1/*
2 * Performance events core code:
3 *
4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/idr.h>
17#include <linux/file.h>
18#include <linux/poll.h>
19#include <linux/slab.h>
20#include <linux/hash.h>
21#include <linux/tick.h>
22#include <linux/sysfs.h>
23#include <linux/dcache.h>
24#include <linux/percpu.h>
25#include <linux/ptrace.h>
26#include <linux/reboot.h>
27#include <linux/vmstat.h>
28#include <linux/device.h>
29#include <linux/export.h>
30#include <linux/vmalloc.h>
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
36#include <linux/kernel_stat.h>
37#include <linux/cgroup.h>
38#include <linux/perf_event.h>
39#include <linux/ftrace_event.h>
40#include <linux/hw_breakpoint.h>
41#include <linux/mm_types.h>
42#include <linux/module.h>
43#include <linux/mman.h>
44#include <linux/compat.h>
45#include <linux/bpf.h>
46#include <linux/filter.h>
47
48#include "internal.h"
49
50#include <asm/irq_regs.h>
51
52static struct workqueue_struct *perf_wq;
53
54struct remote_function_call {
55	struct task_struct	*p;
56	int			(*func)(void *info);
57	void			*info;
58	int			ret;
59};
60
61static void remote_function(void *data)
62{
63	struct remote_function_call *tfc = data;
64	struct task_struct *p = tfc->p;
65
66	if (p) {
67		tfc->ret = -EAGAIN;
68		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69			return;
70	}
71
72	tfc->ret = tfc->func(tfc->info);
73}
74
75/**
76 * task_function_call - call a function on the cpu on which a task runs
77 * @p:		the task to evaluate
78 * @func:	the function to be called
79 * @info:	the function call argument
80 *
81 * Calls the function @func when the task is currently running. This might
82 * be on the current CPU, which just calls the function directly
83 *
84 * returns: @func return value, or
85 *	    -ESRCH  - when the process isn't running
86 *	    -EAGAIN - when the process moved away
87 */
88static int
89task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
90{
91	struct remote_function_call data = {
92		.p	= p,
93		.func	= func,
94		.info	= info,
95		.ret	= -ESRCH, /* No such (running) process */
96	};
97
98	if (task_curr(p))
99		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100
101	return data.ret;
102}
103
104/**
105 * cpu_function_call - call a function on the cpu
106 * @func:	the function to be called
107 * @info:	the function call argument
108 *
109 * Calls the function @func on the remote cpu.
110 *
111 * returns: @func return value or -ENXIO when the cpu is offline
112 */
113static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
114{
115	struct remote_function_call data = {
116		.p	= NULL,
117		.func	= func,
118		.info	= info,
119		.ret	= -ENXIO, /* No such CPU */
120	};
121
122	smp_call_function_single(cpu, remote_function, &data, 1);
123
124	return data.ret;
125}
126
127#define EVENT_OWNER_KERNEL ((void *) -1)
128
129static bool is_kernel_event(struct perf_event *event)
130{
131	return event->owner == EVENT_OWNER_KERNEL;
132}
133
134#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
135		       PERF_FLAG_FD_OUTPUT  |\
136		       PERF_FLAG_PID_CGROUP |\
137		       PERF_FLAG_FD_CLOEXEC)
138
139/*
140 * branch priv levels that need permission checks
141 */
142#define PERF_SAMPLE_BRANCH_PERM_PLM \
143	(PERF_SAMPLE_BRANCH_KERNEL |\
144	 PERF_SAMPLE_BRANCH_HV)
145
146enum event_type_t {
147	EVENT_FLEXIBLE = 0x1,
148	EVENT_PINNED = 0x2,
149	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
150};
151
152/*
153 * perf_sched_events : >0 events exist
154 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
155 */
156struct static_key_deferred perf_sched_events __read_mostly;
157static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
158static DEFINE_PER_CPU(int, perf_sched_cb_usages);
159
160static atomic_t nr_mmap_events __read_mostly;
161static atomic_t nr_comm_events __read_mostly;
162static atomic_t nr_task_events __read_mostly;
163static atomic_t nr_freq_events __read_mostly;
164
165static LIST_HEAD(pmus);
166static DEFINE_MUTEX(pmus_lock);
167static struct srcu_struct pmus_srcu;
168
169/*
170 * perf event paranoia level:
171 *  -1 - not paranoid at all
172 *   0 - disallow raw tracepoint access for unpriv
173 *   1 - disallow cpu events for unpriv
174 *   2 - disallow kernel profiling for unpriv
175 */
176int sysctl_perf_event_paranoid __read_mostly = 1;
177
178/* Minimum for 512 kiB + 1 user control page */
179int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
180
181/*
182 * max perf event sample rate
183 */
184#define DEFAULT_MAX_SAMPLE_RATE		100000
185#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
186#define DEFAULT_CPU_TIME_MAX_PERCENT	25
187
188int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
189
190static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
191static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
192
193static int perf_sample_allowed_ns __read_mostly =
194	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
195
196void update_perf_cpu_limits(void)
197{
198	u64 tmp = perf_sample_period_ns;
199
200	tmp *= sysctl_perf_cpu_time_max_percent;
201	do_div(tmp, 100);
202	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
203}
204
205static int perf_rotate_context(struct perf_cpu_context *cpuctx);
206
207int perf_proc_update_handler(struct ctl_table *table, int write,
208		void __user *buffer, size_t *lenp,
209		loff_t *ppos)
210{
211	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
212
213	if (ret || !write)
214		return ret;
215
216	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
217	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
218	update_perf_cpu_limits();
219
220	return 0;
221}
222
223int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
224
225int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
226				void __user *buffer, size_t *lenp,
227				loff_t *ppos)
228{
229	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
230
231	if (ret || !write)
232		return ret;
233
234	update_perf_cpu_limits();
235
236	return 0;
237}
238
239/*
240 * perf samples are done in some very critical code paths (NMIs).
241 * If they take too much CPU time, the system can lock up and not
242 * get any real work done.  This will drop the sample rate when
243 * we detect that events are taking too long.
244 */
245#define NR_ACCUMULATED_SAMPLES 128
246static DEFINE_PER_CPU(u64, running_sample_length);
247
248static void perf_duration_warn(struct irq_work *w)
249{
250	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
251	u64 avg_local_sample_len;
252	u64 local_samples_len;
253
254	local_samples_len = __this_cpu_read(running_sample_length);
255	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
256
257	printk_ratelimited(KERN_WARNING
258			"perf interrupt took too long (%lld > %lld), lowering "
259			"kernel.perf_event_max_sample_rate to %d\n",
260			avg_local_sample_len, allowed_ns >> 1,
261			sysctl_perf_event_sample_rate);
262}
263
264static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
265
266void perf_sample_event_took(u64 sample_len_ns)
267{
268	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
269	u64 avg_local_sample_len;
270	u64 local_samples_len;
271
272	if (allowed_ns == 0)
273		return;
274
275	/* decay the counter by 1 average sample */
276	local_samples_len = __this_cpu_read(running_sample_length);
277	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
278	local_samples_len += sample_len_ns;
279	__this_cpu_write(running_sample_length, local_samples_len);
280
281	/*
282	 * note: this will be biased artifically low until we have
283	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
284	 * from having to maintain a count.
285	 */
286	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
287
288	if (avg_local_sample_len <= allowed_ns)
289		return;
290
291	if (max_samples_per_tick <= 1)
292		return;
293
294	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
295	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
296	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
297
298	update_perf_cpu_limits();
299
300	if (!irq_work_queue(&perf_duration_work)) {
301		early_printk("perf interrupt took too long (%lld > %lld), lowering "
302			     "kernel.perf_event_max_sample_rate to %d\n",
303			     avg_local_sample_len, allowed_ns >> 1,
304			     sysctl_perf_event_sample_rate);
305	}
306}
307
308static atomic64_t perf_event_id;
309
310static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
311			      enum event_type_t event_type);
312
313static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
314			     enum event_type_t event_type,
315			     struct task_struct *task);
316
317static void update_context_time(struct perf_event_context *ctx);
318static u64 perf_event_time(struct perf_event *event);
319
320void __weak perf_event_print_debug(void)	{ }
321
322extern __weak const char *perf_pmu_name(void)
323{
324	return "pmu";
325}
326
327static inline u64 perf_clock(void)
328{
329	return local_clock();
330}
331
332static inline u64 perf_event_clock(struct perf_event *event)
333{
334	return event->clock();
335}
336
337static inline struct perf_cpu_context *
338__get_cpu_context(struct perf_event_context *ctx)
339{
340	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
341}
342
343static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
344			  struct perf_event_context *ctx)
345{
346	raw_spin_lock(&cpuctx->ctx.lock);
347	if (ctx)
348		raw_spin_lock(&ctx->lock);
349}
350
351static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
352			    struct perf_event_context *ctx)
353{
354	if (ctx)
355		raw_spin_unlock(&ctx->lock);
356	raw_spin_unlock(&cpuctx->ctx.lock);
357}
358
359#ifdef CONFIG_CGROUP_PERF
360
361static inline bool
362perf_cgroup_match(struct perf_event *event)
363{
364	struct perf_event_context *ctx = event->ctx;
365	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
366
367	/* @event doesn't care about cgroup */
368	if (!event->cgrp)
369		return true;
370
371	/* wants specific cgroup scope but @cpuctx isn't associated with any */
372	if (!cpuctx->cgrp)
373		return false;
374
375	/*
376	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
377	 * also enabled for all its descendant cgroups.  If @cpuctx's
378	 * cgroup is a descendant of @event's (the test covers identity
379	 * case), it's a match.
380	 */
381	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
382				    event->cgrp->css.cgroup);
383}
384
385static inline void perf_detach_cgroup(struct perf_event *event)
386{
387	css_put(&event->cgrp->css);
388	event->cgrp = NULL;
389}
390
391static inline int is_cgroup_event(struct perf_event *event)
392{
393	return event->cgrp != NULL;
394}
395
396static inline u64 perf_cgroup_event_time(struct perf_event *event)
397{
398	struct perf_cgroup_info *t;
399
400	t = per_cpu_ptr(event->cgrp->info, event->cpu);
401	return t->time;
402}
403
404static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
405{
406	struct perf_cgroup_info *info;
407	u64 now;
408
409	now = perf_clock();
410
411	info = this_cpu_ptr(cgrp->info);
412
413	info->time += now - info->timestamp;
414	info->timestamp = now;
415}
416
417static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
418{
419	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
420	if (cgrp_out)
421		__update_cgrp_time(cgrp_out);
422}
423
424static inline void update_cgrp_time_from_event(struct perf_event *event)
425{
426	struct perf_cgroup *cgrp;
427
428	/*
429	 * ensure we access cgroup data only when needed and
430	 * when we know the cgroup is pinned (css_get)
431	 */
432	if (!is_cgroup_event(event))
433		return;
434
435	cgrp = perf_cgroup_from_task(current);
436	/*
437	 * Do not update time when cgroup is not active
438	 */
439	if (cgrp == event->cgrp)
440		__update_cgrp_time(event->cgrp);
441}
442
443static inline void
444perf_cgroup_set_timestamp(struct task_struct *task,
445			  struct perf_event_context *ctx)
446{
447	struct perf_cgroup *cgrp;
448	struct perf_cgroup_info *info;
449
450	/*
451	 * ctx->lock held by caller
452	 * ensure we do not access cgroup data
453	 * unless we have the cgroup pinned (css_get)
454	 */
455	if (!task || !ctx->nr_cgroups)
456		return;
457
458	cgrp = perf_cgroup_from_task(task);
459	info = this_cpu_ptr(cgrp->info);
460	info->timestamp = ctx->timestamp;
461}
462
463#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
464#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
465
466/*
467 * reschedule events based on the cgroup constraint of task.
468 *
469 * mode SWOUT : schedule out everything
470 * mode SWIN : schedule in based on cgroup for next
471 */
472void perf_cgroup_switch(struct task_struct *task, int mode)
473{
474	struct perf_cpu_context *cpuctx;
475	struct pmu *pmu;
476	unsigned long flags;
477
478	/*
479	 * disable interrupts to avoid geting nr_cgroup
480	 * changes via __perf_event_disable(). Also
481	 * avoids preemption.
482	 */
483	local_irq_save(flags);
484
485	/*
486	 * we reschedule only in the presence of cgroup
487	 * constrained events.
488	 */
489	rcu_read_lock();
490
491	list_for_each_entry_rcu(pmu, &pmus, entry) {
492		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
493		if (cpuctx->unique_pmu != pmu)
494			continue; /* ensure we process each cpuctx once */
495
496		/*
497		 * perf_cgroup_events says at least one
498		 * context on this CPU has cgroup events.
499		 *
500		 * ctx->nr_cgroups reports the number of cgroup
501		 * events for a context.
502		 */
503		if (cpuctx->ctx.nr_cgroups > 0) {
504			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
505			perf_pmu_disable(cpuctx->ctx.pmu);
506
507			if (mode & PERF_CGROUP_SWOUT) {
508				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
509				/*
510				 * must not be done before ctxswout due
511				 * to event_filter_match() in event_sched_out()
512				 */
513				cpuctx->cgrp = NULL;
514			}
515
516			if (mode & PERF_CGROUP_SWIN) {
517				WARN_ON_ONCE(cpuctx->cgrp);
518				/*
519				 * set cgrp before ctxsw in to allow
520				 * event_filter_match() to not have to pass
521				 * task around
522				 */
523				cpuctx->cgrp = perf_cgroup_from_task(task);
524				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
525			}
526			perf_pmu_enable(cpuctx->ctx.pmu);
527			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
528		}
529	}
530
531	rcu_read_unlock();
532
533	local_irq_restore(flags);
534}
535
536static inline void perf_cgroup_sched_out(struct task_struct *task,
537					 struct task_struct *next)
538{
539	struct perf_cgroup *cgrp1;
540	struct perf_cgroup *cgrp2 = NULL;
541
542	/*
543	 * we come here when we know perf_cgroup_events > 0
544	 */
545	cgrp1 = perf_cgroup_from_task(task);
546
547	/*
548	 * next is NULL when called from perf_event_enable_on_exec()
549	 * that will systematically cause a cgroup_switch()
550	 */
551	if (next)
552		cgrp2 = perf_cgroup_from_task(next);
553
554	/*
555	 * only schedule out current cgroup events if we know
556	 * that we are switching to a different cgroup. Otherwise,
557	 * do no touch the cgroup events.
558	 */
559	if (cgrp1 != cgrp2)
560		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
561}
562
563static inline void perf_cgroup_sched_in(struct task_struct *prev,
564					struct task_struct *task)
565{
566	struct perf_cgroup *cgrp1;
567	struct perf_cgroup *cgrp2 = NULL;
568
569	/*
570	 * we come here when we know perf_cgroup_events > 0
571	 */
572	cgrp1 = perf_cgroup_from_task(task);
573
574	/* prev can never be NULL */
575	cgrp2 = perf_cgroup_from_task(prev);
576
577	/*
578	 * only need to schedule in cgroup events if we are changing
579	 * cgroup during ctxsw. Cgroup events were not scheduled
580	 * out of ctxsw out if that was not the case.
581	 */
582	if (cgrp1 != cgrp2)
583		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
584}
585
586static inline int perf_cgroup_connect(int fd, struct perf_event *event,
587				      struct perf_event_attr *attr,
588				      struct perf_event *group_leader)
589{
590	struct perf_cgroup *cgrp;
591	struct cgroup_subsys_state *css;
592	struct fd f = fdget(fd);
593	int ret = 0;
594
595	if (!f.file)
596		return -EBADF;
597
598	css = css_tryget_online_from_dir(f.file->f_path.dentry,
599					 &perf_event_cgrp_subsys);
600	if (IS_ERR(css)) {
601		ret = PTR_ERR(css);
602		goto out;
603	}
604
605	cgrp = container_of(css, struct perf_cgroup, css);
606	event->cgrp = cgrp;
607
608	/*
609	 * all events in a group must monitor
610	 * the same cgroup because a task belongs
611	 * to only one perf cgroup at a time
612	 */
613	if (group_leader && group_leader->cgrp != cgrp) {
614		perf_detach_cgroup(event);
615		ret = -EINVAL;
616	}
617out:
618	fdput(f);
619	return ret;
620}
621
622static inline void
623perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
624{
625	struct perf_cgroup_info *t;
626	t = per_cpu_ptr(event->cgrp->info, event->cpu);
627	event->shadow_ctx_time = now - t->timestamp;
628}
629
630static inline void
631perf_cgroup_defer_enabled(struct perf_event *event)
632{
633	/*
634	 * when the current task's perf cgroup does not match
635	 * the event's, we need to remember to call the
636	 * perf_mark_enable() function the first time a task with
637	 * a matching perf cgroup is scheduled in.
638	 */
639	if (is_cgroup_event(event) && !perf_cgroup_match(event))
640		event->cgrp_defer_enabled = 1;
641}
642
643static inline void
644perf_cgroup_mark_enabled(struct perf_event *event,
645			 struct perf_event_context *ctx)
646{
647	struct perf_event *sub;
648	u64 tstamp = perf_event_time(event);
649
650	if (!event->cgrp_defer_enabled)
651		return;
652
653	event->cgrp_defer_enabled = 0;
654
655	event->tstamp_enabled = tstamp - event->total_time_enabled;
656	list_for_each_entry(sub, &event->sibling_list, group_entry) {
657		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
658			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
659			sub->cgrp_defer_enabled = 0;
660		}
661	}
662}
663#else /* !CONFIG_CGROUP_PERF */
664
665static inline bool
666perf_cgroup_match(struct perf_event *event)
667{
668	return true;
669}
670
671static inline void perf_detach_cgroup(struct perf_event *event)
672{}
673
674static inline int is_cgroup_event(struct perf_event *event)
675{
676	return 0;
677}
678
679static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
680{
681	return 0;
682}
683
684static inline void update_cgrp_time_from_event(struct perf_event *event)
685{
686}
687
688static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
689{
690}
691
692static inline void perf_cgroup_sched_out(struct task_struct *task,
693					 struct task_struct *next)
694{
695}
696
697static inline void perf_cgroup_sched_in(struct task_struct *prev,
698					struct task_struct *task)
699{
700}
701
702static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
703				      struct perf_event_attr *attr,
704				      struct perf_event *group_leader)
705{
706	return -EINVAL;
707}
708
709static inline void
710perf_cgroup_set_timestamp(struct task_struct *task,
711			  struct perf_event_context *ctx)
712{
713}
714
715void
716perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
717{
718}
719
720static inline void
721perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
722{
723}
724
725static inline u64 perf_cgroup_event_time(struct perf_event *event)
726{
727	return 0;
728}
729
730static inline void
731perf_cgroup_defer_enabled(struct perf_event *event)
732{
733}
734
735static inline void
736perf_cgroup_mark_enabled(struct perf_event *event,
737			 struct perf_event_context *ctx)
738{
739}
740#endif
741
742/*
743 * set default to be dependent on timer tick just
744 * like original code
745 */
746#define PERF_CPU_HRTIMER (1000 / HZ)
747/*
748 * function must be called with interrupts disbled
749 */
750static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
751{
752	struct perf_cpu_context *cpuctx;
753	enum hrtimer_restart ret = HRTIMER_NORESTART;
754	int rotations = 0;
755
756	WARN_ON(!irqs_disabled());
757
758	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
759
760	rotations = perf_rotate_context(cpuctx);
761
762	/*
763	 * arm timer if needed
764	 */
765	if (rotations) {
766		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
767		ret = HRTIMER_RESTART;
768	}
769
770	return ret;
771}
772
773/* CPU is going down */
774void perf_cpu_hrtimer_cancel(int cpu)
775{
776	struct perf_cpu_context *cpuctx;
777	struct pmu *pmu;
778	unsigned long flags;
779
780	if (WARN_ON(cpu != smp_processor_id()))
781		return;
782
783	local_irq_save(flags);
784
785	rcu_read_lock();
786
787	list_for_each_entry_rcu(pmu, &pmus, entry) {
788		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
789
790		if (pmu->task_ctx_nr == perf_sw_context)
791			continue;
792
793		hrtimer_cancel(&cpuctx->hrtimer);
794	}
795
796	rcu_read_unlock();
797
798	local_irq_restore(flags);
799}
800
801static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
802{
803	struct hrtimer *hr = &cpuctx->hrtimer;
804	struct pmu *pmu = cpuctx->ctx.pmu;
805	int timer;
806
807	/* no multiplexing needed for SW PMU */
808	if (pmu->task_ctx_nr == perf_sw_context)
809		return;
810
811	/*
812	 * check default is sane, if not set then force to
813	 * default interval (1/tick)
814	 */
815	timer = pmu->hrtimer_interval_ms;
816	if (timer < 1)
817		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
818
819	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
820
821	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
822	hr->function = perf_cpu_hrtimer_handler;
823}
824
825static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
826{
827	struct hrtimer *hr = &cpuctx->hrtimer;
828	struct pmu *pmu = cpuctx->ctx.pmu;
829
830	/* not for SW PMU */
831	if (pmu->task_ctx_nr == perf_sw_context)
832		return;
833
834	if (hrtimer_active(hr))
835		return;
836
837	if (!hrtimer_callback_running(hr))
838		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
839					 0, HRTIMER_MODE_REL_PINNED, 0);
840}
841
842void perf_pmu_disable(struct pmu *pmu)
843{
844	int *count = this_cpu_ptr(pmu->pmu_disable_count);
845	if (!(*count)++)
846		pmu->pmu_disable(pmu);
847}
848
849void perf_pmu_enable(struct pmu *pmu)
850{
851	int *count = this_cpu_ptr(pmu->pmu_disable_count);
852	if (!--(*count))
853		pmu->pmu_enable(pmu);
854}
855
856static DEFINE_PER_CPU(struct list_head, active_ctx_list);
857
858/*
859 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
860 * perf_event_task_tick() are fully serialized because they're strictly cpu
861 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
862 * disabled, while perf_event_task_tick is called from IRQ context.
863 */
864static void perf_event_ctx_activate(struct perf_event_context *ctx)
865{
866	struct list_head *head = this_cpu_ptr(&active_ctx_list);
867
868	WARN_ON(!irqs_disabled());
869
870	WARN_ON(!list_empty(&ctx->active_ctx_list));
871
872	list_add(&ctx->active_ctx_list, head);
873}
874
875static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
876{
877	WARN_ON(!irqs_disabled());
878
879	WARN_ON(list_empty(&ctx->active_ctx_list));
880
881	list_del_init(&ctx->active_ctx_list);
882}
883
884static void get_ctx(struct perf_event_context *ctx)
885{
886	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
887}
888
889static void free_ctx(struct rcu_head *head)
890{
891	struct perf_event_context *ctx;
892
893	ctx = container_of(head, struct perf_event_context, rcu_head);
894	kfree(ctx->task_ctx_data);
895	kfree(ctx);
896}
897
898static void put_ctx(struct perf_event_context *ctx)
899{
900	if (atomic_dec_and_test(&ctx->refcount)) {
901		if (ctx->parent_ctx)
902			put_ctx(ctx->parent_ctx);
903		if (ctx->task)
904			put_task_struct(ctx->task);
905		call_rcu(&ctx->rcu_head, free_ctx);
906	}
907}
908
909/*
910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
911 * perf_pmu_migrate_context() we need some magic.
912 *
913 * Those places that change perf_event::ctx will hold both
914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
915 *
916 * Lock ordering is by mutex address. There are two other sites where
917 * perf_event_context::mutex nests and those are:
918 *
919 *  - perf_event_exit_task_context()	[ child , 0 ]
920 *      __perf_event_exit_task()
921 *        sync_child_event()
922 *          put_event()			[ parent, 1 ]
923 *
924 *  - perf_event_init_context()		[ parent, 0 ]
925 *      inherit_task_group()
926 *        inherit_group()
927 *          inherit_event()
928 *            perf_event_alloc()
929 *              perf_init_event()
930 *                perf_try_init_event()	[ child , 1 ]
931 *
932 * While it appears there is an obvious deadlock here -- the parent and child
933 * nesting levels are inverted between the two. This is in fact safe because
934 * life-time rules separate them. That is an exiting task cannot fork, and a
935 * spawning task cannot (yet) exit.
936 *
937 * But remember that that these are parent<->child context relations, and
938 * migration does not affect children, therefore these two orderings should not
939 * interact.
940 *
941 * The change in perf_event::ctx does not affect children (as claimed above)
942 * because the sys_perf_event_open() case will install a new event and break
943 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
944 * concerned with cpuctx and that doesn't have children.
945 *
946 * The places that change perf_event::ctx will issue:
947 *
948 *   perf_remove_from_context();
949 *   synchronize_rcu();
950 *   perf_install_in_context();
951 *
952 * to affect the change. The remove_from_context() + synchronize_rcu() should
953 * quiesce the event, after which we can install it in the new location. This
954 * means that only external vectors (perf_fops, prctl) can perturb the event
955 * while in transit. Therefore all such accessors should also acquire
956 * perf_event_context::mutex to serialize against this.
957 *
958 * However; because event->ctx can change while we're waiting to acquire
959 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
960 * function.
961 *
962 * Lock order:
963 *	task_struct::perf_event_mutex
964 *	  perf_event_context::mutex
965 *	    perf_event_context::lock
966 *	    perf_event::child_mutex;
967 *	    perf_event::mmap_mutex
968 *	    mmap_sem
969 */
970static struct perf_event_context *
971perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
972{
973	struct perf_event_context *ctx;
974
975again:
976	rcu_read_lock();
977	ctx = ACCESS_ONCE(event->ctx);
978	if (!atomic_inc_not_zero(&ctx->refcount)) {
979		rcu_read_unlock();
980		goto again;
981	}
982	rcu_read_unlock();
983
984	mutex_lock_nested(&ctx->mutex, nesting);
985	if (event->ctx != ctx) {
986		mutex_unlock(&ctx->mutex);
987		put_ctx(ctx);
988		goto again;
989	}
990
991	return ctx;
992}
993
994static inline struct perf_event_context *
995perf_event_ctx_lock(struct perf_event *event)
996{
997	return perf_event_ctx_lock_nested(event, 0);
998}
999
1000static void perf_event_ctx_unlock(struct perf_event *event,
1001				  struct perf_event_context *ctx)
1002{
1003	mutex_unlock(&ctx->mutex);
1004	put_ctx(ctx);
1005}
1006
1007/*
1008 * This must be done under the ctx->lock, such as to serialize against
1009 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1010 * calling scheduler related locks and ctx->lock nests inside those.
1011 */
1012static __must_check struct perf_event_context *
1013unclone_ctx(struct perf_event_context *ctx)
1014{
1015	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1016
1017	lockdep_assert_held(&ctx->lock);
1018
1019	if (parent_ctx)
1020		ctx->parent_ctx = NULL;
1021	ctx->generation++;
1022
1023	return parent_ctx;
1024}
1025
1026static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1027{
1028	/*
1029	 * only top level events have the pid namespace they were created in
1030	 */
1031	if (event->parent)
1032		event = event->parent;
1033
1034	return task_tgid_nr_ns(p, event->ns);
1035}
1036
1037static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1038{
1039	/*
1040	 * only top level events have the pid namespace they were created in
1041	 */
1042	if (event->parent)
1043		event = event->parent;
1044
1045	return task_pid_nr_ns(p, event->ns);
1046}
1047
1048/*
1049 * If we inherit events we want to return the parent event id
1050 * to userspace.
1051 */
1052static u64 primary_event_id(struct perf_event *event)
1053{
1054	u64 id = event->id;
1055
1056	if (event->parent)
1057		id = event->parent->id;
1058
1059	return id;
1060}
1061
1062/*
1063 * Get the perf_event_context for a task and lock it.
1064 * This has to cope with with the fact that until it is locked,
1065 * the context could get moved to another task.
1066 */
1067static struct perf_event_context *
1068perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1069{
1070	struct perf_event_context *ctx;
1071
1072retry:
1073	/*
1074	 * One of the few rules of preemptible RCU is that one cannot do
1075	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1076	 * part of the read side critical section was preemptible -- see
1077	 * rcu_read_unlock_special().
1078	 *
1079	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1080	 * side critical section is non-preemptible.
1081	 */
1082	preempt_disable();
1083	rcu_read_lock();
1084	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1085	if (ctx) {
1086		/*
1087		 * If this context is a clone of another, it might
1088		 * get swapped for another underneath us by
1089		 * perf_event_task_sched_out, though the
1090		 * rcu_read_lock() protects us from any context
1091		 * getting freed.  Lock the context and check if it
1092		 * got swapped before we could get the lock, and retry
1093		 * if so.  If we locked the right context, then it
1094		 * can't get swapped on us any more.
1095		 */
1096		raw_spin_lock_irqsave(&ctx->lock, *flags);
1097		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1098			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1099			rcu_read_unlock();
1100			preempt_enable();
1101			goto retry;
1102		}
1103
1104		if (!atomic_inc_not_zero(&ctx->refcount)) {
1105			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1106			ctx = NULL;
1107		}
1108	}
1109	rcu_read_unlock();
1110	preempt_enable();
1111	return ctx;
1112}
1113
1114/*
1115 * Get the context for a task and increment its pin_count so it
1116 * can't get swapped to another task.  This also increments its
1117 * reference count so that the context can't get freed.
1118 */
1119static struct perf_event_context *
1120perf_pin_task_context(struct task_struct *task, int ctxn)
1121{
1122	struct perf_event_context *ctx;
1123	unsigned long flags;
1124
1125	ctx = perf_lock_task_context(task, ctxn, &flags);
1126	if (ctx) {
1127		++ctx->pin_count;
1128		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1129	}
1130	return ctx;
1131}
1132
1133static void perf_unpin_context(struct perf_event_context *ctx)
1134{
1135	unsigned long flags;
1136
1137	raw_spin_lock_irqsave(&ctx->lock, flags);
1138	--ctx->pin_count;
1139	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1140}
1141
1142/*
1143 * Update the record of the current time in a context.
1144 */
1145static void update_context_time(struct perf_event_context *ctx)
1146{
1147	u64 now = perf_clock();
1148
1149	ctx->time += now - ctx->timestamp;
1150	ctx->timestamp = now;
1151}
1152
1153static u64 perf_event_time(struct perf_event *event)
1154{
1155	struct perf_event_context *ctx = event->ctx;
1156
1157	if (is_cgroup_event(event))
1158		return perf_cgroup_event_time(event);
1159
1160	return ctx ? ctx->time : 0;
1161}
1162
1163/*
1164 * Update the total_time_enabled and total_time_running fields for a event.
1165 * The caller of this function needs to hold the ctx->lock.
1166 */
1167static void update_event_times(struct perf_event *event)
1168{
1169	struct perf_event_context *ctx = event->ctx;
1170	u64 run_end;
1171
1172	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1173	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1174		return;
1175	/*
1176	 * in cgroup mode, time_enabled represents
1177	 * the time the event was enabled AND active
1178	 * tasks were in the monitored cgroup. This is
1179	 * independent of the activity of the context as
1180	 * there may be a mix of cgroup and non-cgroup events.
1181	 *
1182	 * That is why we treat cgroup events differently
1183	 * here.
1184	 */
1185	if (is_cgroup_event(event))
1186		run_end = perf_cgroup_event_time(event);
1187	else if (ctx->is_active)
1188		run_end = ctx->time;
1189	else
1190		run_end = event->tstamp_stopped;
1191
1192	event->total_time_enabled = run_end - event->tstamp_enabled;
1193
1194	if (event->state == PERF_EVENT_STATE_INACTIVE)
1195		run_end = event->tstamp_stopped;
1196	else
1197		run_end = perf_event_time(event);
1198
1199	event->total_time_running = run_end - event->tstamp_running;
1200
1201}
1202
1203/*
1204 * Update total_time_enabled and total_time_running for all events in a group.
1205 */
1206static void update_group_times(struct perf_event *leader)
1207{
1208	struct perf_event *event;
1209
1210	update_event_times(leader);
1211	list_for_each_entry(event, &leader->sibling_list, group_entry)
1212		update_event_times(event);
1213}
1214
1215static struct list_head *
1216ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1217{
1218	if (event->attr.pinned)
1219		return &ctx->pinned_groups;
1220	else
1221		return &ctx->flexible_groups;
1222}
1223
1224/*
1225 * Add a event from the lists for its context.
1226 * Must be called with ctx->mutex and ctx->lock held.
1227 */
1228static void
1229list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1230{
1231	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1232	event->attach_state |= PERF_ATTACH_CONTEXT;
1233
1234	/*
1235	 * If we're a stand alone event or group leader, we go to the context
1236	 * list, group events are kept attached to the group so that
1237	 * perf_group_detach can, at all times, locate all siblings.
1238	 */
1239	if (event->group_leader == event) {
1240		struct list_head *list;
1241
1242		if (is_software_event(event))
1243			event->group_flags |= PERF_GROUP_SOFTWARE;
1244
1245		list = ctx_group_list(event, ctx);
1246		list_add_tail(&event->group_entry, list);
1247	}
1248
1249	if (is_cgroup_event(event))
1250		ctx->nr_cgroups++;
1251
1252	list_add_rcu(&event->event_entry, &ctx->event_list);
1253	ctx->nr_events++;
1254	if (event->attr.inherit_stat)
1255		ctx->nr_stat++;
1256
1257	ctx->generation++;
1258}
1259
1260/*
1261 * Initialize event state based on the perf_event_attr::disabled.
1262 */
1263static inline void perf_event__state_init(struct perf_event *event)
1264{
1265	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1266					      PERF_EVENT_STATE_INACTIVE;
1267}
1268
1269/*
1270 * Called at perf_event creation and when events are attached/detached from a
1271 * group.
1272 */
1273static void perf_event__read_size(struct perf_event *event)
1274{
1275	int entry = sizeof(u64); /* value */
1276	int size = 0;
1277	int nr = 1;
1278
1279	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1280		size += sizeof(u64);
1281
1282	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1283		size += sizeof(u64);
1284
1285	if (event->attr.read_format & PERF_FORMAT_ID)
1286		entry += sizeof(u64);
1287
1288	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1289		nr += event->group_leader->nr_siblings;
1290		size += sizeof(u64);
1291	}
1292
1293	size += entry * nr;
1294	event->read_size = size;
1295}
1296
1297static void perf_event__header_size(struct perf_event *event)
1298{
1299	struct perf_sample_data *data;
1300	u64 sample_type = event->attr.sample_type;
1301	u16 size = 0;
1302
1303	perf_event__read_size(event);
1304
1305	if (sample_type & PERF_SAMPLE_IP)
1306		size += sizeof(data->ip);
1307
1308	if (sample_type & PERF_SAMPLE_ADDR)
1309		size += sizeof(data->addr);
1310
1311	if (sample_type & PERF_SAMPLE_PERIOD)
1312		size += sizeof(data->period);
1313
1314	if (sample_type & PERF_SAMPLE_WEIGHT)
1315		size += sizeof(data->weight);
1316
1317	if (sample_type & PERF_SAMPLE_READ)
1318		size += event->read_size;
1319
1320	if (sample_type & PERF_SAMPLE_DATA_SRC)
1321		size += sizeof(data->data_src.val);
1322
1323	if (sample_type & PERF_SAMPLE_TRANSACTION)
1324		size += sizeof(data->txn);
1325
1326	event->header_size = size;
1327}
1328
1329static void perf_event__id_header_size(struct perf_event *event)
1330{
1331	struct perf_sample_data *data;
1332	u64 sample_type = event->attr.sample_type;
1333	u16 size = 0;
1334
1335	if (sample_type & PERF_SAMPLE_TID)
1336		size += sizeof(data->tid_entry);
1337
1338	if (sample_type & PERF_SAMPLE_TIME)
1339		size += sizeof(data->time);
1340
1341	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1342		size += sizeof(data->id);
1343
1344	if (sample_type & PERF_SAMPLE_ID)
1345		size += sizeof(data->id);
1346
1347	if (sample_type & PERF_SAMPLE_STREAM_ID)
1348		size += sizeof(data->stream_id);
1349
1350	if (sample_type & PERF_SAMPLE_CPU)
1351		size += sizeof(data->cpu_entry);
1352
1353	event->id_header_size = size;
1354}
1355
1356static void perf_group_attach(struct perf_event *event)
1357{
1358	struct perf_event *group_leader = event->group_leader, *pos;
1359
1360	/*
1361	 * We can have double attach due to group movement in perf_event_open.
1362	 */
1363	if (event->attach_state & PERF_ATTACH_GROUP)
1364		return;
1365
1366	event->attach_state |= PERF_ATTACH_GROUP;
1367
1368	if (group_leader == event)
1369		return;
1370
1371	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1372
1373	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1374			!is_software_event(event))
1375		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1376
1377	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1378	group_leader->nr_siblings++;
1379
1380	perf_event__header_size(group_leader);
1381
1382	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1383		perf_event__header_size(pos);
1384}
1385
1386/*
1387 * Remove a event from the lists for its context.
1388 * Must be called with ctx->mutex and ctx->lock held.
1389 */
1390static void
1391list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1392{
1393	struct perf_cpu_context *cpuctx;
1394
1395	WARN_ON_ONCE(event->ctx != ctx);
1396	lockdep_assert_held(&ctx->lock);
1397
1398	/*
1399	 * We can have double detach due to exit/hot-unplug + close.
1400	 */
1401	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1402		return;
1403
1404	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1405
1406	if (is_cgroup_event(event)) {
1407		ctx->nr_cgroups--;
1408		cpuctx = __get_cpu_context(ctx);
1409		/*
1410		 * if there are no more cgroup events
1411		 * then cler cgrp to avoid stale pointer
1412		 * in update_cgrp_time_from_cpuctx()
1413		 */
1414		if (!ctx->nr_cgroups)
1415			cpuctx->cgrp = NULL;
1416	}
1417
1418	ctx->nr_events--;
1419	if (event->attr.inherit_stat)
1420		ctx->nr_stat--;
1421
1422	list_del_rcu(&event->event_entry);
1423
1424	if (event->group_leader == event)
1425		list_del_init(&event->group_entry);
1426
1427	update_group_times(event);
1428
1429	/*
1430	 * If event was in error state, then keep it
1431	 * that way, otherwise bogus counts will be
1432	 * returned on read(). The only way to get out
1433	 * of error state is by explicit re-enabling
1434	 * of the event
1435	 */
1436	if (event->state > PERF_EVENT_STATE_OFF)
1437		event->state = PERF_EVENT_STATE_OFF;
1438
1439	ctx->generation++;
1440}
1441
1442static void perf_group_detach(struct perf_event *event)
1443{
1444	struct perf_event *sibling, *tmp;
1445	struct list_head *list = NULL;
1446
1447	/*
1448	 * We can have double detach due to exit/hot-unplug + close.
1449	 */
1450	if (!(event->attach_state & PERF_ATTACH_GROUP))
1451		return;
1452
1453	event->attach_state &= ~PERF_ATTACH_GROUP;
1454
1455	/*
1456	 * If this is a sibling, remove it from its group.
1457	 */
1458	if (event->group_leader != event) {
1459		list_del_init(&event->group_entry);
1460		event->group_leader->nr_siblings--;
1461		goto out;
1462	}
1463
1464	if (!list_empty(&event->group_entry))
1465		list = &event->group_entry;
1466
1467	/*
1468	 * If this was a group event with sibling events then
1469	 * upgrade the siblings to singleton events by adding them
1470	 * to whatever list we are on.
1471	 */
1472	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1473		if (list)
1474			list_move_tail(&sibling->group_entry, list);
1475		sibling->group_leader = sibling;
1476
1477		/* Inherit group flags from the previous leader */
1478		sibling->group_flags = event->group_flags;
1479
1480		WARN_ON_ONCE(sibling->ctx != event->ctx);
1481	}
1482
1483out:
1484	perf_event__header_size(event->group_leader);
1485
1486	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1487		perf_event__header_size(tmp);
1488}
1489
1490/*
1491 * User event without the task.
1492 */
1493static bool is_orphaned_event(struct perf_event *event)
1494{
1495	return event && !is_kernel_event(event) && !event->owner;
1496}
1497
1498/*
1499 * Event has a parent but parent's task finished and it's
1500 * alive only because of children holding refference.
1501 */
1502static bool is_orphaned_child(struct perf_event *event)
1503{
1504	return is_orphaned_event(event->parent);
1505}
1506
1507static void orphans_remove_work(struct work_struct *work);
1508
1509static void schedule_orphans_remove(struct perf_event_context *ctx)
1510{
1511	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1512		return;
1513
1514	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1515		get_ctx(ctx);
1516		ctx->orphans_remove_sched = true;
1517	}
1518}
1519
1520static int __init perf_workqueue_init(void)
1521{
1522	perf_wq = create_singlethread_workqueue("perf");
1523	WARN(!perf_wq, "failed to create perf workqueue\n");
1524	return perf_wq ? 0 : -1;
1525}
1526
1527core_initcall(perf_workqueue_init);
1528
1529static inline int
1530event_filter_match(struct perf_event *event)
1531{
1532	return (event->cpu == -1 || event->cpu == smp_processor_id())
1533	    && perf_cgroup_match(event);
1534}
1535
1536static void
1537event_sched_out(struct perf_event *event,
1538		  struct perf_cpu_context *cpuctx,
1539		  struct perf_event_context *ctx)
1540{
1541	u64 tstamp = perf_event_time(event);
1542	u64 delta;
1543
1544	WARN_ON_ONCE(event->ctx != ctx);
1545	lockdep_assert_held(&ctx->lock);
1546
1547	/*
1548	 * An event which could not be activated because of
1549	 * filter mismatch still needs to have its timings
1550	 * maintained, otherwise bogus information is return
1551	 * via read() for time_enabled, time_running:
1552	 */
1553	if (event->state == PERF_EVENT_STATE_INACTIVE
1554	    && !event_filter_match(event)) {
1555		delta = tstamp - event->tstamp_stopped;
1556		event->tstamp_running += delta;
1557		event->tstamp_stopped = tstamp;
1558	}
1559
1560	if (event->state != PERF_EVENT_STATE_ACTIVE)
1561		return;
1562
1563	perf_pmu_disable(event->pmu);
1564
1565	event->tstamp_stopped = tstamp;
1566	event->pmu->del(event, 0);
1567	event->oncpu = -1;
1568	event->state = PERF_EVENT_STATE_INACTIVE;
1569	if (event->pending_disable) {
1570		event->pending_disable = 0;
1571		event->state = PERF_EVENT_STATE_OFF;
1572	}
1573
1574	if (!is_software_event(event))
1575		cpuctx->active_oncpu--;
1576	if (!--ctx->nr_active)
1577		perf_event_ctx_deactivate(ctx);
1578	if (event->attr.freq && event->attr.sample_freq)
1579		ctx->nr_freq--;
1580	if (event->attr.exclusive || !cpuctx->active_oncpu)
1581		cpuctx->exclusive = 0;
1582
1583	if (is_orphaned_child(event))
1584		schedule_orphans_remove(ctx);
1585
1586	perf_pmu_enable(event->pmu);
1587}
1588
1589static void
1590group_sched_out(struct perf_event *group_event,
1591		struct perf_cpu_context *cpuctx,
1592		struct perf_event_context *ctx)
1593{
1594	struct perf_event *event;
1595	int state = group_event->state;
1596
1597	event_sched_out(group_event, cpuctx, ctx);
1598
1599	/*
1600	 * Schedule out siblings (if any):
1601	 */
1602	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1603		event_sched_out(event, cpuctx, ctx);
1604
1605	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1606		cpuctx->exclusive = 0;
1607}
1608
1609struct remove_event {
1610	struct perf_event *event;
1611	bool detach_group;
1612};
1613
1614/*
1615 * Cross CPU call to remove a performance event
1616 *
1617 * We disable the event on the hardware level first. After that we
1618 * remove it from the context list.
1619 */
1620static int __perf_remove_from_context(void *info)
1621{
1622	struct remove_event *re = info;
1623	struct perf_event *event = re->event;
1624	struct perf_event_context *ctx = event->ctx;
1625	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1626
1627	raw_spin_lock(&ctx->lock);
1628	event_sched_out(event, cpuctx, ctx);
1629	if (re->detach_group)
1630		perf_group_detach(event);
1631	list_del_event(event, ctx);
1632	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1633		ctx->is_active = 0;
1634		cpuctx->task_ctx = NULL;
1635	}
1636	raw_spin_unlock(&ctx->lock);
1637
1638	return 0;
1639}
1640
1641
1642/*
1643 * Remove the event from a task's (or a CPU's) list of events.
1644 *
1645 * CPU events are removed with a smp call. For task events we only
1646 * call when the task is on a CPU.
1647 *
1648 * If event->ctx is a cloned context, callers must make sure that
1649 * every task struct that event->ctx->task could possibly point to
1650 * remains valid.  This is OK when called from perf_release since
1651 * that only calls us on the top-level context, which can't be a clone.
1652 * When called from perf_event_exit_task, it's OK because the
1653 * context has been detached from its task.
1654 */
1655static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1656{
1657	struct perf_event_context *ctx = event->ctx;
1658	struct task_struct *task = ctx->task;
1659	struct remove_event re = {
1660		.event = event,
1661		.detach_group = detach_group,
1662	};
1663
1664	lockdep_assert_held(&ctx->mutex);
1665
1666	if (!task) {
1667		/*
1668		 * Per cpu events are removed via an smp call. The removal can
1669		 * fail if the CPU is currently offline, but in that case we
1670		 * already called __perf_remove_from_context from
1671		 * perf_event_exit_cpu.
1672		 */
1673		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1674		return;
1675	}
1676
1677retry:
1678	if (!task_function_call(task, __perf_remove_from_context, &re))
1679		return;
1680
1681	raw_spin_lock_irq(&ctx->lock);
1682	/*
1683	 * If we failed to find a running task, but find the context active now
1684	 * that we've acquired the ctx->lock, retry.
1685	 */
1686	if (ctx->is_active) {
1687		raw_spin_unlock_irq(&ctx->lock);
1688		/*
1689		 * Reload the task pointer, it might have been changed by
1690		 * a concurrent perf_event_context_sched_out().
1691		 */
1692		task = ctx->task;
1693		goto retry;
1694	}
1695
1696	/*
1697	 * Since the task isn't running, its safe to remove the event, us
1698	 * holding the ctx->lock ensures the task won't get scheduled in.
1699	 */
1700	if (detach_group)
1701		perf_group_detach(event);
1702	list_del_event(event, ctx);
1703	raw_spin_unlock_irq(&ctx->lock);
1704}
1705
1706/*
1707 * Cross CPU call to disable a performance event
1708 */
1709int __perf_event_disable(void *info)
1710{
1711	struct perf_event *event = info;
1712	struct perf_event_context *ctx = event->ctx;
1713	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1714
1715	/*
1716	 * If this is a per-task event, need to check whether this
1717	 * event's task is the current task on this cpu.
1718	 *
1719	 * Can trigger due to concurrent perf_event_context_sched_out()
1720	 * flipping contexts around.
1721	 */
1722	if (ctx->task && cpuctx->task_ctx != ctx)
1723		return -EINVAL;
1724
1725	raw_spin_lock(&ctx->lock);
1726
1727	/*
1728	 * If the event is on, turn it off.
1729	 * If it is in error state, leave it in error state.
1730	 */
1731	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1732		update_context_time(ctx);
1733		update_cgrp_time_from_event(event);
1734		update_group_times(event);
1735		if (event == event->group_leader)
1736			group_sched_out(event, cpuctx, ctx);
1737		else
1738			event_sched_out(event, cpuctx, ctx);
1739		event->state = PERF_EVENT_STATE_OFF;
1740	}
1741
1742	raw_spin_unlock(&ctx->lock);
1743
1744	return 0;
1745}
1746
1747/*
1748 * Disable a event.
1749 *
1750 * If event->ctx is a cloned context, callers must make sure that
1751 * every task struct that event->ctx->task could possibly point to
1752 * remains valid.  This condition is satisifed when called through
1753 * perf_event_for_each_child or perf_event_for_each because they
1754 * hold the top-level event's child_mutex, so any descendant that
1755 * goes to exit will block in sync_child_event.
1756 * When called from perf_pending_event it's OK because event->ctx
1757 * is the current context on this CPU and preemption is disabled,
1758 * hence we can't get into perf_event_task_sched_out for this context.
1759 */
1760static void _perf_event_disable(struct perf_event *event)
1761{
1762	struct perf_event_context *ctx = event->ctx;
1763	struct task_struct *task = ctx->task;
1764
1765	if (!task) {
1766		/*
1767		 * Disable the event on the cpu that it's on
1768		 */
1769		cpu_function_call(event->cpu, __perf_event_disable, event);
1770		return;
1771	}
1772
1773retry:
1774	if (!task_function_call(task, __perf_event_disable, event))
1775		return;
1776
1777	raw_spin_lock_irq(&ctx->lock);
1778	/*
1779	 * If the event is still active, we need to retry the cross-call.
1780	 */
1781	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1782		raw_spin_unlock_irq(&ctx->lock);
1783		/*
1784		 * Reload the task pointer, it might have been changed by
1785		 * a concurrent perf_event_context_sched_out().
1786		 */
1787		task = ctx->task;
1788		goto retry;
1789	}
1790
1791	/*
1792	 * Since we have the lock this context can't be scheduled
1793	 * in, so we can change the state safely.
1794	 */
1795	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1796		update_group_times(event);
1797		event->state = PERF_EVENT_STATE_OFF;
1798	}
1799	raw_spin_unlock_irq(&ctx->lock);
1800}
1801
1802/*
1803 * Strictly speaking kernel users cannot create groups and therefore this
1804 * interface does not need the perf_event_ctx_lock() magic.
1805 */
1806void perf_event_disable(struct perf_event *event)
1807{
1808	struct perf_event_context *ctx;
1809
1810	ctx = perf_event_ctx_lock(event);
1811	_perf_event_disable(event);
1812	perf_event_ctx_unlock(event, ctx);
1813}
1814EXPORT_SYMBOL_GPL(perf_event_disable);
1815
1816static void perf_set_shadow_time(struct perf_event *event,
1817				 struct perf_event_context *ctx,
1818				 u64 tstamp)
1819{
1820	/*
1821	 * use the correct time source for the time snapshot
1822	 *
1823	 * We could get by without this by leveraging the
1824	 * fact that to get to this function, the caller
1825	 * has most likely already called update_context_time()
1826	 * and update_cgrp_time_xx() and thus both timestamp
1827	 * are identical (or very close). Given that tstamp is,
1828	 * already adjusted for cgroup, we could say that:
1829	 *    tstamp - ctx->timestamp
1830	 * is equivalent to
1831	 *    tstamp - cgrp->timestamp.
1832	 *
1833	 * Then, in perf_output_read(), the calculation would
1834	 * work with no changes because:
1835	 * - event is guaranteed scheduled in
1836	 * - no scheduled out in between
1837	 * - thus the timestamp would be the same
1838	 *
1839	 * But this is a bit hairy.
1840	 *
1841	 * So instead, we have an explicit cgroup call to remain
1842	 * within the time time source all along. We believe it
1843	 * is cleaner and simpler to understand.
1844	 */
1845	if (is_cgroup_event(event))
1846		perf_cgroup_set_shadow_time(event, tstamp);
1847	else
1848		event->shadow_ctx_time = tstamp - ctx->timestamp;
1849}
1850
1851#define MAX_INTERRUPTS (~0ULL)
1852
1853static void perf_log_throttle(struct perf_event *event, int enable);
1854static void perf_log_itrace_start(struct perf_event *event);
1855
1856static int
1857event_sched_in(struct perf_event *event,
1858		 struct perf_cpu_context *cpuctx,
1859		 struct perf_event_context *ctx)
1860{
1861	u64 tstamp = perf_event_time(event);
1862	int ret = 0;
1863
1864	lockdep_assert_held(&ctx->lock);
1865
1866	if (event->state <= PERF_EVENT_STATE_OFF)
1867		return 0;
1868
1869	event->state = PERF_EVENT_STATE_ACTIVE;
1870	event->oncpu = smp_processor_id();
1871
1872	/*
1873	 * Unthrottle events, since we scheduled we might have missed several
1874	 * ticks already, also for a heavily scheduling task there is little
1875	 * guarantee it'll get a tick in a timely manner.
1876	 */
1877	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1878		perf_log_throttle(event, 1);
1879		event->hw.interrupts = 0;
1880	}
1881
1882	/*
1883	 * The new state must be visible before we turn it on in the hardware:
1884	 */
1885	smp_wmb();
1886
1887	perf_pmu_disable(event->pmu);
1888
1889	perf_set_shadow_time(event, ctx, tstamp);
1890
1891	perf_log_itrace_start(event);
1892
1893	if (event->pmu->add(event, PERF_EF_START)) {
1894		event->state = PERF_EVENT_STATE_INACTIVE;
1895		event->oncpu = -1;
1896		ret = -EAGAIN;
1897		goto out;
1898	}
1899
1900	event->tstamp_running += tstamp - event->tstamp_stopped;
1901
1902	if (!is_software_event(event))
1903		cpuctx->active_oncpu++;
1904	if (!ctx->nr_active++)
1905		perf_event_ctx_activate(ctx);
1906	if (event->attr.freq && event->attr.sample_freq)
1907		ctx->nr_freq++;
1908
1909	if (event->attr.exclusive)
1910		cpuctx->exclusive = 1;
1911
1912	if (is_orphaned_child(event))
1913		schedule_orphans_remove(ctx);
1914
1915out:
1916	perf_pmu_enable(event->pmu);
1917
1918	return ret;
1919}
1920
1921static int
1922group_sched_in(struct perf_event *group_event,
1923	       struct perf_cpu_context *cpuctx,
1924	       struct perf_event_context *ctx)
1925{
1926	struct perf_event *event, *partial_group = NULL;
1927	struct pmu *pmu = ctx->pmu;
1928	u64 now = ctx->time;
1929	bool simulate = false;
1930
1931	if (group_event->state == PERF_EVENT_STATE_OFF)
1932		return 0;
1933
1934	pmu->start_txn(pmu);
1935
1936	if (event_sched_in(group_event, cpuctx, ctx)) {
1937		pmu->cancel_txn(pmu);
1938		perf_cpu_hrtimer_restart(cpuctx);
1939		return -EAGAIN;
1940	}
1941
1942	/*
1943	 * Schedule in siblings as one group (if any):
1944	 */
1945	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1946		if (event_sched_in(event, cpuctx, ctx)) {
1947			partial_group = event;
1948			goto group_error;
1949		}
1950	}
1951
1952	if (!pmu->commit_txn(pmu))
1953		return 0;
1954
1955group_error:
1956	/*
1957	 * Groups can be scheduled in as one unit only, so undo any
1958	 * partial group before returning:
1959	 * The events up to the failed event are scheduled out normally,
1960	 * tstamp_stopped will be updated.
1961	 *
1962	 * The failed events and the remaining siblings need to have
1963	 * their timings updated as if they had gone thru event_sched_in()
1964	 * and event_sched_out(). This is required to get consistent timings
1965	 * across the group. This also takes care of the case where the group
1966	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1967	 * the time the event was actually stopped, such that time delta
1968	 * calculation in update_event_times() is correct.
1969	 */
1970	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1971		if (event == partial_group)
1972			simulate = true;
1973
1974		if (simulate) {
1975			event->tstamp_running += now - event->tstamp_stopped;
1976			event->tstamp_stopped = now;
1977		} else {
1978			event_sched_out(event, cpuctx, ctx);
1979		}
1980	}
1981	event_sched_out(group_event, cpuctx, ctx);
1982
1983	pmu->cancel_txn(pmu);
1984
1985	perf_cpu_hrtimer_restart(cpuctx);
1986
1987	return -EAGAIN;
1988}
1989
1990/*
1991 * Work out whether we can put this event group on the CPU now.
1992 */
1993static int group_can_go_on(struct perf_event *event,
1994			   struct perf_cpu_context *cpuctx,
1995			   int can_add_hw)
1996{
1997	/*
1998	 * Groups consisting entirely of software events can always go on.
1999	 */
2000	if (event->group_flags & PERF_GROUP_SOFTWARE)
2001		return 1;
2002	/*
2003	 * If an exclusive group is already on, no other hardware
2004	 * events can go on.
2005	 */
2006	if (cpuctx->exclusive)
2007		return 0;
2008	/*
2009	 * If this group is exclusive and there are already
2010	 * events on the CPU, it can't go on.
2011	 */
2012	if (event->attr.exclusive && cpuctx->active_oncpu)
2013		return 0;
2014	/*
2015	 * Otherwise, try to add it if all previous groups were able
2016	 * to go on.
2017	 */
2018	return can_add_hw;
2019}
2020
2021static void add_event_to_ctx(struct perf_event *event,
2022			       struct perf_event_context *ctx)
2023{
2024	u64 tstamp = perf_event_time(event);
2025
2026	list_add_event(event, ctx);
2027	perf_group_attach(event);
2028	event->tstamp_enabled = tstamp;
2029	event->tstamp_running = tstamp;
2030	event->tstamp_stopped = tstamp;
2031}
2032
2033static void task_ctx_sched_out(struct perf_event_context *ctx);
2034static void
2035ctx_sched_in(struct perf_event_context *ctx,
2036	     struct perf_cpu_context *cpuctx,
2037	     enum event_type_t event_type,
2038	     struct task_struct *task);
2039
2040static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2041				struct perf_event_context *ctx,
2042				struct task_struct *task)
2043{
2044	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2045	if (ctx)
2046		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2047	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2048	if (ctx)
2049		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2050}
2051
2052/*
2053 * Cross CPU call to install and enable a performance event
2054 *
2055 * Must be called with ctx->mutex held
2056 */
2057static int  __perf_install_in_context(void *info)
2058{
2059	struct perf_event *event = info;
2060	struct perf_event_context *ctx = event->ctx;
2061	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2062	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2063	struct task_struct *task = current;
2064
2065	perf_ctx_lock(cpuctx, task_ctx);
2066	perf_pmu_disable(cpuctx->ctx.pmu);
2067
2068	/*
2069	 * If there was an active task_ctx schedule it out.
2070	 */
2071	if (task_ctx)
2072		task_ctx_sched_out(task_ctx);
2073
2074	/*
2075	 * If the context we're installing events in is not the
2076	 * active task_ctx, flip them.
2077	 */
2078	if (ctx->task && task_ctx != ctx) {
2079		if (task_ctx)
2080			raw_spin_unlock(&task_ctx->lock);
2081		raw_spin_lock(&ctx->lock);
2082		task_ctx = ctx;
2083	}
2084
2085	if (task_ctx) {
2086		cpuctx->task_ctx = task_ctx;
2087		task = task_ctx->task;
2088	}
2089
2090	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2091
2092	update_context_time(ctx);
2093	/*
2094	 * update cgrp time only if current cgrp
2095	 * matches event->cgrp. Must be done before
2096	 * calling add_event_to_ctx()
2097	 */
2098	update_cgrp_time_from_event(event);
2099
2100	add_event_to_ctx(event, ctx);
2101
2102	/*
2103	 * Schedule everything back in
2104	 */
2105	perf_event_sched_in(cpuctx, task_ctx, task);
2106
2107	perf_pmu_enable(cpuctx->ctx.pmu);
2108	perf_ctx_unlock(cpuctx, task_ctx);
2109
2110	return 0;
2111}
2112
2113/*
2114 * Attach a performance event to a context
2115 *
2116 * First we add the event to the list with the hardware enable bit
2117 * in event->hw_config cleared.
2118 *
2119 * If the event is attached to a task which is on a CPU we use a smp
2120 * call to enable it in the task context. The task might have been
2121 * scheduled away, but we check this in the smp call again.
2122 */
2123static void
2124perf_install_in_context(struct perf_event_context *ctx,
2125			struct perf_event *event,
2126			int cpu)
2127{
2128	struct task_struct *task = ctx->task;
2129
2130	lockdep_assert_held(&ctx->mutex);
2131
2132	event->ctx = ctx;
2133	if (event->cpu != -1)
2134		event->cpu = cpu;
2135
2136	if (!task) {
2137		/*
2138		 * Per cpu events are installed via an smp call and
2139		 * the install is always successful.
2140		 */
2141		cpu_function_call(cpu, __perf_install_in_context, event);
2142		return;
2143	}
2144
2145retry:
2146	if (!task_function_call(task, __perf_install_in_context, event))
2147		return;
2148
2149	raw_spin_lock_irq(&ctx->lock);
2150	/*
2151	 * If we failed to find a running task, but find the context active now
2152	 * that we've acquired the ctx->lock, retry.
2153	 */
2154	if (ctx->is_active) {
2155		raw_spin_unlock_irq(&ctx->lock);
2156		/*
2157		 * Reload the task pointer, it might have been changed by
2158		 * a concurrent perf_event_context_sched_out().
2159		 */
2160		task = ctx->task;
2161		goto retry;
2162	}
2163
2164	/*
2165	 * Since the task isn't running, its safe to add the event, us holding
2166	 * the ctx->lock ensures the task won't get scheduled in.
2167	 */
2168	add_event_to_ctx(event, ctx);
2169	raw_spin_unlock_irq(&ctx->lock);
2170}
2171
2172/*
2173 * Put a event into inactive state and update time fields.
2174 * Enabling the leader of a group effectively enables all
2175 * the group members that aren't explicitly disabled, so we
2176 * have to update their ->tstamp_enabled also.
2177 * Note: this works for group members as well as group leaders
2178 * since the non-leader members' sibling_lists will be empty.
2179 */
2180static void __perf_event_mark_enabled(struct perf_event *event)
2181{
2182	struct perf_event *sub;
2183	u64 tstamp = perf_event_time(event);
2184
2185	event->state = PERF_EVENT_STATE_INACTIVE;
2186	event->tstamp_enabled = tstamp - event->total_time_enabled;
2187	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2188		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2189			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2190	}
2191}
2192
2193/*
2194 * Cross CPU call to enable a performance event
2195 */
2196static int __perf_event_enable(void *info)
2197{
2198	struct perf_event *event = info;
2199	struct perf_event_context *ctx = event->ctx;
2200	struct perf_event *leader = event->group_leader;
2201	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2202	int err;
2203
2204	/*
2205	 * There's a time window between 'ctx->is_active' check
2206	 * in perf_event_enable function and this place having:
2207	 *   - IRQs on
2208	 *   - ctx->lock unlocked
2209	 *
2210	 * where the task could be killed and 'ctx' deactivated
2211	 * by perf_event_exit_task.
2212	 */
2213	if (!ctx->is_active)
2214		return -EINVAL;
2215
2216	raw_spin_lock(&ctx->lock);
2217	update_context_time(ctx);
2218
2219	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2220		goto unlock;
2221
2222	/*
2223	 * set current task's cgroup time reference point
2224	 */
2225	perf_cgroup_set_timestamp(current, ctx);
2226
2227	__perf_event_mark_enabled(event);
2228
2229	if (!event_filter_match(event)) {
2230		if (is_cgroup_event(event))
2231			perf_cgroup_defer_enabled(event);
2232		goto unlock;
2233	}
2234
2235	/*
2236	 * If the event is in a group and isn't the group leader,
2237	 * then don't put it on unless the group is on.
2238	 */
2239	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2240		goto unlock;
2241
2242	if (!group_can_go_on(event, cpuctx, 1)) {
2243		err = -EEXIST;
2244	} else {
2245		if (event == leader)
2246			err = group_sched_in(event, cpuctx, ctx);
2247		else
2248			err = event_sched_in(event, cpuctx, ctx);
2249	}
2250
2251	if (err) {
2252		/*
2253		 * If this event can't go on and it's part of a
2254		 * group, then the whole group has to come off.
2255		 */
2256		if (leader != event) {
2257			group_sched_out(leader, cpuctx, ctx);
2258			perf_cpu_hrtimer_restart(cpuctx);
2259		}
2260		if (leader->attr.pinned) {
2261			update_group_times(leader);
2262			leader->state = PERF_EVENT_STATE_ERROR;
2263		}
2264	}
2265
2266unlock:
2267	raw_spin_unlock(&ctx->lock);
2268
2269	return 0;
2270}
2271
2272/*
2273 * Enable a event.
2274 *
2275 * If event->ctx is a cloned context, callers must make sure that
2276 * every task struct that event->ctx->task could possibly point to
2277 * remains valid.  This condition is satisfied when called through
2278 * perf_event_for_each_child or perf_event_for_each as described
2279 * for perf_event_disable.
2280 */
2281static void _perf_event_enable(struct perf_event *event)
2282{
2283	struct perf_event_context *ctx = event->ctx;
2284	struct task_struct *task = ctx->task;
2285
2286	if (!task) {
2287		/*
2288		 * Enable the event on the cpu that it's on
2289		 */
2290		cpu_function_call(event->cpu, __perf_event_enable, event);
2291		return;
2292	}
2293
2294	raw_spin_lock_irq(&ctx->lock);
2295	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2296		goto out;
2297
2298	/*
2299	 * If the event is in error state, clear that first.
2300	 * That way, if we see the event in error state below, we
2301	 * know that it has gone back into error state, as distinct
2302	 * from the task having been scheduled away before the
2303	 * cross-call arrived.
2304	 */
2305	if (event->state == PERF_EVENT_STATE_ERROR)
2306		event->state = PERF_EVENT_STATE_OFF;
2307
2308retry:
2309	if (!ctx->is_active) {
2310		__perf_event_mark_enabled(event);
2311		goto out;
2312	}
2313
2314	raw_spin_unlock_irq(&ctx->lock);
2315
2316	if (!task_function_call(task, __perf_event_enable, event))
2317		return;
2318
2319	raw_spin_lock_irq(&ctx->lock);
2320
2321	/*
2322	 * If the context is active and the event is still off,
2323	 * we need to retry the cross-call.
2324	 */
2325	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2326		/*
2327		 * task could have been flipped by a concurrent
2328		 * perf_event_context_sched_out()
2329		 */
2330		task = ctx->task;
2331		goto retry;
2332	}
2333
2334out:
2335	raw_spin_unlock_irq(&ctx->lock);
2336}
2337
2338/*
2339 * See perf_event_disable();
2340 */
2341void perf_event_enable(struct perf_event *event)
2342{
2343	struct perf_event_context *ctx;
2344
2345	ctx = perf_event_ctx_lock(event);
2346	_perf_event_enable(event);
2347	perf_event_ctx_unlock(event, ctx);
2348}
2349EXPORT_SYMBOL_GPL(perf_event_enable);
2350
2351static int _perf_event_refresh(struct perf_event *event, int refresh)
2352{
2353	/*
2354	 * not supported on inherited events
2355	 */
2356	if (event->attr.inherit || !is_sampling_event(event))
2357		return -EINVAL;
2358
2359	atomic_add(refresh, &event->event_limit);
2360	_perf_event_enable(event);
2361
2362	return 0;
2363}
2364
2365/*
2366 * See perf_event_disable()
2367 */
2368int perf_event_refresh(struct perf_event *event, int refresh)
2369{
2370	struct perf_event_context *ctx;
2371	int ret;
2372
2373	ctx = perf_event_ctx_lock(event);
2374	ret = _perf_event_refresh(event, refresh);
2375	perf_event_ctx_unlock(event, ctx);
2376
2377	return ret;
2378}
2379EXPORT_SYMBOL_GPL(perf_event_refresh);
2380
2381static void ctx_sched_out(struct perf_event_context *ctx,
2382			  struct perf_cpu_context *cpuctx,
2383			  enum event_type_t event_type)
2384{
2385	struct perf_event *event;
2386	int is_active = ctx->is_active;
2387
2388	ctx->is_active &= ~event_type;
2389	if (likely(!ctx->nr_events))
2390		return;
2391
2392	update_context_time(ctx);
2393	update_cgrp_time_from_cpuctx(cpuctx);
2394	if (!ctx->nr_active)
2395		return;
2396
2397	perf_pmu_disable(ctx->pmu);
2398	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2399		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2400			group_sched_out(event, cpuctx, ctx);
2401	}
2402
2403	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2404		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2405			group_sched_out(event, cpuctx, ctx);
2406	}
2407	perf_pmu_enable(ctx->pmu);
2408}
2409
2410/*
2411 * Test whether two contexts are equivalent, i.e. whether they have both been
2412 * cloned from the same version of the same context.
2413 *
2414 * Equivalence is measured using a generation number in the context that is
2415 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2416 * and list_del_event().
2417 */
2418static int context_equiv(struct perf_event_context *ctx1,
2419			 struct perf_event_context *ctx2)
2420{
2421	lockdep_assert_held(&ctx1->lock);
2422	lockdep_assert_held(&ctx2->lock);
2423
2424	/* Pinning disables the swap optimization */
2425	if (ctx1->pin_count || ctx2->pin_count)
2426		return 0;
2427
2428	/* If ctx1 is the parent of ctx2 */
2429	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2430		return 1;
2431
2432	/* If ctx2 is the parent of ctx1 */
2433	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2434		return 1;
2435
2436	/*
2437	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2438	 * hierarchy, see perf_event_init_context().
2439	 */
2440	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2441			ctx1->parent_gen == ctx2->parent_gen)
2442		return 1;
2443
2444	/* Unmatched */
2445	return 0;
2446}
2447
2448static void __perf_event_sync_stat(struct perf_event *event,
2449				     struct perf_event *next_event)
2450{
2451	u64 value;
2452
2453	if (!event->attr.inherit_stat)
2454		return;
2455
2456	/*
2457	 * Update the event value, we cannot use perf_event_read()
2458	 * because we're in the middle of a context switch and have IRQs
2459	 * disabled, which upsets smp_call_function_single(), however
2460	 * we know the event must be on the current CPU, therefore we
2461	 * don't need to use it.
2462	 */
2463	switch (event->state) {
2464	case PERF_EVENT_STATE_ACTIVE:
2465		event->pmu->read(event);
2466		/* fall-through */
2467
2468	case PERF_EVENT_STATE_INACTIVE:
2469		update_event_times(event);
2470		break;
2471
2472	default:
2473		break;
2474	}
2475
2476	/*
2477	 * In order to keep per-task stats reliable we need to flip the event
2478	 * values when we flip the contexts.
2479	 */
2480	value = local64_read(&next_event->count);
2481	value = local64_xchg(&event->count, value);
2482	local64_set(&next_event->count, value);
2483
2484	swap(event->total_time_enabled, next_event->total_time_enabled);
2485	swap(event->total_time_running, next_event->total_time_running);
2486
2487	/*
2488	 * Since we swizzled the values, update the user visible data too.
2489	 */
2490	perf_event_update_userpage(event);
2491	perf_event_update_userpage(next_event);
2492}
2493
2494static void perf_event_sync_stat(struct perf_event_context *ctx,
2495				   struct perf_event_context *next_ctx)
2496{
2497	struct perf_event *event, *next_event;
2498
2499	if (!ctx->nr_stat)
2500		return;
2501
2502	update_context_time(ctx);
2503
2504	event = list_first_entry(&ctx->event_list,
2505				   struct perf_event, event_entry);
2506
2507	next_event = list_first_entry(&next_ctx->event_list,
2508					struct perf_event, event_entry);
2509
2510	while (&event->event_entry != &ctx->event_list &&
2511	       &next_event->event_entry != &next_ctx->event_list) {
2512
2513		__perf_event_sync_stat(event, next_event);
2514
2515		event = list_next_entry(event, event_entry);
2516		next_event = list_next_entry(next_event, event_entry);
2517	}
2518}
2519
2520static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2521					 struct task_struct *next)
2522{
2523	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2524	struct perf_event_context *next_ctx;
2525	struct perf_event_context *parent, *next_parent;
2526	struct perf_cpu_context *cpuctx;
2527	int do_switch = 1;
2528
2529	if (likely(!ctx))
2530		return;
2531
2532	cpuctx = __get_cpu_context(ctx);
2533	if (!cpuctx->task_ctx)
2534		return;
2535
2536	rcu_read_lock();
2537	next_ctx = next->perf_event_ctxp[ctxn];
2538	if (!next_ctx)
2539		goto unlock;
2540
2541	parent = rcu_dereference(ctx->parent_ctx);
2542	next_parent = rcu_dereference(next_ctx->parent_ctx);
2543
2544	/* If neither context have a parent context; they cannot be clones. */
2545	if (!parent && !next_parent)
2546		goto unlock;
2547
2548	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2549		/*
2550		 * Looks like the two contexts are clones, so we might be
2551		 * able to optimize the context switch.  We lock both
2552		 * contexts and check that they are clones under the
2553		 * lock (including re-checking that neither has been
2554		 * uncloned in the meantime).  It doesn't matter which
2555		 * order we take the locks because no other cpu could
2556		 * be trying to lock both of these tasks.
2557		 */
2558		raw_spin_lock(&ctx->lock);
2559		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2560		if (context_equiv(ctx, next_ctx)) {
2561			/*
2562			 * XXX do we need a memory barrier of sorts
2563			 * wrt to rcu_dereference() of perf_event_ctxp
2564			 */
2565			task->perf_event_ctxp[ctxn] = next_ctx;
2566			next->perf_event_ctxp[ctxn] = ctx;
2567			ctx->task = next;
2568			next_ctx->task = task;
2569
2570			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2571
2572			do_switch = 0;
2573
2574			perf_event_sync_stat(ctx, next_ctx);
2575		}
2576		raw_spin_unlock(&next_ctx->lock);
2577		raw_spin_unlock(&ctx->lock);
2578	}
2579unlock:
2580	rcu_read_unlock();
2581
2582	if (do_switch) {
2583		raw_spin_lock(&ctx->lock);
2584		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2585		cpuctx->task_ctx = NULL;
2586		raw_spin_unlock(&ctx->lock);
2587	}
2588}
2589
2590void perf_sched_cb_dec(struct pmu *pmu)
2591{
2592	this_cpu_dec(perf_sched_cb_usages);
2593}
2594
2595void perf_sched_cb_inc(struct pmu *pmu)
2596{
2597	this_cpu_inc(perf_sched_cb_usages);
2598}
2599
2600/*
2601 * This function provides the context switch callback to the lower code
2602 * layer. It is invoked ONLY when the context switch callback is enabled.
2603 */
2604static void perf_pmu_sched_task(struct task_struct *prev,
2605				struct task_struct *next,
2606				bool sched_in)
2607{
2608	struct perf_cpu_context *cpuctx;
2609	struct pmu *pmu;
2610	unsigned long flags;
2611
2612	if (prev == next)
2613		return;
2614
2615	local_irq_save(flags);
2616
2617	rcu_read_lock();
2618
2619	list_for_each_entry_rcu(pmu, &pmus, entry) {
2620		if (pmu->sched_task) {
2621			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2622
2623			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2624
2625			perf_pmu_disable(pmu);
2626
2627			pmu->sched_task(cpuctx->task_ctx, sched_in);
2628
2629			perf_pmu_enable(pmu);
2630
2631			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2632		}
2633	}
2634
2635	rcu_read_unlock();
2636
2637	local_irq_restore(flags);
2638}
2639
2640#define for_each_task_context_nr(ctxn)					\
2641	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2642
2643/*
2644 * Called from scheduler to remove the events of the current task,
2645 * with interrupts disabled.
2646 *
2647 * We stop each event and update the event value in event->count.
2648 *
2649 * This does not protect us against NMI, but disable()
2650 * sets the disabled bit in the control field of event _before_
2651 * accessing the event control register. If a NMI hits, then it will
2652 * not restart the event.
2653 */
2654void __perf_event_task_sched_out(struct task_struct *task,
2655				 struct task_struct *next)
2656{
2657	int ctxn;
2658
2659	if (__this_cpu_read(perf_sched_cb_usages))
2660		perf_pmu_sched_task(task, next, false);
2661
2662	for_each_task_context_nr(ctxn)
2663		perf_event_context_sched_out(task, ctxn, next);
2664
2665	/*
2666	 * if cgroup events exist on this CPU, then we need
2667	 * to check if we have to switch out PMU state.
2668	 * cgroup event are system-wide mode only
2669	 */
2670	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2671		perf_cgroup_sched_out(task, next);
2672}
2673
2674static void task_ctx_sched_out(struct perf_event_context *ctx)
2675{
2676	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2677
2678	if (!cpuctx->task_ctx)
2679		return;
2680
2681	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2682		return;
2683
2684	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2685	cpuctx->task_ctx = NULL;
2686}
2687
2688/*
2689 * Called with IRQs disabled
2690 */
2691static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2692			      enum event_type_t event_type)
2693{
2694	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2695}
2696
2697static void
2698ctx_pinned_sched_in(struct perf_event_context *ctx,
2699		    struct perf_cpu_context *cpuctx)
2700{
2701	struct perf_event *event;
2702
2703	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2704		if (event->state <= PERF_EVENT_STATE_OFF)
2705			continue;
2706		if (!event_filter_match(event))
2707			continue;
2708
2709		/* may need to reset tstamp_enabled */
2710		if (is_cgroup_event(event))
2711			perf_cgroup_mark_enabled(event, ctx);
2712
2713		if (group_can_go_on(event, cpuctx, 1))
2714			group_sched_in(event, cpuctx, ctx);
2715
2716		/*
2717		 * If this pinned group hasn't been scheduled,
2718		 * put it in error state.
2719		 */
2720		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2721			update_group_times(event);
2722			event->state = PERF_EVENT_STATE_ERROR;
2723		}
2724	}
2725}
2726
2727static void
2728ctx_flexible_sched_in(struct perf_event_context *ctx,
2729		      struct perf_cpu_context *cpuctx)
2730{
2731	struct perf_event *event;
2732	int can_add_hw = 1;
2733
2734	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2735		/* Ignore events in OFF or ERROR state */
2736		if (event->state <= PERF_EVENT_STATE_OFF)
2737			continue;
2738		/*
2739		 * Listen to the 'cpu' scheduling filter constraint
2740		 * of events:
2741		 */
2742		if (!event_filter_match(event))
2743			continue;
2744
2745		/* may need to reset tstamp_enabled */
2746		if (is_cgroup_event(event))
2747			perf_cgroup_mark_enabled(event, ctx);
2748
2749		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2750			if (group_sched_in(event, cpuctx, ctx))
2751				can_add_hw = 0;
2752		}
2753	}
2754}
2755
2756static void
2757ctx_sched_in(struct perf_event_context *ctx,
2758	     struct perf_cpu_context *cpuctx,
2759	     enum event_type_t event_type,
2760	     struct task_struct *task)
2761{
2762	u64 now;
2763	int is_active = ctx->is_active;
2764
2765	ctx->is_active |= event_type;
2766	if (likely(!ctx->nr_events))
2767		return;
2768
2769	now = perf_clock();
2770	ctx->timestamp = now;
2771	perf_cgroup_set_timestamp(task, ctx);
2772	/*
2773	 * First go through the list and put on any pinned groups
2774	 * in order to give them the best chance of going on.
2775	 */
2776	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2777		ctx_pinned_sched_in(ctx, cpuctx);
2778
2779	/* Then walk through the lower prio flexible groups */
2780	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2781		ctx_flexible_sched_in(ctx, cpuctx);
2782}
2783
2784static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2785			     enum event_type_t event_type,
2786			     struct task_struct *task)
2787{
2788	struct perf_event_context *ctx = &cpuctx->ctx;
2789
2790	ctx_sched_in(ctx, cpuctx, event_type, task);
2791}
2792
2793static void perf_event_context_sched_in(struct perf_event_context *ctx,
2794					struct task_struct *task)
2795{
2796	struct perf_cpu_context *cpuctx;
2797
2798	cpuctx = __get_cpu_context(ctx);
2799	if (cpuctx->task_ctx == ctx)
2800		return;
2801
2802	perf_ctx_lock(cpuctx, ctx);
2803	perf_pmu_disable(ctx->pmu);
2804	/*
2805	 * We want to keep the following priority order:
2806	 * cpu pinned (that don't need to move), task pinned,
2807	 * cpu flexible, task flexible.
2808	 */
2809	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2810
2811	if (ctx->nr_events)
2812		cpuctx->task_ctx = ctx;
2813
2814	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2815
2816	perf_pmu_enable(ctx->pmu);
2817	perf_ctx_unlock(cpuctx, ctx);
2818}
2819
2820/*
2821 * Called from scheduler to add the events of the current task
2822 * with interrupts disabled.
2823 *
2824 * We restore the event value and then enable it.
2825 *
2826 * This does not protect us against NMI, but enable()
2827 * sets the enabled bit in the control field of event _before_
2828 * accessing the event control register. If a NMI hits, then it will
2829 * keep the event running.
2830 */
2831void __perf_event_task_sched_in(struct task_struct *prev,
2832				struct task_struct *task)
2833{
2834	struct perf_event_context *ctx;
2835	int ctxn;
2836
2837	for_each_task_context_nr(ctxn) {
2838		ctx = task->perf_event_ctxp[ctxn];
2839		if (likely(!ctx))
2840			continue;
2841
2842		perf_event_context_sched_in(ctx, task);
2843	}
2844	/*
2845	 * if cgroup events exist on this CPU, then we need
2846	 * to check if we have to switch in PMU state.
2847	 * cgroup event are system-wide mode only
2848	 */
2849	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2850		perf_cgroup_sched_in(prev, task);
2851
2852	if (__this_cpu_read(perf_sched_cb_usages))
2853		perf_pmu_sched_task(prev, task, true);
2854}
2855
2856static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2857{
2858	u64 frequency = event->attr.sample_freq;
2859	u64 sec = NSEC_PER_SEC;
2860	u64 divisor, dividend;
2861
2862	int count_fls, nsec_fls, frequency_fls, sec_fls;
2863
2864	count_fls = fls64(count);
2865	nsec_fls = fls64(nsec);
2866	frequency_fls = fls64(frequency);
2867	sec_fls = 30;
2868
2869	/*
2870	 * We got @count in @nsec, with a target of sample_freq HZ
2871	 * the target period becomes:
2872	 *
2873	 *             @count * 10^9
2874	 * period = -------------------
2875	 *          @nsec * sample_freq
2876	 *
2877	 */
2878
2879	/*
2880	 * Reduce accuracy by one bit such that @a and @b converge
2881	 * to a similar magnitude.
2882	 */
2883#define REDUCE_FLS(a, b)		\
2884do {					\
2885	if (a##_fls > b##_fls) {	\
2886		a >>= 1;		\
2887		a##_fls--;		\
2888	} else {			\
2889		b >>= 1;		\
2890		b##_fls--;		\
2891	}				\
2892} while (0)
2893
2894	/*
2895	 * Reduce accuracy until either term fits in a u64, then proceed with
2896	 * the other, so that finally we can do a u64/u64 division.
2897	 */
2898	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2899		REDUCE_FLS(nsec, frequency);
2900		REDUCE_FLS(sec, count);
2901	}
2902
2903	if (count_fls + sec_fls > 64) {
2904		divisor = nsec * frequency;
2905
2906		while (count_fls + sec_fls > 64) {
2907			REDUCE_FLS(count, sec);
2908			divisor >>= 1;
2909		}
2910
2911		dividend = count * sec;
2912	} else {
2913		dividend = count * sec;
2914
2915		while (nsec_fls + frequency_fls > 64) {
2916			REDUCE_FLS(nsec, frequency);
2917			dividend >>= 1;
2918		}
2919
2920		divisor = nsec * frequency;
2921	}
2922
2923	if (!divisor)
2924		return dividend;
2925
2926	return div64_u64(dividend, divisor);
2927}
2928
2929static DEFINE_PER_CPU(int, perf_throttled_count);
2930static DEFINE_PER_CPU(u64, perf_throttled_seq);
2931
2932static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2933{
2934	struct hw_perf_event *hwc = &event->hw;
2935	s64 period, sample_period;
2936	s64 delta;
2937
2938	period = perf_calculate_period(event, nsec, count);
2939
2940	delta = (s64)(period - hwc->sample_period);
2941	delta = (delta + 7) / 8; /* low pass filter */
2942
2943	sample_period = hwc->sample_period + delta;
2944
2945	if (!sample_period)
2946		sample_period = 1;
2947
2948	hwc->sample_period = sample_period;
2949
2950	if (local64_read(&hwc->period_left) > 8*sample_period) {
2951		if (disable)
2952			event->pmu->stop(event, PERF_EF_UPDATE);
2953
2954		local64_set(&hwc->period_left, 0);
2955
2956		if (disable)
2957			event->pmu->start(event, PERF_EF_RELOAD);
2958	}
2959}
2960
2961/*
2962 * combine freq adjustment with unthrottling to avoid two passes over the
2963 * events. At the same time, make sure, having freq events does not change
2964 * the rate of unthrottling as that would introduce bias.
2965 */
2966static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2967					   int needs_unthr)
2968{
2969	struct perf_event *event;
2970	struct hw_perf_event *hwc;
2971	u64 now, period = TICK_NSEC;
2972	s64 delta;
2973
2974	/*
2975	 * only need to iterate over all events iff:
2976	 * - context have events in frequency mode (needs freq adjust)
2977	 * - there are events to unthrottle on this cpu
2978	 */
2979	if (!(ctx->nr_freq || needs_unthr))
2980		return;
2981
2982	raw_spin_lock(&ctx->lock);
2983	perf_pmu_disable(ctx->pmu);
2984
2985	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2986		if (event->state != PERF_EVENT_STATE_ACTIVE)
2987			continue;
2988
2989		if (!event_filter_match(event))
2990			continue;
2991
2992		perf_pmu_disable(event->pmu);
2993
2994		hwc = &event->hw;
2995
2996		if (hwc->interrupts == MAX_INTERRUPTS) {
2997			hwc->interrupts = 0;
2998			perf_log_throttle(event, 1);
2999			event->pmu->start(event, 0);
3000		}
3001
3002		if (!event->attr.freq || !event->attr.sample_freq)
3003			goto next;
3004
3005		/*
3006		 * stop the event and update event->count
3007		 */
3008		event->pmu->stop(event, PERF_EF_UPDATE);
3009
3010		now = local64_read(&event->count);
3011		delta = now - hwc->freq_count_stamp;
3012		hwc->freq_count_stamp = now;
3013
3014		/*
3015		 * restart the event
3016		 * reload only if value has changed
3017		 * we have stopped the event so tell that
3018		 * to perf_adjust_period() to avoid stopping it
3019		 * twice.
3020		 */
3021		if (delta > 0)
3022			perf_adjust_period(event, period, delta, false);
3023
3024		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3025	next:
3026		perf_pmu_enable(event->pmu);
3027	}
3028
3029	perf_pmu_enable(ctx->pmu);
3030	raw_spin_unlock(&ctx->lock);
3031}
3032
3033/*
3034 * Round-robin a context's events:
3035 */
3036static void rotate_ctx(struct perf_event_context *ctx)
3037{
3038	/*
3039	 * Rotate the first entry last of non-pinned groups. Rotation might be
3040	 * disabled by the inheritance code.
3041	 */
3042	if (!ctx->rotate_disable)
3043		list_rotate_left(&ctx->flexible_groups);
3044}
3045
3046static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3047{
3048	struct perf_event_context *ctx = NULL;
3049	int rotate = 0;
3050
3051	if (cpuctx->ctx.nr_events) {
3052		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3053			rotate = 1;
3054	}
3055
3056	ctx = cpuctx->task_ctx;
3057	if (ctx && ctx->nr_events) {
3058		if (ctx->nr_events != ctx->nr_active)
3059			rotate = 1;
3060	}
3061
3062	if (!rotate)
3063		goto done;
3064
3065	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3066	perf_pmu_disable(cpuctx->ctx.pmu);
3067
3068	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3069	if (ctx)
3070		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3071
3072	rotate_ctx(&cpuctx->ctx);
3073	if (ctx)
3074		rotate_ctx(ctx);
3075
3076	perf_event_sched_in(cpuctx, ctx, current);
3077
3078	perf_pmu_enable(cpuctx->ctx.pmu);
3079	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3080done:
3081
3082	return rotate;
3083}
3084
3085#ifdef CONFIG_NO_HZ_FULL
3086bool perf_event_can_stop_tick(void)
3087{
3088	if (atomic_read(&nr_freq_events) ||
3089	    __this_cpu_read(perf_throttled_count))
3090		return false;
3091	else
3092		return true;
3093}
3094#endif
3095
3096void perf_event_task_tick(void)
3097{
3098	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3099	struct perf_event_context *ctx, *tmp;
3100	int throttled;
3101
3102	WARN_ON(!irqs_disabled());
3103
3104	__this_cpu_inc(perf_throttled_seq);
3105	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3106
3107	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3108		perf_adjust_freq_unthr_context(ctx, throttled);
3109}
3110
3111static int event_enable_on_exec(struct perf_event *event,
3112				struct perf_event_context *ctx)
3113{
3114	if (!event->attr.enable_on_exec)
3115		return 0;
3116
3117	event->attr.enable_on_exec = 0;
3118	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3119		return 0;
3120
3121	__perf_event_mark_enabled(event);
3122
3123	return 1;
3124}
3125
3126/*
3127 * Enable all of a task's events that have been marked enable-on-exec.
3128 * This expects task == current.
3129 */
3130static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3131{
3132	struct perf_event_context *clone_ctx = NULL;
3133	struct perf_event *event;
3134	unsigned long flags;
3135	int enabled = 0;
3136	int ret;
3137
3138	local_irq_save(flags);
3139	if (!ctx || !ctx->nr_events)
3140		goto out;
3141
3142	/*
3143	 * We must ctxsw out cgroup events to avoid conflict
3144	 * when invoking perf_task_event_sched_in() later on
3145	 * in this function. Otherwise we end up trying to
3146	 * ctxswin cgroup events which are already scheduled
3147	 * in.
3148	 */
3149	perf_cgroup_sched_out(current, NULL);
3150
3151	raw_spin_lock(&ctx->lock);
3152	task_ctx_sched_out(ctx);
3153
3154	list_for_each_entry(event, &ctx->event_list, event_entry) {
3155		ret = event_enable_on_exec(event, ctx);
3156		if (ret)
3157			enabled = 1;
3158	}
3159
3160	/*
3161	 * Unclone this context if we enabled any event.
3162	 */
3163	if (enabled)
3164		clone_ctx = unclone_ctx(ctx);
3165
3166	raw_spin_unlock(&ctx->lock);
3167
3168	/*
3169	 * Also calls ctxswin for cgroup events, if any:
3170	 */
3171	perf_event_context_sched_in(ctx, ctx->task);
3172out:
3173	local_irq_restore(flags);
3174
3175	if (clone_ctx)
3176		put_ctx(clone_ctx);
3177}
3178
3179void perf_event_exec(void)
3180{
3181	struct perf_event_context *ctx;
3182	int ctxn;
3183
3184	rcu_read_lock();
3185	for_each_task_context_nr(ctxn) {
3186		ctx = current->perf_event_ctxp[ctxn];
3187		if (!ctx)
3188			continue;
3189
3190		perf_event_enable_on_exec(ctx);
3191	}
3192	rcu_read_unlock();
3193}
3194
3195/*
3196 * Cross CPU call to read the hardware event
3197 */
3198static void __perf_event_read(void *info)
3199{
3200	struct perf_event *event = info;
3201	struct perf_event_context *ctx = event->ctx;
3202	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3203
3204	/*
3205	 * If this is a task context, we need to check whether it is
3206	 * the current task context of this cpu.  If not it has been
3207	 * scheduled out before the smp call arrived.  In that case
3208	 * event->count would have been updated to a recent sample
3209	 * when the event was scheduled out.
3210	 */
3211	if (ctx->task && cpuctx->task_ctx != ctx)
3212		return;
3213
3214	raw_spin_lock(&ctx->lock);
3215	if (ctx->is_active) {
3216		update_context_time(ctx);
3217		update_cgrp_time_from_event(event);
3218	}
3219	update_event_times(event);
3220	if (event->state == PERF_EVENT_STATE_ACTIVE)
3221		event->pmu->read(event);
3222	raw_spin_unlock(&ctx->lock);
3223}
3224
3225static inline u64 perf_event_count(struct perf_event *event)
3226{
3227	if (event->pmu->count)
3228		return event->pmu->count(event);
3229
3230	return __perf_event_count(event);
3231}
3232
3233static u64 perf_event_read(struct perf_event *event)
3234{
3235	/*
3236	 * If event is enabled and currently active on a CPU, update the
3237	 * value in the event structure:
3238	 */
3239	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3240		smp_call_function_single(event->oncpu,
3241					 __perf_event_read, event, 1);
3242	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3243		struct perf_event_context *ctx = event->ctx;
3244		unsigned long flags;
3245
3246		raw_spin_lock_irqsave(&ctx->lock, flags);
3247		/*
3248		 * may read while context is not active
3249		 * (e.g., thread is blocked), in that case
3250		 * we cannot update context time
3251		 */
3252		if (ctx->is_active) {
3253			update_context_time(ctx);
3254			update_cgrp_time_from_event(event);
3255		}
3256		update_event_times(event);
3257		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3258	}
3259
3260	return perf_event_count(event);
3261}
3262
3263/*
3264 * Initialize the perf_event context in a task_struct:
3265 */
3266static void __perf_event_init_context(struct perf_event_context *ctx)
3267{
3268	raw_spin_lock_init(&ctx->lock);
3269	mutex_init(&ctx->mutex);
3270	INIT_LIST_HEAD(&ctx->active_ctx_list);
3271	INIT_LIST_HEAD(&ctx->pinned_groups);
3272	INIT_LIST_HEAD(&ctx->flexible_groups);
3273	INIT_LIST_HEAD(&ctx->event_list);
3274	atomic_set(&ctx->refcount, 1);
3275	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3276}
3277
3278static struct perf_event_context *
3279alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3280{
3281	struct perf_event_context *ctx;
3282
3283	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3284	if (!ctx)
3285		return NULL;
3286
3287	__perf_event_init_context(ctx);
3288	if (task) {
3289		ctx->task = task;
3290		get_task_struct(task);
3291	}
3292	ctx->pmu = pmu;
3293
3294	return ctx;
3295}
3296
3297static struct task_struct *
3298find_lively_task_by_vpid(pid_t vpid)
3299{
3300	struct task_struct *task;
3301	int err;
3302
3303	rcu_read_lock();
3304	if (!vpid)
3305		task = current;
3306	else
3307		task = find_task_by_vpid(vpid);
3308	if (task)
3309		get_task_struct(task);
3310	rcu_read_unlock();
3311
3312	if (!task)
3313		return ERR_PTR(-ESRCH);
3314
3315	/* Reuse ptrace permission checks for now. */
3316	err = -EACCES;
3317	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3318		goto errout;
3319
3320	return task;
3321errout:
3322	put_task_struct(task);
3323	return ERR_PTR(err);
3324
3325}
3326
3327/*
3328 * Returns a matching context with refcount and pincount.
3329 */
3330static struct perf_event_context *
3331find_get_context(struct pmu *pmu, struct task_struct *task,
3332		struct perf_event *event)
3333{
3334	struct perf_event_context *ctx, *clone_ctx = NULL;
3335	struct perf_cpu_context *cpuctx;
3336	void *task_ctx_data = NULL;
3337	unsigned long flags;
3338	int ctxn, err;
3339	int cpu = event->cpu;
3340
3341	if (!task) {
3342		/* Must be root to operate on a CPU event: */
3343		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3344			return ERR_PTR(-EACCES);
3345
3346		/*
3347		 * We could be clever and allow to attach a event to an
3348		 * offline CPU and activate it when the CPU comes up, but
3349		 * that's for later.
3350		 */
3351		if (!cpu_online(cpu))
3352			return ERR_PTR(-ENODEV);
3353
3354		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3355		ctx = &cpuctx->ctx;
3356		get_ctx(ctx);
3357		++ctx->pin_count;
3358
3359		return ctx;
3360	}
3361
3362	err = -EINVAL;
3363	ctxn = pmu->task_ctx_nr;
3364	if (ctxn < 0)
3365		goto errout;
3366
3367	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3368		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3369		if (!task_ctx_data) {
3370			err = -ENOMEM;
3371			goto errout;
3372		}
3373	}
3374
3375retry:
3376	ctx = perf_lock_task_context(task, ctxn, &flags);
3377	if (ctx) {
3378		clone_ctx = unclone_ctx(ctx);
3379		++ctx->pin_count;
3380
3381		if (task_ctx_data && !ctx->task_ctx_data) {
3382			ctx->task_ctx_data = task_ctx_data;
3383			task_ctx_data = NULL;
3384		}
3385		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3386
3387		if (clone_ctx)
3388			put_ctx(clone_ctx);
3389	} else {
3390		ctx = alloc_perf_context(pmu, task);
3391		err = -ENOMEM;
3392		if (!ctx)
3393			goto errout;
3394
3395		if (task_ctx_data) {
3396			ctx->task_ctx_data = task_ctx_data;
3397			task_ctx_data = NULL;
3398		}
3399
3400		err = 0;
3401		mutex_lock(&task->perf_event_mutex);
3402		/*
3403		 * If it has already passed perf_event_exit_task().
3404		 * we must see PF_EXITING, it takes this mutex too.
3405		 */
3406		if (task->flags & PF_EXITING)
3407			err = -ESRCH;
3408		else if (task->perf_event_ctxp[ctxn])
3409			err = -EAGAIN;
3410		else {
3411			get_ctx(ctx);
3412			++ctx->pin_count;
3413			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3414		}
3415		mutex_unlock(&task->perf_event_mutex);
3416
3417		if (unlikely(err)) {
3418			put_ctx(ctx);
3419
3420			if (err == -EAGAIN)
3421				goto retry;
3422			goto errout;
3423		}
3424	}
3425
3426	kfree(task_ctx_data);
3427	return ctx;
3428
3429errout:
3430	kfree(task_ctx_data);
3431	return ERR_PTR(err);
3432}
3433
3434static void perf_event_free_filter(struct perf_event *event);
3435static void perf_event_free_bpf_prog(struct perf_event *event);
3436
3437static void free_event_rcu(struct rcu_head *head)
3438{
3439	struct perf_event *event;
3440
3441	event = container_of(head, struct perf_event, rcu_head);
3442	if (event->ns)
3443		put_pid_ns(event->ns);
3444	perf_event_free_filter(event);
3445	kfree(event);
3446}
3447
3448static void ring_buffer_attach(struct perf_event *event,
3449			       struct ring_buffer *rb);
3450
3451static void unaccount_event_cpu(struct perf_event *event, int cpu)
3452{
3453	if (event->parent)
3454		return;
3455
3456	if (is_cgroup_event(event))
3457		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3458}
3459
3460static void unaccount_event(struct perf_event *event)
3461{
3462	if (event->parent)
3463		return;
3464
3465	if (event->attach_state & PERF_ATTACH_TASK)
3466		static_key_slow_dec_deferred(&perf_sched_events);
3467	if (event->attr.mmap || event->attr.mmap_data)
3468		atomic_dec(&nr_mmap_events);
3469	if (event->attr.comm)
3470		atomic_dec(&nr_comm_events);
3471	if (event->attr.task)
3472		atomic_dec(&nr_task_events);
3473	if (event->attr.freq)
3474		atomic_dec(&nr_freq_events);
3475	if (is_cgroup_event(event))
3476		static_key_slow_dec_deferred(&perf_sched_events);
3477	if (has_branch_stack(event))
3478		static_key_slow_dec_deferred(&perf_sched_events);
3479
3480	unaccount_event_cpu(event, event->cpu);
3481}
3482
3483/*
3484 * The following implement mutual exclusion of events on "exclusive" pmus
3485 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3486 * at a time, so we disallow creating events that might conflict, namely:
3487 *
3488 *  1) cpu-wide events in the presence of per-task events,
3489 *  2) per-task events in the presence of cpu-wide events,
3490 *  3) two matching events on the same context.
3491 *
3492 * The former two cases are handled in the allocation path (perf_event_alloc(),
3493 * __free_event()), the latter -- before the first perf_install_in_context().
3494 */
3495static int exclusive_event_init(struct perf_event *event)
3496{
3497	struct pmu *pmu = event->pmu;
3498
3499	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3500		return 0;
3501
3502	/*
3503	 * Prevent co-existence of per-task and cpu-wide events on the
3504	 * same exclusive pmu.
3505	 *
3506	 * Negative pmu::exclusive_cnt means there are cpu-wide
3507	 * events on this "exclusive" pmu, positive means there are
3508	 * per-task events.
3509	 *
3510	 * Since this is called in perf_event_alloc() path, event::ctx
3511	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3512	 * to mean "per-task event", because unlike other attach states it
3513	 * never gets cleared.
3514	 */
3515	if (event->attach_state & PERF_ATTACH_TASK) {
3516		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3517			return -EBUSY;
3518	} else {
3519		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3520			return -EBUSY;
3521	}
3522
3523	return 0;
3524}
3525
3526static void exclusive_event_destroy(struct perf_event *event)
3527{
3528	struct pmu *pmu = event->pmu;
3529
3530	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3531		return;
3532
3533	/* see comment in exclusive_event_init() */
3534	if (event->attach_state & PERF_ATTACH_TASK)
3535		atomic_dec(&pmu->exclusive_cnt);
3536	else
3537		atomic_inc(&pmu->exclusive_cnt);
3538}
3539
3540static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3541{
3542	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3543	    (e1->cpu == e2->cpu ||
3544	     e1->cpu == -1 ||
3545	     e2->cpu == -1))
3546		return true;
3547	return false;
3548}
3549
3550/* Called under the same ctx::mutex as perf_install_in_context() */
3551static bool exclusive_event_installable(struct perf_event *event,
3552					struct perf_event_context *ctx)
3553{
3554	struct perf_event *iter_event;
3555	struct pmu *pmu = event->pmu;
3556
3557	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3558		return true;
3559
3560	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3561		if (exclusive_event_match(iter_event, event))
3562			return false;
3563	}
3564
3565	return true;
3566}
3567
3568static void __free_event(struct perf_event *event)
3569{
3570	if (!event->parent) {
3571		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3572			put_callchain_buffers();
3573	}
3574
3575	perf_event_free_bpf_prog(event);
3576
3577	if (event->destroy)
3578		event->destroy(event);
3579
3580	if (event->ctx)
3581		put_ctx(event->ctx);
3582
3583	if (event->pmu) {
3584		exclusive_event_destroy(event);
3585		module_put(event->pmu->module);
3586	}
3587
3588	call_rcu(&event->rcu_head, free_event_rcu);
3589}
3590
3591static void _free_event(struct perf_event *event)
3592{
3593	irq_work_sync(&event->pending);
3594
3595	unaccount_event(event);
3596
3597	if (event->rb) {
3598		/*
3599		 * Can happen when we close an event with re-directed output.
3600		 *
3601		 * Since we have a 0 refcount, perf_mmap_close() will skip
3602		 * over us; possibly making our ring_buffer_put() the last.
3603		 */
3604		mutex_lock(&event->mmap_mutex);
3605		ring_buffer_attach(event, NULL);
3606		mutex_unlock(&event->mmap_mutex);
3607	}
3608
3609	if (is_cgroup_event(event))
3610		perf_detach_cgroup(event);
3611
3612	__free_event(event);
3613}
3614
3615/*
3616 * Used to free events which have a known refcount of 1, such as in error paths
3617 * where the event isn't exposed yet and inherited events.
3618 */
3619static void free_event(struct perf_event *event)
3620{
3621	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3622				"unexpected event refcount: %ld; ptr=%p\n",
3623				atomic_long_read(&event->refcount), event)) {
3624		/* leak to avoid use-after-free */
3625		return;
3626	}
3627
3628	_free_event(event);
3629}
3630
3631/*
3632 * Remove user event from the owner task.
3633 */
3634static void perf_remove_from_owner(struct perf_event *event)
3635{
3636	struct task_struct *owner;
3637
3638	rcu_read_lock();
3639	owner = ACCESS_ONCE(event->owner);
3640	/*
3641	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3642	 * !owner it means the list deletion is complete and we can indeed
3643	 * free this event, otherwise we need to serialize on
3644	 * owner->perf_event_mutex.
3645	 */
3646	smp_read_barrier_depends();
3647	if (owner) {
3648		/*
3649		 * Since delayed_put_task_struct() also drops the last
3650		 * task reference we can safely take a new reference
3651		 * while holding the rcu_read_lock().
3652		 */
3653		get_task_struct(owner);
3654	}
3655	rcu_read_unlock();
3656
3657	if (owner) {
3658		/*
3659		 * If we're here through perf_event_exit_task() we're already
3660		 * holding ctx->mutex which would be an inversion wrt. the
3661		 * normal lock order.
3662		 *
3663		 * However we can safely take this lock because its the child
3664		 * ctx->mutex.
3665		 */
3666		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3667
3668		/*
3669		 * We have to re-check the event->owner field, if it is cleared
3670		 * we raced with perf_event_exit_task(), acquiring the mutex
3671		 * ensured they're done, and we can proceed with freeing the
3672		 * event.
3673		 */
3674		if (event->owner)
3675			list_del_init(&event->owner_entry);
3676		mutex_unlock(&owner->perf_event_mutex);
3677		put_task_struct(owner);
3678	}
3679}
3680
3681static void put_event(struct perf_event *event)
3682{
3683	struct perf_event_context *ctx;
3684
3685	if (!atomic_long_dec_and_test(&event->refcount))
3686		return;
3687
3688	if (!is_kernel_event(event))
3689		perf_remove_from_owner(event);
3690
3691	/*
3692	 * There are two ways this annotation is useful:
3693	 *
3694	 *  1) there is a lock recursion from perf_event_exit_task
3695	 *     see the comment there.
3696	 *
3697	 *  2) there is a lock-inversion with mmap_sem through
3698	 *     perf_event_read_group(), which takes faults while
3699	 *     holding ctx->mutex, however this is called after
3700	 *     the last filedesc died, so there is no possibility
3701	 *     to trigger the AB-BA case.
3702	 */
3703	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3704	WARN_ON_ONCE(ctx->parent_ctx);
3705	perf_remove_from_context(event, true);
3706	perf_event_ctx_unlock(event, ctx);
3707
3708	_free_event(event);
3709}
3710
3711int perf_event_release_kernel(struct perf_event *event)
3712{
3713	put_event(event);
3714	return 0;
3715}
3716EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3717
3718/*
3719 * Called when the last reference to the file is gone.
3720 */
3721static int perf_release(struct inode *inode, struct file *file)
3722{
3723	put_event(file->private_data);
3724	return 0;
3725}
3726
3727/*
3728 * Remove all orphanes events from the context.
3729 */
3730static void orphans_remove_work(struct work_struct *work)
3731{
3732	struct perf_event_context *ctx;
3733	struct perf_event *event, *tmp;
3734
3735	ctx = container_of(work, struct perf_event_context,
3736			   orphans_remove.work);
3737
3738	mutex_lock(&ctx->mutex);
3739	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3740		struct perf_event *parent_event = event->parent;
3741
3742		if (!is_orphaned_child(event))
3743			continue;
3744
3745		perf_remove_from_context(event, true);
3746
3747		mutex_lock(&parent_event->child_mutex);
3748		list_del_init(&event->child_list);
3749		mutex_unlock(&parent_event->child_mutex);
3750
3751		free_event(event);
3752		put_event(parent_event);
3753	}
3754
3755	raw_spin_lock_irq(&ctx->lock);
3756	ctx->orphans_remove_sched = false;
3757	raw_spin_unlock_irq(&ctx->lock);
3758	mutex_unlock(&ctx->mutex);
3759
3760	put_ctx(ctx);
3761}
3762
3763u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3764{
3765	struct perf_event *child;
3766	u64 total = 0;
3767
3768	*enabled = 0;
3769	*running = 0;
3770
3771	mutex_lock(&event->child_mutex);
3772	total += perf_event_read(event);
3773	*enabled += event->total_time_enabled +
3774			atomic64_read(&event->child_total_time_enabled);
3775	*running += event->total_time_running +
3776			atomic64_read(&event->child_total_time_running);
3777
3778	list_for_each_entry(child, &event->child_list, child_list) {
3779		total += perf_event_read(child);
3780		*enabled += child->total_time_enabled;
3781		*running += child->total_time_running;
3782	}
3783	mutex_unlock(&event->child_mutex);
3784
3785	return total;
3786}
3787EXPORT_SYMBOL_GPL(perf_event_read_value);
3788
3789static int perf_event_read_group(struct perf_event *event,
3790				   u64 read_format, char __user *buf)
3791{
3792	struct perf_event *leader = event->group_leader, *sub;
3793	struct perf_event_context *ctx = leader->ctx;
3794	int n = 0, size = 0, ret;
3795	u64 count, enabled, running;
3796	u64 values[5];
3797
3798	lockdep_assert_held(&ctx->mutex);
3799
3800	count = perf_event_read_value(leader, &enabled, &running);
3801
3802	values[n++] = 1 + leader->nr_siblings;
3803	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3804		values[n++] = enabled;
3805	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3806		values[n++] = running;
3807	values[n++] = count;
3808	if (read_format & PERF_FORMAT_ID)
3809		values[n++] = primary_event_id(leader);
3810
3811	size = n * sizeof(u64);
3812
3813	if (copy_to_user(buf, values, size))
3814		return -EFAULT;
3815
3816	ret = size;
3817
3818	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3819		n = 0;
3820
3821		values[n++] = perf_event_read_value(sub, &enabled, &running);
3822		if (read_format & PERF_FORMAT_ID)
3823			values[n++] = primary_event_id(sub);
3824
3825		size = n * sizeof(u64);
3826
3827		if (copy_to_user(buf + ret, values, size)) {
3828			return -EFAULT;
3829		}
3830
3831		ret += size;
3832	}
3833
3834	return ret;
3835}
3836
3837static int perf_event_read_one(struct perf_event *event,
3838				 u64 read_format, char __user *buf)
3839{
3840	u64 enabled, running;
3841	u64 values[4];
3842	int n = 0;
3843
3844	values[n++] = perf_event_read_value(event, &enabled, &running);
3845	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3846		values[n++] = enabled;
3847	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3848		values[n++] = running;
3849	if (read_format & PERF_FORMAT_ID)
3850		values[n++] = primary_event_id(event);
3851
3852	if (copy_to_user(buf, values, n * sizeof(u64)))
3853		return -EFAULT;
3854
3855	return n * sizeof(u64);
3856}
3857
3858static bool is_event_hup(struct perf_event *event)
3859{
3860	bool no_children;
3861
3862	if (event->state != PERF_EVENT_STATE_EXIT)
3863		return false;
3864
3865	mutex_lock(&event->child_mutex);
3866	no_children = list_empty(&event->child_list);
3867	mutex_unlock(&event->child_mutex);
3868	return no_children;
3869}
3870
3871/*
3872 * Read the performance event - simple non blocking version for now
3873 */
3874static ssize_t
3875perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3876{
3877	u64 read_format = event->attr.read_format;
3878	int ret;
3879
3880	/*
3881	 * Return end-of-file for a read on a event that is in
3882	 * error state (i.e. because it was pinned but it couldn't be
3883	 * scheduled on to the CPU at some point).
3884	 */
3885	if (event->state == PERF_EVENT_STATE_ERROR)
3886		return 0;
3887
3888	if (count < event->read_size)
3889		return -ENOSPC;
3890
3891	WARN_ON_ONCE(event->ctx->parent_ctx);
3892	if (read_format & PERF_FORMAT_GROUP)
3893		ret = perf_event_read_group(event, read_format, buf);
3894	else
3895		ret = perf_event_read_one(event, read_format, buf);
3896
3897	return ret;
3898}
3899
3900static ssize_t
3901perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3902{
3903	struct perf_event *event = file->private_data;
3904	struct perf_event_context *ctx;
3905	int ret;
3906
3907	ctx = perf_event_ctx_lock(event);
3908	ret = perf_read_hw(event, buf, count);
3909	perf_event_ctx_unlock(event, ctx);
3910
3911	return ret;
3912}
3913
3914static unsigned int perf_poll(struct file *file, poll_table *wait)
3915{
3916	struct perf_event *event = file->private_data;
3917	struct ring_buffer *rb;
3918	unsigned int events = POLLHUP;
3919
3920	poll_wait(file, &event->waitq, wait);
3921
3922	if (is_event_hup(event))
3923		return events;
3924
3925	/*
3926	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3927	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3928	 */
3929	mutex_lock(&event->mmap_mutex);
3930	rb = event->rb;
3931	if (rb)
3932		events = atomic_xchg(&rb->poll, 0);
3933	mutex_unlock(&event->mmap_mutex);
3934	return events;
3935}
3936
3937static void _perf_event_reset(struct perf_event *event)
3938{
3939	(void)perf_event_read(event);
3940	local64_set(&event->count, 0);
3941	perf_event_update_userpage(event);
3942}
3943
3944/*
3945 * Holding the top-level event's child_mutex means that any
3946 * descendant process that has inherited this event will block
3947 * in sync_child_event if it goes to exit, thus satisfying the
3948 * task existence requirements of perf_event_enable/disable.
3949 */
3950static void perf_event_for_each_child(struct perf_event *event,
3951					void (*func)(struct perf_event *))
3952{
3953	struct perf_event *child;
3954
3955	WARN_ON_ONCE(event->ctx->parent_ctx);
3956
3957	mutex_lock(&event->child_mutex);
3958	func(event);
3959	list_for_each_entry(child, &event->child_list, child_list)
3960		func(child);
3961	mutex_unlock(&event->child_mutex);
3962}
3963
3964static void perf_event_for_each(struct perf_event *event,
3965				  void (*func)(struct perf_event *))
3966{
3967	struct perf_event_context *ctx = event->ctx;
3968	struct perf_event *sibling;
3969
3970	lockdep_assert_held(&ctx->mutex);
3971
3972	event = event->group_leader;
3973
3974	perf_event_for_each_child(event, func);
3975	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3976		perf_event_for_each_child(sibling, func);
3977}
3978
3979struct period_event {
3980	struct perf_event *event;
3981	u64 value;
3982};
3983
3984static int __perf_event_period(void *info)
3985{
3986	struct period_event *pe = info;
3987	struct perf_event *event = pe->event;
3988	struct perf_event_context *ctx = event->ctx;
3989	u64 value = pe->value;
3990	bool active;
3991
3992	raw_spin_lock(&ctx->lock);
3993	if (event->attr.freq) {
3994		event->attr.sample_freq = value;
3995	} else {
3996		event->attr.sample_period = value;
3997		event->hw.sample_period = value;
3998	}
3999
4000	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4001	if (active) {
4002		perf_pmu_disable(ctx->pmu);
4003		event->pmu->stop(event, PERF_EF_UPDATE);
4004	}
4005
4006	local64_set(&event->hw.period_left, 0);
4007
4008	if (active) {
4009		event->pmu->start(event, PERF_EF_RELOAD);
4010		perf_pmu_enable(ctx->pmu);
4011	}
4012	raw_spin_unlock(&ctx->lock);
4013
4014	return 0;
4015}
4016
4017static int perf_event_period(struct perf_event *event, u64 __user *arg)
4018{
4019	struct period_event pe = { .event = event, };
4020	struct perf_event_context *ctx = event->ctx;
4021	struct task_struct *task;
4022	u64 value;
4023
4024	if (!is_sampling_event(event))
4025		return -EINVAL;
4026
4027	if (copy_from_user(&value, arg, sizeof(value)))
4028		return -EFAULT;
4029
4030	if (!value)
4031		return -EINVAL;
4032
4033	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4034		return -EINVAL;
4035
4036	task = ctx->task;
4037	pe.value = value;
4038
4039	if (!task) {
4040		cpu_function_call(event->cpu, __perf_event_period, &pe);
4041		return 0;
4042	}
4043
4044retry:
4045	if (!task_function_call(task, __perf_event_period, &pe))
4046		return 0;
4047
4048	raw_spin_lock_irq(&ctx->lock);
4049	if (ctx->is_active) {
4050		raw_spin_unlock_irq(&ctx->lock);
4051		task = ctx->task;
4052		goto retry;
4053	}
4054
4055	__perf_event_period(&pe);
4056	raw_spin_unlock_irq(&ctx->lock);
4057
4058	return 0;
4059}
4060
4061static const struct file_operations perf_fops;
4062
4063static inline int perf_fget_light(int fd, struct fd *p)
4064{
4065	struct fd f = fdget(fd);
4066	if (!f.file)
4067		return -EBADF;
4068
4069	if (f.file->f_op != &perf_fops) {
4070		fdput(f);
4071		return -EBADF;
4072	}
4073	*p = f;
4074	return 0;
4075}
4076
4077static int perf_event_set_output(struct perf_event *event,
4078				 struct perf_event *output_event);
4079static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4080static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4081
4082static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4083{
4084	void (*func)(struct perf_event *);
4085	u32 flags = arg;
4086
4087	switch (cmd) {
4088	case PERF_EVENT_IOC_ENABLE:
4089		func = _perf_event_enable;
4090		break;
4091	case PERF_EVENT_IOC_DISABLE:
4092		func = _perf_event_disable;
4093		break;
4094	case PERF_EVENT_IOC_RESET:
4095		func = _perf_event_reset;
4096		break;
4097
4098	case PERF_EVENT_IOC_REFRESH:
4099		return _perf_event_refresh(event, arg);
4100
4101	case PERF_EVENT_IOC_PERIOD:
4102		return perf_event_period(event, (u64 __user *)arg);
4103
4104	case PERF_EVENT_IOC_ID:
4105	{
4106		u64 id = primary_event_id(event);
4107
4108		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4109			return -EFAULT;
4110		return 0;
4111	}
4112
4113	case PERF_EVENT_IOC_SET_OUTPUT:
4114	{
4115		int ret;
4116		if (arg != -1) {
4117			struct perf_event *output_event;
4118			struct fd output;
4119			ret = perf_fget_light(arg, &output);
4120			if (ret)
4121				return ret;
4122			output_event = output.file->private_data;
4123			ret = perf_event_set_output(event, output_event);
4124			fdput(output);
4125		} else {
4126			ret = perf_event_set_output(event, NULL);
4127		}
4128		return ret;
4129	}
4130
4131	case PERF_EVENT_IOC_SET_FILTER:
4132		return perf_event_set_filter(event, (void __user *)arg);
4133
4134	case PERF_EVENT_IOC_SET_BPF:
4135		return perf_event_set_bpf_prog(event, arg);
4136
4137	default:
4138		return -ENOTTY;
4139	}
4140
4141	if (flags & PERF_IOC_FLAG_GROUP)
4142		perf_event_for_each(event, func);
4143	else
4144		perf_event_for_each_child(event, func);
4145
4146	return 0;
4147}
4148
4149static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4150{
4151	struct perf_event *event = file->private_data;
4152	struct perf_event_context *ctx;
4153	long ret;
4154
4155	ctx = perf_event_ctx_lock(event);
4156	ret = _perf_ioctl(event, cmd, arg);
4157	perf_event_ctx_unlock(event, ctx);
4158
4159	return ret;
4160}
4161
4162#ifdef CONFIG_COMPAT
4163static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4164				unsigned long arg)
4165{
4166	switch (_IOC_NR(cmd)) {
4167	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4168	case _IOC_NR(PERF_EVENT_IOC_ID):
4169		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4170		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4171			cmd &= ~IOCSIZE_MASK;
4172			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4173		}
4174		break;
4175	}
4176	return perf_ioctl(file, cmd, arg);
4177}
4178#else
4179# define perf_compat_ioctl NULL
4180#endif
4181
4182int perf_event_task_enable(void)
4183{
4184	struct perf_event_context *ctx;
4185	struct perf_event *event;
4186
4187	mutex_lock(&current->perf_event_mutex);
4188	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4189		ctx = perf_event_ctx_lock(event);
4190		perf_event_for_each_child(event, _perf_event_enable);
4191		perf_event_ctx_unlock(event, ctx);
4192	}
4193	mutex_unlock(&current->perf_event_mutex);
4194
4195	return 0;
4196}
4197
4198int perf_event_task_disable(void)
4199{
4200	struct perf_event_context *ctx;
4201	struct perf_event *event;
4202
4203	mutex_lock(&current->perf_event_mutex);
4204	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4205		ctx = perf_event_ctx_lock(event);
4206		perf_event_for_each_child(event, _perf_event_disable);
4207		perf_event_ctx_unlock(event, ctx);
4208	}
4209	mutex_unlock(&current->perf_event_mutex);
4210
4211	return 0;
4212}
4213
4214static int perf_event_index(struct perf_event *event)
4215{
4216	if (event->hw.state & PERF_HES_STOPPED)
4217		return 0;
4218
4219	if (event->state != PERF_EVENT_STATE_ACTIVE)
4220		return 0;
4221
4222	return event->pmu->event_idx(event);
4223}
4224
4225static void calc_timer_values(struct perf_event *event,
4226				u64 *now,
4227				u64 *enabled,
4228				u64 *running)
4229{
4230	u64 ctx_time;
4231
4232	*now = perf_clock();
4233	ctx_time = event->shadow_ctx_time + *now;
4234	*enabled = ctx_time - event->tstamp_enabled;
4235	*running = ctx_time - event->tstamp_running;
4236}
4237
4238static void perf_event_init_userpage(struct perf_event *event)
4239{
4240	struct perf_event_mmap_page *userpg;
4241	struct ring_buffer *rb;
4242
4243	rcu_read_lock();
4244	rb = rcu_dereference(event->rb);
4245	if (!rb)
4246		goto unlock;
4247
4248	userpg = rb->user_page;
4249
4250	/* Allow new userspace to detect that bit 0 is deprecated */
4251	userpg->cap_bit0_is_deprecated = 1;
4252	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4253	userpg->data_offset = PAGE_SIZE;
4254	userpg->data_size = perf_data_size(rb);
4255
4256unlock:
4257	rcu_read_unlock();
4258}
4259
4260void __weak arch_perf_update_userpage(
4261	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4262{
4263}
4264
4265/*
4266 * Callers need to ensure there can be no nesting of this function, otherwise
4267 * the seqlock logic goes bad. We can not serialize this because the arch
4268 * code calls this from NMI context.
4269 */
4270void perf_event_update_userpage(struct perf_event *event)
4271{
4272	struct perf_event_mmap_page *userpg;
4273	struct ring_buffer *rb;
4274	u64 enabled, running, now;
4275
4276	rcu_read_lock();
4277	rb = rcu_dereference(event->rb);
4278	if (!rb)
4279		goto unlock;
4280
4281	/*
4282	 * compute total_time_enabled, total_time_running
4283	 * based on snapshot values taken when the event
4284	 * was last scheduled in.
4285	 *
4286	 * we cannot simply called update_context_time()
4287	 * because of locking issue as we can be called in
4288	 * NMI context
4289	 */
4290	calc_timer_values(event, &now, &enabled, &running);
4291
4292	userpg = rb->user_page;
4293	/*
4294	 * Disable preemption so as to not let the corresponding user-space
4295	 * spin too long if we get preempted.
4296	 */
4297	preempt_disable();
4298	++userpg->lock;
4299	barrier();
4300	userpg->index = perf_event_index(event);
4301	userpg->offset = perf_event_count(event);
4302	if (userpg->index)
4303		userpg->offset -= local64_read(&event->hw.prev_count);
4304
4305	userpg->time_enabled = enabled +
4306			atomic64_read(&event->child_total_time_enabled);
4307
4308	userpg->time_running = running +
4309			atomic64_read(&event->child_total_time_running);
4310
4311	arch_perf_update_userpage(event, userpg, now);
4312
4313	barrier();
4314	++userpg->lock;
4315	preempt_enable();
4316unlock:
4317	rcu_read_unlock();
4318}
4319
4320static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4321{
4322	struct perf_event *event = vma->vm_file->private_data;
4323	struct ring_buffer *rb;
4324	int ret = VM_FAULT_SIGBUS;
4325
4326	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4327		if (vmf->pgoff == 0)
4328			ret = 0;
4329		return ret;
4330	}
4331
4332	rcu_read_lock();
4333	rb = rcu_dereference(event->rb);
4334	if (!rb)
4335		goto unlock;
4336
4337	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4338		goto unlock;
4339
4340	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4341	if (!vmf->page)
4342		goto unlock;
4343
4344	get_page(vmf->page);
4345	vmf->page->mapping = vma->vm_file->f_mapping;
4346	vmf->page->index   = vmf->pgoff;
4347
4348	ret = 0;
4349unlock:
4350	rcu_read_unlock();
4351
4352	return ret;
4353}
4354
4355static void ring_buffer_attach(struct perf_event *event,
4356			       struct ring_buffer *rb)
4357{
4358	struct ring_buffer *old_rb = NULL;
4359	unsigned long flags;
4360
4361	if (event->rb) {
4362		/*
4363		 * Should be impossible, we set this when removing
4364		 * event->rb_entry and wait/clear when adding event->rb_entry.
4365		 */
4366		WARN_ON_ONCE(event->rcu_pending);
4367
4368		old_rb = event->rb;
4369		spin_lock_irqsave(&old_rb->event_lock, flags);
4370		list_del_rcu(&event->rb_entry);
4371		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4372
4373		event->rcu_batches = get_state_synchronize_rcu();
4374		event->rcu_pending = 1;
4375	}
4376
4377	if (rb) {
4378		if (event->rcu_pending) {
4379			cond_synchronize_rcu(event->rcu_batches);
4380			event->rcu_pending = 0;
4381		}
4382
4383		spin_lock_irqsave(&rb->event_lock, flags);
4384		list_add_rcu(&event->rb_entry, &rb->event_list);
4385		spin_unlock_irqrestore(&rb->event_lock, flags);
4386	}
4387
4388	rcu_assign_pointer(event->rb, rb);
4389
4390	if (old_rb) {
4391		ring_buffer_put(old_rb);
4392		/*
4393		 * Since we detached before setting the new rb, so that we
4394		 * could attach the new rb, we could have missed a wakeup.
4395		 * Provide it now.
4396		 */
4397		wake_up_all(&event->waitq);
4398	}
4399}
4400
4401static void ring_buffer_wakeup(struct perf_event *event)
4402{
4403	struct ring_buffer *rb;
4404
4405	rcu_read_lock();
4406	rb = rcu_dereference(event->rb);
4407	if (rb) {
4408		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4409			wake_up_all(&event->waitq);
4410	}
4411	rcu_read_unlock();
4412}
4413
4414struct ring_buffer *ring_buffer_get(struct perf_event *event)
4415{
4416	struct ring_buffer *rb;
4417
4418	rcu_read_lock();
4419	rb = rcu_dereference(event->rb);
4420	if (rb) {
4421		if (!atomic_inc_not_zero(&rb->refcount))
4422			rb = NULL;
4423	}
4424	rcu_read_unlock();
4425
4426	return rb;
4427}
4428
4429void ring_buffer_put(struct ring_buffer *rb)
4430{
4431	if (!atomic_dec_and_test(&rb->refcount))
4432		return;
4433
4434	WARN_ON_ONCE(!list_empty(&rb->event_list));
4435
4436	call_rcu(&rb->rcu_head, rb_free_rcu);
4437}
4438
4439static void perf_mmap_open(struct vm_area_struct *vma)
4440{
4441	struct perf_event *event = vma->vm_file->private_data;
4442
4443	atomic_inc(&event->mmap_count);
4444	atomic_inc(&event->rb->mmap_count);
4445
4446	if (vma->vm_pgoff)
4447		atomic_inc(&event->rb->aux_mmap_count);
4448
4449	if (event->pmu->event_mapped)
4450		event->pmu->event_mapped(event);
4451}
4452
4453/*
4454 * A buffer can be mmap()ed multiple times; either directly through the same
4455 * event, or through other events by use of perf_event_set_output().
4456 *
4457 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4458 * the buffer here, where we still have a VM context. This means we need
4459 * to detach all events redirecting to us.
4460 */
4461static void perf_mmap_close(struct vm_area_struct *vma)
4462{
4463	struct perf_event *event = vma->vm_file->private_data;
4464
4465	struct ring_buffer *rb = ring_buffer_get(event);
4466	struct user_struct *mmap_user = rb->mmap_user;
4467	int mmap_locked = rb->mmap_locked;
4468	unsigned long size = perf_data_size(rb);
4469
4470	if (event->pmu->event_unmapped)
4471		event->pmu->event_unmapped(event);
4472
4473	/*
4474	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4475	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4476	 * serialize with perf_mmap here.
4477	 */
4478	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4479	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4480		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4481		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4482
4483		rb_free_aux(rb);
4484		mutex_unlock(&event->mmap_mutex);
4485	}
4486
4487	atomic_dec(&rb->mmap_count);
4488
4489	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4490		goto out_put;
4491
4492	ring_buffer_attach(event, NULL);
4493	mutex_unlock(&event->mmap_mutex);
4494
4495	/* If there's still other mmap()s of this buffer, we're done. */
4496	if (atomic_read(&rb->mmap_count))
4497		goto out_put;
4498
4499	/*
4500	 * No other mmap()s, detach from all other events that might redirect
4501	 * into the now unreachable buffer. Somewhat complicated by the
4502	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4503	 */
4504again:
4505	rcu_read_lock();
4506	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4507		if (!atomic_long_inc_not_zero(&event->refcount)) {
4508			/*
4509			 * This event is en-route to free_event() which will
4510			 * detach it and remove it from the list.
4511			 */
4512			continue;
4513		}
4514		rcu_read_unlock();
4515
4516		mutex_lock(&event->mmap_mutex);
4517		/*
4518		 * Check we didn't race with perf_event_set_output() which can
4519		 * swizzle the rb from under us while we were waiting to
4520		 * acquire mmap_mutex.
4521		 *
4522		 * If we find a different rb; ignore this event, a next
4523		 * iteration will no longer find it on the list. We have to
4524		 * still restart the iteration to make sure we're not now
4525		 * iterating the wrong list.
4526		 */
4527		if (event->rb == rb)
4528			ring_buffer_attach(event, NULL);
4529
4530		mutex_unlock(&event->mmap_mutex);
4531		put_event(event);
4532
4533		/*
4534		 * Restart the iteration; either we're on the wrong list or
4535		 * destroyed its integrity by doing a deletion.
4536		 */
4537		goto again;
4538	}
4539	rcu_read_unlock();
4540
4541	/*
4542	 * It could be there's still a few 0-ref events on the list; they'll
4543	 * get cleaned up by free_event() -- they'll also still have their
4544	 * ref on the rb and will free it whenever they are done with it.
4545	 *
4546	 * Aside from that, this buffer is 'fully' detached and unmapped,
4547	 * undo the VM accounting.
4548	 */
4549
4550	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4551	vma->vm_mm->pinned_vm -= mmap_locked;
4552	free_uid(mmap_user);
4553
4554out_put:
4555	ring_buffer_put(rb); /* could be last */
4556}
4557
4558static const struct vm_operations_struct perf_mmap_vmops = {
4559	.open		= perf_mmap_open,
4560	.close		= perf_mmap_close, /* non mergable */
4561	.fault		= perf_mmap_fault,
4562	.page_mkwrite	= perf_mmap_fault,
4563};
4564
4565static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4566{
4567	struct perf_event *event = file->private_data;
4568	unsigned long user_locked, user_lock_limit;
4569	struct user_struct *user = current_user();
4570	unsigned long locked, lock_limit;
4571	struct ring_buffer *rb = NULL;
4572	unsigned long vma_size;
4573	unsigned long nr_pages;
4574	long user_extra = 0, extra = 0;
4575	int ret = 0, flags = 0;
4576
4577	/*
4578	 * Don't allow mmap() of inherited per-task counters. This would
4579	 * create a performance issue due to all children writing to the
4580	 * same rb.
4581	 */
4582	if (event->cpu == -1 && event->attr.inherit)
4583		return -EINVAL;
4584
4585	if (!(vma->vm_flags & VM_SHARED))
4586		return -EINVAL;
4587
4588	vma_size = vma->vm_end - vma->vm_start;
4589
4590	if (vma->vm_pgoff == 0) {
4591		nr_pages = (vma_size / PAGE_SIZE) - 1;
4592	} else {
4593		/*
4594		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4595		 * mapped, all subsequent mappings should have the same size
4596		 * and offset. Must be above the normal perf buffer.
4597		 */
4598		u64 aux_offset, aux_size;
4599
4600		if (!event->rb)
4601			return -EINVAL;
4602
4603		nr_pages = vma_size / PAGE_SIZE;
4604
4605		mutex_lock(&event->mmap_mutex);
4606		ret = -EINVAL;
4607
4608		rb = event->rb;
4609		if (!rb)
4610			goto aux_unlock;
4611
4612		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4613		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4614
4615		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4616			goto aux_unlock;
4617
4618		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4619			goto aux_unlock;
4620
4621		/* already mapped with a different offset */
4622		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4623			goto aux_unlock;
4624
4625		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4626			goto aux_unlock;
4627
4628		/* already mapped with a different size */
4629		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4630			goto aux_unlock;
4631
4632		if (!is_power_of_2(nr_pages))
4633			goto aux_unlock;
4634
4635		if (!atomic_inc_not_zero(&rb->mmap_count))
4636			goto aux_unlock;
4637
4638		if (rb_has_aux(rb)) {
4639			atomic_inc(&rb->aux_mmap_count);
4640			ret = 0;
4641			goto unlock;
4642		}
4643
4644		atomic_set(&rb->aux_mmap_count, 1);
4645		user_extra = nr_pages;
4646
4647		goto accounting;
4648	}
4649
4650	/*
4651	 * If we have rb pages ensure they're a power-of-two number, so we
4652	 * can do bitmasks instead of modulo.
4653	 */
4654	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4655		return -EINVAL;
4656
4657	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4658		return -EINVAL;
4659
4660	WARN_ON_ONCE(event->ctx->parent_ctx);
4661again:
4662	mutex_lock(&event->mmap_mutex);
4663	if (event->rb) {
4664		if (event->rb->nr_pages != nr_pages) {
4665			ret = -EINVAL;
4666			goto unlock;
4667		}
4668
4669		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4670			/*
4671			 * Raced against perf_mmap_close() through
4672			 * perf_event_set_output(). Try again, hope for better
4673			 * luck.
4674			 */
4675			mutex_unlock(&event->mmap_mutex);
4676			goto again;
4677		}
4678
4679		goto unlock;
4680	}
4681
4682	user_extra = nr_pages + 1;
4683
4684accounting:
4685	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4686
4687	/*
4688	 * Increase the limit linearly with more CPUs:
4689	 */
4690	user_lock_limit *= num_online_cpus();
4691
4692	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4693
4694	if (user_locked > user_lock_limit)
4695		extra = user_locked - user_lock_limit;
4696
4697	lock_limit = rlimit(RLIMIT_MEMLOCK);
4698	lock_limit >>= PAGE_SHIFT;
4699	locked = vma->vm_mm->pinned_vm + extra;
4700
4701	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4702		!capable(CAP_IPC_LOCK)) {
4703		ret = -EPERM;
4704		goto unlock;
4705	}
4706
4707	WARN_ON(!rb && event->rb);
4708
4709	if (vma->vm_flags & VM_WRITE)
4710		flags |= RING_BUFFER_WRITABLE;
4711
4712	if (!rb) {
4713		rb = rb_alloc(nr_pages,
4714			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4715			      event->cpu, flags);
4716
4717		if (!rb) {
4718			ret = -ENOMEM;
4719			goto unlock;
4720		}
4721
4722		atomic_set(&rb->mmap_count, 1);
4723		rb->mmap_user = get_current_user();
4724		rb->mmap_locked = extra;
4725
4726		ring_buffer_attach(event, rb);
4727
4728		perf_event_init_userpage(event);
4729		perf_event_update_userpage(event);
4730	} else {
4731		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4732				   event->attr.aux_watermark, flags);
4733		if (!ret)
4734			rb->aux_mmap_locked = extra;
4735	}
4736
4737unlock:
4738	if (!ret) {
4739		atomic_long_add(user_extra, &user->locked_vm);
4740		vma->vm_mm->pinned_vm += extra;
4741
4742		atomic_inc(&event->mmap_count);
4743	} else if (rb) {
4744		atomic_dec(&rb->mmap_count);
4745	}
4746aux_unlock:
4747	mutex_unlock(&event->mmap_mutex);
4748
4749	/*
4750	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4751	 * vma.
4752	 */
4753	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4754	vma->vm_ops = &perf_mmap_vmops;
4755
4756	if (event->pmu->event_mapped)
4757		event->pmu->event_mapped(event);
4758
4759	return ret;
4760}
4761
4762static int perf_fasync(int fd, struct file *filp, int on)
4763{
4764	struct inode *inode = file_inode(filp);
4765	struct perf_event *event = filp->private_data;
4766	int retval;
4767
4768	mutex_lock(&inode->i_mutex);
4769	retval = fasync_helper(fd, filp, on, &event->fasync);
4770	mutex_unlock(&inode->i_mutex);
4771
4772	if (retval < 0)
4773		return retval;
4774
4775	return 0;
4776}
4777
4778static const struct file_operations perf_fops = {
4779	.llseek			= no_llseek,
4780	.release		= perf_release,
4781	.read			= perf_read,
4782	.poll			= perf_poll,
4783	.unlocked_ioctl		= perf_ioctl,
4784	.compat_ioctl		= perf_compat_ioctl,
4785	.mmap			= perf_mmap,
4786	.fasync			= perf_fasync,
4787};
4788
4789/*
4790 * Perf event wakeup
4791 *
4792 * If there's data, ensure we set the poll() state and publish everything
4793 * to user-space before waking everybody up.
4794 */
4795
4796static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4797{
4798	/* only the parent has fasync state */
4799	if (event->parent)
4800		event = event->parent;
4801	return &event->fasync;
4802}
4803
4804void perf_event_wakeup(struct perf_event *event)
4805{
4806	ring_buffer_wakeup(event);
4807
4808	if (event->pending_kill) {
4809		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4810		event->pending_kill = 0;
4811	}
4812}
4813
4814static void perf_pending_event(struct irq_work *entry)
4815{
4816	struct perf_event *event = container_of(entry,
4817			struct perf_event, pending);
4818	int rctx;
4819
4820	rctx = perf_swevent_get_recursion_context();
4821	/*
4822	 * If we 'fail' here, that's OK, it means recursion is already disabled
4823	 * and we won't recurse 'further'.
4824	 */
4825
4826	if (event->pending_disable) {
4827		event->pending_disable = 0;
4828		__perf_event_disable(event);
4829	}
4830
4831	if (event->pending_wakeup) {
4832		event->pending_wakeup = 0;
4833		perf_event_wakeup(event);
4834	}
4835
4836	if (rctx >= 0)
4837		perf_swevent_put_recursion_context(rctx);
4838}
4839
4840/*
4841 * We assume there is only KVM supporting the callbacks.
4842 * Later on, we might change it to a list if there is
4843 * another virtualization implementation supporting the callbacks.
4844 */
4845struct perf_guest_info_callbacks *perf_guest_cbs;
4846
4847int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4848{
4849	perf_guest_cbs = cbs;
4850	return 0;
4851}
4852EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4853
4854int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4855{
4856	perf_guest_cbs = NULL;
4857	return 0;
4858}
4859EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4860
4861static void
4862perf_output_sample_regs(struct perf_output_handle *handle,
4863			struct pt_regs *regs, u64 mask)
4864{
4865	int bit;
4866
4867	for_each_set_bit(bit, (const unsigned long *) &mask,
4868			 sizeof(mask) * BITS_PER_BYTE) {
4869		u64 val;
4870
4871		val = perf_reg_value(regs, bit);
4872		perf_output_put(handle, val);
4873	}
4874}
4875
4876static void perf_sample_regs_user(struct perf_regs *regs_user,
4877				  struct pt_regs *regs,
4878				  struct pt_regs *regs_user_copy)
4879{
4880	if (user_mode(regs)) {
4881		regs_user->abi = perf_reg_abi(current);
4882		regs_user->regs = regs;
4883	} else if (current->mm) {
4884		perf_get_regs_user(regs_user, regs, regs_user_copy);
4885	} else {
4886		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4887		regs_user->regs = NULL;
4888	}
4889}
4890
4891static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4892				  struct pt_regs *regs)
4893{
4894	regs_intr->regs = regs;
4895	regs_intr->abi  = perf_reg_abi(current);
4896}
4897
4898
4899/*
4900 * Get remaining task size from user stack pointer.
4901 *
4902 * It'd be better to take stack vma map and limit this more
4903 * precisly, but there's no way to get it safely under interrupt,
4904 * so using TASK_SIZE as limit.
4905 */
4906static u64 perf_ustack_task_size(struct pt_regs *regs)
4907{
4908	unsigned long addr = perf_user_stack_pointer(regs);
4909
4910	if (!addr || addr >= TASK_SIZE)
4911		return 0;
4912
4913	return TASK_SIZE - addr;
4914}
4915
4916static u16
4917perf_sample_ustack_size(u16 stack_size, u16 header_size,
4918			struct pt_regs *regs)
4919{
4920	u64 task_size;
4921
4922	/* No regs, no stack pointer, no dump. */
4923	if (!regs)
4924		return 0;
4925
4926	/*
4927	 * Check if we fit in with the requested stack size into the:
4928	 * - TASK_SIZE
4929	 *   If we don't, we limit the size to the TASK_SIZE.
4930	 *
4931	 * - remaining sample size
4932	 *   If we don't, we customize the stack size to
4933	 *   fit in to the remaining sample size.
4934	 */
4935
4936	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4937	stack_size = min(stack_size, (u16) task_size);
4938
4939	/* Current header size plus static size and dynamic size. */
4940	header_size += 2 * sizeof(u64);
4941
4942	/* Do we fit in with the current stack dump size? */
4943	if ((u16) (header_size + stack_size) < header_size) {
4944		/*
4945		 * If we overflow the maximum size for the sample,
4946		 * we customize the stack dump size to fit in.
4947		 */
4948		stack_size = USHRT_MAX - header_size - sizeof(u64);
4949		stack_size = round_up(stack_size, sizeof(u64));
4950	}
4951
4952	return stack_size;
4953}
4954
4955static void
4956perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4957			  struct pt_regs *regs)
4958{
4959	/* Case of a kernel thread, nothing to dump */
4960	if (!regs) {
4961		u64 size = 0;
4962		perf_output_put(handle, size);
4963	} else {
4964		unsigned long sp;
4965		unsigned int rem;
4966		u64 dyn_size;
4967
4968		/*
4969		 * We dump:
4970		 * static size
4971		 *   - the size requested by user or the best one we can fit
4972		 *     in to the sample max size
4973		 * data
4974		 *   - user stack dump data
4975		 * dynamic size
4976		 *   - the actual dumped size
4977		 */
4978
4979		/* Static size. */
4980		perf_output_put(handle, dump_size);
4981
4982		/* Data. */
4983		sp = perf_user_stack_pointer(regs);
4984		rem = __output_copy_user(handle, (void *) sp, dump_size);
4985		dyn_size = dump_size - rem;
4986
4987		perf_output_skip(handle, rem);
4988
4989		/* Dynamic size. */
4990		perf_output_put(handle, dyn_size);
4991	}
4992}
4993
4994static void __perf_event_header__init_id(struct perf_event_header *header,
4995					 struct perf_sample_data *data,
4996					 struct perf_event *event)
4997{
4998	u64 sample_type = event->attr.sample_type;
4999
5000	data->type = sample_type;
5001	header->size += event->id_header_size;
5002
5003	if (sample_type & PERF_SAMPLE_TID) {
5004		/* namespace issues */
5005		data->tid_entry.pid = perf_event_pid(event, current);
5006		data->tid_entry.tid = perf_event_tid(event, current);
5007	}
5008
5009	if (sample_type & PERF_SAMPLE_TIME)
5010		data->time = perf_event_clock(event);
5011
5012	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5013		data->id = primary_event_id(event);
5014
5015	if (sample_type & PERF_SAMPLE_STREAM_ID)
5016		data->stream_id = event->id;
5017
5018	if (sample_type & PERF_SAMPLE_CPU) {
5019		data->cpu_entry.cpu	 = raw_smp_processor_id();
5020		data->cpu_entry.reserved = 0;
5021	}
5022}
5023
5024void perf_event_header__init_id(struct perf_event_header *header,
5025				struct perf_sample_data *data,
5026				struct perf_event *event)
5027{
5028	if (event->attr.sample_id_all)
5029		__perf_event_header__init_id(header, data, event);
5030}
5031
5032static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5033					   struct perf_sample_data *data)
5034{
5035	u64 sample_type = data->type;
5036
5037	if (sample_type & PERF_SAMPLE_TID)
5038		perf_output_put(handle, data->tid_entry);
5039
5040	if (sample_type & PERF_SAMPLE_TIME)
5041		perf_output_put(handle, data->time);
5042
5043	if (sample_type & PERF_SAMPLE_ID)
5044		perf_output_put(handle, data->id);
5045
5046	if (sample_type & PERF_SAMPLE_STREAM_ID)
5047		perf_output_put(handle, data->stream_id);
5048
5049	if (sample_type & PERF_SAMPLE_CPU)
5050		perf_output_put(handle, data->cpu_entry);
5051
5052	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5053		perf_output_put(handle, data->id);
5054}
5055
5056void perf_event__output_id_sample(struct perf_event *event,
5057				  struct perf_output_handle *handle,
5058				  struct perf_sample_data *sample)
5059{
5060	if (event->attr.sample_id_all)
5061		__perf_event__output_id_sample(handle, sample);
5062}
5063
5064static void perf_output_read_one(struct perf_output_handle *handle,
5065				 struct perf_event *event,
5066				 u64 enabled, u64 running)
5067{
5068	u64 read_format = event->attr.read_format;
5069	u64 values[4];
5070	int n = 0;
5071
5072	values[n++] = perf_event_count(event);
5073	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5074		values[n++] = enabled +
5075			atomic64_read(&event->child_total_time_enabled);
5076	}
5077	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5078		values[n++] = running +
5079			atomic64_read(&event->child_total_time_running);
5080	}
5081	if (read_format & PERF_FORMAT_ID)
5082		values[n++] = primary_event_id(event);
5083
5084	__output_copy(handle, values, n * sizeof(u64));
5085}
5086
5087/*
5088 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5089 */
5090static void perf_output_read_group(struct perf_output_handle *handle,
5091			    struct perf_event *event,
5092			    u64 enabled, u64 running)
5093{
5094	struct perf_event *leader = event->group_leader, *sub;
5095	u64 read_format = event->attr.read_format;
5096	u64 values[5];
5097	int n = 0;
5098
5099	values[n++] = 1 + leader->nr_siblings;
5100
5101	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5102		values[n++] = enabled;
5103
5104	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5105		values[n++] = running;
5106
5107	if (leader != event)
5108		leader->pmu->read(leader);
5109
5110	values[n++] = perf_event_count(leader);
5111	if (read_format & PERF_FORMAT_ID)
5112		values[n++] = primary_event_id(leader);
5113
5114	__output_copy(handle, values, n * sizeof(u64));
5115
5116	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5117		n = 0;
5118
5119		if ((sub != event) &&
5120		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5121			sub->pmu->read(sub);
5122
5123		values[n++] = perf_event_count(sub);
5124		if (read_format & PERF_FORMAT_ID)
5125			values[n++] = primary_event_id(sub);
5126
5127		__output_copy(handle, values, n * sizeof(u64));
5128	}
5129}
5130
5131#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5132				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5133
5134static void perf_output_read(struct perf_output_handle *handle,
5135			     struct perf_event *event)
5136{
5137	u64 enabled = 0, running = 0, now;
5138	u64 read_format = event->attr.read_format;
5139
5140	/*
5141	 * compute total_time_enabled, total_time_running
5142	 * based on snapshot values taken when the event
5143	 * was last scheduled in.
5144	 *
5145	 * we cannot simply called update_context_time()
5146	 * because of locking issue as we are called in
5147	 * NMI context
5148	 */
5149	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5150		calc_timer_values(event, &now, &enabled, &running);
5151
5152	if (event->attr.read_format & PERF_FORMAT_GROUP)
5153		perf_output_read_group(handle, event, enabled, running);
5154	else
5155		perf_output_read_one(handle, event, enabled, running);
5156}
5157
5158void perf_output_sample(struct perf_output_handle *handle,
5159			struct perf_event_header *header,
5160			struct perf_sample_data *data,
5161			struct perf_event *event)
5162{
5163	u64 sample_type = data->type;
5164
5165	perf_output_put(handle, *header);
5166
5167	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5168		perf_output_put(handle, data->id);
5169
5170	if (sample_type & PERF_SAMPLE_IP)
5171		perf_output_put(handle, data->ip);
5172
5173	if (sample_type & PERF_SAMPLE_TID)
5174		perf_output_put(handle, data->tid_entry);
5175
5176	if (sample_type & PERF_SAMPLE_TIME)
5177		perf_output_put(handle, data->time);
5178
5179	if (sample_type & PERF_SAMPLE_ADDR)
5180		perf_output_put(handle, data->addr);
5181
5182	if (sample_type & PERF_SAMPLE_ID)
5183		perf_output_put(handle, data->id);
5184
5185	if (sample_type & PERF_SAMPLE_STREAM_ID)
5186		perf_output_put(handle, data->stream_id);
5187
5188	if (sample_type & PERF_SAMPLE_CPU)
5189		perf_output_put(handle, data->cpu_entry);
5190
5191	if (sample_type & PERF_SAMPLE_PERIOD)
5192		perf_output_put(handle, data->period);
5193
5194	if (sample_type & PERF_SAMPLE_READ)
5195		perf_output_read(handle, event);
5196
5197	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5198		if (data->callchain) {
5199			int size = 1;
5200
5201			if (data->callchain)
5202				size += data->callchain->nr;
5203
5204			size *= sizeof(u64);
5205
5206			__output_copy(handle, data->callchain, size);
5207		} else {
5208			u64 nr = 0;
5209			perf_output_put(handle, nr);
5210		}
5211	}
5212
5213	if (sample_type & PERF_SAMPLE_RAW) {
5214		if (data->raw) {
5215			perf_output_put(handle, data->raw->size);
5216			__output_copy(handle, data->raw->data,
5217					   data->raw->size);
5218		} else {
5219			struct {
5220				u32	size;
5221				u32	data;
5222			} raw = {
5223				.size = sizeof(u32),
5224				.data = 0,
5225			};
5226			perf_output_put(handle, raw);
5227		}
5228	}
5229
5230	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5231		if (data->br_stack) {
5232			size_t size;
5233
5234			size = data->br_stack->nr
5235			     * sizeof(struct perf_branch_entry);
5236
5237			perf_output_put(handle, data->br_stack->nr);
5238			perf_output_copy(handle, data->br_stack->entries, size);
5239		} else {
5240			/*
5241			 * we always store at least the value of nr
5242			 */
5243			u64 nr = 0;
5244			perf_output_put(handle, nr);
5245		}
5246	}
5247
5248	if (sample_type & PERF_SAMPLE_REGS_USER) {
5249		u64 abi = data->regs_user.abi;
5250
5251		/*
5252		 * If there are no regs to dump, notice it through
5253		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5254		 */
5255		perf_output_put(handle, abi);
5256
5257		if (abi) {
5258			u64 mask = event->attr.sample_regs_user;
5259			perf_output_sample_regs(handle,
5260						data->regs_user.regs,
5261						mask);
5262		}
5263	}
5264
5265	if (sample_type & PERF_SAMPLE_STACK_USER) {
5266		perf_output_sample_ustack(handle,
5267					  data->stack_user_size,
5268					  data->regs_user.regs);
5269	}
5270
5271	if (sample_type & PERF_SAMPLE_WEIGHT)
5272		perf_output_put(handle, data->weight);
5273
5274	if (sample_type & PERF_SAMPLE_DATA_SRC)
5275		perf_output_put(handle, data->data_src.val);
5276
5277	if (sample_type & PERF_SAMPLE_TRANSACTION)
5278		perf_output_put(handle, data->txn);
5279
5280	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5281		u64 abi = data->regs_intr.abi;
5282		/*
5283		 * If there are no regs to dump, notice it through
5284		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5285		 */
5286		perf_output_put(handle, abi);
5287
5288		if (abi) {
5289			u64 mask = event->attr.sample_regs_intr;
5290
5291			perf_output_sample_regs(handle,
5292						data->regs_intr.regs,
5293						mask);
5294		}
5295	}
5296
5297	if (!event->attr.watermark) {
5298		int wakeup_events = event->attr.wakeup_events;
5299
5300		if (wakeup_events) {
5301			struct ring_buffer *rb = handle->rb;
5302			int events = local_inc_return(&rb->events);
5303
5304			if (events >= wakeup_events) {
5305				local_sub(wakeup_events, &rb->events);
5306				local_inc(&rb->wakeup);
5307			}
5308		}
5309	}
5310}
5311
5312void perf_prepare_sample(struct perf_event_header *header,
5313			 struct perf_sample_data *data,
5314			 struct perf_event *event,
5315			 struct pt_regs *regs)
5316{
5317	u64 sample_type = event->attr.sample_type;
5318
5319	header->type = PERF_RECORD_SAMPLE;
5320	header->size = sizeof(*header) + event->header_size;
5321
5322	header->misc = 0;
5323	header->misc |= perf_misc_flags(regs);
5324
5325	__perf_event_header__init_id(header, data, event);
5326
5327	if (sample_type & PERF_SAMPLE_IP)
5328		data->ip = perf_instruction_pointer(regs);
5329
5330	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5331		int size = 1;
5332
5333		data->callchain = perf_callchain(event, regs);
5334
5335		if (data->callchain)
5336			size += data->callchain->nr;
5337
5338		header->size += size * sizeof(u64);
5339	}
5340
5341	if (sample_type & PERF_SAMPLE_RAW) {
5342		int size = sizeof(u32);
5343
5344		if (data->raw)
5345			size += data->raw->size;
5346		else
5347			size += sizeof(u32);
5348
5349		WARN_ON_ONCE(size & (sizeof(u64)-1));
5350		header->size += size;
5351	}
5352
5353	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5354		int size = sizeof(u64); /* nr */
5355		if (data->br_stack) {
5356			size += data->br_stack->nr
5357			      * sizeof(struct perf_branch_entry);
5358		}
5359		header->size += size;
5360	}
5361
5362	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5363		perf_sample_regs_user(&data->regs_user, regs,
5364				      &data->regs_user_copy);
5365
5366	if (sample_type & PERF_SAMPLE_REGS_USER) {
5367		/* regs dump ABI info */
5368		int size = sizeof(u64);
5369
5370		if (data->regs_user.regs) {
5371			u64 mask = event->attr.sample_regs_user;
5372			size += hweight64(mask) * sizeof(u64);
5373		}
5374
5375		header->size += size;
5376	}
5377
5378	if (sample_type & PERF_SAMPLE_STACK_USER) {
5379		/*
5380		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5381		 * processed as the last one or have additional check added
5382		 * in case new sample type is added, because we could eat
5383		 * up the rest of the sample size.
5384		 */
5385		u16 stack_size = event->attr.sample_stack_user;
5386		u16 size = sizeof(u64);
5387
5388		stack_size = perf_sample_ustack_size(stack_size, header->size,
5389						     data->regs_user.regs);
5390
5391		/*
5392		 * If there is something to dump, add space for the dump
5393		 * itself and for the field that tells the dynamic size,
5394		 * which is how many have been actually dumped.
5395		 */
5396		if (stack_size)
5397			size += sizeof(u64) + stack_size;
5398
5399		data->stack_user_size = stack_size;
5400		header->size += size;
5401	}
5402
5403	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5404		/* regs dump ABI info */
5405		int size = sizeof(u64);
5406
5407		perf_sample_regs_intr(&data->regs_intr, regs);
5408
5409		if (data->regs_intr.regs) {
5410			u64 mask = event->attr.sample_regs_intr;
5411
5412			size += hweight64(mask) * sizeof(u64);
5413		}
5414
5415		header->size += size;
5416	}
5417}
5418
5419static void perf_event_output(struct perf_event *event,
5420				struct perf_sample_data *data,
5421				struct pt_regs *regs)
5422{
5423	struct perf_output_handle handle;
5424	struct perf_event_header header;
5425
5426	/* protect the callchain buffers */
5427	rcu_read_lock();
5428
5429	perf_prepare_sample(&header, data, event, regs);
5430
5431	if (perf_output_begin(&handle, event, header.size))
5432		goto exit;
5433
5434	perf_output_sample(&handle, &header, data, event);
5435
5436	perf_output_end(&handle);
5437
5438exit:
5439	rcu_read_unlock();
5440}
5441
5442/*
5443 * read event_id
5444 */
5445
5446struct perf_read_event {
5447	struct perf_event_header	header;
5448
5449	u32				pid;
5450	u32				tid;
5451};
5452
5453static void
5454perf_event_read_event(struct perf_event *event,
5455			struct task_struct *task)
5456{
5457	struct perf_output_handle handle;
5458	struct perf_sample_data sample;
5459	struct perf_read_event read_event = {
5460		.header = {
5461			.type = PERF_RECORD_READ,
5462			.misc = 0,
5463			.size = sizeof(read_event) + event->read_size,
5464		},
5465		.pid = perf_event_pid(event, task),
5466		.tid = perf_event_tid(event, task),
5467	};
5468	int ret;
5469
5470	perf_event_header__init_id(&read_event.header, &sample, event);
5471	ret = perf_output_begin(&handle, event, read_event.header.size);
5472	if (ret)
5473		return;
5474
5475	perf_output_put(&handle, read_event);
5476	perf_output_read(&handle, event);
5477	perf_event__output_id_sample(event, &handle, &sample);
5478
5479	perf_output_end(&handle);
5480}
5481
5482typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5483
5484static void
5485perf_event_aux_ctx(struct perf_event_context *ctx,
5486		   perf_event_aux_output_cb output,
5487		   void *data)
5488{
5489	struct perf_event *event;
5490
5491	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5492		if (event->state < PERF_EVENT_STATE_INACTIVE)
5493			continue;
5494		if (!event_filter_match(event))
5495			continue;
5496		output(event, data);
5497	}
5498}
5499
5500static void
5501perf_event_aux(perf_event_aux_output_cb output, void *data,
5502	       struct perf_event_context *task_ctx)
5503{
5504	struct perf_cpu_context *cpuctx;
5505	struct perf_event_context *ctx;
5506	struct pmu *pmu;
5507	int ctxn;
5508
5509	rcu_read_lock();
5510	list_for_each_entry_rcu(pmu, &pmus, entry) {
5511		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5512		if (cpuctx->unique_pmu != pmu)
5513			goto next;
5514		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5515		if (task_ctx)
5516			goto next;
5517		ctxn = pmu->task_ctx_nr;
5518		if (ctxn < 0)
5519			goto next;
5520		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5521		if (ctx)
5522			perf_event_aux_ctx(ctx, output, data);
5523next:
5524		put_cpu_ptr(pmu->pmu_cpu_context);
5525	}
5526
5527	if (task_ctx) {
5528		preempt_disable();
5529		perf_event_aux_ctx(task_ctx, output, data);
5530		preempt_enable();
5531	}
5532	rcu_read_unlock();
5533}
5534
5535/*
5536 * task tracking -- fork/exit
5537 *
5538 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5539 */
5540
5541struct perf_task_event {
5542	struct task_struct		*task;
5543	struct perf_event_context	*task_ctx;
5544
5545	struct {
5546		struct perf_event_header	header;
5547
5548		u32				pid;
5549		u32				ppid;
5550		u32				tid;
5551		u32				ptid;
5552		u64				time;
5553	} event_id;
5554};
5555
5556static int perf_event_task_match(struct perf_event *event)
5557{
5558	return event->attr.comm  || event->attr.mmap ||
5559	       event->attr.mmap2 || event->attr.mmap_data ||
5560	       event->attr.task;
5561}
5562
5563static void perf_event_task_output(struct perf_event *event,
5564				   void *data)
5565{
5566	struct perf_task_event *task_event = data;
5567	struct perf_output_handle handle;
5568	struct perf_sample_data	sample;
5569	struct task_struct *task = task_event->task;
5570	int ret, size = task_event->event_id.header.size;
5571
5572	if (!perf_event_task_match(event))
5573		return;
5574
5575	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5576
5577	ret = perf_output_begin(&handle, event,
5578				task_event->event_id.header.size);
5579	if (ret)
5580		goto out;
5581
5582	task_event->event_id.pid = perf_event_pid(event, task);
5583	task_event->event_id.ppid = perf_event_pid(event, current);
5584
5585	task_event->event_id.tid = perf_event_tid(event, task);
5586	task_event->event_id.ptid = perf_event_tid(event, current);
5587
5588	task_event->event_id.time = perf_event_clock(event);
5589
5590	perf_output_put(&handle, task_event->event_id);
5591
5592	perf_event__output_id_sample(event, &handle, &sample);
5593
5594	perf_output_end(&handle);
5595out:
5596	task_event->event_id.header.size = size;
5597}
5598
5599static void perf_event_task(struct task_struct *task,
5600			      struct perf_event_context *task_ctx,
5601			      int new)
5602{
5603	struct perf_task_event task_event;
5604
5605	if (!atomic_read(&nr_comm_events) &&
5606	    !atomic_read(&nr_mmap_events) &&
5607	    !atomic_read(&nr_task_events))
5608		return;
5609
5610	task_event = (struct perf_task_event){
5611		.task	  = task,
5612		.task_ctx = task_ctx,
5613		.event_id    = {
5614			.header = {
5615				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5616				.misc = 0,
5617				.size = sizeof(task_event.event_id),
5618			},
5619			/* .pid  */
5620			/* .ppid */
5621			/* .tid  */
5622			/* .ptid */
5623			/* .time */
5624		},
5625	};
5626
5627	perf_event_aux(perf_event_task_output,
5628		       &task_event,
5629		       task_ctx);
5630}
5631
5632void perf_event_fork(struct task_struct *task)
5633{
5634	perf_event_task(task, NULL, 1);
5635}
5636
5637/*
5638 * comm tracking
5639 */
5640
5641struct perf_comm_event {
5642	struct task_struct	*task;
5643	char			*comm;
5644	int			comm_size;
5645
5646	struct {
5647		struct perf_event_header	header;
5648
5649		u32				pid;
5650		u32				tid;
5651	} event_id;
5652};
5653
5654static int perf_event_comm_match(struct perf_event *event)
5655{
5656	return event->attr.comm;
5657}
5658
5659static void perf_event_comm_output(struct perf_event *event,
5660				   void *data)
5661{
5662	struct perf_comm_event *comm_event = data;
5663	struct perf_output_handle handle;
5664	struct perf_sample_data sample;
5665	int size = comm_event->event_id.header.size;
5666	int ret;
5667
5668	if (!perf_event_comm_match(event))
5669		return;
5670
5671	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5672	ret = perf_output_begin(&handle, event,
5673				comm_event->event_id.header.size);
5674
5675	if (ret)
5676		goto out;
5677
5678	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5679	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5680
5681	perf_output_put(&handle, comm_event->event_id);
5682	__output_copy(&handle, comm_event->comm,
5683				   comm_event->comm_size);
5684
5685	perf_event__output_id_sample(event, &handle, &sample);
5686
5687	perf_output_end(&handle);
5688out:
5689	comm_event->event_id.header.size = size;
5690}
5691
5692static void perf_event_comm_event(struct perf_comm_event *comm_event)
5693{
5694	char comm[TASK_COMM_LEN];
5695	unsigned int size;
5696
5697	memset(comm, 0, sizeof(comm));
5698	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5699	size = ALIGN(strlen(comm)+1, sizeof(u64));
5700
5701	comm_event->comm = comm;
5702	comm_event->comm_size = size;
5703
5704	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5705
5706	perf_event_aux(perf_event_comm_output,
5707		       comm_event,
5708		       NULL);
5709}
5710
5711void perf_event_comm(struct task_struct *task, bool exec)
5712{
5713	struct perf_comm_event comm_event;
5714
5715	if (!atomic_read(&nr_comm_events))
5716		return;
5717
5718	comm_event = (struct perf_comm_event){
5719		.task	= task,
5720		/* .comm      */
5721		/* .comm_size */
5722		.event_id  = {
5723			.header = {
5724				.type = PERF_RECORD_COMM,
5725				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5726				/* .size */
5727			},
5728			/* .pid */
5729			/* .tid */
5730		},
5731	};
5732
5733	perf_event_comm_event(&comm_event);
5734}
5735
5736/*
5737 * mmap tracking
5738 */
5739
5740struct perf_mmap_event {
5741	struct vm_area_struct	*vma;
5742
5743	const char		*file_name;
5744	int			file_size;
5745	int			maj, min;
5746	u64			ino;
5747	u64			ino_generation;
5748	u32			prot, flags;
5749
5750	struct {
5751		struct perf_event_header	header;
5752
5753		u32				pid;
5754		u32				tid;
5755		u64				start;
5756		u64				len;
5757		u64				pgoff;
5758	} event_id;
5759};
5760
5761static int perf_event_mmap_match(struct perf_event *event,
5762				 void *data)
5763{
5764	struct perf_mmap_event *mmap_event = data;
5765	struct vm_area_struct *vma = mmap_event->vma;
5766	int executable = vma->vm_flags & VM_EXEC;
5767
5768	return (!executable && event->attr.mmap_data) ||
5769	       (executable && (event->attr.mmap || event->attr.mmap2));
5770}
5771
5772static void perf_event_mmap_output(struct perf_event *event,
5773				   void *data)
5774{
5775	struct perf_mmap_event *mmap_event = data;
5776	struct perf_output_handle handle;
5777	struct perf_sample_data sample;
5778	int size = mmap_event->event_id.header.size;
5779	int ret;
5780
5781	if (!perf_event_mmap_match(event, data))
5782		return;
5783
5784	if (event->attr.mmap2) {
5785		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5786		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5787		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5788		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5789		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5790		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5791		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5792	}
5793
5794	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5795	ret = perf_output_begin(&handle, event,
5796				mmap_event->event_id.header.size);
5797	if (ret)
5798		goto out;
5799
5800	mmap_event->event_id.pid = perf_event_pid(event, current);
5801	mmap_event->event_id.tid = perf_event_tid(event, current);
5802
5803	perf_output_put(&handle, mmap_event->event_id);
5804
5805	if (event->attr.mmap2) {
5806		perf_output_put(&handle, mmap_event->maj);
5807		perf_output_put(&handle, mmap_event->min);
5808		perf_output_put(&handle, mmap_event->ino);
5809		perf_output_put(&handle, mmap_event->ino_generation);
5810		perf_output_put(&handle, mmap_event->prot);
5811		perf_output_put(&handle, mmap_event->flags);
5812	}
5813
5814	__output_copy(&handle, mmap_event->file_name,
5815				   mmap_event->file_size);
5816
5817	perf_event__output_id_sample(event, &handle, &sample);
5818
5819	perf_output_end(&handle);
5820out:
5821	mmap_event->event_id.header.size = size;
5822}
5823
5824static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5825{
5826	struct vm_area_struct *vma = mmap_event->vma;
5827	struct file *file = vma->vm_file;
5828	int maj = 0, min = 0;
5829	u64 ino = 0, gen = 0;
5830	u32 prot = 0, flags = 0;
5831	unsigned int size;
5832	char tmp[16];
5833	char *buf = NULL;
5834	char *name;
5835
5836	if (file) {
5837		struct inode *inode;
5838		dev_t dev;
5839
5840		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5841		if (!buf) {
5842			name = "//enomem";
5843			goto cpy_name;
5844		}
5845		/*
5846		 * d_path() works from the end of the rb backwards, so we
5847		 * need to add enough zero bytes after the string to handle
5848		 * the 64bit alignment we do later.
5849		 */
5850		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5851		if (IS_ERR(name)) {
5852			name = "//toolong";
5853			goto cpy_name;
5854		}
5855		inode = file_inode(vma->vm_file);
5856		dev = inode->i_sb->s_dev;
5857		ino = inode->i_ino;
5858		gen = inode->i_generation;
5859		maj = MAJOR(dev);
5860		min = MINOR(dev);
5861
5862		if (vma->vm_flags & VM_READ)
5863			prot |= PROT_READ;
5864		if (vma->vm_flags & VM_WRITE)
5865			prot |= PROT_WRITE;
5866		if (vma->vm_flags & VM_EXEC)
5867			prot |= PROT_EXEC;
5868
5869		if (vma->vm_flags & VM_MAYSHARE)
5870			flags = MAP_SHARED;
5871		else
5872			flags = MAP_PRIVATE;
5873
5874		if (vma->vm_flags & VM_DENYWRITE)
5875			flags |= MAP_DENYWRITE;
5876		if (vma->vm_flags & VM_MAYEXEC)
5877			flags |= MAP_EXECUTABLE;
5878		if (vma->vm_flags & VM_LOCKED)
5879			flags |= MAP_LOCKED;
5880		if (vma->vm_flags & VM_HUGETLB)
5881			flags |= MAP_HUGETLB;
5882
5883		goto got_name;
5884	} else {
5885		if (vma->vm_ops && vma->vm_ops->name) {
5886			name = (char *) vma->vm_ops->name(vma);
5887			if (name)
5888				goto cpy_name;
5889		}
5890
5891		name = (char *)arch_vma_name(vma);
5892		if (name)
5893			goto cpy_name;
5894
5895		if (vma->vm_start <= vma->vm_mm->start_brk &&
5896				vma->vm_end >= vma->vm_mm->brk) {
5897			name = "[heap]";
5898			goto cpy_name;
5899		}
5900		if (vma->vm_start <= vma->vm_mm->start_stack &&
5901				vma->vm_end >= vma->vm_mm->start_stack) {
5902			name = "[stack]";
5903			goto cpy_name;
5904		}
5905
5906		name = "//anon";
5907		goto cpy_name;
5908	}
5909
5910cpy_name:
5911	strlcpy(tmp, name, sizeof(tmp));
5912	name = tmp;
5913got_name:
5914	/*
5915	 * Since our buffer works in 8 byte units we need to align our string
5916	 * size to a multiple of 8. However, we must guarantee the tail end is
5917	 * zero'd out to avoid leaking random bits to userspace.
5918	 */
5919	size = strlen(name)+1;
5920	while (!IS_ALIGNED(size, sizeof(u64)))
5921		name[size++] = '\0';
5922
5923	mmap_event->file_name = name;
5924	mmap_event->file_size = size;
5925	mmap_event->maj = maj;
5926	mmap_event->min = min;
5927	mmap_event->ino = ino;
5928	mmap_event->ino_generation = gen;
5929	mmap_event->prot = prot;
5930	mmap_event->flags = flags;
5931
5932	if (!(vma->vm_flags & VM_EXEC))
5933		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5934
5935	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5936
5937	perf_event_aux(perf_event_mmap_output,
5938		       mmap_event,
5939		       NULL);
5940
5941	kfree(buf);
5942}
5943
5944void perf_event_mmap(struct vm_area_struct *vma)
5945{
5946	struct perf_mmap_event mmap_event;
5947
5948	if (!atomic_read(&nr_mmap_events))
5949		return;
5950
5951	mmap_event = (struct perf_mmap_event){
5952		.vma	= vma,
5953		/* .file_name */
5954		/* .file_size */
5955		.event_id  = {
5956			.header = {
5957				.type = PERF_RECORD_MMAP,
5958				.misc = PERF_RECORD_MISC_USER,
5959				/* .size */
5960			},
5961			/* .pid */
5962			/* .tid */
5963			.start  = vma->vm_start,
5964			.len    = vma->vm_end - vma->vm_start,
5965			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5966		},
5967		/* .maj (attr_mmap2 only) */
5968		/* .min (attr_mmap2 only) */
5969		/* .ino (attr_mmap2 only) */
5970		/* .ino_generation (attr_mmap2 only) */
5971		/* .prot (attr_mmap2 only) */
5972		/* .flags (attr_mmap2 only) */
5973	};
5974
5975	perf_event_mmap_event(&mmap_event);
5976}
5977
5978void perf_event_aux_event(struct perf_event *event, unsigned long head,
5979			  unsigned long size, u64 flags)
5980{
5981	struct perf_output_handle handle;
5982	struct perf_sample_data sample;
5983	struct perf_aux_event {
5984		struct perf_event_header	header;
5985		u64				offset;
5986		u64				size;
5987		u64				flags;
5988	} rec = {
5989		.header = {
5990			.type = PERF_RECORD_AUX,
5991			.misc = 0,
5992			.size = sizeof(rec),
5993		},
5994		.offset		= head,
5995		.size		= size,
5996		.flags		= flags,
5997	};
5998	int ret;
5999
6000	perf_event_header__init_id(&rec.header, &sample, event);
6001	ret = perf_output_begin(&handle, event, rec.header.size);
6002
6003	if (ret)
6004		return;
6005
6006	perf_output_put(&handle, rec);
6007	perf_event__output_id_sample(event, &handle, &sample);
6008
6009	perf_output_end(&handle);
6010}
6011
6012/*
6013 * IRQ throttle logging
6014 */
6015
6016static void perf_log_throttle(struct perf_event *event, int enable)
6017{
6018	struct perf_output_handle handle;
6019	struct perf_sample_data sample;
6020	int ret;
6021
6022	struct {
6023		struct perf_event_header	header;
6024		u64				time;
6025		u64				id;
6026		u64				stream_id;
6027	} throttle_event = {
6028		.header = {
6029			.type = PERF_RECORD_THROTTLE,
6030			.misc = 0,
6031			.size = sizeof(throttle_event),
6032		},
6033		.time		= perf_event_clock(event),
6034		.id		= primary_event_id(event),
6035		.stream_id	= event->id,
6036	};
6037
6038	if (enable)
6039		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6040
6041	perf_event_header__init_id(&throttle_event.header, &sample, event);
6042
6043	ret = perf_output_begin(&handle, event,
6044				throttle_event.header.size);
6045	if (ret)
6046		return;
6047
6048	perf_output_put(&handle, throttle_event);
6049	perf_event__output_id_sample(event, &handle, &sample);
6050	perf_output_end(&handle);
6051}
6052
6053static void perf_log_itrace_start(struct perf_event *event)
6054{
6055	struct perf_output_handle handle;
6056	struct perf_sample_data sample;
6057	struct perf_aux_event {
6058		struct perf_event_header        header;
6059		u32				pid;
6060		u32				tid;
6061	} rec;
6062	int ret;
6063
6064	if (event->parent)
6065		event = event->parent;
6066
6067	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6068	    event->hw.itrace_started)
6069		return;
6070
6071	event->hw.itrace_started = 1;
6072
6073	rec.header.type	= PERF_RECORD_ITRACE_START;
6074	rec.header.misc	= 0;
6075	rec.header.size	= sizeof(rec);
6076	rec.pid	= perf_event_pid(event, current);
6077	rec.tid	= perf_event_tid(event, current);
6078
6079	perf_event_header__init_id(&rec.header, &sample, event);
6080	ret = perf_output_begin(&handle, event, rec.header.size);
6081
6082	if (ret)
6083		return;
6084
6085	perf_output_put(&handle, rec);
6086	perf_event__output_id_sample(event, &handle, &sample);
6087
6088	perf_output_end(&handle);
6089}
6090
6091/*
6092 * Generic event overflow handling, sampling.
6093 */
6094
6095static int __perf_event_overflow(struct perf_event *event,
6096				   int throttle, struct perf_sample_data *data,
6097				   struct pt_regs *regs)
6098{
6099	int events = atomic_read(&event->event_limit);
6100	struct hw_perf_event *hwc = &event->hw;
6101	u64 seq;
6102	int ret = 0;
6103
6104	/*
6105	 * Non-sampling counters might still use the PMI to fold short
6106	 * hardware counters, ignore those.
6107	 */
6108	if (unlikely(!is_sampling_event(event)))
6109		return 0;
6110
6111	seq = __this_cpu_read(perf_throttled_seq);
6112	if (seq != hwc->interrupts_seq) {
6113		hwc->interrupts_seq = seq;
6114		hwc->interrupts = 1;
6115	} else {
6116		hwc->interrupts++;
6117		if (unlikely(throttle
6118			     && hwc->interrupts >= max_samples_per_tick)) {
6119			__this_cpu_inc(perf_throttled_count);
6120			hwc->interrupts = MAX_INTERRUPTS;
6121			perf_log_throttle(event, 0);
6122			tick_nohz_full_kick();
6123			ret = 1;
6124		}
6125	}
6126
6127	if (event->attr.freq) {
6128		u64 now = perf_clock();
6129		s64 delta = now - hwc->freq_time_stamp;
6130
6131		hwc->freq_time_stamp = now;
6132
6133		if (delta > 0 && delta < 2*TICK_NSEC)
6134			perf_adjust_period(event, delta, hwc->last_period, true);
6135	}
6136
6137	/*
6138	 * XXX event_limit might not quite work as expected on inherited
6139	 * events
6140	 */
6141
6142	event->pending_kill = POLL_IN;
6143	if (events && atomic_dec_and_test(&event->event_limit)) {
6144		ret = 1;
6145		event->pending_kill = POLL_HUP;
6146		event->pending_disable = 1;
6147		irq_work_queue(&event->pending);
6148	}
6149
6150	if (event->overflow_handler)
6151		event->overflow_handler(event, data, regs);
6152	else
6153		perf_event_output(event, data, regs);
6154
6155	if (*perf_event_fasync(event) && event->pending_kill) {
6156		event->pending_wakeup = 1;
6157		irq_work_queue(&event->pending);
6158	}
6159
6160	return ret;
6161}
6162
6163int perf_event_overflow(struct perf_event *event,
6164			  struct perf_sample_data *data,
6165			  struct pt_regs *regs)
6166{
6167	return __perf_event_overflow(event, 1, data, regs);
6168}
6169
6170/*
6171 * Generic software event infrastructure
6172 */
6173
6174struct swevent_htable {
6175	struct swevent_hlist		*swevent_hlist;
6176	struct mutex			hlist_mutex;
6177	int				hlist_refcount;
6178
6179	/* Recursion avoidance in each contexts */
6180	int				recursion[PERF_NR_CONTEXTS];
6181
6182	/* Keeps track of cpu being initialized/exited */
6183	bool				online;
6184};
6185
6186static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6187
6188/*
6189 * We directly increment event->count and keep a second value in
6190 * event->hw.period_left to count intervals. This period event
6191 * is kept in the range [-sample_period, 0] so that we can use the
6192 * sign as trigger.
6193 */
6194
6195u64 perf_swevent_set_period(struct perf_event *event)
6196{
6197	struct hw_perf_event *hwc = &event->hw;
6198	u64 period = hwc->last_period;
6199	u64 nr, offset;
6200	s64 old, val;
6201
6202	hwc->last_period = hwc->sample_period;
6203
6204again:
6205	old = val = local64_read(&hwc->period_left);
6206	if (val < 0)
6207		return 0;
6208
6209	nr = div64_u64(period + val, period);
6210	offset = nr * period;
6211	val -= offset;
6212	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6213		goto again;
6214
6215	return nr;
6216}
6217
6218static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6219				    struct perf_sample_data *data,
6220				    struct pt_regs *regs)
6221{
6222	struct hw_perf_event *hwc = &event->hw;
6223	int throttle = 0;
6224
6225	if (!overflow)
6226		overflow = perf_swevent_set_period(event);
6227
6228	if (hwc->interrupts == MAX_INTERRUPTS)
6229		return;
6230
6231	for (; overflow; overflow--) {
6232		if (__perf_event_overflow(event, throttle,
6233					    data, regs)) {
6234			/*
6235			 * We inhibit the overflow from happening when
6236			 * hwc->interrupts == MAX_INTERRUPTS.
6237			 */
6238			break;
6239		}
6240		throttle = 1;
6241	}
6242}
6243
6244static void perf_swevent_event(struct perf_event *event, u64 nr,
6245			       struct perf_sample_data *data,
6246			       struct pt_regs *regs)
6247{
6248	struct hw_perf_event *hwc = &event->hw;
6249
6250	local64_add(nr, &event->count);
6251
6252	if (!regs)
6253		return;
6254
6255	if (!is_sampling_event(event))
6256		return;
6257
6258	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6259		data->period = nr;
6260		return perf_swevent_overflow(event, 1, data, regs);
6261	} else
6262		data->period = event->hw.last_period;
6263
6264	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6265		return perf_swevent_overflow(event, 1, data, regs);
6266
6267	if (local64_add_negative(nr, &hwc->period_left))
6268		return;
6269
6270	perf_swevent_overflow(event, 0, data, regs);
6271}
6272
6273static int perf_exclude_event(struct perf_event *event,
6274			      struct pt_regs *regs)
6275{
6276	if (event->hw.state & PERF_HES_STOPPED)
6277		return 1;
6278
6279	if (regs) {
6280		if (event->attr.exclude_user && user_mode(regs))
6281			return 1;
6282
6283		if (event->attr.exclude_kernel && !user_mode(regs))
6284			return 1;
6285	}
6286
6287	return 0;
6288}
6289
6290static int perf_swevent_match(struct perf_event *event,
6291				enum perf_type_id type,
6292				u32 event_id,
6293				struct perf_sample_data *data,
6294				struct pt_regs *regs)
6295{
6296	if (event->attr.type != type)
6297		return 0;
6298
6299	if (event->attr.config != event_id)
6300		return 0;
6301
6302	if (perf_exclude_event(event, regs))
6303		return 0;
6304
6305	return 1;
6306}
6307
6308static inline u64 swevent_hash(u64 type, u32 event_id)
6309{
6310	u64 val = event_id | (type << 32);
6311
6312	return hash_64(val, SWEVENT_HLIST_BITS);
6313}
6314
6315static inline struct hlist_head *
6316__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6317{
6318	u64 hash = swevent_hash(type, event_id);
6319
6320	return &hlist->heads[hash];
6321}
6322
6323/* For the read side: events when they trigger */
6324static inline struct hlist_head *
6325find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6326{
6327	struct swevent_hlist *hlist;
6328
6329	hlist = rcu_dereference(swhash->swevent_hlist);
6330	if (!hlist)
6331		return NULL;
6332
6333	return __find_swevent_head(hlist, type, event_id);
6334}
6335
6336/* For the event head insertion and removal in the hlist */
6337static inline struct hlist_head *
6338find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6339{
6340	struct swevent_hlist *hlist;
6341	u32 event_id = event->attr.config;
6342	u64 type = event->attr.type;
6343
6344	/*
6345	 * Event scheduling is always serialized against hlist allocation
6346	 * and release. Which makes the protected version suitable here.
6347	 * The context lock guarantees that.
6348	 */
6349	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6350					  lockdep_is_held(&event->ctx->lock));
6351	if (!hlist)
6352		return NULL;
6353
6354	return __find_swevent_head(hlist, type, event_id);
6355}
6356
6357static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6358				    u64 nr,
6359				    struct perf_sample_data *data,
6360				    struct pt_regs *regs)
6361{
6362	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6363	struct perf_event *event;
6364	struct hlist_head *head;
6365
6366	rcu_read_lock();
6367	head = find_swevent_head_rcu(swhash, type, event_id);
6368	if (!head)
6369		goto end;
6370
6371	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6372		if (perf_swevent_match(event, type, event_id, data, regs))
6373			perf_swevent_event(event, nr, data, regs);
6374	}
6375end:
6376	rcu_read_unlock();
6377}
6378
6379DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6380
6381int perf_swevent_get_recursion_context(void)
6382{
6383	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6384
6385	return get_recursion_context(swhash->recursion);
6386}
6387EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6388
6389inline void perf_swevent_put_recursion_context(int rctx)
6390{
6391	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6392
6393	put_recursion_context(swhash->recursion, rctx);
6394}
6395
6396void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6397{
6398	struct perf_sample_data data;
6399
6400	if (WARN_ON_ONCE(!regs))
6401		return;
6402
6403	perf_sample_data_init(&data, addr, 0);
6404	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6405}
6406
6407void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6408{
6409	int rctx;
6410
6411	preempt_disable_notrace();
6412	rctx = perf_swevent_get_recursion_context();
6413	if (unlikely(rctx < 0))
6414		goto fail;
6415
6416	___perf_sw_event(event_id, nr, regs, addr);
6417
6418	perf_swevent_put_recursion_context(rctx);
6419fail:
6420	preempt_enable_notrace();
6421}
6422
6423static void perf_swevent_read(struct perf_event *event)
6424{
6425}
6426
6427static int perf_swevent_add(struct perf_event *event, int flags)
6428{
6429	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6430	struct hw_perf_event *hwc = &event->hw;
6431	struct hlist_head *head;
6432
6433	if (is_sampling_event(event)) {
6434		hwc->last_period = hwc->sample_period;
6435		perf_swevent_set_period(event);
6436	}
6437
6438	hwc->state = !(flags & PERF_EF_START);
6439
6440	head = find_swevent_head(swhash, event);
6441	if (!head) {
6442		/*
6443		 * We can race with cpu hotplug code. Do not
6444		 * WARN if the cpu just got unplugged.
6445		 */
6446		WARN_ON_ONCE(swhash->online);
6447		return -EINVAL;
6448	}
6449
6450	hlist_add_head_rcu(&event->hlist_entry, head);
6451	perf_event_update_userpage(event);
6452
6453	return 0;
6454}
6455
6456static void perf_swevent_del(struct perf_event *event, int flags)
6457{
6458	hlist_del_rcu(&event->hlist_entry);
6459}
6460
6461static void perf_swevent_start(struct perf_event *event, int flags)
6462{
6463	event->hw.state = 0;
6464}
6465
6466static void perf_swevent_stop(struct perf_event *event, int flags)
6467{
6468	event->hw.state = PERF_HES_STOPPED;
6469}
6470
6471/* Deref the hlist from the update side */
6472static inline struct swevent_hlist *
6473swevent_hlist_deref(struct swevent_htable *swhash)
6474{
6475	return rcu_dereference_protected(swhash->swevent_hlist,
6476					 lockdep_is_held(&swhash->hlist_mutex));
6477}
6478
6479static void swevent_hlist_release(struct swevent_htable *swhash)
6480{
6481	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6482
6483	if (!hlist)
6484		return;
6485
6486	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6487	kfree_rcu(hlist, rcu_head);
6488}
6489
6490static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6491{
6492	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6493
6494	mutex_lock(&swhash->hlist_mutex);
6495
6496	if (!--swhash->hlist_refcount)
6497		swevent_hlist_release(swhash);
6498
6499	mutex_unlock(&swhash->hlist_mutex);
6500}
6501
6502static void swevent_hlist_put(struct perf_event *event)
6503{
6504	int cpu;
6505
6506	for_each_possible_cpu(cpu)
6507		swevent_hlist_put_cpu(event, cpu);
6508}
6509
6510static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6511{
6512	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6513	int err = 0;
6514
6515	mutex_lock(&swhash->hlist_mutex);
6516
6517	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6518		struct swevent_hlist *hlist;
6519
6520		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6521		if (!hlist) {
6522			err = -ENOMEM;
6523			goto exit;
6524		}
6525		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6526	}
6527	swhash->hlist_refcount++;
6528exit:
6529	mutex_unlock(&swhash->hlist_mutex);
6530
6531	return err;
6532}
6533
6534static int swevent_hlist_get(struct perf_event *event)
6535{
6536	int err;
6537	int cpu, failed_cpu;
6538
6539	get_online_cpus();
6540	for_each_possible_cpu(cpu) {
6541		err = swevent_hlist_get_cpu(event, cpu);
6542		if (err) {
6543			failed_cpu = cpu;
6544			goto fail;
6545		}
6546	}
6547	put_online_cpus();
6548
6549	return 0;
6550fail:
6551	for_each_possible_cpu(cpu) {
6552		if (cpu == failed_cpu)
6553			break;
6554		swevent_hlist_put_cpu(event, cpu);
6555	}
6556
6557	put_online_cpus();
6558	return err;
6559}
6560
6561struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6562
6563static void sw_perf_event_destroy(struct perf_event *event)
6564{
6565	u64 event_id = event->attr.config;
6566
6567	WARN_ON(event->parent);
6568
6569	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6570	swevent_hlist_put(event);
6571}
6572
6573static int perf_swevent_init(struct perf_event *event)
6574{
6575	u64 event_id = event->attr.config;
6576
6577	if (event->attr.type != PERF_TYPE_SOFTWARE)
6578		return -ENOENT;
6579
6580	/*
6581	 * no branch sampling for software events
6582	 */
6583	if (has_branch_stack(event))
6584		return -EOPNOTSUPP;
6585
6586	switch (event_id) {
6587	case PERF_COUNT_SW_CPU_CLOCK:
6588	case PERF_COUNT_SW_TASK_CLOCK:
6589		return -ENOENT;
6590
6591	default:
6592		break;
6593	}
6594
6595	if (event_id >= PERF_COUNT_SW_MAX)
6596		return -ENOENT;
6597
6598	if (!event->parent) {
6599		int err;
6600
6601		err = swevent_hlist_get(event);
6602		if (err)
6603			return err;
6604
6605		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6606		event->destroy = sw_perf_event_destroy;
6607	}
6608
6609	return 0;
6610}
6611
6612static struct pmu perf_swevent = {
6613	.task_ctx_nr	= perf_sw_context,
6614
6615	.capabilities	= PERF_PMU_CAP_NO_NMI,
6616
6617	.event_init	= perf_swevent_init,
6618	.add		= perf_swevent_add,
6619	.del		= perf_swevent_del,
6620	.start		= perf_swevent_start,
6621	.stop		= perf_swevent_stop,
6622	.read		= perf_swevent_read,
6623};
6624
6625#ifdef CONFIG_EVENT_TRACING
6626
6627static int perf_tp_filter_match(struct perf_event *event,
6628				struct perf_sample_data *data)
6629{
6630	void *record = data->raw->data;
6631
6632	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6633		return 1;
6634	return 0;
6635}
6636
6637static int perf_tp_event_match(struct perf_event *event,
6638				struct perf_sample_data *data,
6639				struct pt_regs *regs)
6640{
6641	if (event->hw.state & PERF_HES_STOPPED)
6642		return 0;
6643	/*
6644	 * All tracepoints are from kernel-space.
6645	 */
6646	if (event->attr.exclude_kernel)
6647		return 0;
6648
6649	if (!perf_tp_filter_match(event, data))
6650		return 0;
6651
6652	return 1;
6653}
6654
6655void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6656		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6657		   struct task_struct *task)
6658{
6659	struct perf_sample_data data;
6660	struct perf_event *event;
6661
6662	struct perf_raw_record raw = {
6663		.size = entry_size,
6664		.data = record,
6665	};
6666
6667	perf_sample_data_init(&data, addr, 0);
6668	data.raw = &raw;
6669
6670	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6671		if (perf_tp_event_match(event, &data, regs))
6672			perf_swevent_event(event, count, &data, regs);
6673	}
6674
6675	/*
6676	 * If we got specified a target task, also iterate its context and
6677	 * deliver this event there too.
6678	 */
6679	if (task && task != current) {
6680		struct perf_event_context *ctx;
6681		struct trace_entry *entry = record;
6682
6683		rcu_read_lock();
6684		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6685		if (!ctx)
6686			goto unlock;
6687
6688		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6689			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6690				continue;
6691			if (event->attr.config != entry->type)
6692				continue;
6693			if (perf_tp_event_match(event, &data, regs))
6694				perf_swevent_event(event, count, &data, regs);
6695		}
6696unlock:
6697		rcu_read_unlock();
6698	}
6699
6700	perf_swevent_put_recursion_context(rctx);
6701}
6702EXPORT_SYMBOL_GPL(perf_tp_event);
6703
6704static void tp_perf_event_destroy(struct perf_event *event)
6705{
6706	perf_trace_destroy(event);
6707}
6708
6709static int perf_tp_event_init(struct perf_event *event)
6710{
6711	int err;
6712
6713	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6714		return -ENOENT;
6715
6716	/*
6717	 * no branch sampling for tracepoint events
6718	 */
6719	if (has_branch_stack(event))
6720		return -EOPNOTSUPP;
6721
6722	err = perf_trace_init(event);
6723	if (err)
6724		return err;
6725
6726	event->destroy = tp_perf_event_destroy;
6727
6728	return 0;
6729}
6730
6731static struct pmu perf_tracepoint = {
6732	.task_ctx_nr	= perf_sw_context,
6733
6734	.event_init	= perf_tp_event_init,
6735	.add		= perf_trace_add,
6736	.del		= perf_trace_del,
6737	.start		= perf_swevent_start,
6738	.stop		= perf_swevent_stop,
6739	.read		= perf_swevent_read,
6740};
6741
6742static inline void perf_tp_register(void)
6743{
6744	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6745}
6746
6747static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6748{
6749	char *filter_str;
6750	int ret;
6751
6752	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6753		return -EINVAL;
6754
6755	filter_str = strndup_user(arg, PAGE_SIZE);
6756	if (IS_ERR(filter_str))
6757		return PTR_ERR(filter_str);
6758
6759	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6760
6761	kfree(filter_str);
6762	return ret;
6763}
6764
6765static void perf_event_free_filter(struct perf_event *event)
6766{
6767	ftrace_profile_free_filter(event);
6768}
6769
6770static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6771{
6772	struct bpf_prog *prog;
6773
6774	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6775		return -EINVAL;
6776
6777	if (event->tp_event->prog)
6778		return -EEXIST;
6779
6780	if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6781		/* bpf programs can only be attached to kprobes */
6782		return -EINVAL;
6783
6784	prog = bpf_prog_get(prog_fd);
6785	if (IS_ERR(prog))
6786		return PTR_ERR(prog);
6787
6788	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6789		/* valid fd, but invalid bpf program type */
6790		bpf_prog_put(prog);
6791		return -EINVAL;
6792	}
6793
6794	event->tp_event->prog = prog;
6795
6796	return 0;
6797}
6798
6799static void perf_event_free_bpf_prog(struct perf_event *event)
6800{
6801	struct bpf_prog *prog;
6802
6803	if (!event->tp_event)
6804		return;
6805
6806	prog = event->tp_event->prog;
6807	if (prog) {
6808		event->tp_event->prog = NULL;
6809		bpf_prog_put(prog);
6810	}
6811}
6812
6813#else
6814
6815static inline void perf_tp_register(void)
6816{
6817}
6818
6819static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6820{
6821	return -ENOENT;
6822}
6823
6824static void perf_event_free_filter(struct perf_event *event)
6825{
6826}
6827
6828static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6829{
6830	return -ENOENT;
6831}
6832
6833static void perf_event_free_bpf_prog(struct perf_event *event)
6834{
6835}
6836#endif /* CONFIG_EVENT_TRACING */
6837
6838#ifdef CONFIG_HAVE_HW_BREAKPOINT
6839void perf_bp_event(struct perf_event *bp, void *data)
6840{
6841	struct perf_sample_data sample;
6842	struct pt_regs *regs = data;
6843
6844	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6845
6846	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6847		perf_swevent_event(bp, 1, &sample, regs);
6848}
6849#endif
6850
6851/*
6852 * hrtimer based swevent callback
6853 */
6854
6855static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6856{
6857	enum hrtimer_restart ret = HRTIMER_RESTART;
6858	struct perf_sample_data data;
6859	struct pt_regs *regs;
6860	struct perf_event *event;
6861	u64 period;
6862
6863	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6864
6865	if (event->state != PERF_EVENT_STATE_ACTIVE)
6866		return HRTIMER_NORESTART;
6867
6868	event->pmu->read(event);
6869
6870	perf_sample_data_init(&data, 0, event->hw.last_period);
6871	regs = get_irq_regs();
6872
6873	if (regs && !perf_exclude_event(event, regs)) {
6874		if (!(event->attr.exclude_idle && is_idle_task(current)))
6875			if (__perf_event_overflow(event, 1, &data, regs))
6876				ret = HRTIMER_NORESTART;
6877	}
6878
6879	period = max_t(u64, 10000, event->hw.sample_period);
6880	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6881
6882	return ret;
6883}
6884
6885static void perf_swevent_start_hrtimer(struct perf_event *event)
6886{
6887	struct hw_perf_event *hwc = &event->hw;
6888	s64 period;
6889
6890	if (!is_sampling_event(event))
6891		return;
6892
6893	period = local64_read(&hwc->period_left);
6894	if (period) {
6895		if (period < 0)
6896			period = 10000;
6897
6898		local64_set(&hwc->period_left, 0);
6899	} else {
6900		period = max_t(u64, 10000, hwc->sample_period);
6901	}
6902	__hrtimer_start_range_ns(&hwc->hrtimer,
6903				ns_to_ktime(period), 0,
6904				HRTIMER_MODE_REL_PINNED, 0);
6905}
6906
6907static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6908{
6909	struct hw_perf_event *hwc = &event->hw;
6910
6911	if (is_sampling_event(event)) {
6912		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6913		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6914
6915		hrtimer_cancel(&hwc->hrtimer);
6916	}
6917}
6918
6919static void perf_swevent_init_hrtimer(struct perf_event *event)
6920{
6921	struct hw_perf_event *hwc = &event->hw;
6922
6923	if (!is_sampling_event(event))
6924		return;
6925
6926	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6927	hwc->hrtimer.function = perf_swevent_hrtimer;
6928
6929	/*
6930	 * Since hrtimers have a fixed rate, we can do a static freq->period
6931	 * mapping and avoid the whole period adjust feedback stuff.
6932	 */
6933	if (event->attr.freq) {
6934		long freq = event->attr.sample_freq;
6935
6936		event->attr.sample_period = NSEC_PER_SEC / freq;
6937		hwc->sample_period = event->attr.sample_period;
6938		local64_set(&hwc->period_left, hwc->sample_period);
6939		hwc->last_period = hwc->sample_period;
6940		event->attr.freq = 0;
6941	}
6942}
6943
6944/*
6945 * Software event: cpu wall time clock
6946 */
6947
6948static void cpu_clock_event_update(struct perf_event *event)
6949{
6950	s64 prev;
6951	u64 now;
6952
6953	now = local_clock();
6954	prev = local64_xchg(&event->hw.prev_count, now);
6955	local64_add(now - prev, &event->count);
6956}
6957
6958static void cpu_clock_event_start(struct perf_event *event, int flags)
6959{
6960	local64_set(&event->hw.prev_count, local_clock());
6961	perf_swevent_start_hrtimer(event);
6962}
6963
6964static void cpu_clock_event_stop(struct perf_event *event, int flags)
6965{
6966	perf_swevent_cancel_hrtimer(event);
6967	cpu_clock_event_update(event);
6968}
6969
6970static int cpu_clock_event_add(struct perf_event *event, int flags)
6971{
6972	if (flags & PERF_EF_START)
6973		cpu_clock_event_start(event, flags);
6974	perf_event_update_userpage(event);
6975
6976	return 0;
6977}
6978
6979static void cpu_clock_event_del(struct perf_event *event, int flags)
6980{
6981	cpu_clock_event_stop(event, flags);
6982}
6983
6984static void cpu_clock_event_read(struct perf_event *event)
6985{
6986	cpu_clock_event_update(event);
6987}
6988
6989static int cpu_clock_event_init(struct perf_event *event)
6990{
6991	if (event->attr.type != PERF_TYPE_SOFTWARE)
6992		return -ENOENT;
6993
6994	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6995		return -ENOENT;
6996
6997	/*
6998	 * no branch sampling for software events
6999	 */
7000	if (has_branch_stack(event))
7001		return -EOPNOTSUPP;
7002
7003	perf_swevent_init_hrtimer(event);
7004
7005	return 0;
7006}
7007
7008static struct pmu perf_cpu_clock = {
7009	.task_ctx_nr	= perf_sw_context,
7010
7011	.capabilities	= PERF_PMU_CAP_NO_NMI,
7012
7013	.event_init	= cpu_clock_event_init,
7014	.add		= cpu_clock_event_add,
7015	.del		= cpu_clock_event_del,
7016	.start		= cpu_clock_event_start,
7017	.stop		= cpu_clock_event_stop,
7018	.read		= cpu_clock_event_read,
7019};
7020
7021/*
7022 * Software event: task time clock
7023 */
7024
7025static void task_clock_event_update(struct perf_event *event, u64 now)
7026{
7027	u64 prev;
7028	s64 delta;
7029
7030	prev = local64_xchg(&event->hw.prev_count, now);
7031	delta = now - prev;
7032	local64_add(delta, &event->count);
7033}
7034
7035static void task_clock_event_start(struct perf_event *event, int flags)
7036{
7037	local64_set(&event->hw.prev_count, event->ctx->time);
7038	perf_swevent_start_hrtimer(event);
7039}
7040
7041static void task_clock_event_stop(struct perf_event *event, int flags)
7042{
7043	perf_swevent_cancel_hrtimer(event);
7044	task_clock_event_update(event, event->ctx->time);
7045}
7046
7047static int task_clock_event_add(struct perf_event *event, int flags)
7048{
7049	if (flags & PERF_EF_START)
7050		task_clock_event_start(event, flags);
7051	perf_event_update_userpage(event);
7052
7053	return 0;
7054}
7055
7056static void task_clock_event_del(struct perf_event *event, int flags)
7057{
7058	task_clock_event_stop(event, PERF_EF_UPDATE);
7059}
7060
7061static void task_clock_event_read(struct perf_event *event)
7062{
7063	u64 now = perf_clock();
7064	u64 delta = now - event->ctx->timestamp;
7065	u64 time = event->ctx->time + delta;
7066
7067	task_clock_event_update(event, time);
7068}
7069
7070static int task_clock_event_init(struct perf_event *event)
7071{
7072	if (event->attr.type != PERF_TYPE_SOFTWARE)
7073		return -ENOENT;
7074
7075	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7076		return -ENOENT;
7077
7078	/*
7079	 * no branch sampling for software events
7080	 */
7081	if (has_branch_stack(event))
7082		return -EOPNOTSUPP;
7083
7084	perf_swevent_init_hrtimer(event);
7085
7086	return 0;
7087}
7088
7089static struct pmu perf_task_clock = {
7090	.task_ctx_nr	= perf_sw_context,
7091
7092	.capabilities	= PERF_PMU_CAP_NO_NMI,
7093
7094	.event_init	= task_clock_event_init,
7095	.add		= task_clock_event_add,
7096	.del		= task_clock_event_del,
7097	.start		= task_clock_event_start,
7098	.stop		= task_clock_event_stop,
7099	.read		= task_clock_event_read,
7100};
7101
7102static void perf_pmu_nop_void(struct pmu *pmu)
7103{
7104}
7105
7106static int perf_pmu_nop_int(struct pmu *pmu)
7107{
7108	return 0;
7109}
7110
7111static void perf_pmu_start_txn(struct pmu *pmu)
7112{
7113	perf_pmu_disable(pmu);
7114}
7115
7116static int perf_pmu_commit_txn(struct pmu *pmu)
7117{
7118	perf_pmu_enable(pmu);
7119	return 0;
7120}
7121
7122static void perf_pmu_cancel_txn(struct pmu *pmu)
7123{
7124	perf_pmu_enable(pmu);
7125}
7126
7127static int perf_event_idx_default(struct perf_event *event)
7128{
7129	return 0;
7130}
7131
7132/*
7133 * Ensures all contexts with the same task_ctx_nr have the same
7134 * pmu_cpu_context too.
7135 */
7136static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7137{
7138	struct pmu *pmu;
7139
7140	if (ctxn < 0)
7141		return NULL;
7142
7143	list_for_each_entry(pmu, &pmus, entry) {
7144		if (pmu->task_ctx_nr == ctxn)
7145			return pmu->pmu_cpu_context;
7146	}
7147
7148	return NULL;
7149}
7150
7151static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7152{
7153	int cpu;
7154
7155	for_each_possible_cpu(cpu) {
7156		struct perf_cpu_context *cpuctx;
7157
7158		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7159
7160		if (cpuctx->unique_pmu == old_pmu)
7161			cpuctx->unique_pmu = pmu;
7162	}
7163}
7164
7165static void free_pmu_context(struct pmu *pmu)
7166{
7167	struct pmu *i;
7168
7169	mutex_lock(&pmus_lock);
7170	/*
7171	 * Like a real lame refcount.
7172	 */
7173	list_for_each_entry(i, &pmus, entry) {
7174		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7175			update_pmu_context(i, pmu);
7176			goto out;
7177		}
7178	}
7179
7180	free_percpu(pmu->pmu_cpu_context);
7181out:
7182	mutex_unlock(&pmus_lock);
7183}
7184static struct idr pmu_idr;
7185
7186static ssize_t
7187type_show(struct device *dev, struct device_attribute *attr, char *page)
7188{
7189	struct pmu *pmu = dev_get_drvdata(dev);
7190
7191	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7192}
7193static DEVICE_ATTR_RO(type);
7194
7195static ssize_t
7196perf_event_mux_interval_ms_show(struct device *dev,
7197				struct device_attribute *attr,
7198				char *page)
7199{
7200	struct pmu *pmu = dev_get_drvdata(dev);
7201
7202	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7203}
7204
7205static ssize_t
7206perf_event_mux_interval_ms_store(struct device *dev,
7207				 struct device_attribute *attr,
7208				 const char *buf, size_t count)
7209{
7210	struct pmu *pmu = dev_get_drvdata(dev);
7211	int timer, cpu, ret;
7212
7213	ret = kstrtoint(buf, 0, &timer);
7214	if (ret)
7215		return ret;
7216
7217	if (timer < 1)
7218		return -EINVAL;
7219
7220	/* same value, noting to do */
7221	if (timer == pmu->hrtimer_interval_ms)
7222		return count;
7223
7224	pmu->hrtimer_interval_ms = timer;
7225
7226	/* update all cpuctx for this PMU */
7227	for_each_possible_cpu(cpu) {
7228		struct perf_cpu_context *cpuctx;
7229		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7230		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7231
7232		if (hrtimer_active(&cpuctx->hrtimer))
7233			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
7234	}
7235
7236	return count;
7237}
7238static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7239
7240static struct attribute *pmu_dev_attrs[] = {
7241	&dev_attr_type.attr,
7242	&dev_attr_perf_event_mux_interval_ms.attr,
7243	NULL,
7244};
7245ATTRIBUTE_GROUPS(pmu_dev);
7246
7247static int pmu_bus_running;
7248static struct bus_type pmu_bus = {
7249	.name		= "event_source",
7250	.dev_groups	= pmu_dev_groups,
7251};
7252
7253static void pmu_dev_release(struct device *dev)
7254{
7255	kfree(dev);
7256}
7257
7258static int pmu_dev_alloc(struct pmu *pmu)
7259{
7260	int ret = -ENOMEM;
7261
7262	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7263	if (!pmu->dev)
7264		goto out;
7265
7266	pmu->dev->groups = pmu->attr_groups;
7267	device_initialize(pmu->dev);
7268	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7269	if (ret)
7270		goto free_dev;
7271
7272	dev_set_drvdata(pmu->dev, pmu);
7273	pmu->dev->bus = &pmu_bus;
7274	pmu->dev->release = pmu_dev_release;
7275	ret = device_add(pmu->dev);
7276	if (ret)
7277		goto free_dev;
7278
7279out:
7280	return ret;
7281
7282free_dev:
7283	put_device(pmu->dev);
7284	goto out;
7285}
7286
7287static struct lock_class_key cpuctx_mutex;
7288static struct lock_class_key cpuctx_lock;
7289
7290int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7291{
7292	int cpu, ret;
7293
7294	mutex_lock(&pmus_lock);
7295	ret = -ENOMEM;
7296	pmu->pmu_disable_count = alloc_percpu(int);
7297	if (!pmu->pmu_disable_count)
7298		goto unlock;
7299
7300	pmu->type = -1;
7301	if (!name)
7302		goto skip_type;
7303	pmu->name = name;
7304
7305	if (type < 0) {
7306		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7307		if (type < 0) {
7308			ret = type;
7309			goto free_pdc;
7310		}
7311	}
7312	pmu->type = type;
7313
7314	if (pmu_bus_running) {
7315		ret = pmu_dev_alloc(pmu);
7316		if (ret)
7317			goto free_idr;
7318	}
7319
7320skip_type:
7321	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7322	if (pmu->pmu_cpu_context)
7323		goto got_cpu_context;
7324
7325	ret = -ENOMEM;
7326	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7327	if (!pmu->pmu_cpu_context)
7328		goto free_dev;
7329
7330	for_each_possible_cpu(cpu) {
7331		struct perf_cpu_context *cpuctx;
7332
7333		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7334		__perf_event_init_context(&cpuctx->ctx);
7335		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7336		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7337		cpuctx->ctx.pmu = pmu;
7338
7339		__perf_cpu_hrtimer_init(cpuctx, cpu);
7340
7341		cpuctx->unique_pmu = pmu;
7342	}
7343
7344got_cpu_context:
7345	if (!pmu->start_txn) {
7346		if (pmu->pmu_enable) {
7347			/*
7348			 * If we have pmu_enable/pmu_disable calls, install
7349			 * transaction stubs that use that to try and batch
7350			 * hardware accesses.
7351			 */
7352			pmu->start_txn  = perf_pmu_start_txn;
7353			pmu->commit_txn = perf_pmu_commit_txn;
7354			pmu->cancel_txn = perf_pmu_cancel_txn;
7355		} else {
7356			pmu->start_txn  = perf_pmu_nop_void;
7357			pmu->commit_txn = perf_pmu_nop_int;
7358			pmu->cancel_txn = perf_pmu_nop_void;
7359		}
7360	}
7361
7362	if (!pmu->pmu_enable) {
7363		pmu->pmu_enable  = perf_pmu_nop_void;
7364		pmu->pmu_disable = perf_pmu_nop_void;
7365	}
7366
7367	if (!pmu->event_idx)
7368		pmu->event_idx = perf_event_idx_default;
7369
7370	list_add_rcu(&pmu->entry, &pmus);
7371	atomic_set(&pmu->exclusive_cnt, 0);
7372	ret = 0;
7373unlock:
7374	mutex_unlock(&pmus_lock);
7375
7376	return ret;
7377
7378free_dev:
7379	device_del(pmu->dev);
7380	put_device(pmu->dev);
7381
7382free_idr:
7383	if (pmu->type >= PERF_TYPE_MAX)
7384		idr_remove(&pmu_idr, pmu->type);
7385
7386free_pdc:
7387	free_percpu(pmu->pmu_disable_count);
7388	goto unlock;
7389}
7390EXPORT_SYMBOL_GPL(perf_pmu_register);
7391
7392void perf_pmu_unregister(struct pmu *pmu)
7393{
7394	mutex_lock(&pmus_lock);
7395	list_del_rcu(&pmu->entry);
7396	mutex_unlock(&pmus_lock);
7397
7398	/*
7399	 * We dereference the pmu list under both SRCU and regular RCU, so
7400	 * synchronize against both of those.
7401	 */
7402	synchronize_srcu(&pmus_srcu);
7403	synchronize_rcu();
7404
7405	free_percpu(pmu->pmu_disable_count);
7406	if (pmu->type >= PERF_TYPE_MAX)
7407		idr_remove(&pmu_idr, pmu->type);
7408	device_del(pmu->dev);
7409	put_device(pmu->dev);
7410	free_pmu_context(pmu);
7411}
7412EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7413
7414static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7415{
7416	struct perf_event_context *ctx = NULL;
7417	int ret;
7418
7419	if (!try_module_get(pmu->module))
7420		return -ENODEV;
7421
7422	if (event->group_leader != event) {
7423		/*
7424		 * This ctx->mutex can nest when we're called through
7425		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7426		 */
7427		ctx = perf_event_ctx_lock_nested(event->group_leader,
7428						 SINGLE_DEPTH_NESTING);
7429		BUG_ON(!ctx);
7430	}
7431
7432	event->pmu = pmu;
7433	ret = pmu->event_init(event);
7434
7435	if (ctx)
7436		perf_event_ctx_unlock(event->group_leader, ctx);
7437
7438	if (ret)
7439		module_put(pmu->module);
7440
7441	return ret;
7442}
7443
7444struct pmu *perf_init_event(struct perf_event *event)
7445{
7446	struct pmu *pmu = NULL;
7447	int idx;
7448	int ret;
7449
7450	idx = srcu_read_lock(&pmus_srcu);
7451
7452	rcu_read_lock();
7453	pmu = idr_find(&pmu_idr, event->attr.type);
7454	rcu_read_unlock();
7455	if (pmu) {
7456		ret = perf_try_init_event(pmu, event);
7457		if (ret)
7458			pmu = ERR_PTR(ret);
7459		goto unlock;
7460	}
7461
7462	list_for_each_entry_rcu(pmu, &pmus, entry) {
7463		ret = perf_try_init_event(pmu, event);
7464		if (!ret)
7465			goto unlock;
7466
7467		if (ret != -ENOENT) {
7468			pmu = ERR_PTR(ret);
7469			goto unlock;
7470		}
7471	}
7472	pmu = ERR_PTR(-ENOENT);
7473unlock:
7474	srcu_read_unlock(&pmus_srcu, idx);
7475
7476	return pmu;
7477}
7478
7479static void account_event_cpu(struct perf_event *event, int cpu)
7480{
7481	if (event->parent)
7482		return;
7483
7484	if (is_cgroup_event(event))
7485		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7486}
7487
7488static void account_event(struct perf_event *event)
7489{
7490	if (event->parent)
7491		return;
7492
7493	if (event->attach_state & PERF_ATTACH_TASK)
7494		static_key_slow_inc(&perf_sched_events.key);
7495	if (event->attr.mmap || event->attr.mmap_data)
7496		atomic_inc(&nr_mmap_events);
7497	if (event->attr.comm)
7498		atomic_inc(&nr_comm_events);
7499	if (event->attr.task)
7500		atomic_inc(&nr_task_events);
7501	if (event->attr.freq) {
7502		if (atomic_inc_return(&nr_freq_events) == 1)
7503			tick_nohz_full_kick_all();
7504	}
7505	if (has_branch_stack(event))
7506		static_key_slow_inc(&perf_sched_events.key);
7507	if (is_cgroup_event(event))
7508		static_key_slow_inc(&perf_sched_events.key);
7509
7510	account_event_cpu(event, event->cpu);
7511}
7512
7513/*
7514 * Allocate and initialize a event structure
7515 */
7516static struct perf_event *
7517perf_event_alloc(struct perf_event_attr *attr, int cpu,
7518		 struct task_struct *task,
7519		 struct perf_event *group_leader,
7520		 struct perf_event *parent_event,
7521		 perf_overflow_handler_t overflow_handler,
7522		 void *context, int cgroup_fd)
7523{
7524	struct pmu *pmu;
7525	struct perf_event *event;
7526	struct hw_perf_event *hwc;
7527	long err = -EINVAL;
7528
7529	if ((unsigned)cpu >= nr_cpu_ids) {
7530		if (!task || cpu != -1)
7531			return ERR_PTR(-EINVAL);
7532	}
7533
7534	event = kzalloc(sizeof(*event), GFP_KERNEL);
7535	if (!event)
7536		return ERR_PTR(-ENOMEM);
7537
7538	/*
7539	 * Single events are their own group leaders, with an
7540	 * empty sibling list:
7541	 */
7542	if (!group_leader)
7543		group_leader = event;
7544
7545	mutex_init(&event->child_mutex);
7546	INIT_LIST_HEAD(&event->child_list);
7547
7548	INIT_LIST_HEAD(&event->group_entry);
7549	INIT_LIST_HEAD(&event->event_entry);
7550	INIT_LIST_HEAD(&event->sibling_list);
7551	INIT_LIST_HEAD(&event->rb_entry);
7552	INIT_LIST_HEAD(&event->active_entry);
7553	INIT_HLIST_NODE(&event->hlist_entry);
7554
7555
7556	init_waitqueue_head(&event->waitq);
7557	init_irq_work(&event->pending, perf_pending_event);
7558
7559	mutex_init(&event->mmap_mutex);
7560
7561	atomic_long_set(&event->refcount, 1);
7562	event->cpu		= cpu;
7563	event->attr		= *attr;
7564	event->group_leader	= group_leader;
7565	event->pmu		= NULL;
7566	event->oncpu		= -1;
7567
7568	event->parent		= parent_event;
7569
7570	event->ns		= get_pid_ns(task_active_pid_ns(current));
7571	event->id		= atomic64_inc_return(&perf_event_id);
7572
7573	event->state		= PERF_EVENT_STATE_INACTIVE;
7574
7575	if (task) {
7576		event->attach_state = PERF_ATTACH_TASK;
7577		/*
7578		 * XXX pmu::event_init needs to know what task to account to
7579		 * and we cannot use the ctx information because we need the
7580		 * pmu before we get a ctx.
7581		 */
7582		event->hw.target = task;
7583	}
7584
7585	event->clock = &local_clock;
7586	if (parent_event)
7587		event->clock = parent_event->clock;
7588
7589	if (!overflow_handler && parent_event) {
7590		overflow_handler = parent_event->overflow_handler;
7591		context = parent_event->overflow_handler_context;
7592	}
7593
7594	event->overflow_handler	= overflow_handler;
7595	event->overflow_handler_context = context;
7596
7597	perf_event__state_init(event);
7598
7599	pmu = NULL;
7600
7601	hwc = &event->hw;
7602	hwc->sample_period = attr->sample_period;
7603	if (attr->freq && attr->sample_freq)
7604		hwc->sample_period = 1;
7605	hwc->last_period = hwc->sample_period;
7606
7607	local64_set(&hwc->period_left, hwc->sample_period);
7608
7609	/*
7610	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7611	 */
7612	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7613		goto err_ns;
7614
7615	if (!has_branch_stack(event))
7616		event->attr.branch_sample_type = 0;
7617
7618	if (cgroup_fd != -1) {
7619		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7620		if (err)
7621			goto err_ns;
7622	}
7623
7624	pmu = perf_init_event(event);
7625	if (!pmu)
7626		goto err_ns;
7627	else if (IS_ERR(pmu)) {
7628		err = PTR_ERR(pmu);
7629		goto err_ns;
7630	}
7631
7632	err = exclusive_event_init(event);
7633	if (err)
7634		goto err_pmu;
7635
7636	if (!event->parent) {
7637		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7638			err = get_callchain_buffers();
7639			if (err)
7640				goto err_per_task;
7641		}
7642	}
7643
7644	/* symmetric to unaccount_event() in _free_event() */
7645	account_event(event);
7646
7647	return event;
7648
7649err_per_task:
7650	exclusive_event_destroy(event);
7651
7652err_pmu:
7653	if (event->destroy)
7654		event->destroy(event);
7655	module_put(pmu->module);
7656err_ns:
7657	if (is_cgroup_event(event))
7658		perf_detach_cgroup(event);
7659	if (event->ns)
7660		put_pid_ns(event->ns);
7661	kfree(event);
7662
7663	return ERR_PTR(err);
7664}
7665
7666static int perf_copy_attr(struct perf_event_attr __user *uattr,
7667			  struct perf_event_attr *attr)
7668{
7669	u32 size;
7670	int ret;
7671
7672	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7673		return -EFAULT;
7674
7675	/*
7676	 * zero the full structure, so that a short copy will be nice.
7677	 */
7678	memset(attr, 0, sizeof(*attr));
7679
7680	ret = get_user(size, &uattr->size);
7681	if (ret)
7682		return ret;
7683
7684	if (size > PAGE_SIZE)	/* silly large */
7685		goto err_size;
7686
7687	if (!size)		/* abi compat */
7688		size = PERF_ATTR_SIZE_VER0;
7689
7690	if (size < PERF_ATTR_SIZE_VER0)
7691		goto err_size;
7692
7693	/*
7694	 * If we're handed a bigger struct than we know of,
7695	 * ensure all the unknown bits are 0 - i.e. new
7696	 * user-space does not rely on any kernel feature
7697	 * extensions we dont know about yet.
7698	 */
7699	if (size > sizeof(*attr)) {
7700		unsigned char __user *addr;
7701		unsigned char __user *end;
7702		unsigned char val;
7703
7704		addr = (void __user *)uattr + sizeof(*attr);
7705		end  = (void __user *)uattr + size;
7706
7707		for (; addr < end; addr++) {
7708			ret = get_user(val, addr);
7709			if (ret)
7710				return ret;
7711			if (val)
7712				goto err_size;
7713		}
7714		size = sizeof(*attr);
7715	}
7716
7717	ret = copy_from_user(attr, uattr, size);
7718	if (ret)
7719		return -EFAULT;
7720
7721	if (attr->__reserved_1)
7722		return -EINVAL;
7723
7724	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7725		return -EINVAL;
7726
7727	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7728		return -EINVAL;
7729
7730	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7731		u64 mask = attr->branch_sample_type;
7732
7733		/* only using defined bits */
7734		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7735			return -EINVAL;
7736
7737		/* at least one branch bit must be set */
7738		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7739			return -EINVAL;
7740
7741		/* propagate priv level, when not set for branch */
7742		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7743
7744			/* exclude_kernel checked on syscall entry */
7745			if (!attr->exclude_kernel)
7746				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7747
7748			if (!attr->exclude_user)
7749				mask |= PERF_SAMPLE_BRANCH_USER;
7750
7751			if (!attr->exclude_hv)
7752				mask |= PERF_SAMPLE_BRANCH_HV;
7753			/*
7754			 * adjust user setting (for HW filter setup)
7755			 */
7756			attr->branch_sample_type = mask;
7757		}
7758		/* privileged levels capture (kernel, hv): check permissions */
7759		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7760		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7761			return -EACCES;
7762	}
7763
7764	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7765		ret = perf_reg_validate(attr->sample_regs_user);
7766		if (ret)
7767			return ret;
7768	}
7769
7770	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7771		if (!arch_perf_have_user_stack_dump())
7772			return -ENOSYS;
7773
7774		/*
7775		 * We have __u32 type for the size, but so far
7776		 * we can only use __u16 as maximum due to the
7777		 * __u16 sample size limit.
7778		 */
7779		if (attr->sample_stack_user >= USHRT_MAX)
7780			ret = -EINVAL;
7781		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7782			ret = -EINVAL;
7783	}
7784
7785	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7786		ret = perf_reg_validate(attr->sample_regs_intr);
7787out:
7788	return ret;
7789
7790err_size:
7791	put_user(sizeof(*attr), &uattr->size);
7792	ret = -E2BIG;
7793	goto out;
7794}
7795
7796static int
7797perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7798{
7799	struct ring_buffer *rb = NULL;
7800	int ret = -EINVAL;
7801
7802	if (!output_event)
7803		goto set;
7804
7805	/* don't allow circular references */
7806	if (event == output_event)
7807		goto out;
7808
7809	/*
7810	 * Don't allow cross-cpu buffers
7811	 */
7812	if (output_event->cpu != event->cpu)
7813		goto out;
7814
7815	/*
7816	 * If its not a per-cpu rb, it must be the same task.
7817	 */
7818	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7819		goto out;
7820
7821	/*
7822	 * Mixing clocks in the same buffer is trouble you don't need.
7823	 */
7824	if (output_event->clock != event->clock)
7825		goto out;
7826
7827	/*
7828	 * If both events generate aux data, they must be on the same PMU
7829	 */
7830	if (has_aux(event) && has_aux(output_event) &&
7831	    event->pmu != output_event->pmu)
7832		goto out;
7833
7834set:
7835	mutex_lock(&event->mmap_mutex);
7836	/* Can't redirect output if we've got an active mmap() */
7837	if (atomic_read(&event->mmap_count))
7838		goto unlock;
7839
7840	if (output_event) {
7841		/* get the rb we want to redirect to */
7842		rb = ring_buffer_get(output_event);
7843		if (!rb)
7844			goto unlock;
7845	}
7846
7847	ring_buffer_attach(event, rb);
7848
7849	ret = 0;
7850unlock:
7851	mutex_unlock(&event->mmap_mutex);
7852
7853out:
7854	return ret;
7855}
7856
7857static void mutex_lock_double(struct mutex *a, struct mutex *b)
7858{
7859	if (b < a)
7860		swap(a, b);
7861
7862	mutex_lock(a);
7863	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7864}
7865
7866static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7867{
7868	bool nmi_safe = false;
7869
7870	switch (clk_id) {
7871	case CLOCK_MONOTONIC:
7872		event->clock = &ktime_get_mono_fast_ns;
7873		nmi_safe = true;
7874		break;
7875
7876	case CLOCK_MONOTONIC_RAW:
7877		event->clock = &ktime_get_raw_fast_ns;
7878		nmi_safe = true;
7879		break;
7880
7881	case CLOCK_REALTIME:
7882		event->clock = &ktime_get_real_ns;
7883		break;
7884
7885	case CLOCK_BOOTTIME:
7886		event->clock = &ktime_get_boot_ns;
7887		break;
7888
7889	case CLOCK_TAI:
7890		event->clock = &ktime_get_tai_ns;
7891		break;
7892
7893	default:
7894		return -EINVAL;
7895	}
7896
7897	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7898		return -EINVAL;
7899
7900	return 0;
7901}
7902
7903/**
7904 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7905 *
7906 * @attr_uptr:	event_id type attributes for monitoring/sampling
7907 * @pid:		target pid
7908 * @cpu:		target cpu
7909 * @group_fd:		group leader event fd
7910 */
7911SYSCALL_DEFINE5(perf_event_open,
7912		struct perf_event_attr __user *, attr_uptr,
7913		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7914{
7915	struct perf_event *group_leader = NULL, *output_event = NULL;
7916	struct perf_event *event, *sibling;
7917	struct perf_event_attr attr;
7918	struct perf_event_context *ctx, *uninitialized_var(gctx);
7919	struct file *event_file = NULL;
7920	struct fd group = {NULL, 0};
7921	struct task_struct *task = NULL;
7922	struct pmu *pmu;
7923	int event_fd;
7924	int move_group = 0;
7925	int err;
7926	int f_flags = O_RDWR;
7927	int cgroup_fd = -1;
7928
7929	/* for future expandability... */
7930	if (flags & ~PERF_FLAG_ALL)
7931		return -EINVAL;
7932
7933	err = perf_copy_attr(attr_uptr, &attr);
7934	if (err)
7935		return err;
7936
7937	if (!attr.exclude_kernel) {
7938		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7939			return -EACCES;
7940	}
7941
7942	if (attr.freq) {
7943		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7944			return -EINVAL;
7945	} else {
7946		if (attr.sample_period & (1ULL << 63))
7947			return -EINVAL;
7948	}
7949
7950	/*
7951	 * In cgroup mode, the pid argument is used to pass the fd
7952	 * opened to the cgroup directory in cgroupfs. The cpu argument
7953	 * designates the cpu on which to monitor threads from that
7954	 * cgroup.
7955	 */
7956	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7957		return -EINVAL;
7958
7959	if (flags & PERF_FLAG_FD_CLOEXEC)
7960		f_flags |= O_CLOEXEC;
7961
7962	event_fd = get_unused_fd_flags(f_flags);
7963	if (event_fd < 0)
7964		return event_fd;
7965
7966	if (group_fd != -1) {
7967		err = perf_fget_light(group_fd, &group);
7968		if (err)
7969			goto err_fd;
7970		group_leader = group.file->private_data;
7971		if (flags & PERF_FLAG_FD_OUTPUT)
7972			output_event = group_leader;
7973		if (flags & PERF_FLAG_FD_NO_GROUP)
7974			group_leader = NULL;
7975	}
7976
7977	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7978		task = find_lively_task_by_vpid(pid);
7979		if (IS_ERR(task)) {
7980			err = PTR_ERR(task);
7981			goto err_group_fd;
7982		}
7983	}
7984
7985	if (task && group_leader &&
7986	    group_leader->attr.inherit != attr.inherit) {
7987		err = -EINVAL;
7988		goto err_task;
7989	}
7990
7991	get_online_cpus();
7992
7993	if (flags & PERF_FLAG_PID_CGROUP)
7994		cgroup_fd = pid;
7995
7996	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7997				 NULL, NULL, cgroup_fd);
7998	if (IS_ERR(event)) {
7999		err = PTR_ERR(event);
8000		goto err_cpus;
8001	}
8002
8003	if (is_sampling_event(event)) {
8004		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8005			err = -ENOTSUPP;
8006			goto err_alloc;
8007		}
8008	}
8009
8010	/*
8011	 * Special case software events and allow them to be part of
8012	 * any hardware group.
8013	 */
8014	pmu = event->pmu;
8015
8016	if (attr.use_clockid) {
8017		err = perf_event_set_clock(event, attr.clockid);
8018		if (err)
8019			goto err_alloc;
8020	}
8021
8022	if (group_leader &&
8023	    (is_software_event(event) != is_software_event(group_leader))) {
8024		if (is_software_event(event)) {
8025			/*
8026			 * If event and group_leader are not both a software
8027			 * event, and event is, then group leader is not.
8028			 *
8029			 * Allow the addition of software events to !software
8030			 * groups, this is safe because software events never
8031			 * fail to schedule.
8032			 */
8033			pmu = group_leader->pmu;
8034		} else if (is_software_event(group_leader) &&
8035			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8036			/*
8037			 * In case the group is a pure software group, and we
8038			 * try to add a hardware event, move the whole group to
8039			 * the hardware context.
8040			 */
8041			move_group = 1;
8042		}
8043	}
8044
8045	/*
8046	 * Get the target context (task or percpu):
8047	 */
8048	ctx = find_get_context(pmu, task, event);
8049	if (IS_ERR(ctx)) {
8050		err = PTR_ERR(ctx);
8051		goto err_alloc;
8052	}
8053
8054	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8055		err = -EBUSY;
8056		goto err_context;
8057	}
8058
8059	if (task) {
8060		put_task_struct(task);
8061		task = NULL;
8062	}
8063
8064	/*
8065	 * Look up the group leader (we will attach this event to it):
8066	 */
8067	if (group_leader) {
8068		err = -EINVAL;
8069
8070		/*
8071		 * Do not allow a recursive hierarchy (this new sibling
8072		 * becoming part of another group-sibling):
8073		 */
8074		if (group_leader->group_leader != group_leader)
8075			goto err_context;
8076
8077		/* All events in a group should have the same clock */
8078		if (group_leader->clock != event->clock)
8079			goto err_context;
8080
8081		/*
8082		 * Do not allow to attach to a group in a different
8083		 * task or CPU context:
8084		 */
8085		if (move_group) {
8086			/*
8087			 * Make sure we're both on the same task, or both
8088			 * per-cpu events.
8089			 */
8090			if (group_leader->ctx->task != ctx->task)
8091				goto err_context;
8092
8093			/*
8094			 * Make sure we're both events for the same CPU;
8095			 * grouping events for different CPUs is broken; since
8096			 * you can never concurrently schedule them anyhow.
8097			 */
8098			if (group_leader->cpu != event->cpu)
8099				goto err_context;
8100		} else {
8101			if (group_leader->ctx != ctx)
8102				goto err_context;
8103		}
8104
8105		/*
8106		 * Only a group leader can be exclusive or pinned
8107		 */
8108		if (attr.exclusive || attr.pinned)
8109			goto err_context;
8110	}
8111
8112	if (output_event) {
8113		err = perf_event_set_output(event, output_event);
8114		if (err)
8115			goto err_context;
8116	}
8117
8118	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8119					f_flags);
8120	if (IS_ERR(event_file)) {
8121		err = PTR_ERR(event_file);
8122		goto err_context;
8123	}
8124
8125	if (move_group) {
8126		gctx = group_leader->ctx;
8127
8128		/*
8129		 * See perf_event_ctx_lock() for comments on the details
8130		 * of swizzling perf_event::ctx.
8131		 */
8132		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8133
8134		perf_remove_from_context(group_leader, false);
8135
8136		list_for_each_entry(sibling, &group_leader->sibling_list,
8137				    group_entry) {
8138			perf_remove_from_context(sibling, false);
8139			put_ctx(gctx);
8140		}
8141	} else {
8142		mutex_lock(&ctx->mutex);
8143	}
8144
8145	WARN_ON_ONCE(ctx->parent_ctx);
8146
8147	if (move_group) {
8148		/*
8149		 * Wait for everybody to stop referencing the events through
8150		 * the old lists, before installing it on new lists.
8151		 */
8152		synchronize_rcu();
8153
8154		/*
8155		 * Install the group siblings before the group leader.
8156		 *
8157		 * Because a group leader will try and install the entire group
8158		 * (through the sibling list, which is still in-tact), we can
8159		 * end up with siblings installed in the wrong context.
8160		 *
8161		 * By installing siblings first we NO-OP because they're not
8162		 * reachable through the group lists.
8163		 */
8164		list_for_each_entry(sibling, &group_leader->sibling_list,
8165				    group_entry) {
8166			perf_event__state_init(sibling);
8167			perf_install_in_context(ctx, sibling, sibling->cpu);
8168			get_ctx(ctx);
8169		}
8170
8171		/*
8172		 * Removing from the context ends up with disabled
8173		 * event. What we want here is event in the initial
8174		 * startup state, ready to be add into new context.
8175		 */
8176		perf_event__state_init(group_leader);
8177		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8178		get_ctx(ctx);
8179	}
8180
8181	if (!exclusive_event_installable(event, ctx)) {
8182		err = -EBUSY;
8183		mutex_unlock(&ctx->mutex);
8184		fput(event_file);
8185		goto err_context;
8186	}
8187
8188	perf_install_in_context(ctx, event, event->cpu);
8189	perf_unpin_context(ctx);
8190
8191	if (move_group) {
8192		mutex_unlock(&gctx->mutex);
8193		put_ctx(gctx);
8194	}
8195	mutex_unlock(&ctx->mutex);
8196
8197	put_online_cpus();
8198
8199	event->owner = current;
8200
8201	mutex_lock(&current->perf_event_mutex);
8202	list_add_tail(&event->owner_entry, &current->perf_event_list);
8203	mutex_unlock(&current->perf_event_mutex);
8204
8205	/*
8206	 * Precalculate sample_data sizes
8207	 */
8208	perf_event__header_size(event);
8209	perf_event__id_header_size(event);
8210
8211	/*
8212	 * Drop the reference on the group_event after placing the
8213	 * new event on the sibling_list. This ensures destruction
8214	 * of the group leader will find the pointer to itself in
8215	 * perf_group_detach().
8216	 */
8217	fdput(group);
8218	fd_install(event_fd, event_file);
8219	return event_fd;
8220
8221err_context:
8222	perf_unpin_context(ctx);
8223	put_ctx(ctx);
8224err_alloc:
8225	/*
8226	 * If event_file is set, the fput() above will have called ->release()
8227	 * and that will take care of freeing the event.
8228	 */
8229	if (!event_file)
8230		free_event(event);
8231err_cpus:
8232	put_online_cpus();
8233err_task:
8234	if (task)
8235		put_task_struct(task);
8236err_group_fd:
8237	fdput(group);
8238err_fd:
8239	put_unused_fd(event_fd);
8240	return err;
8241}
8242
8243/**
8244 * perf_event_create_kernel_counter
8245 *
8246 * @attr: attributes of the counter to create
8247 * @cpu: cpu in which the counter is bound
8248 * @task: task to profile (NULL for percpu)
8249 */
8250struct perf_event *
8251perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8252				 struct task_struct *task,
8253				 perf_overflow_handler_t overflow_handler,
8254				 void *context)
8255{
8256	struct perf_event_context *ctx;
8257	struct perf_event *event;
8258	int err;
8259
8260	/*
8261	 * Get the target context (task or percpu):
8262	 */
8263
8264	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8265				 overflow_handler, context, -1);
8266	if (IS_ERR(event)) {
8267		err = PTR_ERR(event);
8268		goto err;
8269	}
8270
8271	/* Mark owner so we could distinguish it from user events. */
8272	event->owner = EVENT_OWNER_KERNEL;
8273
8274	ctx = find_get_context(event->pmu, task, event);
8275	if (IS_ERR(ctx)) {
8276		err = PTR_ERR(ctx);
8277		goto err_free;
8278	}
8279
8280	WARN_ON_ONCE(ctx->parent_ctx);
8281	mutex_lock(&ctx->mutex);
8282	if (!exclusive_event_installable(event, ctx)) {
8283		mutex_unlock(&ctx->mutex);
8284		perf_unpin_context(ctx);
8285		put_ctx(ctx);
8286		err = -EBUSY;
8287		goto err_free;
8288	}
8289
8290	perf_install_in_context(ctx, event, cpu);
8291	perf_unpin_context(ctx);
8292	mutex_unlock(&ctx->mutex);
8293
8294	return event;
8295
8296err_free:
8297	free_event(event);
8298err:
8299	return ERR_PTR(err);
8300}
8301EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8302
8303void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8304{
8305	struct perf_event_context *src_ctx;
8306	struct perf_event_context *dst_ctx;
8307	struct perf_event *event, *tmp;
8308	LIST_HEAD(events);
8309
8310	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8311	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8312
8313	/*
8314	 * See perf_event_ctx_lock() for comments on the details
8315	 * of swizzling perf_event::ctx.
8316	 */
8317	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8318	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8319				 event_entry) {
8320		perf_remove_from_context(event, false);
8321		unaccount_event_cpu(event, src_cpu);
8322		put_ctx(src_ctx);
8323		list_add(&event->migrate_entry, &events);
8324	}
8325
8326	/*
8327	 * Wait for the events to quiesce before re-instating them.
8328	 */
8329	synchronize_rcu();
8330
8331	/*
8332	 * Re-instate events in 2 passes.
8333	 *
8334	 * Skip over group leaders and only install siblings on this first
8335	 * pass, siblings will not get enabled without a leader, however a
8336	 * leader will enable its siblings, even if those are still on the old
8337	 * context.
8338	 */
8339	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8340		if (event->group_leader == event)
8341			continue;
8342
8343		list_del(&event->migrate_entry);
8344		if (event->state >= PERF_EVENT_STATE_OFF)
8345			event->state = PERF_EVENT_STATE_INACTIVE;
8346		account_event_cpu(event, dst_cpu);
8347		perf_install_in_context(dst_ctx, event, dst_cpu);
8348		get_ctx(dst_ctx);
8349	}
8350
8351	/*
8352	 * Once all the siblings are setup properly, install the group leaders
8353	 * to make it go.
8354	 */
8355	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8356		list_del(&event->migrate_entry);
8357		if (event->state >= PERF_EVENT_STATE_OFF)
8358			event->state = PERF_EVENT_STATE_INACTIVE;
8359		account_event_cpu(event, dst_cpu);
8360		perf_install_in_context(dst_ctx, event, dst_cpu);
8361		get_ctx(dst_ctx);
8362	}
8363	mutex_unlock(&dst_ctx->mutex);
8364	mutex_unlock(&src_ctx->mutex);
8365}
8366EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8367
8368static void sync_child_event(struct perf_event *child_event,
8369			       struct task_struct *child)
8370{
8371	struct perf_event *parent_event = child_event->parent;
8372	u64 child_val;
8373
8374	if (child_event->attr.inherit_stat)
8375		perf_event_read_event(child_event, child);
8376
8377	child_val = perf_event_count(child_event);
8378
8379	/*
8380	 * Add back the child's count to the parent's count:
8381	 */
8382	atomic64_add(child_val, &parent_event->child_count);
8383	atomic64_add(child_event->total_time_enabled,
8384		     &parent_event->child_total_time_enabled);
8385	atomic64_add(child_event->total_time_running,
8386		     &parent_event->child_total_time_running);
8387
8388	/*
8389	 * Remove this event from the parent's list
8390	 */
8391	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8392	mutex_lock(&parent_event->child_mutex);
8393	list_del_init(&child_event->child_list);
8394	mutex_unlock(&parent_event->child_mutex);
8395
8396	/*
8397	 * Make sure user/parent get notified, that we just
8398	 * lost one event.
8399	 */
8400	perf_event_wakeup(parent_event);
8401
8402	/*
8403	 * Release the parent event, if this was the last
8404	 * reference to it.
8405	 */
8406	put_event(parent_event);
8407}
8408
8409static void
8410__perf_event_exit_task(struct perf_event *child_event,
8411			 struct perf_event_context *child_ctx,
8412			 struct task_struct *child)
8413{
8414	/*
8415	 * Do not destroy the 'original' grouping; because of the context
8416	 * switch optimization the original events could've ended up in a
8417	 * random child task.
8418	 *
8419	 * If we were to destroy the original group, all group related
8420	 * operations would cease to function properly after this random
8421	 * child dies.
8422	 *
8423	 * Do destroy all inherited groups, we don't care about those
8424	 * and being thorough is better.
8425	 */
8426	perf_remove_from_context(child_event, !!child_event->parent);
8427
8428	/*
8429	 * It can happen that the parent exits first, and has events
8430	 * that are still around due to the child reference. These
8431	 * events need to be zapped.
8432	 */
8433	if (child_event->parent) {
8434		sync_child_event(child_event, child);
8435		free_event(child_event);
8436	} else {
8437		child_event->state = PERF_EVENT_STATE_EXIT;
8438		perf_event_wakeup(child_event);
8439	}
8440}
8441
8442static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8443{
8444	struct perf_event *child_event, *next;
8445	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8446	unsigned long flags;
8447
8448	if (likely(!child->perf_event_ctxp[ctxn])) {
8449		perf_event_task(child, NULL, 0);
8450		return;
8451	}
8452
8453	local_irq_save(flags);
8454	/*
8455	 * We can't reschedule here because interrupts are disabled,
8456	 * and either child is current or it is a task that can't be
8457	 * scheduled, so we are now safe from rescheduling changing
8458	 * our context.
8459	 */
8460	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8461
8462	/*
8463	 * Take the context lock here so that if find_get_context is
8464	 * reading child->perf_event_ctxp, we wait until it has
8465	 * incremented the context's refcount before we do put_ctx below.
8466	 */
8467	raw_spin_lock(&child_ctx->lock);
8468	task_ctx_sched_out(child_ctx);
8469	child->perf_event_ctxp[ctxn] = NULL;
8470
8471	/*
8472	 * If this context is a clone; unclone it so it can't get
8473	 * swapped to another process while we're removing all
8474	 * the events from it.
8475	 */
8476	clone_ctx = unclone_ctx(child_ctx);
8477	update_context_time(child_ctx);
8478	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8479
8480	if (clone_ctx)
8481		put_ctx(clone_ctx);
8482
8483	/*
8484	 * Report the task dead after unscheduling the events so that we
8485	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8486	 * get a few PERF_RECORD_READ events.
8487	 */
8488	perf_event_task(child, child_ctx, 0);
8489
8490	/*
8491	 * We can recurse on the same lock type through:
8492	 *
8493	 *   __perf_event_exit_task()
8494	 *     sync_child_event()
8495	 *       put_event()
8496	 *         mutex_lock(&ctx->mutex)
8497	 *
8498	 * But since its the parent context it won't be the same instance.
8499	 */
8500	mutex_lock(&child_ctx->mutex);
8501
8502	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8503		__perf_event_exit_task(child_event, child_ctx, child);
8504
8505	mutex_unlock(&child_ctx->mutex);
8506
8507	put_ctx(child_ctx);
8508}
8509
8510/*
8511 * When a child task exits, feed back event values to parent events.
8512 */
8513void perf_event_exit_task(struct task_struct *child)
8514{
8515	struct perf_event *event, *tmp;
8516	int ctxn;
8517
8518	mutex_lock(&child->perf_event_mutex);
8519	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8520				 owner_entry) {
8521		list_del_init(&event->owner_entry);
8522
8523		/*
8524		 * Ensure the list deletion is visible before we clear
8525		 * the owner, closes a race against perf_release() where
8526		 * we need to serialize on the owner->perf_event_mutex.
8527		 */
8528		smp_wmb();
8529		event->owner = NULL;
8530	}
8531	mutex_unlock(&child->perf_event_mutex);
8532
8533	for_each_task_context_nr(ctxn)
8534		perf_event_exit_task_context(child, ctxn);
8535}
8536
8537static void perf_free_event(struct perf_event *event,
8538			    struct perf_event_context *ctx)
8539{
8540	struct perf_event *parent = event->parent;
8541
8542	if (WARN_ON_ONCE(!parent))
8543		return;
8544
8545	mutex_lock(&parent->child_mutex);
8546	list_del_init(&event->child_list);
8547	mutex_unlock(&parent->child_mutex);
8548
8549	put_event(parent);
8550
8551	raw_spin_lock_irq(&ctx->lock);
8552	perf_group_detach(event);
8553	list_del_event(event, ctx);
8554	raw_spin_unlock_irq(&ctx->lock);
8555	free_event(event);
8556}
8557
8558/*
8559 * Free an unexposed, unused context as created by inheritance by
8560 * perf_event_init_task below, used by fork() in case of fail.
8561 *
8562 * Not all locks are strictly required, but take them anyway to be nice and
8563 * help out with the lockdep assertions.
8564 */
8565void perf_event_free_task(struct task_struct *task)
8566{
8567	struct perf_event_context *ctx;
8568	struct perf_event *event, *tmp;
8569	int ctxn;
8570
8571	for_each_task_context_nr(ctxn) {
8572		ctx = task->perf_event_ctxp[ctxn];
8573		if (!ctx)
8574			continue;
8575
8576		mutex_lock(&ctx->mutex);
8577again:
8578		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8579				group_entry)
8580			perf_free_event(event, ctx);
8581
8582		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8583				group_entry)
8584			perf_free_event(event, ctx);
8585
8586		if (!list_empty(&ctx->pinned_groups) ||
8587				!list_empty(&ctx->flexible_groups))
8588			goto again;
8589
8590		mutex_unlock(&ctx->mutex);
8591
8592		put_ctx(ctx);
8593	}
8594}
8595
8596void perf_event_delayed_put(struct task_struct *task)
8597{
8598	int ctxn;
8599
8600	for_each_task_context_nr(ctxn)
8601		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8602}
8603
8604/*
8605 * inherit a event from parent task to child task:
8606 */
8607static struct perf_event *
8608inherit_event(struct perf_event *parent_event,
8609	      struct task_struct *parent,
8610	      struct perf_event_context *parent_ctx,
8611	      struct task_struct *child,
8612	      struct perf_event *group_leader,
8613	      struct perf_event_context *child_ctx)
8614{
8615	enum perf_event_active_state parent_state = parent_event->state;
8616	struct perf_event *child_event;
8617	unsigned long flags;
8618
8619	/*
8620	 * Instead of creating recursive hierarchies of events,
8621	 * we link inherited events back to the original parent,
8622	 * which has a filp for sure, which we use as the reference
8623	 * count:
8624	 */
8625	if (parent_event->parent)
8626		parent_event = parent_event->parent;
8627
8628	child_event = perf_event_alloc(&parent_event->attr,
8629					   parent_event->cpu,
8630					   child,
8631					   group_leader, parent_event,
8632					   NULL, NULL, -1);
8633	if (IS_ERR(child_event))
8634		return child_event;
8635
8636	if (is_orphaned_event(parent_event) ||
8637	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8638		free_event(child_event);
8639		return NULL;
8640	}
8641
8642	get_ctx(child_ctx);
8643
8644	/*
8645	 * Make the child state follow the state of the parent event,
8646	 * not its attr.disabled bit.  We hold the parent's mutex,
8647	 * so we won't race with perf_event_{en, dis}able_family.
8648	 */
8649	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8650		child_event->state = PERF_EVENT_STATE_INACTIVE;
8651	else
8652		child_event->state = PERF_EVENT_STATE_OFF;
8653
8654	if (parent_event->attr.freq) {
8655		u64 sample_period = parent_event->hw.sample_period;
8656		struct hw_perf_event *hwc = &child_event->hw;
8657
8658		hwc->sample_period = sample_period;
8659		hwc->last_period   = sample_period;
8660
8661		local64_set(&hwc->period_left, sample_period);
8662	}
8663
8664	child_event->ctx = child_ctx;
8665	child_event->overflow_handler = parent_event->overflow_handler;
8666	child_event->overflow_handler_context
8667		= parent_event->overflow_handler_context;
8668
8669	/*
8670	 * Precalculate sample_data sizes
8671	 */
8672	perf_event__header_size(child_event);
8673	perf_event__id_header_size(child_event);
8674
8675	/*
8676	 * Link it up in the child's context:
8677	 */
8678	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8679	add_event_to_ctx(child_event, child_ctx);
8680	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8681
8682	/*
8683	 * Link this into the parent event's child list
8684	 */
8685	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8686	mutex_lock(&parent_event->child_mutex);
8687	list_add_tail(&child_event->child_list, &parent_event->child_list);
8688	mutex_unlock(&parent_event->child_mutex);
8689
8690	return child_event;
8691}
8692
8693static int inherit_group(struct perf_event *parent_event,
8694	      struct task_struct *parent,
8695	      struct perf_event_context *parent_ctx,
8696	      struct task_struct *child,
8697	      struct perf_event_context *child_ctx)
8698{
8699	struct perf_event *leader;
8700	struct perf_event *sub;
8701	struct perf_event *child_ctr;
8702
8703	leader = inherit_event(parent_event, parent, parent_ctx,
8704				 child, NULL, child_ctx);
8705	if (IS_ERR(leader))
8706		return PTR_ERR(leader);
8707	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8708		child_ctr = inherit_event(sub, parent, parent_ctx,
8709					    child, leader, child_ctx);
8710		if (IS_ERR(child_ctr))
8711			return PTR_ERR(child_ctr);
8712	}
8713	return 0;
8714}
8715
8716static int
8717inherit_task_group(struct perf_event *event, struct task_struct *parent,
8718		   struct perf_event_context *parent_ctx,
8719		   struct task_struct *child, int ctxn,
8720		   int *inherited_all)
8721{
8722	int ret;
8723	struct perf_event_context *child_ctx;
8724
8725	if (!event->attr.inherit) {
8726		*inherited_all = 0;
8727		return 0;
8728	}
8729
8730	child_ctx = child->perf_event_ctxp[ctxn];
8731	if (!child_ctx) {
8732		/*
8733		 * This is executed from the parent task context, so
8734		 * inherit events that have been marked for cloning.
8735		 * First allocate and initialize a context for the
8736		 * child.
8737		 */
8738
8739		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8740		if (!child_ctx)
8741			return -ENOMEM;
8742
8743		child->perf_event_ctxp[ctxn] = child_ctx;
8744	}
8745
8746	ret = inherit_group(event, parent, parent_ctx,
8747			    child, child_ctx);
8748
8749	if (ret)
8750		*inherited_all = 0;
8751
8752	return ret;
8753}
8754
8755/*
8756 * Initialize the perf_event context in task_struct
8757 */
8758static int perf_event_init_context(struct task_struct *child, int ctxn)
8759{
8760	struct perf_event_context *child_ctx, *parent_ctx;
8761	struct perf_event_context *cloned_ctx;
8762	struct perf_event *event;
8763	struct task_struct *parent = current;
8764	int inherited_all = 1;
8765	unsigned long flags;
8766	int ret = 0;
8767
8768	if (likely(!parent->perf_event_ctxp[ctxn]))
8769		return 0;
8770
8771	/*
8772	 * If the parent's context is a clone, pin it so it won't get
8773	 * swapped under us.
8774	 */
8775	parent_ctx = perf_pin_task_context(parent, ctxn);
8776	if (!parent_ctx)
8777		return 0;
8778
8779	/*
8780	 * No need to check if parent_ctx != NULL here; since we saw
8781	 * it non-NULL earlier, the only reason for it to become NULL
8782	 * is if we exit, and since we're currently in the middle of
8783	 * a fork we can't be exiting at the same time.
8784	 */
8785
8786	/*
8787	 * Lock the parent list. No need to lock the child - not PID
8788	 * hashed yet and not running, so nobody can access it.
8789	 */
8790	mutex_lock(&parent_ctx->mutex);
8791
8792	/*
8793	 * We dont have to disable NMIs - we are only looking at
8794	 * the list, not manipulating it:
8795	 */
8796	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8797		ret = inherit_task_group(event, parent, parent_ctx,
8798					 child, ctxn, &inherited_all);
8799		if (ret)
8800			break;
8801	}
8802
8803	/*
8804	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8805	 * to allocations, but we need to prevent rotation because
8806	 * rotate_ctx() will change the list from interrupt context.
8807	 */
8808	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8809	parent_ctx->rotate_disable = 1;
8810	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8811
8812	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8813		ret = inherit_task_group(event, parent, parent_ctx,
8814					 child, ctxn, &inherited_all);
8815		if (ret)
8816			break;
8817	}
8818
8819	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8820	parent_ctx->rotate_disable = 0;
8821
8822	child_ctx = child->perf_event_ctxp[ctxn];
8823
8824	if (child_ctx && inherited_all) {
8825		/*
8826		 * Mark the child context as a clone of the parent
8827		 * context, or of whatever the parent is a clone of.
8828		 *
8829		 * Note that if the parent is a clone, the holding of
8830		 * parent_ctx->lock avoids it from being uncloned.
8831		 */
8832		cloned_ctx = parent_ctx->parent_ctx;
8833		if (cloned_ctx) {
8834			child_ctx->parent_ctx = cloned_ctx;
8835			child_ctx->parent_gen = parent_ctx->parent_gen;
8836		} else {
8837			child_ctx->parent_ctx = parent_ctx;
8838			child_ctx->parent_gen = parent_ctx->generation;
8839		}
8840		get_ctx(child_ctx->parent_ctx);
8841	}
8842
8843	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8844	mutex_unlock(&parent_ctx->mutex);
8845
8846	perf_unpin_context(parent_ctx);
8847	put_ctx(parent_ctx);
8848
8849	return ret;
8850}
8851
8852/*
8853 * Initialize the perf_event context in task_struct
8854 */
8855int perf_event_init_task(struct task_struct *child)
8856{
8857	int ctxn, ret;
8858
8859	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8860	mutex_init(&child->perf_event_mutex);
8861	INIT_LIST_HEAD(&child->perf_event_list);
8862
8863	for_each_task_context_nr(ctxn) {
8864		ret = perf_event_init_context(child, ctxn);
8865		if (ret) {
8866			perf_event_free_task(child);
8867			return ret;
8868		}
8869	}
8870
8871	return 0;
8872}
8873
8874static void __init perf_event_init_all_cpus(void)
8875{
8876	struct swevent_htable *swhash;
8877	int cpu;
8878
8879	for_each_possible_cpu(cpu) {
8880		swhash = &per_cpu(swevent_htable, cpu);
8881		mutex_init(&swhash->hlist_mutex);
8882		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8883	}
8884}
8885
8886static void perf_event_init_cpu(int cpu)
8887{
8888	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8889
8890	mutex_lock(&swhash->hlist_mutex);
8891	swhash->online = true;
8892	if (swhash->hlist_refcount > 0) {
8893		struct swevent_hlist *hlist;
8894
8895		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8896		WARN_ON(!hlist);
8897		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8898	}
8899	mutex_unlock(&swhash->hlist_mutex);
8900}
8901
8902#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8903static void __perf_event_exit_context(void *__info)
8904{
8905	struct remove_event re = { .detach_group = true };
8906	struct perf_event_context *ctx = __info;
8907
8908	rcu_read_lock();
8909	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8910		__perf_remove_from_context(&re);
8911	rcu_read_unlock();
8912}
8913
8914static void perf_event_exit_cpu_context(int cpu)
8915{
8916	struct perf_event_context *ctx;
8917	struct pmu *pmu;
8918	int idx;
8919
8920	idx = srcu_read_lock(&pmus_srcu);
8921	list_for_each_entry_rcu(pmu, &pmus, entry) {
8922		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8923
8924		mutex_lock(&ctx->mutex);
8925		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8926		mutex_unlock(&ctx->mutex);
8927	}
8928	srcu_read_unlock(&pmus_srcu, idx);
8929}
8930
8931static void perf_event_exit_cpu(int cpu)
8932{
8933	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8934
8935	perf_event_exit_cpu_context(cpu);
8936
8937	mutex_lock(&swhash->hlist_mutex);
8938	swhash->online = false;
8939	swevent_hlist_release(swhash);
8940	mutex_unlock(&swhash->hlist_mutex);
8941}
8942#else
8943static inline void perf_event_exit_cpu(int cpu) { }
8944#endif
8945
8946static int
8947perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8948{
8949	int cpu;
8950
8951	for_each_online_cpu(cpu)
8952		perf_event_exit_cpu(cpu);
8953
8954	return NOTIFY_OK;
8955}
8956
8957/*
8958 * Run the perf reboot notifier at the very last possible moment so that
8959 * the generic watchdog code runs as long as possible.
8960 */
8961static struct notifier_block perf_reboot_notifier = {
8962	.notifier_call = perf_reboot,
8963	.priority = INT_MIN,
8964};
8965
8966static int
8967perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8968{
8969	unsigned int cpu = (long)hcpu;
8970
8971	switch (action & ~CPU_TASKS_FROZEN) {
8972
8973	case CPU_UP_PREPARE:
8974	case CPU_DOWN_FAILED:
8975		perf_event_init_cpu(cpu);
8976		break;
8977
8978	case CPU_UP_CANCELED:
8979	case CPU_DOWN_PREPARE:
8980		perf_event_exit_cpu(cpu);
8981		break;
8982	default:
8983		break;
8984	}
8985
8986	return NOTIFY_OK;
8987}
8988
8989void __init perf_event_init(void)
8990{
8991	int ret;
8992
8993	idr_init(&pmu_idr);
8994
8995	perf_event_init_all_cpus();
8996	init_srcu_struct(&pmus_srcu);
8997	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8998	perf_pmu_register(&perf_cpu_clock, NULL, -1);
8999	perf_pmu_register(&perf_task_clock, NULL, -1);
9000	perf_tp_register();
9001	perf_cpu_notifier(perf_cpu_notify);
9002	register_reboot_notifier(&perf_reboot_notifier);
9003
9004	ret = init_hw_breakpoint();
9005	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9006
9007	/* do not patch jump label more than once per second */
9008	jump_label_rate_limit(&perf_sched_events, HZ);
9009
9010	/*
9011	 * Build time assertion that we keep the data_head at the intended
9012	 * location.  IOW, validation we got the __reserved[] size right.
9013	 */
9014	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9015		     != 1024);
9016}
9017
9018ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9019			      char *page)
9020{
9021	struct perf_pmu_events_attr *pmu_attr =
9022		container_of(attr, struct perf_pmu_events_attr, attr);
9023
9024	if (pmu_attr->event_str)
9025		return sprintf(page, "%s\n", pmu_attr->event_str);
9026
9027	return 0;
9028}
9029
9030static int __init perf_event_sysfs_init(void)
9031{
9032	struct pmu *pmu;
9033	int ret;
9034
9035	mutex_lock(&pmus_lock);
9036
9037	ret = bus_register(&pmu_bus);
9038	if (ret)
9039		goto unlock;
9040
9041	list_for_each_entry(pmu, &pmus, entry) {
9042		if (!pmu->name || pmu->type < 0)
9043			continue;
9044
9045		ret = pmu_dev_alloc(pmu);
9046		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9047	}
9048	pmu_bus_running = 1;
9049	ret = 0;
9050
9051unlock:
9052	mutex_unlock(&pmus_lock);
9053
9054	return ret;
9055}
9056device_initcall(perf_event_sysfs_init);
9057
9058#ifdef CONFIG_CGROUP_PERF
9059static struct cgroup_subsys_state *
9060perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9061{
9062	struct perf_cgroup *jc;
9063
9064	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9065	if (!jc)
9066		return ERR_PTR(-ENOMEM);
9067
9068	jc->info = alloc_percpu(struct perf_cgroup_info);
9069	if (!jc->info) {
9070		kfree(jc);
9071		return ERR_PTR(-ENOMEM);
9072	}
9073
9074	return &jc->css;
9075}
9076
9077static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9078{
9079	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9080
9081	free_percpu(jc->info);
9082	kfree(jc);
9083}
9084
9085static int __perf_cgroup_move(void *info)
9086{
9087	struct task_struct *task = info;
9088	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9089	return 0;
9090}
9091
9092static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9093			       struct cgroup_taskset *tset)
9094{
9095	struct task_struct *task;
9096
9097	cgroup_taskset_for_each(task, tset)
9098		task_function_call(task, __perf_cgroup_move, task);
9099}
9100
9101static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9102			     struct cgroup_subsys_state *old_css,
9103			     struct task_struct *task)
9104{
9105	/*
9106	 * cgroup_exit() is called in the copy_process() failure path.
9107	 * Ignore this case since the task hasn't ran yet, this avoids
9108	 * trying to poke a half freed task state from generic code.
9109	 */
9110	if (!(task->flags & PF_EXITING))
9111		return;
9112
9113	task_function_call(task, __perf_cgroup_move, task);
9114}
9115
9116struct cgroup_subsys perf_event_cgrp_subsys = {
9117	.css_alloc	= perf_cgroup_css_alloc,
9118	.css_free	= perf_cgroup_css_free,
9119	.exit		= perf_cgroup_exit,
9120	.attach		= perf_cgroup_attach,
9121};
9122#endif /* CONFIG_CGROUP_PERF */
9123