; 5543 struct perf_event_context *task_ctx; 5544 5545 struct { 5546 struct perf_event_header header; 5547 5548 u32 pid; 5549 u32 ppid; 5550 u32 tid; 5551 u32 ptid; 5552 u64 time; 5553 } event_id; 5554}; 5555 5556static int perf_event_task_match(struct perf_event *event) 5557{ 5558 return event->attr.comm || event->attr.mmap || 5559 event->attr.mmap2 || event->attr.mmap_data || 5560 event->attr.task; 5561} 5562 5563static void perf_event_task_output(struct perf_event *event, 5564 void *data) 5565{ 5566 struct perf_task_event *task_event = data; 5567 struct perf_output_handle handle; 5568 struct perf_sample_data sample; 5569 struct task_struct *task = task_event->task; 5570 int ret, size = task_event->event_id.header.size; 5571 5572 if (!perf_event_task_match(event)) 5573 return; 5574 5575 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5576 5577 ret = perf_output_begin(&handle, event, 5578 task_event->event_id.header.size); 5579 if (ret) 5580 goto out; 5581 5582 task_event->event_id.pid = perf_event_pid(event, task); 5583 task_event->event_id.ppid = perf_event_pid(event, current); 5584 5585 task_event->event_id.tid = perf_event_tid(event, task); 5586 task_event->event_id.ptid = perf_event_tid(event, current); 5587 5588 task_event->event_id.time = perf_event_clock(event); 5589 5590 perf_output_put(&handle, task_event->event_id); 5591 5592 perf_event__output_id_sample(event, &handle, &sample); 5593 5594 perf_output_end(&handle); 5595out: 5596 task_event->event_id.header.size = size; 5597} 5598 5599static void perf_event_task(struct task_struct *task, 5600 struct perf_event_context *task_ctx, 5601 int new) 5602{ 5603 struct perf_task_event task_event; 5604 5605 if (!atomic_read(&nr_comm_events) && 5606 !atomic_read(&nr_mmap_events) && 5607 !atomic_read(&nr_task_events)) 5608 return; 5609 5610 task_event = (struct perf_task_event){ 5611 .task = task, 5612 .task_ctx = task_ctx, 5613 .event_id = { 5614 .header = { 5615 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5616 .misc = 0, 5617 .size = sizeof(task_event.event_id), 5618 }, 5619 /* .pid */ 5620 /* .ppid */ 5621 /* .tid */ 5622 /* .ptid */ 5623 /* .time */ 5624 }, 5625 }; 5626 5627 perf_event_aux(perf_event_task_output, 5628 &task_event, 5629 task_ctx); 5630} 5631 5632void perf_event_fork(struct task_struct *task) 5633{ 5634 perf_event_task(task, NULL, 1); 5635} 5636 5637/* 5638 * comm tracking 5639 */ 5640 5641struct perf_comm_event { 5642 struct task_struct *task; 5643 char *comm; 5644 int comm_size; 5645 5646 struct { 5647 struct perf_event_header header; 5648 5649 u32 pid; 5650 u32 tid; 5651 } event_id; 5652}; 5653 5654static int perf_event_comm_match(struct perf_event *event) 5655{ 5656 return event->attr.comm; 5657} 5658 5659static void perf_event_comm_output(struct perf_event *event, 5660 void *data) 5661{ 5662 struct perf_comm_event *comm_event = data; 5663 struct perf_output_handle handle; 5664 struct perf_sample_data sample; 5665 int size = comm_event->event_id.header.size; 5666 int ret; 5667 5668 if (!perf_event_comm_match(event)) 5669 return; 5670 5671 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5672 ret = perf_output_begin(&handle, event, 5673 comm_event->event_id.header.size); 5674 5675 if (ret) 5676 goto out; 5677 5678 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5679 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5680 5681 perf_output_put(&handle, comm_event->event_id); 5682 __output_copy(&handle, comm_event->comm, 5683 comm_event->comm_size); 5684 5685 perf_event__output_id_sample(event, &handle, &sample); 5686 5687 perf_output_end(&handle); 5688out: 5689 comm_event->event_id.header.size = size; 5690} 5691 5692static void perf_event_comm_event(struct perf_comm_event *comm_event) 5693{ 5694 char comm[TASK_COMM_LEN]; 5695 unsigned int size; 5696 5697 memset(comm, 0, sizeof(comm)); 5698 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5699 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5700 5701 comm_event->comm = comm; 5702 comm_event->comm_size = size; 5703 5704 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5705 5706 perf_event_aux(perf_event_comm_output, 5707 comm_event, 5708 NULL); 5709} 5710 5711void perf_event_comm(struct task_struct *task, bool exec) 5712{ 5713 struct perf_comm_event comm_event; 5714 5715 if (!atomic_read(&nr_comm_events)) 5716 return; 5717 5718 comm_event = (struct perf_comm_event){ 5719 .task = task, 5720 /* .comm */ 5721 /* .comm_size */ 5722 .event_id = { 5723 .header = { 5724 .type = PERF_RECORD_COMM, 5725 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5726 /* .size */ 5727 }, 5728 /* .pid */ 5729 /* .tid */ 5730 }, 5731 }; 5732 5733 perf_event_comm_event(&comm_event); 5734} 5735 5736/* 5737 * mmap tracking 5738 */ 5739 5740struct perf_mmap_event { 5741 struct vm_area_struct *vma; 5742 5743 const char *file_name; 5744 int file_size; 5745 int maj, min; 5746 u64 ino; 5747 u64 ino_generation; 5748 u32 prot, flags; 5749 5750 struct { 5751 struct perf_event_header header; 5752 5753 u32 pid; 5754 u32 tid; 5755 u64 start; 5756 u64 len; 5757 u64 pgoff; 5758 } event_id; 5759}; 5760 5761static int perf_event_mmap_match(struct perf_event *event, 5762 void *data) 5763{ 5764 struct perf_mmap_event *mmap_event = data; 5765 struct vm_area_struct *vma = mmap_event->vma; 5766 int executable = vma->vm_flags & VM_EXEC; 5767 5768 return (!executable && event->attr.mmap_data) || 5769 (executable && (event->attr.mmap || event->attr.mmap2)); 5770} 5771 5772static void perf_event_mmap_output(struct perf_event *event, 5773 void *data) 5774{ 5775 struct perf_mmap_event *mmap_event = data; 5776 struct perf_output_handle handle; 5777 struct perf_sample_data sample; 5778 int size = mmap_event->event_id.header.size; 5779 int ret; 5780 5781 if (!perf_event_mmap_match(event, data)) 5782 return; 5783 5784 if (event->attr.mmap2) { 5785 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5786 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5787 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5788 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5789 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5790 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 5791 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 5792 } 5793 5794 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5795 ret = perf_output_begin(&handle, event, 5796 mmap_event->event_id.header.size); 5797 if (ret) 5798 goto out; 5799 5800 mmap_event->event_id.pid = perf_event_pid(event, current); 5801 mmap_event->event_id.tid = perf_event_tid(event, current); 5802 5803 perf_output_put(&handle, mmap_event->event_id); 5804 5805 if (event->attr.mmap2) { 5806 perf_output_put(&handle, mmap_event->maj); 5807 perf_output_put(&handle, mmap_event->min); 5808 perf_output_put(&handle, mmap_event->ino); 5809 perf_output_put(&handle, mmap_event->ino_generation); 5810 perf_output_put(&handle, mmap_event->prot); 5811 perf_output_put(&handle, mmap_event->flags); 5812 } 5813 5814 __output_copy(&handle, mmap_event->file_name, 5815 mmap_event->file_size); 5816 5817 perf_event__output_id_sample(event, &handle, &sample); 5818 5819 perf_output_end(&handle); 5820out: 5821 mmap_event->event_id.header.size = size; 5822} 5823 5824static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5825{ 5826 struct vm_area_struct *vma = mmap_event->vma; 5827 struct file *file = vma->vm_file; 5828 int maj = 0, min = 0; 5829 u64 ino = 0, gen = 0; 5830 u32 prot = 0, flags = 0; 5831 unsigned int size; 5832 char tmp[16]; 5833 char *buf = NULL; 5834 char *name; 5835 5836 if (file) { 5837 struct inode *inode; 5838 dev_t dev; 5839 5840 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5841 if (!buf) { 5842 name = "//enomem"; 5843 goto cpy_name; 5844 } 5845 /* 5846 * d_path() works from the end of the rb backwards, so we 5847 * need to add enough zero bytes after the string to handle 5848 * the 64bit alignment we do later. 5849 */ 5850 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64)); 5851 if (IS_ERR(name)) { 5852 name = "//toolong"; 5853 goto cpy_name; 5854 } 5855 inode = file_inode(vma->vm_file); 5856 dev = inode->i_sb->s_dev; 5857 ino = inode->i_ino; 5858 gen = inode->i_generation; 5859 maj = MAJOR(dev); 5860 min = MINOR(dev); 5861 5862 if (vma->vm_flags & VM_READ) 5863 prot |= PROT_READ; 5864 if (vma->vm_flags & VM_WRITE) 5865 prot |= PROT_WRITE; 5866 if (vma->vm_flags & VM_EXEC) 5867 prot |= PROT_EXEC; 5868 5869 if (vma->vm_flags & VM_MAYSHARE) 5870 flags = MAP_SHARED; 5871 else 5872 flags = MAP_PRIVATE; 5873 5874 if (vma->vm_flags & VM_DENYWRITE) 5875 flags |= MAP_DENYWRITE; 5876 if (vma->vm_flags & VM_MAYEXEC) 5877 flags |= MAP_EXECUTABLE; 5878 if (vma->vm_flags & VM_LOCKED) 5879 flags |= MAP_LOCKED; 5880 if (vma->vm_flags & VM_HUGETLB) 5881 flags |= MAP_HUGETLB; 5882 5883 goto got_name; 5884 } else { 5885 if (vma->vm_ops && vma->vm_ops->name) { 5886 name = (char *) vma->vm_ops->name(vma); 5887 if (name) 5888 goto cpy_name; 5889 } 5890 5891 name = (char *)arch_vma_name(vma); 5892 if (name) 5893 goto cpy_name; 5894 5895 if (vma->vm_start <= vma->vm_mm->start_brk && 5896 vma->vm_end >= vma->vm_mm->brk) { 5897 name = "[heap]"; 5898 goto cpy_name; 5899 } 5900 if (vma->vm_start <= vma->vm_mm->start_stack && 5901 vma->vm_end >= vma->vm_mm->start_stack) { 5902 name = "[stack]"; 5903 goto cpy_name; 5904 } 5905 5906 name = "//anon"; 5907 goto cpy_name; 5908 } 5909 5910cpy_name: 5911 strlcpy(tmp, name, sizeof(tmp)); 5912 name = tmp; 5913got_name: 5914 /* 5915 * Since our buffer works in 8 byte units we need to align our string 5916 * size to a multiple of 8. However, we must guarantee the tail end is 5917 * zero'd out to avoid leaking random bits to userspace. 5918 */ 5919 size = strlen(name)+1; 5920 while (!IS_ALIGNED(size, sizeof(u64))) 5921 name[size++] = '\0'; 5922 5923 mmap_event->file_name = name; 5924 mmap_event->file_size = size; 5925 mmap_event->maj = maj; 5926 mmap_event->min = min; 5927 mmap_event->ino = ino; 5928 mmap_event->ino_generation = gen; 5929 mmap_event->prot = prot; 5930 mmap_event->flags = flags; 5931 5932 if (!(vma->vm_flags & VM_EXEC)) 5933 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5934 5935 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5936 5937 perf_event_aux(perf_event_mmap_output, 5938 mmap_event, 5939 NULL); 5940 5941 kfree(buf); 5942} 5943 5944void perf_event_mmap(struct vm_area_struct *vma) 5945{ 5946 struct perf_mmap_event mmap_event; 5947 5948 if (!atomic_read(&nr_mmap_events)) 5949 return; 5950 5951 mmap_event = (struct perf_mmap_event){ 5952 .vma = vma, 5953 /* .file_name */ 5954 /* .file_size */ 5955 .event_id = { 5956 .header = { 5957 .type = PERF_RECORD_MMAP, 5958 .misc = PERF_RECORD_MISC_USER, 5959 /* .size */ 5960 }, 5961 /* .pid */ 5962 /* .tid */ 5963 .start = vma->vm_start, 5964 .len = vma->vm_end - vma->vm_start, 5965 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5966 }, 5967 /* .maj (attr_mmap2 only) */ 5968 /* .min (attr_mmap2 only) */ 5969 /* .ino (attr_mmap2 only) */ 5970 /* .ino_generation (attr_mmap2 only) */ 5971 /* .prot (attr_mmap2 only) */ 5972 /* .flags (attr_mmap2 only) */ 5973 }; 5974 5975 perf_event_mmap_event(&mmap_event); 5976} 5977 5978void perf_event_aux_event(struct perf_event *event, unsigned long head, 5979 unsigned long size, u64 flags) 5980{ 5981 struct perf_output_handle handle; 5982 struct perf_sample_data sample; 5983 struct perf_aux_event { 5984 struct perf_event_header header; 5985 u64 offset; 5986 u64 size; 5987 u64 flags; 5988 } rec = { 5989 .header = { 5990 .type = PERF_RECORD_AUX, 5991 .misc = 0, 5992 .size = sizeof(rec), 5993 }, 5994 .offset = head, 5995 .size = size, 5996 .flags = flags, 5997 }; 5998 int ret; 5999 6000 perf_event_header__init_id(&rec.header, &sample, event); 6001 ret = perf_output_begin(&handle, event, rec.header.size); 6002 6003 if (ret) 6004 return; 6005 6006 perf_output_put(&handle, rec); 6007 perf_event__output_id_sample(event, &handle, &sample); 6008 6009 perf_output_end(&handle); 6010} 6011 6012/* 6013 * IRQ throttle logging 6014 */ 6015 6016static void perf_log_throttle(struct perf_event *event, int enable) 6017{ 6018 struct perf_output_handle handle; 6019 struct perf_sample_data sample; 6020 int ret; 6021 6022 struct { 6023 struct perf_event_header header; 6024 u64 time; 6025 u64 id; 6026 u64 stream_id; 6027 } throttle_event = { 6028 .header = { 6029 .type = PERF_RECORD_THROTTLE, 6030 .misc = 0, 6031 .size = sizeof(throttle_event), 6032 }, 6033 .time = perf_event_clock(event), 6034 .id = primary_event_id(event), 6035 .stream_id = event->id, 6036 }; 6037 6038 if (enable) 6039 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6040 6041 perf_event_header__init_id(&throttle_event.header, &sample, event); 6042 6043 ret = perf_output_begin(&handle, event, 6044 throttle_event.header.size); 6045 if (ret) 6046 return; 6047 6048 perf_output_put(&handle, throttle_event); 6049 perf_event__output_id_sample(event, &handle, &sample); 6050 perf_output_end(&handle); 6051} 6052 6053static void perf_log_itrace_start(struct perf_event *event) 6054{ 6055 struct perf_output_handle handle; 6056 struct perf_sample_data sample; 6057 struct perf_aux_event { 6058 struct perf_event_header header; 6059 u32 pid; 6060 u32 tid; 6061 } rec; 6062 int ret; 6063 6064 if (event->parent) 6065 event = event->parent; 6066 6067 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6068 event->hw.itrace_started) 6069 return; 6070 6071 event->hw.itrace_started = 1; 6072 6073 rec.header.type = PERF_RECORD_ITRACE_START; 6074 rec.header.misc = 0; 6075 rec.header.size = sizeof(rec); 6076 rec.pid = perf_event_pid(event, current); 6077 rec.tid = perf_event_tid(event, current); 6078 6079 perf_event_header__init_id(&rec.header, &sample, event); 6080 ret = perf_output_begin(&handle, event, rec.header.size); 6081 6082 if (ret) 6083 return; 6084 6085 perf_output_put(&handle, rec); 6086 perf_event__output_id_sample(event, &handle, &sample); 6087 6088 perf_output_end(&handle); 6089} 6090 6091/* 6092 * Generic event overflow handling, sampling. 6093 */ 6094 6095static int __perf_event_overflow(struct perf_event *event, 6096 int throttle, struct perf_sample_data *data, 6097 struct pt_regs *regs) 6098{ 6099 int events = atomic_read(&event->event_limit); 6100 struct hw_perf_event *hwc = &event->hw; 6101 u64 seq; 6102 int ret = 0; 6103 6104 /* 6105 * Non-sampling counters might still use the PMI to fold short 6106 * hardware counters, ignore those. 6107 */ 6108 if (unlikely(!is_sampling_event(event))) 6109 return 0; 6110 6111 seq = __this_cpu_read(perf_throttled_seq); 6112 if (seq != hwc->interrupts_seq) { 6113 hwc->interrupts_seq = seq; 6114 hwc->interrupts = 1; 6115 } else { 6116 hwc->interrupts++; 6117 if (unlikely(throttle 6118 && hwc->interrupts >= max_samples_per_tick)) { 6119 __this_cpu_inc(perf_throttled_count); 6120 hwc->interrupts = MAX_INTERRUPTS; 6121 perf_log_throttle(event, 0); 6122 tick_nohz_full_kick(); 6123 ret = 1; 6124 } 6125 } 6126 6127 if (event->attr.freq) { 6128 u64 now = perf_clock(); 6129 s64 delta = now - hwc->freq_time_stamp; 6130 6131 hwc->freq_time_stamp = now; 6132 6133 if (delta > 0 && delta < 2*TICK_NSEC) 6134 perf_adjust_period(event, delta, hwc->last_period, true); 6135 } 6136 6137 /* 6138 * XXX event_limit might not quite work as expected on inherited 6139 * events 6140 */ 6141 6142 event->pending_kill = POLL_IN; 6143 if (events && atomic_dec_and_test(&event->event_limit)) { 6144 ret = 1; 6145 event->pending_kill = POLL_HUP; 6146 event->pending_disable = 1; 6147 irq_work_queue(&event->pending); 6148 } 6149 6150 if (event->overflow_handler) 6151 event->overflow_handler(event, data, regs); 6152 else 6153 perf_event_output(event, data, regs); 6154 6155 if (*perf_event_fasync(event) && event->pending_kill) { 6156 event->pending_wakeup = 1; 6157 irq_work_queue(&event->pending); 6158 } 6159 6160 return ret; 6161} 6162 6163int perf_event_overflow(struct perf_event *event, 6164 struct perf_sample_data *data, 6165 struct pt_regs *regs) 6166{ 6167 return __perf_event_overflow(event, 1, data, regs); 6168} 6169 6170/* 6171 * Generic software event infrastructure 6172 */ 6173 6174struct swevent_htable { 6175 struct swevent_hlist *swevent_hlist; 6176 struct mutex hlist_mutex; 6177 int hlist_refcount; 6178 6179 /* Recursion avoidance in each contexts */ 6180 int recursion[PERF_NR_CONTEXTS]; 6181 6182 /* Keeps track of cpu being initialized/exited */ 6183 bool online; 6184}; 6185 6186static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6187 6188/* 6189 * We directly increment event->count and keep a second value in 6190 * event->hw.period_left to count intervals. This period event 6191 * is kept in the range [-sample_period, 0] so that we can use the 6192 * sign as trigger. 6193 */ 6194 6195u64 perf_swevent_set_period(struct perf_event *event) 6196{ 6197 struct hw_perf_event *hwc = &event->hw; 6198 u64 period = hwc->last_period; 6199 u64 nr, offset; 6200 s64 old, val; 6201 6202 hwc->last_period = hwc->sample_period; 6203 6204again: 6205 old = val = local64_read(&hwc->period_left); 6206 if (val < 0) 6207 return 0; 6208 6209 nr = div64_u64(period + val, period); 6210 offset = nr * period; 6211 val -= offset; 6212 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6213 goto again; 6214 6215 return nr; 6216} 6217 6218static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6219 struct perf_sample_data *data, 6220 struct pt_regs *regs) 6221{ 6222 struct hw_perf_event *hwc = &event->hw; 6223 int throttle = 0; 6224 6225 if (!overflow) 6226 overflow = perf_swevent_set_period(event); 6227 6228 if (hwc->interrupts == MAX_INTERRUPTS) 6229 return; 6230 6231 for (; overflow; overflow--) { 6232 if (__perf_event_overflow(event, throttle, 6233 data, regs)) { 6234 /* 6235 * We inhibit the overflow from happening when 6236 * hwc->interrupts == MAX_INTERRUPTS. 6237 */ 6238 break; 6239 } 6240 throttle = 1; 6241 } 6242} 6243 6244static void perf_swevent_event(struct perf_event *event, u64 nr, 6245 struct perf_sample_data *data, 6246 struct pt_regs *regs) 6247{ 6248 struct hw_perf_event *hwc = &event->hw; 6249 6250 local64_add(nr, &event->count); 6251 6252 if (!regs) 6253 return; 6254 6255 if (!is_sampling_event(event)) 6256 return; 6257 6258 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6259 data->period = nr; 6260 return perf_swevent_overflow(event, 1, data, regs); 6261 } else 6262 data->period = event->hw.last_period; 6263 6264 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6265 return perf_swevent_overflow(event, 1, data, regs); 6266 6267 if (local64_add_negative(nr, &hwc->period_left)) 6268 return; 6269 6270 perf_swevent_overflow(event, 0, data, regs); 6271} 6272 6273static int perf_exclude_event(struct perf_event *event, 6274 struct pt_regs *regs) 6275{ 6276 if (event->hw.state & PERF_HES_STOPPED) 6277 return 1; 6278 6279 if (regs) { 6280 if (event->attr.exclude_user && user_mode(regs)) 6281 return 1; 6282 6283 if (event->attr.exclude_kernel && !user_mode(regs)) 6284 return 1; 6285 } 6286 6287 return 0; 6288} 6289 6290static int perf_swevent_match(struct perf_event *event, 6291 enum perf_type_id type, 6292 u32 event_id, 6293 struct perf_sample_data *data, 6294 struct pt_regs *regs) 6295{ 6296 if (event->attr.type != type) 6297 return 0; 6298 6299 if (event->attr.config != event_id) 6300 return 0; 6301 6302 if (perf_exclude_event(event, regs)) 6303 return 0; 6304 6305 return 1; 6306} 6307 6308static inline u64 swevent_hash(u64 type, u32 event_id) 6309{ 6310 u64 val = event_id | (type << 32); 6311 6312 return hash_64(val, SWEVENT_HLIST_BITS); 6313} 6314 6315static inline struct hlist_head * 6316__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 6317{ 6318 u64 hash = swevent_hash(type, event_id); 6319 6320 return &hlist->heads[hash]; 6321} 6322 6323/* For the read side: events when they trigger */ 6324static inline struct hlist_head * 6325find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 6326{ 6327 struct swevent_hlist *hlist; 6328 6329 hlist = rcu_dereference(swhash->swevent_hlist); 6330 if (!hlist) 6331 return NULL; 6332 6333 return __find_swevent_head(hlist, type, event_id); 6334} 6335 6336/* For the event head insertion and removal in the hlist */ 6337static inline struct hlist_head * 6338find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 6339{ 6340 struct swevent_hlist *hlist; 6341 u32 event_id = event->attr.config; 6342 u64 type = event->attr.type; 6343 6344 /* 6345 * Event scheduling is always serialized against hlist allocation 6346 * and release. Which makes the protected version suitable here. 6347 * The context lock guarantees that. 6348 */ 6349 hlist = rcu_dereference_protected(swhash->swevent_hlist, 6350 lockdep_is_held(&event->ctx->lock)); 6351 if (!hlist) 6352 return NULL; 6353 6354 return __find_swevent_head(hlist, type, event_id); 6355} 6356 6357static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 6358 u64 nr, 6359 struct perf_sample_data *data, 6360 struct pt_regs *regs) 6361{ 6362 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6363 struct perf_event *event; 6364 struct hlist_head *head; 6365 6366 rcu_read_lock(); 6367 head = find_swevent_head_rcu(swhash, type, event_id); 6368 if (!head) 6369 goto end; 6370 6371 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6372 if (perf_swevent_match(event, type, event_id, data, regs)) 6373 perf_swevent_event(event, nr, data, regs); 6374 } 6375end: 6376 rcu_read_unlock(); 6377} 6378 6379DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 6380 6381int perf_swevent_get_recursion_context(void) 6382{ 6383 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6384 6385 return get_recursion_context(swhash->recursion); 6386} 6387EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 6388 6389inline void perf_swevent_put_recursion_context(int rctx) 6390{ 6391 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6392 6393 put_recursion_context(swhash->recursion, rctx); 6394} 6395 6396void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6397{ 6398 struct perf_sample_data data; 6399 6400 if (WARN_ON_ONCE(!regs)) 6401 return; 6402 6403 perf_sample_data_init(&data, addr, 0); 6404 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 6405} 6406 6407void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6408{ 6409 int rctx; 6410 6411 preempt_disable_notrace(); 6412 rctx = perf_swevent_get_recursion_context(); 6413 if (unlikely(rctx < 0)) 6414 goto fail; 6415 6416 ___perf_sw_event(event_id, nr, regs, addr); 6417 6418 perf_swevent_put_recursion_context(rctx); 6419fail: 6420 preempt_enable_notrace(); 6421} 6422 6423static void perf_swevent_read(struct perf_event *event) 6424{ 6425} 6426 6427static int perf_swevent_add(struct perf_event *event, int flags) 6428{ 6429 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6430 struct hw_perf_event *hwc = &event->hw; 6431 struct hlist_head *head; 6432 6433 if (is_sampling_event(event)) { 6434 hwc->last_period = hwc->sample_period; 6435 perf_swevent_set_period(event); 6436 } 6437 6438 hwc->state = !(flags & PERF_EF_START); 6439 6440 head = find_swevent_head(swhash, event); 6441 if (!head) { 6442 /* 6443 * We can race with cpu hotplug code. Do not 6444 * WARN if the cpu just got unplugged. 6445 */ 6446 WARN_ON_ONCE(swhash->online); 6447 return -EINVAL; 6448 } 6449 6450 hlist_add_head_rcu(&event->hlist_entry, head); 6451 perf_event_update_userpage(event); 6452 6453 return 0; 6454} 6455 6456static void perf_swevent_del(struct perf_event *event, int flags) 6457{ 6458 hlist_del_rcu(&event->hlist_entry); 6459} 6460 6461static void perf_swevent_start(struct perf_event *event, int flags) 6462{ 6463 event->hw.state = 0; 6464} 6465 6466static void perf_swevent_stop(struct perf_event *event, int flags) 6467{ 6468 event->hw.state = PERF_HES_STOPPED; 6469} 6470 6471/* Deref the hlist from the update side */ 6472static inline struct swevent_hlist * 6473swevent_hlist_deref(struct swevent_htable *swhash) 6474{ 6475 return rcu_dereference_protected(swhash->swevent_hlist, 6476 lockdep_is_held(&swhash->hlist_mutex)); 6477} 6478 6479static void swevent_hlist_release(struct swevent_htable *swhash) 6480{ 6481 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 6482 6483 if (!hlist) 6484 return; 6485 6486 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 6487 kfree_rcu(hlist, rcu_head); 6488} 6489 6490static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 6491{ 6492 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6493 6494 mutex_lock(&swhash->hlist_mutex); 6495 6496 if (!--swhash->hlist_refcount) 6497 swevent_hlist_release(swhash); 6498 6499 mutex_unlock(&swhash->hlist_mutex); 6500} 6501 6502static void swevent_hlist_put(struct perf_event *event) 6503{ 6504 int cpu; 6505 6506 for_each_possible_cpu(cpu) 6507 swevent_hlist_put_cpu(event, cpu); 6508} 6509 6510static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 6511{ 6512 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6513 int err = 0; 6514 6515 mutex_lock(&swhash->hlist_mutex); 6516 6517 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 6518 struct swevent_hlist *hlist; 6519 6520 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 6521 if (!hlist) { 6522 err = -ENOMEM; 6523 goto exit; 6524 } 6525 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6526 } 6527 swhash->hlist_refcount++; 6528exit: 6529 mutex_unlock(&swhash->hlist_mutex); 6530 6531 return err; 6532} 6533 6534static int swevent_hlist_get(struct perf_event *event) 6535{ 6536 int err; 6537 int cpu, failed_cpu; 6538 6539 get_online_cpus(); 6540 for_each_possible_cpu(cpu) { 6541 err = swevent_hlist_get_cpu(event, cpu); 6542 if (err) { 6543 failed_cpu = cpu; 6544 goto fail; 6545 } 6546 } 6547 put_online_cpus(); 6548 6549 return 0; 6550fail: 6551 for_each_possible_cpu(cpu) { 6552 if (cpu == failed_cpu) 6553 break; 6554 swevent_hlist_put_cpu(event, cpu); 6555 } 6556 6557 put_online_cpus(); 6558 return err; 6559} 6560 6561struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6562 6563static void sw_perf_event_destroy(struct perf_event *event) 6564{ 6565 u64 event_id = event->attr.config; 6566 6567 WARN_ON(event->parent); 6568 6569 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6570 swevent_hlist_put(event); 6571} 6572 6573static int perf_swevent_init(struct perf_event *event) 6574{ 6575 u64 event_id = event->attr.config; 6576 6577 if (event->attr.type != PERF_TYPE_SOFTWARE) 6578 return -ENOENT; 6579 6580 /* 6581 * no branch sampling for software events 6582 */ 6583 if (has_branch_stack(event)) 6584 return -EOPNOTSUPP; 6585 6586 switch (event_id) { 6587 case PERF_COUNT_SW_CPU_CLOCK: 6588 case PERF_COUNT_SW_TASK_CLOCK: 6589 return -ENOENT; 6590 6591 default: 6592 break; 6593 } 6594 6595 if (event_id >= PERF_COUNT_SW_MAX) 6596 return -ENOENT; 6597 6598 if (!event->parent) { 6599 int err; 6600 6601 err = swevent_hlist_get(event); 6602 if (err) 6603 return err; 6604 6605 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6606 event->destroy = sw_perf_event_destroy; 6607 } 6608 6609 return 0; 6610} 6611 6612static struct pmu perf_swevent = { 6613 .task_ctx_nr = perf_sw_context, 6614 6615 .capabilities = PERF_PMU_CAP_NO_NMI, 6616 6617 .event_init = perf_swevent_init, 6618 .add = perf_swevent_add, 6619 .del = perf_swevent_del, 6620 .start = perf_swevent_start, 6621 .stop = perf_swevent_stop, 6622 .read = perf_swevent_read, 6623}; 6624 6625#ifdef CONFIG_EVENT_TRACING 6626 6627static int perf_tp_filter_match(struct perf_event *event, 6628 struct perf_sample_data *data) 6629{ 6630 void *record = data->raw->data; 6631 6632 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6633 return 1; 6634 return 0; 6635} 6636 6637static int perf_tp_event_match(struct perf_event *event, 6638 struct perf_sample_data *data, 6639 struct pt_regs *regs) 6640{ 6641 if (event->hw.state & PERF_HES_STOPPED) 6642 return 0; 6643 /* 6644 * All tracepoints are from kernel-space. 6645 */ 6646 if (event->attr.exclude_kernel) 6647 return 0; 6648 6649 if (!perf_tp_filter_match(event, data)) 6650 return 0; 6651 6652 return 1; 6653} 6654 6655void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 6656 struct pt_regs *regs, struct hlist_head *head, int rctx, 6657 struct task_struct *task) 6658{ 6659 struct perf_sample_data data; 6660 struct perf_event *event; 6661 6662 struct perf_raw_record raw = { 6663 .size = entry_size, 6664 .data = record, 6665 }; 6666 6667 perf_sample_data_init(&data, addr, 0); 6668 data.raw = &raw; 6669 6670 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6671 if (perf_tp_event_match(event, &data, regs)) 6672 perf_swevent_event(event, count, &data, regs); 6673 } 6674 6675 /* 6676 * If we got specified a target task, also iterate its context and 6677 * deliver this event there too. 6678 */ 6679 if (task && task != current) { 6680 struct perf_event_context *ctx; 6681 struct trace_entry *entry = record; 6682 6683 rcu_read_lock(); 6684 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 6685 if (!ctx) 6686 goto unlock; 6687 6688 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6689 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6690 continue; 6691 if (event->attr.config != entry->type) 6692 continue; 6693 if (perf_tp_event_match(event, &data, regs)) 6694 perf_swevent_event(event, count, &data, regs); 6695 } 6696unlock: 6697 rcu_read_unlock(); 6698 } 6699 6700 perf_swevent_put_recursion_context(rctx); 6701} 6702EXPORT_SYMBOL_GPL(perf_tp_event); 6703 6704static void tp_perf_event_destroy(struct perf_event *event) 6705{ 6706 perf_trace_destroy(event); 6707} 6708 6709static int perf_tp_event_init(struct perf_event *event) 6710{ 6711 int err; 6712 6713 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6714 return -ENOENT; 6715 6716 /* 6717 * no branch sampling for tracepoint events 6718 */ 6719 if (has_branch_stack(event)) 6720 return -EOPNOTSUPP; 6721 6722 err = perf_trace_init(event); 6723 if (err) 6724 return err; 6725 6726 event->destroy = tp_perf_event_destroy; 6727 6728 return 0; 6729} 6730 6731static struct pmu perf_tracepoint = { 6732 .task_ctx_nr = perf_sw_context, 6733 6734 .event_init = perf_tp_event_init, 6735 .add = perf_trace_add, 6736 .del = perf_trace_del, 6737 .start = perf_swevent_start, 6738 .stop = perf_swevent_stop, 6739 .read = perf_swevent_read, 6740}; 6741 6742static inline void perf_tp_register(void) 6743{ 6744 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 6745} 6746 6747static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6748{ 6749 char *filter_str; 6750 int ret; 6751 6752 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6753 return -EINVAL; 6754 6755 filter_str = strndup_user(arg, PAGE_SIZE); 6756 if (IS_ERR(filter_str)) 6757 return PTR_ERR(filter_str); 6758 6759 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 6760 6761 kfree(filter_str); 6762 return ret; 6763} 6764 6765static void perf_event_free_filter(struct perf_event *event) 6766{ 6767 ftrace_profile_free_filter(event); 6768} 6769 6770static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 6771{ 6772 struct bpf_prog *prog; 6773 6774 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6775 return -EINVAL; 6776 6777 if (event->tp_event->prog) 6778 return -EEXIST; 6779 6780 if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) 6781 /* bpf programs can only be attached to kprobes */ 6782 return -EINVAL; 6783 6784 prog = bpf_prog_get(prog_fd); 6785 if (IS_ERR(prog)) 6786 return PTR_ERR(prog); 6787 6788 if (prog->type != BPF_PROG_TYPE_KPROBE) { 6789 /* valid fd, but invalid bpf program type */ 6790 bpf_prog_put(prog); 6791 return -EINVAL; 6792 } 6793 6794 event->tp_event->prog = prog; 6795 6796 return 0; 6797} 6798 6799static void perf_event_free_bpf_prog(struct perf_event *event) 6800{ 6801 struct bpf_prog *prog; 6802 6803 if (!event->tp_event) 6804 return; 6805 6806 prog = event->tp_event->prog; 6807 if (prog) { 6808 event->tp_event->prog = NULL; 6809 bpf_prog_put(prog); 6810 } 6811} 6812 6813#else 6814 6815static inline void perf_tp_register(void) 6816{ 6817} 6818 6819static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6820{ 6821 return -ENOENT; 6822} 6823 6824static void perf_event_free_filter(struct perf_event *event) 6825{ 6826} 6827 6828static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 6829{ 6830 return -ENOENT; 6831} 6832 6833static void perf_event_free_bpf_prog(struct perf_event *event) 6834{ 6835} 6836#endif /* CONFIG_EVENT_TRACING */ 6837 6838#ifdef CONFIG_HAVE_HW_BREAKPOINT 6839void perf_bp_event(struct perf_event *bp, void *data) 6840{ 6841 struct perf_sample_data sample; 6842 struct pt_regs *regs = data; 6843 6844 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 6845 6846 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 6847 perf_swevent_event(bp, 1, &sample, regs); 6848} 6849#endif 6850 6851/* 6852 * hrtimer based swevent callback 6853 */ 6854 6855static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 6856{ 6857 enum hrtimer_restart ret = HRTIMER_RESTART; 6858 struct perf_sample_data data; 6859 struct pt_regs *regs; 6860 struct perf_event *event; 6861 u64 period; 6862 6863 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 6864 6865 if (event->state != PERF_EVENT_STATE_ACTIVE) 6866 return HRTIMER_NORESTART; 6867 6868 event->pmu->read(event); 6869 6870 perf_sample_data_init(&data, 0, event->hw.last_period); 6871 regs = get_irq_regs(); 6872 6873 if (regs && !perf_exclude_event(event, regs)) { 6874 if (!(event->attr.exclude_idle && is_idle_task(current))) 6875 if (__perf_event_overflow(event, 1, &data, regs)) 6876 ret = HRTIMER_NORESTART; 6877 } 6878 6879 period = max_t(u64, 10000, event->hw.sample_period); 6880 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 6881 6882 return ret; 6883} 6884 6885static void perf_swevent_start_hrtimer(struct perf_event *event) 6886{ 6887 struct hw_perf_event *hwc = &event->hw; 6888 s64 period; 6889 6890 if (!is_sampling_event(event)) 6891 return; 6892 6893 period = local64_read(&hwc->period_left); 6894 if (period) { 6895 if (period < 0) 6896 period = 10000; 6897 6898 local64_set(&hwc->period_left, 0); 6899 } else { 6900 period = max_t(u64, 10000, hwc->sample_period); 6901 } 6902 __hrtimer_start_range_ns(&hwc->hrtimer, 6903 ns_to_ktime(period), 0, 6904 HRTIMER_MODE_REL_PINNED, 0); 6905} 6906 6907static void perf_swevent_cancel_hrtimer(struct perf_event *event) 6908{ 6909 struct hw_perf_event *hwc = &event->hw; 6910 6911 if (is_sampling_event(event)) { 6912 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 6913 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 6914 6915 hrtimer_cancel(&hwc->hrtimer); 6916 } 6917} 6918 6919static void perf_swevent_init_hrtimer(struct perf_event *event) 6920{ 6921 struct hw_perf_event *hwc = &event->hw; 6922 6923 if (!is_sampling_event(event)) 6924 return; 6925 6926 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6927 hwc->hrtimer.function = perf_swevent_hrtimer; 6928 6929 /* 6930 * Since hrtimers have a fixed rate, we can do a static freq->period 6931 * mapping and avoid the whole period adjust feedback stuff. 6932 */ 6933 if (event->attr.freq) { 6934 long freq = event->attr.sample_freq; 6935 6936 event->attr.sample_period = NSEC_PER_SEC / freq; 6937 hwc->sample_period = event->attr.sample_period; 6938 local64_set(&hwc->period_left, hwc->sample_period); 6939 hwc->last_period = hwc->sample_period; 6940 event->attr.freq = 0; 6941 } 6942} 6943 6944/* 6945 * Software event: cpu wall time clock 6946 */ 6947 6948static void cpu_clock_event_update(struct perf_event *event) 6949{ 6950 s64 prev; 6951 u64 now; 6952 6953 now = local_clock(); 6954 prev = local64_xchg(&event->hw.prev_count, now); 6955 local64_add(now - prev, &event->count); 6956} 6957 6958static void cpu_clock_event_start(struct perf_event *event, int flags) 6959{ 6960 local64_set(&event->hw.prev_count, local_clock()); 6961 perf_swevent_start_hrtimer(event); 6962} 6963 6964static void cpu_clock_event_stop(struct perf_event *event, int flags) 6965{ 6966 perf_swevent_cancel_hrtimer(event); 6967 cpu_clock_event_update(event); 6968} 6969 6970static int cpu_clock_event_add(struct perf_event *event, int flags) 6971{ 6972 if (flags & PERF_EF_START) 6973 cpu_clock_event_start(event, flags); 6974 perf_event_update_userpage(event); 6975 6976 return 0; 6977} 6978 6979static void cpu_clock_event_del(struct perf_event *event, int flags) 6980{ 6981 cpu_clock_event_stop(event, flags); 6982} 6983 6984static void cpu_clock_event_read(struct perf_event *event) 6985{ 6986 cpu_clock_event_update(event); 6987} 6988 6989static int cpu_clock_event_init(struct perf_event *event) 6990{ 6991 if (event->attr.type != PERF_TYPE_SOFTWARE) 6992 return -ENOENT; 6993 6994 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 6995 return -ENOENT; 6996 6997 /* 6998 * no branch sampling for software events 6999 */ 7000 if (has_branch_stack(event)) 7001 return -EOPNOTSUPP; 7002 7003 perf_swevent_init_hrtimer(event); 7004 7005 return 0; 7006} 7007 7008static struct pmu perf_cpu_clock = { 7009 .task_ctx_nr = perf_sw_context, 7010 7011 .capabilities = PERF_PMU_CAP_NO_NMI, 7012 7013 .event_init = cpu_clock_event_init, 7014 .add = cpu_clock_event_add, 7015 .del = cpu_clock_event_del, 7016 .start = cpu_clock_event_start, 7017 .stop = cpu_clock_event_stop, 7018 .read = cpu_clock_event_read, 7019}; 7020 7021/* 7022 * Software event: task time clock 7023 */ 7024 7025static void task_clock_event_update(struct perf_event *event, u64 now) 7026{ 7027 u64 prev; 7028 s64 delta; 7029 7030 prev = local64_xchg(&event->hw.prev_count, now); 7031 delta = now - prev; 7032 local64_add(delta, &event->count); 7033} 7034 7035static void task_clock_event_start(struct perf_event *event, int flags) 7036{ 7037 local64_set(&event->hw.prev_count, event->ctx->time); 7038 perf_swevent_start_hrtimer(event); 7039} 7040 7041static void task_clock_event_stop(struct perf_event *event, int flags) 7042{ 7043 perf_swevent_cancel_hrtimer(event); 7044 task_clock_event_update(event, event->ctx->time); 7045} 7046 7047static int task_clock_event_add(struct perf_event *event, int flags) 7048{ 7049 if (flags & PERF_EF_START) 7050 task_clock_event_start(event, flags); 7051 perf_event_update_userpage(event); 7052 7053 return 0; 7054} 7055 7056static void task_clock_event_del(struct perf_event *event, int flags) 7057{ 7058 task_clock_event_stop(event, PERF_EF_UPDATE); 7059} 7060 7061static void task_clock_event_read(struct perf_event *event) 7062{ 7063 u64 now = perf_clock(); 7064 u64 delta = now - event->ctx->timestamp; 7065 u64 time = event->ctx->time + delta; 7066 7067 task_clock_event_update(event, time); 7068} 7069 7070static int task_clock_event_init(struct perf_event *event) 7071{ 7072 if (event->attr.type != PERF_TYPE_SOFTWARE) 7073 return -ENOENT; 7074 7075 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 7076 return -ENOENT; 7077 7078 /* 7079 * no branch sampling for software events 7080 */ 7081 if (has_branch_stack(event)) 7082 return -EOPNOTSUPP; 7083 7084 perf_swevent_init_hrtimer(event); 7085 7086 return 0; 7087} 7088 7089static struct pmu perf_task_clock = { 7090 .task_ctx_nr = perf_sw_context, 7091 7092 .capabilities = PERF_PMU_CAP_NO_NMI, 7093 7094 .event_init = task_clock_event_init, 7095 .add = task_clock_event_add, 7096 .del = task_clock_event_del, 7097 .start = task_clock_event_start, 7098 .stop = task_clock_event_stop, 7099 .read = task_clock_event_read, 7100}; 7101 7102static void perf_pmu_nop_void(struct pmu *pmu) 7103{ 7104} 7105 7106static int perf_pmu_nop_int(struct pmu *pmu) 7107{ 7108 return 0; 7109} 7110 7111static void perf_pmu_start_txn(struct pmu *pmu) 7112{ 7113 perf_pmu_disable(pmu); 7114} 7115 7116static int perf_pmu_commit_txn(struct pmu *pmu) 7117{ 7118 perf_pmu_enable(pmu); 7119 return 0; 7120} 7121 7122static void perf_pmu_cancel_txn(struct pmu *pmu) 7123{ 7124 perf_pmu_enable(pmu); 7125} 7126 7127static int perf_event_idx_default(struct perf_event *event) 7128{ 7129 return 0; 7130} 7131 7132/* 7133 * Ensures all contexts with the same task_ctx_nr have the same 7134 * pmu_cpu_context too. 7135 */ 7136static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 7137{ 7138 struct pmu *pmu; 7139 7140 if (ctxn < 0) 7141 return NULL; 7142 7143 list_for_each_entry(pmu, &pmus, entry) { 7144 if (pmu->task_ctx_nr == ctxn) 7145 return pmu->pmu_cpu_context; 7146 } 7147 7148 return NULL; 7149} 7150 7151static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 7152{ 7153 int cpu; 7154 7155 for_each_possible_cpu(cpu) { 7156 struct perf_cpu_context *cpuctx; 7157 7158 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7159 7160 if (cpuctx->unique_pmu == old_pmu) 7161 cpuctx->unique_pmu = pmu; 7162 } 7163} 7164 7165static void free_pmu_context(struct pmu *pmu) 7166{ 7167 struct pmu *i; 7168 7169 mutex_lock(&pmus_lock); 7170 /* 7171 * Like a real lame refcount. 7172 */ 7173 list_for_each_entry(i, &pmus, entry) { 7174 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 7175 update_pmu_context(i, pmu); 7176 goto out; 7177 } 7178 } 7179 7180 free_percpu(pmu->pmu_cpu_context); 7181out: 7182 mutex_unlock(&pmus_lock); 7183} 7184static struct idr pmu_idr; 7185 7186static ssize_t 7187type_show(struct device *dev, struct device_attribute *attr, char *page) 7188{ 7189 struct pmu *pmu = dev_get_drvdata(dev); 7190 7191 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 7192} 7193static DEVICE_ATTR_RO(type); 7194 7195static ssize_t 7196perf_event_mux_interval_ms_show(struct device *dev, 7197 struct device_attribute *attr, 7198 char *page) 7199{ 7200 struct pmu *pmu = dev_get_drvdata(dev); 7201 7202 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 7203} 7204 7205static ssize_t 7206perf_event_mux_interval_ms_store(struct device *dev, 7207 struct device_attribute *attr, 7208 const char *buf, size_t count) 7209{ 7210 struct pmu *pmu = dev_get_drvdata(dev); 7211 int timer, cpu, ret; 7212 7213 ret = kstrtoint(buf, 0, &timer); 7214 if (ret) 7215 return ret; 7216 7217 if (timer < 1) 7218 return -EINVAL; 7219 7220 /* same value, noting to do */ 7221 if (timer == pmu->hrtimer_interval_ms) 7222 return count; 7223 7224 pmu->hrtimer_interval_ms = timer; 7225 7226 /* update all cpuctx for this PMU */ 7227 for_each_possible_cpu(cpu) { 7228 struct perf_cpu_context *cpuctx; 7229 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7230 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 7231 7232 if (hrtimer_active(&cpuctx->hrtimer)) 7233 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 7234 } 7235 7236 return count; 7237} 7238static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 7239 7240static struct attribute *pmu_dev_attrs[] = { 7241 &dev_attr_type.attr, 7242 &dev_attr_perf_event_mux_interval_ms.attr, 7243 NULL, 7244}; 7245ATTRIBUTE_GROUPS(pmu_dev); 7246 7247static int pmu_bus_running; 7248static struct bus_type pmu_bus = { 7249 .name = "event_source", 7250 .dev_groups = pmu_dev_groups, 7251}; 7252 7253static void pmu_dev_release(struct device *dev) 7254{ 7255 kfree(dev); 7256} 7257 7258static int pmu_dev_alloc(struct pmu *pmu) 7259{ 7260 int ret = -ENOMEM; 7261 7262 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 7263 if (!pmu->dev) 7264 goto out; 7265 7266 pmu->dev->groups = pmu->attr_groups; 7267 device_initialize(pmu->dev); 7268 ret = dev_set_name(pmu->dev, "%s", pmu->name); 7269 if (ret) 7270 goto free_dev; 7271 7272 dev_set_drvdata(pmu->dev, pmu); 7273 pmu->dev->bus = &pmu_bus; 7274 pmu->dev->release = pmu_dev_release; 7275 ret = device_add(pmu->dev); 7276 if (ret) 7277 goto free_dev; 7278 7279out: 7280 return ret; 7281 7282free_dev: 7283 put_device(pmu->dev); 7284 goto out; 7285} 7286 7287static struct lock_class_key cpuctx_mutex; 7288static struct lock_class_key cpuctx_lock; 7289 7290int perf_pmu_register(struct pmu *pmu, const char *name, int type) 7291{ 7292 int cpu, ret; 7293 7294 mutex_lock(&pmus_lock); 7295 ret = -ENOMEM; 7296 pmu->pmu_disable_count = alloc_percpu(int); 7297 if (!pmu->pmu_disable_count) 7298 goto unlock; 7299 7300 pmu->type = -1; 7301 if (!name) 7302 goto skip_type; 7303 pmu->name = name; 7304 7305 if (type < 0) { 7306 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 7307 if (type < 0) { 7308 ret = type; 7309 goto free_pdc; 7310 } 7311 } 7312 pmu->type = type; 7313 7314 if (pmu_bus_running) { 7315 ret = pmu_dev_alloc(pmu); 7316 if (ret) 7317 goto free_idr; 7318 } 7319 7320skip_type: 7321 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 7322 if (pmu->pmu_cpu_context) 7323 goto got_cpu_context; 7324 7325 ret = -ENOMEM; 7326 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 7327 if (!pmu->pmu_cpu_context) 7328 goto free_dev; 7329 7330 for_each_possible_cpu(cpu) { 7331 struct perf_cpu_context *cpuctx; 7332 7333 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7334 __perf_event_init_context(&cpuctx->ctx); 7335 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 7336 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 7337 cpuctx->ctx.pmu = pmu; 7338 7339 __perf_cpu_hrtimer_init(cpuctx, cpu); 7340 7341 cpuctx->unique_pmu = pmu; 7342 } 7343 7344got_cpu_context: 7345 if (!pmu->start_txn) { 7346 if (pmu->pmu_enable) { 7347 /* 7348 * If we have pmu_enable/pmu_disable calls, install 7349 * transaction stubs that use that to try and batch 7350 * hardware accesses. 7351 */ 7352 pmu->start_txn = perf_pmu_start_txn; 7353 pmu->commit_txn = perf_pmu_commit_txn; 7354 pmu->cancel_txn = perf_pmu_cancel_txn; 7355 } else { 7356 pmu->start_txn = perf_pmu_nop_void; 7357 pmu->commit_txn = perf_pmu_nop_int; 7358 pmu->cancel_txn = perf_pmu_nop_void; 7359 } 7360 } 7361 7362 if (!pmu->pmu_enable) { 7363 pmu->pmu_enable = perf_pmu_nop_void; 7364 pmu->pmu_disable = perf_pmu_nop_void; 7365 } 7366 7367 if (!pmu->event_idx) 7368 pmu->event_idx = perf_event_idx_default; 7369 7370 list_add_rcu(&pmu->entry, &pmus); 7371 atomic_set(&pmu->exclusive_cnt, 0); 7372 ret = 0; 7373unlock: 7374 mutex_unlock(&pmus_lock); 7375 7376 return ret; 7377 7378free_dev: 7379 device_del(pmu->dev); 7380 put_device(pmu->dev); 7381 7382free_idr: 7383 if (pmu->type >= PERF_TYPE_MAX) 7384 idr_remove(&pmu_idr, pmu->type); 7385 7386free_pdc: 7387 free_percpu(pmu->pmu_disable_count); 7388 goto unlock; 7389} 7390EXPORT_SYMBOL_GPL(perf_pmu_register); 7391 7392void perf_pmu_unregister(struct pmu *pmu) 7393{ 7394 mutex_lock(&pmus_lock); 7395 list_del_rcu(&pmu->entry); 7396 mutex_unlock(&pmus_lock); 7397 7398 /* 7399 * We dereference the pmu list under both SRCU and regular RCU, so 7400 * synchronize against both of those. 7401 */ 7402 synchronize_srcu(&pmus_srcu); 7403 synchronize_rcu(); 7404 7405 free_percpu(pmu->pmu_disable_count); 7406 if (pmu->type >= PERF_TYPE_MAX) 7407 idr_remove(&pmu_idr, pmu->type); 7408 device_del(pmu->dev); 7409 put_device(pmu->dev); 7410 free_pmu_context(pmu); 7411} 7412EXPORT_SYMBOL_GPL(perf_pmu_unregister); 7413 7414static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 7415{ 7416 struct perf_event_context *ctx = NULL; 7417 int ret; 7418 7419 if (!try_module_get(pmu->module)) 7420 return -ENODEV; 7421 7422 if (event->group_leader != event) { 7423 /* 7424 * This ctx->mutex can nest when we're called through 7425 * inheritance. See the perf_event_ctx_lock_nested() comment. 7426 */ 7427 ctx = perf_event_ctx_lock_nested(event->group_leader, 7428 SINGLE_DEPTH_NESTING); 7429 BUG_ON(!ctx); 7430 } 7431 7432 event->pmu = pmu; 7433 ret = pmu->event_init(event); 7434 7435 if (ctx) 7436 perf_event_ctx_unlock(event->group_leader, ctx); 7437 7438 if (ret) 7439 module_put(pmu->module); 7440 7441 return ret; 7442} 7443 7444struct pmu *perf_init_event(struct perf_event *event) 7445{ 7446 struct pmu *pmu = NULL; 7447 int idx; 7448 int ret; 7449 7450 idx = srcu_read_lock(&pmus_srcu); 7451 7452 rcu_read_lock(); 7453 pmu = idr_find(&pmu_idr, event->attr.type); 7454 rcu_read_unlock(); 7455 if (pmu) { 7456 ret = perf_try_init_event(pmu, event); 7457 if (ret) 7458 pmu = ERR_PTR(ret); 7459 goto unlock; 7460 } 7461 7462 list_for_each_entry_rcu(pmu, &pmus, entry) { 7463 ret = perf_try_init_event(pmu, event); 7464 if (!ret) 7465 goto unlock; 7466 7467 if (ret != -ENOENT) { 7468 pmu = ERR_PTR(ret); 7469 goto unlock; 7470 } 7471 } 7472 pmu = ERR_PTR(-ENOENT); 7473unlock: 7474 srcu_read_unlock(&pmus_srcu, idx); 7475 7476 return pmu; 7477} 7478 7479static void account_event_cpu(struct perf_event *event, int cpu) 7480{ 7481 if (event->parent) 7482 return; 7483 7484 if (is_cgroup_event(event)) 7485 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 7486} 7487 7488static void account_event(struct perf_event *event) 7489{ 7490 if (event->parent) 7491 return; 7492 7493 if (event->attach_state & PERF_ATTACH_TASK) 7494 static_key_slow_inc(&perf_sched_events.key); 7495 if (event->attr.mmap || event->attr.mmap_data) 7496 atomic_inc(&nr_mmap_events); 7497 if (event->attr.comm) 7498 atomic_inc(&nr_comm_events); 7499 if (event->attr.task) 7500 atomic_inc(&nr_task_events); 7501 if (event->attr.freq) { 7502 if (atomic_inc_return(&nr_freq_events) == 1) 7503 tick_nohz_full_kick_all(); 7504 } 7505 if (has_branch_stack(event)) 7506 static_key_slow_inc(&perf_sched_events.key); 7507 if (is_cgroup_event(event)) 7508 static_key_slow_inc(&perf_sched_events.key); 7509 7510 account_event_cpu(event, event->cpu); 7511} 7512 7513/* 7514 * Allocate and initialize a event structure 7515 */ 7516static struct perf_event * 7517perf_event_alloc(struct perf_event_attr *attr, int cpu, 7518 struct task_struct *task, 7519 struct perf_event *group_leader, 7520 struct perf_event *parent_event, 7521 perf_overflow_handler_t overflow_handler, 7522 void *context, int cgroup_fd) 7523{ 7524 struct pmu *pmu; 7525 struct perf_event *event; 7526 struct hw_perf_event *hwc; 7527 long err = -EINVAL; 7528 7529 if ((unsigned)cpu >= nr_cpu_ids) { 7530 if (!task || cpu != -1) 7531 return ERR_PTR(-EINVAL); 7532 } 7533 7534 event = kzalloc(sizeof(*event), GFP_KERNEL); 7535 if (!event) 7536 return ERR_PTR(-ENOMEM); 7537 7538 /* 7539 * Single events are their own group leaders, with an 7540 * empty sibling list: 7541 */ 7542 if (!group_leader) 7543 group_leader = event; 7544 7545 mutex_init(&event->child_mutex); 7546 INIT_LIST_HEAD(&event->child_list); 7547 7548 INIT_LIST_HEAD(&event->group_entry); 7549 INIT_LIST_HEAD(&event->event_entry); 7550 INIT_LIST_HEAD(&event->sibling_list); 7551 INIT_LIST_HEAD(&event->rb_entry); 7552 INIT_LIST_HEAD(&event->active_entry); 7553 INIT_HLIST_NODE(&event->hlist_entry); 7554 7555 7556 init_waitqueue_head(&event->waitq); 7557 init_irq_work(&event->pending, perf_pending_event); 7558 7559 mutex_init(&event->mmap_mutex); 7560 7561 atomic_long_set(&event->refcount, 1); 7562 event->cpu = cpu; 7563 event->attr = *attr; 7564 event->group_leader = group_leader; 7565 event->pmu = NULL; 7566 event->oncpu = -1; 7567 7568 event->parent = parent_event; 7569 7570 event->ns = get_pid_ns(task_active_pid_ns(current)); 7571 event->id = atomic64_inc_return(&perf_event_id); 7572 7573 event->state = PERF_EVENT_STATE_INACTIVE; 7574 7575 if (task) { 7576 event->attach_state = PERF_ATTACH_TASK; 7577 /* 7578 * XXX pmu::event_init needs to know what task to account to 7579 * and we cannot use the ctx information because we need the 7580 * pmu before we get a ctx. 7581 */ 7582 event->hw.target = task; 7583 } 7584 7585 event->clock = &local_clock; 7586 if (parent_event) 7587 event->clock = parent_event->clock; 7588 7589 if (!overflow_handler && parent_event) { 7590 overflow_handler = parent_event->overflow_handler; 7591 context = parent_event->overflow_handler_context; 7592 } 7593 7594 event->overflow_handler = overflow_handler; 7595 event->overflow_handler_context = context; 7596 7597 perf_event__state_init(event); 7598 7599 pmu = NULL; 7600 7601 hwc = &event->hw; 7602 hwc->sample_period = attr->sample_period; 7603 if (attr->freq && attr->sample_freq) 7604 hwc->sample_period = 1; 7605 hwc->last_period = hwc->sample_period; 7606 7607 local64_set(&hwc->period_left, hwc->sample_period); 7608 7609 /* 7610 * we currently do not support PERF_FORMAT_GROUP on inherited events 7611 */ 7612 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 7613 goto err_ns; 7614 7615 if (!has_branch_stack(event)) 7616 event->attr.branch_sample_type = 0; 7617 7618 if (cgroup_fd != -1) { 7619 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 7620 if (err) 7621 goto err_ns; 7622 } 7623 7624 pmu = perf_init_event(event); 7625 if (!pmu) 7626 goto err_ns; 7627 else if (IS_ERR(pmu)) { 7628 err = PTR_ERR(pmu); 7629 goto err_ns; 7630 } 7631 7632 err = exclusive_event_init(event); 7633 if (err) 7634 goto err_pmu; 7635 7636 if (!event->parent) { 7637 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 7638 err = get_callchain_buffers(); 7639 if (err) 7640 goto err_per_task; 7641 } 7642 } 7643 7644 /* symmetric to unaccount_event() in _free_event() */ 7645 account_event(event); 7646 7647 return event; 7648 7649err_per_task: 7650 exclusive_event_destroy(event); 7651 7652err_pmu: 7653 if (event->destroy) 7654 event->destroy(event); 7655 module_put(pmu->module); 7656err_ns: 7657 if (is_cgroup_event(event)) 7658 perf_detach_cgroup(event); 7659 if (event->ns) 7660 put_pid_ns(event->ns); 7661 kfree(event); 7662 7663 return ERR_PTR(err); 7664} 7665 7666static int perf_copy_attr(struct perf_event_attr __user *uattr, 7667 struct perf_event_attr *attr) 7668{ 7669 u32 size; 7670 int ret; 7671 7672 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 7673 return -EFAULT; 7674 7675 /* 7676 * zero the full structure, so that a short copy will be nice. 7677 */ 7678 memset(attr, 0, sizeof(*attr)); 7679 7680 ret = get_user(size, &uattr->size); 7681 if (ret) 7682 return ret; 7683 7684 if (size > PAGE_SIZE) /* silly large */ 7685 goto err_size; 7686 7687 if (!size) /* abi compat */ 7688 size = PERF_ATTR_SIZE_VER0; 7689 7690 if (size < PERF_ATTR_SIZE_VER0) 7691 goto err_size; 7692 7693 /* 7694 * If we're handed a bigger struct than we know of, 7695 * ensure all the unknown bits are 0 - i.e. new 7696 * user-space does not rely on any kernel feature 7697 * extensions we dont know about yet. 7698 */ 7699 if (size > sizeof(*attr)) { 7700 unsigned char __user *addr; 7701 unsigned char __user *end; 7702 unsigned char val; 7703 7704 addr = (void __user *)uattr + sizeof(*attr); 7705 end = (void __user *)uattr + size; 7706 7707 for (; addr < end; addr++) { 7708 ret = get_user(val, addr); 7709 if (ret) 7710 return ret; 7711 if (val) 7712 goto err_size; 7713 } 7714 size = sizeof(*attr); 7715 } 7716 7717 ret = copy_from_user(attr, uattr, size); 7718 if (ret) 7719 return -EFAULT; 7720 7721 if (attr->__reserved_1) 7722 return -EINVAL; 7723 7724 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 7725 return -EINVAL; 7726 7727 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 7728 return -EINVAL; 7729 7730 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 7731 u64 mask = attr->branch_sample_type; 7732 7733 /* only using defined bits */ 7734 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 7735 return -EINVAL; 7736 7737 /* at least one branch bit must be set */ 7738 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 7739 return -EINVAL; 7740 7741 /* propagate priv level, when not set for branch */ 7742 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 7743 7744 /* exclude_kernel checked on syscall entry */ 7745 if (!attr->exclude_kernel) 7746 mask |= PERF_SAMPLE_BRANCH_KERNEL; 7747 7748 if (!attr->exclude_user) 7749 mask |= PERF_SAMPLE_BRANCH_USER; 7750 7751 if (!attr->exclude_hv) 7752 mask |= PERF_SAMPLE_BRANCH_HV; 7753 /* 7754 * adjust user setting (for HW filter setup) 7755 */ 7756 attr->branch_sample_type = mask; 7757 } 7758 /* privileged levels capture (kernel, hv): check permissions */ 7759 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 7760 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7761 return -EACCES; 7762 } 7763 7764 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 7765 ret = perf_reg_validate(attr->sample_regs_user); 7766 if (ret) 7767 return ret; 7768 } 7769 7770 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 7771 if (!arch_perf_have_user_stack_dump()) 7772 return -ENOSYS; 7773 7774 /* 7775 * We have __u32 type for the size, but so far 7776 * we can only use __u16 as maximum due to the 7777 * __u16 sample size limit. 7778 */ 7779 if (attr->sample_stack_user >= USHRT_MAX) 7780 ret = -EINVAL; 7781 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 7782 ret = -EINVAL; 7783 } 7784 7785 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 7786 ret = perf_reg_validate(attr->sample_regs_intr); 7787out: 7788 return ret; 7789 7790err_size: 7791 put_user(sizeof(*attr), &uattr->size); 7792 ret = -E2BIG; 7793 goto out; 7794} 7795 7796static int 7797perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 7798{ 7799 struct ring_buffer *rb = NULL; 7800 int ret = -EINVAL; 7801 7802 if (!output_event) 7803 goto set; 7804 7805 /* don't allow circular references */ 7806 if (event == output_event) 7807 goto out; 7808 7809 /* 7810 * Don't allow cross-cpu buffers 7811 */ 7812 if (output_event->cpu != event->cpu) 7813 goto out; 7814 7815 /* 7816 * If its not a per-cpu rb, it must be the same task. 7817 */ 7818 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 7819 goto out; 7820 7821 /* 7822 * Mixing clocks in the same buffer is trouble you don't need. 7823 */ 7824 if (output_event->clock != event->clock) 7825 goto out; 7826 7827 /* 7828 * If both events generate aux data, they must be on the same PMU 7829 */ 7830 if (has_aux(event) && has_aux(output_event) && 7831 event->pmu != output_event->pmu) 7832 goto out; 7833 7834set: 7835 mutex_lock(&event->mmap_mutex); 7836 /* Can't redirect output if we've got an active mmap() */ 7837 if (atomic_read(&event->mmap_count)) 7838 goto unlock; 7839 7840 if (output_event) { 7841 /* get the rb we want to redirect to */ 7842 rb = ring_buffer_get(output_event); 7843 if (!rb) 7844 goto unlock; 7845 } 7846 7847 ring_buffer_attach(event, rb); 7848 7849 ret = 0; 7850unlock: 7851 mutex_unlock(&event->mmap_mutex); 7852 7853out: 7854 return ret; 7855} 7856 7857static void mutex_lock_double(struct mutex *a, struct mutex *b) 7858{ 7859 if (b < a) 7860 swap(a, b); 7861 7862 mutex_lock(a); 7863 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 7864} 7865 7866static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 7867{ 7868 bool nmi_safe = false; 7869 7870 switch (clk_id) { 7871 case CLOCK_MONOTONIC: 7872 event->clock = &ktime_get_mono_fast_ns; 7873 nmi_safe = true; 7874 break; 7875 7876 case CLOCK_MONOTONIC_RAW: 7877 event->clock = &ktime_get_raw_fast_ns; 7878 nmi_safe = true; 7879 break; 7880 7881 case CLOCK_REALTIME: 7882 event->clock = &ktime_get_real_ns; 7883 break; 7884 7885 case CLOCK_BOOTTIME: 7886 event->clock = &ktime_get_boot_ns; 7887 break; 7888 7889 case CLOCK_TAI: 7890 event->clock = &ktime_get_tai_ns; 7891 break; 7892 7893 default: 7894 return -EINVAL; 7895 } 7896 7897 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 7898 return -EINVAL; 7899 7900 return 0; 7901} 7902 7903/** 7904 * sys_perf_event_open - open a performance event, associate it to a task/cpu 7905 * 7906 * @attr_uptr: event_id type attributes for monitoring/sampling 7907 * @pid: target pid 7908 * @cpu: target cpu 7909 * @group_fd: group leader event fd 7910 */ 7911SYSCALL_DEFINE5(perf_event_open, 7912 struct perf_event_attr __user *, attr_uptr, 7913 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 7914{ 7915 struct perf_event *group_leader = NULL, *output_event = NULL; 7916 struct perf_event *event, *sibling; 7917 struct perf_event_attr attr; 7918 struct perf_event_context *ctx, *uninitialized_var(gctx); 7919 struct file *event_file = NULL; 7920 struct fd group = {NULL, 0}; 7921 struct task_struct *task = NULL; 7922 struct pmu *pmu; 7923 int event_fd; 7924 int move_group = 0; 7925 int err; 7926 int f_flags = O_RDWR; 7927 int cgroup_fd = -1; 7928 7929 /* for future expandability... */ 7930 if (flags & ~PERF_FLAG_ALL) 7931 return -EINVAL; 7932 7933 err = perf_copy_attr(attr_uptr, &attr); 7934 if (err) 7935 return err; 7936 7937 if (!attr.exclude_kernel) { 7938 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7939 return -EACCES; 7940 } 7941 7942 if (attr.freq) { 7943 if (attr.sample_freq > sysctl_perf_event_sample_rate) 7944 return -EINVAL; 7945 } else { 7946 if (attr.sample_period & (1ULL << 63)) 7947 return -EINVAL; 7948 } 7949 7950 /* 7951 * In cgroup mode, the pid argument is used to pass the fd 7952 * opened to the cgroup directory in cgroupfs. The cpu argument 7953 * designates the cpu on which to monitor threads from that 7954 * cgroup. 7955 */ 7956 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 7957 return -EINVAL; 7958 7959 if (flags & PERF_FLAG_FD_CLOEXEC) 7960 f_flags |= O_CLOEXEC; 7961 7962 event_fd = get_unused_fd_flags(f_flags); 7963 if (event_fd < 0) 7964 return event_fd; 7965 7966 if (group_fd != -1) { 7967 err = perf_fget_light(group_fd, &group); 7968 if (err) 7969 goto err_fd; 7970 group_leader = group.file->private_data; 7971 if (flags & PERF_FLAG_FD_OUTPUT) 7972 output_event = group_leader; 7973 if (flags & PERF_FLAG_FD_NO_GROUP) 7974 group_leader = NULL; 7975 } 7976 7977 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 7978 task = find_lively_task_by_vpid(pid); 7979 if (IS_ERR(task)) { 7980 err = PTR_ERR(task); 7981 goto err_group_fd; 7982 } 7983 } 7984 7985 if (task && group_leader && 7986 group_leader->attr.inherit != attr.inherit) { 7987 err = -EINVAL; 7988 goto err_task; 7989 } 7990 7991 get_online_cpus(); 7992 7993 if (flags & PERF_FLAG_PID_CGROUP) 7994 cgroup_fd = pid; 7995 7996 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 7997 NULL, NULL, cgroup_fd); 7998 if (IS_ERR(event)) { 7999 err = PTR_ERR(event); 8000 goto err_cpus; 8001 } 8002 8003 if (is_sampling_event(event)) { 8004 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 8005 err = -ENOTSUPP; 8006 goto err_alloc; 8007 } 8008 } 8009 8010 /* 8011 * Special case software events and allow them to be part of 8012 * any hardware group. 8013 */ 8014 pmu = event->pmu; 8015 8016 if (attr.use_clockid) { 8017 err = perf_event_set_clock(event, attr.clockid); 8018 if (err) 8019 goto err_alloc; 8020 } 8021 8022 if (group_leader && 8023 (is_software_event(event) != is_software_event(group_leader))) { 8024 if (is_software_event(event)) { 8025 /* 8026 * If event and group_leader are not both a software 8027 * event, and event is, then group leader is not. 8028 * 8029 * Allow the addition of software events to !software 8030 * groups, this is safe because software events never 8031 * fail to schedule. 8032 */ 8033 pmu = group_leader->pmu; 8034 } else if (is_software_event(group_leader) && 8035 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 8036 /* 8037 * In case the group is a pure software group, and we 8038 * try to add a hardware event, move the whole group to 8039 * the hardware context. 8040 */ 8041 move_group = 1; 8042 } 8043 } 8044 8045 /* 8046 * Get the target context (task or percpu): 8047 */ 8048 ctx = find_get_context(pmu, task, event); 8049 if (IS_ERR(ctx)) { 8050 err = PTR_ERR(ctx); 8051 goto err_alloc; 8052 } 8053 8054 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 8055 err = -EBUSY; 8056 goto err_context; 8057 } 8058 8059 if (task) { 8060 put_task_struct(task); 8061 task = NULL; 8062 } 8063 8064 /* 8065 * Look up the group leader (we will attach this event to it): 8066 */ 8067 if (group_leader) { 8068 err = -EINVAL; 8069 8070 /* 8071 * Do not allow a recursive hierarchy (this new sibling 8072 * becoming part of another group-sibling): 8073 */ 8074 if (group_leader->group_leader != group_leader) 8075 goto err_context; 8076 8077 /* All events in a group should have the same clock */ 8078 if (group_leader->clock != event->clock) 8079 goto err_context; 8080 8081 /* 8082 * Do not allow to attach to a group in a different 8083 * task or CPU context: 8084 */ 8085 if (move_group) { 8086 /* 8087 * Make sure we're both on the same task, or both 8088 * per-cpu events. 8089 */ 8090 if (group_leader->ctx->task != ctx->task) 8091 goto err_context; 8092 8093 /* 8094 * Make sure we're both events for the same CPU; 8095 * grouping events for different CPUs is broken; since 8096 * you can never concurrently schedule them anyhow. 8097 */ 8098 if (group_leader->cpu != event->cpu) 8099 goto err_context; 8100 } else { 8101 if (group_leader->ctx != ctx) 8102 goto err_context; 8103 } 8104 8105 /* 8106 * Only a group leader can be exclusive or pinned 8107 */ 8108 if (attr.exclusive || attr.pinned) 8109 goto err_context; 8110 } 8111 8112 if (output_event) { 8113 err = perf_event_set_output(event, output_event); 8114 if (err) 8115 goto err_context; 8116 } 8117 8118 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 8119 f_flags); 8120 if (IS_ERR(event_file)) { 8121 err = PTR_ERR(event_file); 8122 goto err_context; 8123 } 8124 8125 if (move_group) { 8126 gctx = group_leader->ctx; 8127 8128 /* 8129 * See perf_event_ctx_lock() for comments on the details 8130 * of swizzling perf_event::ctx. 8131 */ 8132 mutex_lock_double(&gctx->mutex, &ctx->mutex); 8133 8134 perf_remove_from_context(group_leader, false); 8135 8136 list_for_each_entry(sibling, &group_leader->sibling_list, 8137 group_entry) { 8138 perf_remove_from_context(sibling, false); 8139 put_ctx(gctx); 8140 } 8141 } else { 8142 mutex_lock(&ctx->mutex); 8143 } 8144 8145 WARN_ON_ONCE(ctx->parent_ctx); 8146 8147 if (move_group) { 8148 /* 8149 * Wait for everybody to stop referencing the events through 8150 * the old lists, before installing it on new lists. 8151 */ 8152 synchronize_rcu(); 8153 8154 /* 8155 * Install the group siblings before the group leader. 8156 * 8157 * Because a group leader will try and install the entire group 8158 * (through the sibling list, which is still in-tact), we can 8159 * end up with siblings installed in the wrong context. 8160 * 8161 * By installing siblings first we NO-OP because they're not 8162 * reachable through the group lists. 8163 */ 8164 list_for_each_entry(sibling, &group_leader->sibling_list, 8165 group_entry) { 8166 perf_event__state_init(sibling); 8167 perf_install_in_context(ctx, sibling, sibling->cpu); 8168 get_ctx(ctx); 8169 } 8170 8171 /* 8172 * Removing from the context ends up with disabled 8173 * event. What we want here is event in the initial 8174 * startup state, ready to be add into new context. 8175 */ 8176 perf_event__state_init(group_leader); 8177 perf_install_in_context(ctx, group_leader, group_leader->cpu); 8178 get_ctx(ctx); 8179 } 8180 8181 if (!exclusive_event_installable(event, ctx)) { 8182 err = -EBUSY; 8183 mutex_unlock(&ctx->mutex); 8184 fput(event_file); 8185 goto err_context; 8186 } 8187 8188 perf_install_in_context(ctx, event, event->cpu); 8189 perf_unpin_context(ctx); 8190 8191 if (move_group) { 8192 mutex_unlock(&gctx->mutex); 8193 put_ctx(gctx); 8194 } 8195 mutex_unlock(&ctx->mutex); 8196 8197 put_online_cpus(); 8198 8199 event->owner = current; 8200 8201 mutex_lock(¤t->perf_event_mutex); 8202 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 8203 mutex_unlock(¤t->perf_event_mutex); 8204 8205 /* 8206 * Precalculate sample_data sizes 8207 */ 8208 perf_event__header_size(event); 8209 perf_event__id_header_size(event); 8210 8211 /* 8212 * Drop the reference on the group_event after placing the 8213 * new event on the sibling_list. This ensures destruction 8214 * of the group leader will find the pointer to itself in 8215 * perf_group_detach(). 8216 */ 8217 fdput(group); 8218 fd_install(event_fd, event_file); 8219 return event_fd; 8220 8221err_context: 8222 perf_unpin_context(ctx); 8223 put_ctx(ctx); 8224err_alloc: 8225 /* 8226 * If event_file is set, the fput() above will have called ->release() 8227 * and that will take care of freeing the event. 8228 */ 8229 if (!event_file) 8230 free_event(event); 8231err_cpus: 8232 put_online_cpus(); 8233err_task: 8234 if (task) 8235 put_task_struct(task); 8236err_group_fd: 8237 fdput(group); 8238err_fd: 8239 put_unused_fd(event_fd); 8240 return err; 8241} 8242 8243/** 8244 * perf_event_create_kernel_counter 8245 * 8246 * @attr: attributes of the counter to create 8247 * @cpu: cpu in which the counter is bound 8248 * @task: task to profile (NULL for percpu) 8249 */ 8250struct perf_event * 8251perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 8252 struct task_struct *task, 8253 perf_overflow_handler_t overflow_handler, 8254 void *context) 8255{ 8256 struct perf_event_context *ctx; 8257 struct perf_event *event; 8258 int err; 8259 8260 /* 8261 * Get the target context (task or percpu): 8262 */ 8263 8264 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 8265 overflow_handler, context, -1); 8266 if (IS_ERR(event)) { 8267 err = PTR_ERR(event); 8268 goto err; 8269 } 8270 8271 /* Mark owner so we could distinguish it from user events. */ 8272 event->owner = EVENT_OWNER_KERNEL; 8273 8274 ctx = find_get_context(event->pmu, task, event); 8275 if (IS_ERR(ctx)) { 8276 err = PTR_ERR(ctx); 8277 goto err_free; 8278 } 8279 8280 WARN_ON_ONCE(ctx->parent_ctx); 8281 mutex_lock(&ctx->mutex); 8282 if (!exclusive_event_installable(event, ctx)) { 8283 mutex_unlock(&ctx->mutex); 8284 perf_unpin_context(ctx); 8285 put_ctx(ctx); 8286 err = -EBUSY; 8287 goto err_free; 8288 } 8289 8290 perf_install_in_context(ctx, event, cpu); 8291 perf_unpin_context(ctx); 8292 mutex_unlock(&ctx->mutex); 8293 8294 return event; 8295 8296err_free: 8297 free_event(event); 8298err: 8299 return ERR_PTR(err); 8300} 8301EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 8302 8303void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 8304{ 8305 struct perf_event_context *src_ctx; 8306 struct perf_event_context *dst_ctx; 8307 struct perf_event *event, *tmp; 8308 LIST_HEAD(events); 8309 8310 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 8311 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 8312 8313 /* 8314 * See perf_event_ctx_lock() for comments on the details 8315 * of swizzling perf_event::ctx. 8316 */ 8317 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 8318 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 8319 event_entry) { 8320 perf_remove_from_context(event, false); 8321 unaccount_event_cpu(event, src_cpu); 8322 put_ctx(src_ctx); 8323 list_add(&event->migrate_entry, &events); 8324 } 8325 8326 /* 8327 * Wait for the events to quiesce before re-instating them. 8328 */ 8329 synchronize_rcu(); 8330 8331 /* 8332 * Re-instate events in 2 passes. 8333 * 8334 * Skip over group leaders and only install siblings on this first 8335 * pass, siblings will not get enabled without a leader, however a 8336 * leader will enable its siblings, even if those are still on the old 8337 * context. 8338 */ 8339 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8340 if (event->group_leader == event) 8341 continue; 8342 8343 list_del(&event->migrate_entry); 8344 if (event->state >= PERF_EVENT_STATE_OFF) 8345 event->state = PERF_EVENT_STATE_INACTIVE; 8346 account_event_cpu(event, dst_cpu); 8347 perf_install_in_context(dst_ctx, event, dst_cpu); 8348 get_ctx(dst_ctx); 8349 } 8350 8351 /* 8352 * Once all the siblings are setup properly, install the group leaders 8353 * to make it go. 8354 */ 8355 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8356 list_del(&event->migrate_entry); 8357 if (event->state >= PERF_EVENT_STATE_OFF) 8358 event->state = PERF_EVENT_STATE_INACTIVE; 8359 account_event_cpu(event, dst_cpu); 8360 perf_install_in_context(dst_ctx, event, dst_cpu); 8361 get_ctx(dst_ctx); 8362 } 8363 mutex_unlock(&dst_ctx->mutex); 8364 mutex_unlock(&src_ctx->mutex); 8365} 8366EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 8367 8368static void sync_child_event(struct perf_event *child_event, 8369 struct task_struct *child) 8370{ 8371 struct perf_event *parent_event = child_event->parent; 8372 u64 child_val; 8373 8374 if (child_event->attr.inherit_stat) 8375 perf_event_read_event(child_event, child); 8376 8377 child_val = perf_event_count(child_event); 8378 8379 /* 8380 * Add back the child's count to the parent's count: 8381 */ 8382 atomic64_add(child_val, &parent_event->child_count); 8383 atomic64_add(child_event->total_time_enabled, 8384 &parent_event->child_total_time_enabled); 8385 atomic64_add(child_event->total_time_running, 8386 &parent_event->child_total_time_running); 8387 8388 /* 8389 * Remove this event from the parent's list 8390 */ 8391 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8392 mutex_lock(&parent_event->child_mutex); 8393 list_del_init(&child_event->child_list); 8394 mutex_unlock(&parent_event->child_mutex); 8395 8396 /* 8397 * Make sure user/parent get notified, that we just 8398 * lost one event. 8399 */ 8400 perf_event_wakeup(parent_event); 8401 8402 /* 8403 * Release the parent event, if this was the last 8404 * reference to it. 8405 */ 8406 put_event(parent_event); 8407} 8408 8409static void 8410__perf_event_exit_task(struct perf_event *child_event, 8411 struct perf_event_context *child_ctx, 8412 struct task_struct *child) 8413{ 8414 /* 8415 * Do not destroy the 'original' grouping; because of the context 8416 * switch optimization the original events could've ended up in a 8417 * random child task. 8418 * 8419 * If we were to destroy the original group, all group related 8420 * operations would cease to function properly after this random 8421 * child dies. 8422 * 8423 * Do destroy all inherited groups, we don't care about those 8424 * and being thorough is better. 8425 */ 8426 perf_remove_from_context(child_event, !!child_event->parent); 8427 8428 /* 8429 * It can happen that the parent exits first, and has events 8430 * that are still around due to the child reference. These 8431 * events need to be zapped. 8432 */ 8433 if (child_event->parent) { 8434 sync_child_event(child_event, child); 8435 free_event(child_event); 8436 } else { 8437 child_event->state = PERF_EVENT_STATE_EXIT; 8438 perf_event_wakeup(child_event); 8439 } 8440} 8441 8442static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 8443{ 8444 struct perf_event *child_event, *next; 8445 struct perf_event_context *child_ctx, *clone_ctx = NULL; 8446 unsigned long flags; 8447 8448 if (likely(!child->perf_event_ctxp[ctxn])) { 8449 perf_event_task(child, NULL, 0); 8450 return; 8451 } 8452 8453 local_irq_save(flags); 8454 /* 8455 * We can't reschedule here because interrupts are disabled, 8456 * and either child is current or it is a task that can't be 8457 * scheduled, so we are now safe from rescheduling changing 8458 * our context. 8459 */ 8460 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 8461 8462 /* 8463 * Take the context lock here so that if find_get_context is 8464 * reading child->perf_event_ctxp, we wait until it has 8465 * incremented the context's refcount before we do put_ctx below. 8466 */ 8467 raw_spin_lock(&child_ctx->lock); 8468 task_ctx_sched_out(child_ctx); 8469 child->perf_event_ctxp[ctxn] = NULL; 8470 8471 /* 8472 * If this context is a clone; unclone it so it can't get 8473 * swapped to another process while we're removing all 8474 * the events from it. 8475 */ 8476 clone_ctx = unclone_ctx(child_ctx); 8477 update_context_time(child_ctx); 8478 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8479 8480 if (clone_ctx) 8481 put_ctx(clone_ctx); 8482 8483 /* 8484 * Report the task dead after unscheduling the events so that we 8485 * won't get any samples after PERF_RECORD_EXIT. We can however still 8486 * get a few PERF_RECORD_READ events. 8487 */ 8488 perf_event_task(child, child_ctx, 0); 8489 8490 /* 8491 * We can recurse on the same lock type through: 8492 * 8493 * __perf_event_exit_task() 8494 * sync_child_event() 8495 * put_event() 8496 * mutex_lock(&ctx->mutex) 8497 * 8498 * But since its the parent context it won't be the same instance. 8499 */ 8500 mutex_lock(&child_ctx->mutex); 8501 8502 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 8503 __perf_event_exit_task(child_event, child_ctx, child); 8504 8505 mutex_unlock(&child_ctx->mutex); 8506 8507 put_ctx(child_ctx); 8508} 8509 8510/* 8511 * When a child task exits, feed back event values to parent events. 8512 */ 8513void perf_event_exit_task(struct task_struct *child) 8514{ 8515 struct perf_event *event, *tmp; 8516 int ctxn; 8517 8518 mutex_lock(&child->perf_event_mutex); 8519 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 8520 owner_entry) { 8521 list_del_init(&event->owner_entry); 8522 8523 /* 8524 * Ensure the list deletion is visible before we clear 8525 * the owner, closes a race against perf_release() where 8526 * we need to serialize on the owner->perf_event_mutex. 8527 */ 8528 smp_wmb(); 8529 event->owner = NULL; 8530 } 8531 mutex_unlock(&child->perf_event_mutex); 8532 8533 for_each_task_context_nr(ctxn) 8534 perf_event_exit_task_context(child, ctxn); 8535} 8536 8537static void perf_free_event(struct perf_event *event, 8538 struct perf_event_context *ctx) 8539{ 8540 struct perf_event *parent = event->parent; 8541 8542 if (WARN_ON_ONCE(!parent)) 8543 return; 8544 8545 mutex_lock(&parent->child_mutex); 8546 list_del_init(&event->child_list); 8547 mutex_unlock(&parent->child_mutex); 8548 8549 put_event(parent); 8550 8551 raw_spin_lock_irq(&ctx->lock); 8552 perf_group_detach(event); 8553 list_del_event(event, ctx); 8554 raw_spin_unlock_irq(&ctx->lock); 8555 free_event(event); 8556} 8557 8558/* 8559 * Free an unexposed, unused context as created by inheritance by 8560 * perf_event_init_task below, used by fork() in case of fail. 8561 * 8562 * Not all locks are strictly required, but take them anyway to be nice and 8563 * help out with the lockdep assertions. 8564 */ 8565void perf_event_free_task(struct task_struct *task) 8566{ 8567 struct perf_event_context *ctx; 8568 struct perf_event *event, *tmp; 8569 int ctxn; 8570 8571 for_each_task_context_nr(ctxn) { 8572 ctx = task->perf_event_ctxp[ctxn]; 8573 if (!ctx) 8574 continue; 8575 8576 mutex_lock(&ctx->mutex); 8577again: 8578 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 8579 group_entry) 8580 perf_free_event(event, ctx); 8581 8582 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 8583 group_entry) 8584 perf_free_event(event, ctx); 8585 8586 if (!list_empty(&ctx->pinned_groups) || 8587 !list_empty(&ctx->flexible_groups)) 8588 goto again; 8589 8590 mutex_unlock(&ctx->mutex); 8591 8592 put_ctx(ctx); 8593 } 8594} 8595 8596void perf_event_delayed_put(struct task_struct *task) 8597{ 8598 int ctxn; 8599 8600 for_each_task_context_nr(ctxn) 8601 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 8602} 8603 8604/* 8605 * inherit a event from parent task to child task: 8606 */ 8607static struct perf_event * 8608inherit_event(struct perf_event *parent_event, 8609 struct task_struct *parent, 8610 struct perf_event_context *parent_ctx, 8611 struct task_struct *child, 8612 struct perf_event *group_leader, 8613 struct perf_event_context *child_ctx) 8614{ 8615 enum perf_event_active_state parent_state = parent_event->state; 8616 struct perf_event *child_event; 8617 unsigned long flags; 8618 8619 /* 8620 * Instead of creating recursive hierarchies of events, 8621 * we link inherited events back to the original parent, 8622 * which has a filp for sure, which we use as the reference 8623 * count: 8624 */ 8625 if (parent_event->parent) 8626 parent_event = parent_event->parent; 8627 8628 child_event = perf_event_alloc(&parent_event->attr, 8629 parent_event->cpu, 8630 child, 8631 group_leader, parent_event, 8632 NULL, NULL, -1); 8633 if (IS_ERR(child_event)) 8634 return child_event; 8635 8636 if (is_orphaned_event(parent_event) || 8637 !atomic_long_inc_not_zero(&parent_event->refcount)) { 8638 free_event(child_event); 8639 return NULL; 8640 } 8641 8642 get_ctx(child_ctx); 8643 8644 /* 8645 * Make the child state follow the state of the parent event, 8646 * not its attr.disabled bit. We hold the parent's mutex, 8647 * so we won't race with perf_event_{en, dis}able_family. 8648 */ 8649 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 8650 child_event->state = PERF_EVENT_STATE_INACTIVE; 8651 else 8652 child_event->state = PERF_EVENT_STATE_OFF; 8653 8654 if (parent_event->attr.freq) { 8655 u64 sample_period = parent_event->hw.sample_period; 8656 struct hw_perf_event *hwc = &child_event->hw; 8657 8658 hwc->sample_period = sample_period; 8659 hwc->last_period = sample_period; 8660 8661 local64_set(&hwc->period_left, sample_period); 8662 } 8663 8664 child_event->ctx = child_ctx; 8665 child_event->overflow_handler = parent_event->overflow_handler; 8666 child_event->overflow_handler_context 8667 = parent_event->overflow_handler_context; 8668 8669 /* 8670 * Precalculate sample_data sizes 8671 */ 8672 perf_event__header_size(child_event); 8673 perf_event__id_header_size(child_event); 8674 8675 /* 8676 * Link it up in the child's context: 8677 */ 8678 raw_spin_lock_irqsave(&child_ctx->lock, flags); 8679 add_event_to_ctx(child_event, child_ctx); 8680 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8681 8682 /* 8683 * Link this into the parent event's child list 8684 */ 8685 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8686 mutex_lock(&parent_event->child_mutex); 8687 list_add_tail(&child_event->child_list, &parent_event->child_list); 8688 mutex_unlock(&parent_event->child_mutex); 8689 8690 return child_event; 8691} 8692 8693static int inherit_group(struct perf_event *parent_event, 8694 struct task_struct *parent, 8695 struct perf_event_context *parent_ctx, 8696 struct task_struct *child, 8697 struct perf_event_context *child_ctx) 8698{ 8699 struct perf_event *leader; 8700 struct perf_event *sub; 8701 struct perf_event *child_ctr; 8702 8703 leader = inherit_event(parent_event, parent, parent_ctx, 8704 child, NULL, child_ctx); 8705 if (IS_ERR(leader)) 8706 return PTR_ERR(leader); 8707 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 8708 child_ctr = inherit_event(sub, parent, parent_ctx, 8709 child, leader, child_ctx); 8710 if (IS_ERR(child_ctr)) 8711 return PTR_ERR(child_ctr); 8712 } 8713 return 0; 8714} 8715 8716static int 8717inherit_task_group(struct perf_event *event, struct task_struct *parent, 8718 struct perf_event_context *parent_ctx, 8719 struct task_struct *child, int ctxn, 8720 int *inherited_all) 8721{ 8722 int ret; 8723 struct perf_event_context *child_ctx; 8724 8725 if (!event->attr.inherit) { 8726 *inherited_all = 0; 8727 return 0; 8728 } 8729 8730 child_ctx = child->perf_event_ctxp[ctxn]; 8731 if (!child_ctx) { 8732 /* 8733 * This is executed from the parent task context, so 8734 * inherit events that have been marked for cloning. 8735 * First allocate and initialize a context for the 8736 * child. 8737 */ 8738 8739 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 8740 if (!child_ctx) 8741 return -ENOMEM; 8742 8743 child->perf_event_ctxp[ctxn] = child_ctx; 8744 } 8745 8746 ret = inherit_group(event, parent, parent_ctx, 8747 child, child_ctx); 8748 8749 if (ret) 8750 *inherited_all = 0; 8751 8752 return ret; 8753} 8754 8755/* 8756 * Initialize the perf_event context in task_struct 8757 */ 8758static int perf_event_init_context(struct task_struct *child, int ctxn) 8759{ 8760 struct perf_event_context *child_ctx, *parent_ctx; 8761 struct perf_event_context *cloned_ctx; 8762 struct perf_event *event; 8763 struct task_struct *parent = current; 8764 int inherited_all = 1; 8765 unsigned long flags; 8766 int ret = 0; 8767 8768 if (likely(!parent->perf_event_ctxp[ctxn])) 8769 return 0; 8770 8771 /* 8772 * If the parent's context is a clone, pin it so it won't get 8773 * swapped under us. 8774 */ 8775 parent_ctx = perf_pin_task_context(parent, ctxn); 8776 if (!parent_ctx) 8777 return 0; 8778 8779 /* 8780 * No need to check if parent_ctx != NULL here; since we saw 8781 * it non-NULL earlier, the only reason for it to become NULL 8782 * is if we exit, and since we're currently in the middle of 8783 * a fork we can't be exiting at the same time. 8784 */ 8785 8786 /* 8787 * Lock the parent list. No need to lock the child - not PID 8788 * hashed yet and not running, so nobody can access it. 8789 */ 8790 mutex_lock(&parent_ctx->mutex); 8791 8792 /* 8793 * We dont have to disable NMIs - we are only looking at 8794 * the list, not manipulating it: 8795 */ 8796 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 8797 ret = inherit_task_group(event, parent, parent_ctx, 8798 child, ctxn, &inherited_all); 8799 if (ret) 8800 break; 8801 } 8802 8803 /* 8804 * We can't hold ctx->lock when iterating the ->flexible_group list due 8805 * to allocations, but we need to prevent rotation because 8806 * rotate_ctx() will change the list from interrupt context. 8807 */ 8808 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 8809 parent_ctx->rotate_disable = 1; 8810 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 8811 8812 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 8813 ret = inherit_task_group(event, parent, parent_ctx, 8814 child, ctxn, &inherited_all); 8815 if (ret) 8816 break; 8817 } 8818 8819 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 8820 parent_ctx->rotate_disable = 0; 8821 8822 child_ctx = child->perf_event_ctxp[ctxn]; 8823 8824 if (child_ctx && inherited_all) { 8825 /* 8826 * Mark the child context as a clone of the parent 8827 * context, or of whatever the parent is a clone of. 8828 * 8829 * Note that if the parent is a clone, the holding of 8830 * parent_ctx->lock avoids it from being uncloned. 8831 */ 8832 cloned_ctx = parent_ctx->parent_ctx; 8833 if (cloned_ctx) { 8834 child_ctx->parent_ctx = cloned_ctx; 8835 child_ctx->parent_gen = parent_ctx->parent_gen; 8836 } else { 8837 child_ctx->parent_ctx = parent_ctx; 8838 child_ctx->parent_gen = parent_ctx->generation; 8839 } 8840 get_ctx(child_ctx->parent_ctx); 8841 } 8842 8843 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 8844 mutex_unlock(&parent_ctx->mutex); 8845 8846 perf_unpin_context(parent_ctx); 8847 put_ctx(parent_ctx); 8848 8849 return ret; 8850} 8851 8852/* 8853 * Initialize the perf_event context in task_struct 8854 */ 8855int perf_event_init_task(struct task_struct *child) 8856{ 8857 int ctxn, ret; 8858 8859 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 8860 mutex_init(&child->perf_event_mutex); 8861 INIT_LIST_HEAD(&child->perf_event_list); 8862 8863 for_each_task_context_nr(ctxn) { 8864 ret = perf_event_init_context(child, ctxn); 8865 if (ret) { 8866 perf_event_free_task(child); 8867 return ret; 8868 } 8869 } 8870 8871 return 0; 8872} 8873 8874static void __init perf_event_init_all_cpus(void) 8875{ 8876 struct swevent_htable *swhash; 8877 int cpu; 8878 8879 for_each_possible_cpu(cpu) { 8880 swhash = &per_cpu(swevent_htable, cpu); 8881 mutex_init(&swhash->hlist_mutex); 8882 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 8883 } 8884} 8885 8886static void perf_event_init_cpu(int cpu) 8887{ 8888 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8889 8890 mutex_lock(&swhash->hlist_mutex); 8891 swhash->online = true; 8892 if (swhash->hlist_refcount > 0) { 8893 struct swevent_hlist *hlist; 8894 8895 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 8896 WARN_ON(!hlist); 8897 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8898 } 8899 mutex_unlock(&swhash->hlist_mutex); 8900} 8901 8902#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 8903static void __perf_event_exit_context(void *__info) 8904{ 8905 struct remove_event re = { .detach_group = true }; 8906 struct perf_event_context *ctx = __info; 8907 8908 rcu_read_lock(); 8909 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry) 8910 __perf_remove_from_context(&re); 8911 rcu_read_unlock(); 8912} 8913 8914static void perf_event_exit_cpu_context(int cpu) 8915{ 8916 struct perf_event_context *ctx; 8917 struct pmu *pmu; 8918 int idx; 8919 8920 idx = srcu_read_lock(&pmus_srcu); 8921 list_for_each_entry_rcu(pmu, &pmus, entry) { 8922 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 8923 8924 mutex_lock(&ctx->mutex); 8925 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 8926 mutex_unlock(&ctx->mutex); 8927 } 8928 srcu_read_unlock(&pmus_srcu, idx); 8929} 8930 8931static void perf_event_exit_cpu(int cpu) 8932{ 8933 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8934 8935 perf_event_exit_cpu_context(cpu); 8936 8937 mutex_lock(&swhash->hlist_mutex); 8938 swhash->online = false; 8939 swevent_hlist_release(swhash); 8940 mutex_unlock(&swhash->hlist_mutex); 8941} 8942#else 8943static inline void perf_event_exit_cpu(int cpu) { } 8944#endif 8945 8946static int 8947perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 8948{ 8949 int cpu; 8950 8951 for_each_online_cpu(cpu) 8952 perf_event_exit_cpu(cpu); 8953 8954 return NOTIFY_OK; 8955} 8956 8957/* 8958 * Run the perf reboot notifier at the very last possible moment so that 8959 * the generic watchdog code runs as long as possible. 8960 */ 8961static struct notifier_block perf_reboot_notifier = { 8962 .notifier_call = perf_reboot, 8963 .priority = INT_MIN, 8964}; 8965 8966static int 8967perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 8968{ 8969 unsigned int cpu = (long)hcpu; 8970 8971 switch (action & ~CPU_TASKS_FROZEN) { 8972 8973 case CPU_UP_PREPARE: 8974 case CPU_DOWN_FAILED: 8975 perf_event_init_cpu(cpu); 8976 break; 8977 8978 case CPU_UP_CANCELED: 8979 case CPU_DOWN_PREPARE: 8980 perf_event_exit_cpu(cpu); 8981 break; 8982 default: 8983 break; 8984 } 8985 8986 return NOTIFY_OK; 8987} 8988 8989void __init perf_event_init(void) 8990{ 8991 int ret; 8992 8993 idr_init(&pmu_idr); 8994 8995 perf_event_init_all_cpus(); 8996 init_srcu_struct(&pmus_srcu); 8997 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 8998 perf_pmu_register(&perf_cpu_clock, NULL, -1); 8999 perf_pmu_register(&perf_task_clock, NULL, -1); 9000 perf_tp_register(); 9001 perf_cpu_notifier(perf_cpu_notify); 9002 register_reboot_notifier(&perf_reboot_notifier); 9003 9004 ret = init_hw_breakpoint(); 9005 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 9006 9007 /* do not patch jump label more than once per second */ 9008 jump_label_rate_limit(&perf_sched_events, HZ); 9009 9010 /* 9011 * Build time assertion that we keep the data_head at the intended 9012 * location. IOW, validation we got the __reserved[] size right. 9013 */ 9014 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 9015 != 1024); 9016} 9017 9018ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 9019 char *page) 9020{ 9021 struct perf_pmu_events_attr *pmu_attr = 9022 container_of(attr, struct perf_pmu_events_attr, attr); 9023 9024 if (pmu_attr->event_str) 9025 return sprintf(page, "%s\n", pmu_attr->event_str); 9026 9027 return 0; 9028} 9029 9030static int __init perf_event_sysfs_init(void) 9031{ 9032 struct pmu *pmu; 9033 int ret; 9034 9035 mutex_lock(&pmus_lock); 9036 9037 ret = bus_register(&pmu_bus); 9038 if (ret) 9039 goto unlock; 9040 9041 list_for_each_entry(pmu, &pmus, entry) { 9042 if (!pmu->name || pmu->type < 0) 9043 continue; 9044 9045 ret = pmu_dev_alloc(pmu); 9046 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 9047 } 9048 pmu_bus_running = 1; 9049 ret = 0; 9050 9051unlock: 9052 mutex_unlock(&pmus_lock); 9053 9054 return ret; 9055} 9056device_initcall(perf_event_sysfs_init); 9057 9058#ifdef CONFIG_CGROUP_PERF 9059static struct cgroup_subsys_state * 9060perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9061{ 9062 struct perf_cgroup *jc; 9063 9064 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 9065 if (!jc) 9066 return ERR_PTR(-ENOMEM); 9067 9068 jc->info = alloc_percpu(struct perf_cgroup_info); 9069 if (!jc->info) { 9070 kfree(jc); 9071 return ERR_PTR(-ENOMEM); 9072 } 9073 9074 return &jc->css; 9075} 9076 9077static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 9078{ 9079 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 9080 9081 free_percpu(jc->info); 9082 kfree(jc); 9083} 9084 9085static int __perf_cgroup_move(void *info) 9086{ 9087 struct task_struct *task = info; 9088 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 9089 return 0; 9090} 9091 9092static void perf_cgroup_attach(struct cgroup_subsys_state *css, 9093 struct cgroup_taskset *tset) 9094{ 9095 struct task_struct *task; 9096 9097 cgroup_taskset_for_each(task, tset) 9098 task_function_call(task, __perf_cgroup_move, task); 9099} 9100 9101static void perf_cgroup_exit(struct cgroup_subsys_state *css, 9102 struct cgroup_subsys_state *old_css, 9103 struct task_struct *task) 9104{ 9105 /* 9106 * cgroup_exit() is called in the copy_process() failure path. 9107 * Ignore this case since the task hasn't ran yet, this avoids 9108 * trying to poke a half freed task state from generic code. 9109 */ 9110 if (!(task->flags & PF_EXITING)) 9111 return; 9112 9113 task_function_call(task, __perf_cgroup_move, task); 9114} 9115 9116struct cgroup_subsys perf_event_cgrp_subsys = { 9117 .css_alloc = perf_cgroup_css_alloc, 9118 .css_free = perf_cgroup_css_free, 9119 .exit = perf_cgroup_exit, 9120 .attach = perf_cgroup_attach, 9121}; 9122#endif /* CONFIG_CGROUP_PERF */ 9123