1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2.  See the file COPYING for more details.
7 */
8
9#define pr_fmt(fmt)	"kexec: " fmt
10
11#include <linux/capability.h>
12#include <linux/mm.h>
13#include <linux/file.h>
14#include <linux/slab.h>
15#include <linux/fs.h>
16#include <linux/kexec.h>
17#include <linux/mutex.h>
18#include <linux/list.h>
19#include <linux/highmem.h>
20#include <linux/syscalls.h>
21#include <linux/reboot.h>
22#include <linux/ioport.h>
23#include <linux/hardirq.h>
24#include <linux/elf.h>
25#include <linux/elfcore.h>
26#include <linux/utsname.h>
27#include <linux/numa.h>
28#include <linux/suspend.h>
29#include <linux/device.h>
30#include <linux/freezer.h>
31#include <linux/pm.h>
32#include <linux/cpu.h>
33#include <linux/console.h>
34#include <linux/vmalloc.h>
35#include <linux/swap.h>
36#include <linux/syscore_ops.h>
37#include <linux/compiler.h>
38#include <linux/hugetlb.h>
39
40#include <asm/page.h>
41#include <asm/uaccess.h>
42#include <asm/io.h>
43#include <asm/sections.h>
44
45#include <crypto/hash.h>
46#include <crypto/sha.h>
47
48/* Per cpu memory for storing cpu states in case of system crash. */
49note_buf_t __percpu *crash_notes;
50
51/* vmcoreinfo stuff */
52static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
53u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
54size_t vmcoreinfo_size;
55size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
56
57/* Flag to indicate we are going to kexec a new kernel */
58bool kexec_in_progress = false;
59
60/*
61 * Declare these symbols weak so that if architecture provides a purgatory,
62 * these will be overridden.
63 */
64char __weak kexec_purgatory[0];
65size_t __weak kexec_purgatory_size = 0;
66
67#ifdef CONFIG_KEXEC_FILE
68static int kexec_calculate_store_digests(struct kimage *image);
69#endif
70
71/* Location of the reserved area for the crash kernel */
72struct resource crashk_res = {
73	.name  = "Crash kernel",
74	.start = 0,
75	.end   = 0,
76	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
77};
78struct resource crashk_low_res = {
79	.name  = "Crash kernel",
80	.start = 0,
81	.end   = 0,
82	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
83};
84
85int kexec_should_crash(struct task_struct *p)
86{
87	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
88		return 1;
89	return 0;
90}
91
92/*
93 * When kexec transitions to the new kernel there is a one-to-one
94 * mapping between physical and virtual addresses.  On processors
95 * where you can disable the MMU this is trivial, and easy.  For
96 * others it is still a simple predictable page table to setup.
97 *
98 * In that environment kexec copies the new kernel to its final
99 * resting place.  This means I can only support memory whose
100 * physical address can fit in an unsigned long.  In particular
101 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
102 * If the assembly stub has more restrictive requirements
103 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
104 * defined more restrictively in <asm/kexec.h>.
105 *
106 * The code for the transition from the current kernel to the
107 * the new kernel is placed in the control_code_buffer, whose size
108 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
109 * page of memory is necessary, but some architectures require more.
110 * Because this memory must be identity mapped in the transition from
111 * virtual to physical addresses it must live in the range
112 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
113 * modifiable.
114 *
115 * The assembly stub in the control code buffer is passed a linked list
116 * of descriptor pages detailing the source pages of the new kernel,
117 * and the destination addresses of those source pages.  As this data
118 * structure is not used in the context of the current OS, it must
119 * be self-contained.
120 *
121 * The code has been made to work with highmem pages and will use a
122 * destination page in its final resting place (if it happens
123 * to allocate it).  The end product of this is that most of the
124 * physical address space, and most of RAM can be used.
125 *
126 * Future directions include:
127 *  - allocating a page table with the control code buffer identity
128 *    mapped, to simplify machine_kexec and make kexec_on_panic more
129 *    reliable.
130 */
131
132/*
133 * KIMAGE_NO_DEST is an impossible destination address..., for
134 * allocating pages whose destination address we do not care about.
135 */
136#define KIMAGE_NO_DEST (-1UL)
137
138static int kimage_is_destination_range(struct kimage *image,
139				       unsigned long start, unsigned long end);
140static struct page *kimage_alloc_page(struct kimage *image,
141				       gfp_t gfp_mask,
142				       unsigned long dest);
143
144static int copy_user_segment_list(struct kimage *image,
145				  unsigned long nr_segments,
146				  struct kexec_segment __user *segments)
147{
148	int ret;
149	size_t segment_bytes;
150
151	/* Read in the segments */
152	image->nr_segments = nr_segments;
153	segment_bytes = nr_segments * sizeof(*segments);
154	ret = copy_from_user(image->segment, segments, segment_bytes);
155	if (ret)
156		ret = -EFAULT;
157
158	return ret;
159}
160
161static int sanity_check_segment_list(struct kimage *image)
162{
163	int result, i;
164	unsigned long nr_segments = image->nr_segments;
165
166	/*
167	 * Verify we have good destination addresses.  The caller is
168	 * responsible for making certain we don't attempt to load
169	 * the new image into invalid or reserved areas of RAM.  This
170	 * just verifies it is an address we can use.
171	 *
172	 * Since the kernel does everything in page size chunks ensure
173	 * the destination addresses are page aligned.  Too many
174	 * special cases crop of when we don't do this.  The most
175	 * insidious is getting overlapping destination addresses
176	 * simply because addresses are changed to page size
177	 * granularity.
178	 */
179	result = -EADDRNOTAVAIL;
180	for (i = 0; i < nr_segments; i++) {
181		unsigned long mstart, mend;
182
183		mstart = image->segment[i].mem;
184		mend   = mstart + image->segment[i].memsz;
185		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
186			return result;
187		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
188			return result;
189	}
190
191	/* Verify our destination addresses do not overlap.
192	 * If we alloed overlapping destination addresses
193	 * through very weird things can happen with no
194	 * easy explanation as one segment stops on another.
195	 */
196	result = -EINVAL;
197	for (i = 0; i < nr_segments; i++) {
198		unsigned long mstart, mend;
199		unsigned long j;
200
201		mstart = image->segment[i].mem;
202		mend   = mstart + image->segment[i].memsz;
203		for (j = 0; j < i; j++) {
204			unsigned long pstart, pend;
205			pstart = image->segment[j].mem;
206			pend   = pstart + image->segment[j].memsz;
207			/* Do the segments overlap ? */
208			if ((mend > pstart) && (mstart < pend))
209				return result;
210		}
211	}
212
213	/* Ensure our buffer sizes are strictly less than
214	 * our memory sizes.  This should always be the case,
215	 * and it is easier to check up front than to be surprised
216	 * later on.
217	 */
218	result = -EINVAL;
219	for (i = 0; i < nr_segments; i++) {
220		if (image->segment[i].bufsz > image->segment[i].memsz)
221			return result;
222	}
223
224	/*
225	 * Verify we have good destination addresses.  Normally
226	 * the caller is responsible for making certain we don't
227	 * attempt to load the new image into invalid or reserved
228	 * areas of RAM.  But crash kernels are preloaded into a
229	 * reserved area of ram.  We must ensure the addresses
230	 * are in the reserved area otherwise preloading the
231	 * kernel could corrupt things.
232	 */
233
234	if (image->type == KEXEC_TYPE_CRASH) {
235		result = -EADDRNOTAVAIL;
236		for (i = 0; i < nr_segments; i++) {
237			unsigned long mstart, mend;
238
239			mstart = image->segment[i].mem;
240			mend = mstart + image->segment[i].memsz - 1;
241			/* Ensure we are within the crash kernel limits */
242			if ((mstart < crashk_res.start) ||
243			    (mend > crashk_res.end))
244				return result;
245		}
246	}
247
248	return 0;
249}
250
251static struct kimage *do_kimage_alloc_init(void)
252{
253	struct kimage *image;
254
255	/* Allocate a controlling structure */
256	image = kzalloc(sizeof(*image), GFP_KERNEL);
257	if (!image)
258		return NULL;
259
260	image->head = 0;
261	image->entry = &image->head;
262	image->last_entry = &image->head;
263	image->control_page = ~0; /* By default this does not apply */
264	image->type = KEXEC_TYPE_DEFAULT;
265
266	/* Initialize the list of control pages */
267	INIT_LIST_HEAD(&image->control_pages);
268
269	/* Initialize the list of destination pages */
270	INIT_LIST_HEAD(&image->dest_pages);
271
272	/* Initialize the list of unusable pages */
273	INIT_LIST_HEAD(&image->unusable_pages);
274
275	return image;
276}
277
278static void kimage_free_page_list(struct list_head *list);
279
280static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
281			     unsigned long nr_segments,
282			     struct kexec_segment __user *segments,
283			     unsigned long flags)
284{
285	int ret;
286	struct kimage *image;
287	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
288
289	if (kexec_on_panic) {
290		/* Verify we have a valid entry point */
291		if ((entry < crashk_res.start) || (entry > crashk_res.end))
292			return -EADDRNOTAVAIL;
293	}
294
295	/* Allocate and initialize a controlling structure */
296	image = do_kimage_alloc_init();
297	if (!image)
298		return -ENOMEM;
299
300	image->start = entry;
301
302	ret = copy_user_segment_list(image, nr_segments, segments);
303	if (ret)
304		goto out_free_image;
305
306	ret = sanity_check_segment_list(image);
307	if (ret)
308		goto out_free_image;
309
310	 /* Enable the special crash kernel control page allocation policy. */
311	if (kexec_on_panic) {
312		image->control_page = crashk_res.start;
313		image->type = KEXEC_TYPE_CRASH;
314	}
315
316	/*
317	 * Find a location for the control code buffer, and add it
318	 * the vector of segments so that it's pages will also be
319	 * counted as destination pages.
320	 */
321	ret = -ENOMEM;
322	image->control_code_page = kimage_alloc_control_pages(image,
323					   get_order(KEXEC_CONTROL_PAGE_SIZE));
324	if (!image->control_code_page) {
325		pr_err("Could not allocate control_code_buffer\n");
326		goto out_free_image;
327	}
328
329	if (!kexec_on_panic) {
330		image->swap_page = kimage_alloc_control_pages(image, 0);
331		if (!image->swap_page) {
332			pr_err("Could not allocate swap buffer\n");
333			goto out_free_control_pages;
334		}
335	}
336
337	*rimage = image;
338	return 0;
339out_free_control_pages:
340	kimage_free_page_list(&image->control_pages);
341out_free_image:
342	kfree(image);
343	return ret;
344}
345
346#ifdef CONFIG_KEXEC_FILE
347static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
348{
349	struct fd f = fdget(fd);
350	int ret;
351	struct kstat stat;
352	loff_t pos;
353	ssize_t bytes = 0;
354
355	if (!f.file)
356		return -EBADF;
357
358	ret = vfs_getattr(&f.file->f_path, &stat);
359	if (ret)
360		goto out;
361
362	if (stat.size > INT_MAX) {
363		ret = -EFBIG;
364		goto out;
365	}
366
367	/* Don't hand 0 to vmalloc, it whines. */
368	if (stat.size == 0) {
369		ret = -EINVAL;
370		goto out;
371	}
372
373	*buf = vmalloc(stat.size);
374	if (!*buf) {
375		ret = -ENOMEM;
376		goto out;
377	}
378
379	pos = 0;
380	while (pos < stat.size) {
381		bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
382				    stat.size - pos);
383		if (bytes < 0) {
384			vfree(*buf);
385			ret = bytes;
386			goto out;
387		}
388
389		if (bytes == 0)
390			break;
391		pos += bytes;
392	}
393
394	if (pos != stat.size) {
395		ret = -EBADF;
396		vfree(*buf);
397		goto out;
398	}
399
400	*buf_len = pos;
401out:
402	fdput(f);
403	return ret;
404}
405
406/* Architectures can provide this probe function */
407int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
408					 unsigned long buf_len)
409{
410	return -ENOEXEC;
411}
412
413void * __weak arch_kexec_kernel_image_load(struct kimage *image)
414{
415	return ERR_PTR(-ENOEXEC);
416}
417
418void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
419{
420}
421
422int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
423					unsigned long buf_len)
424{
425	return -EKEYREJECTED;
426}
427
428/* Apply relocations of type RELA */
429int __weak
430arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
431				 unsigned int relsec)
432{
433	pr_err("RELA relocation unsupported.\n");
434	return -ENOEXEC;
435}
436
437/* Apply relocations of type REL */
438int __weak
439arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
440			     unsigned int relsec)
441{
442	pr_err("REL relocation unsupported.\n");
443	return -ENOEXEC;
444}
445
446/*
447 * Free up memory used by kernel, initrd, and command line. This is temporary
448 * memory allocation which is not needed any more after these buffers have
449 * been loaded into separate segments and have been copied elsewhere.
450 */
451static void kimage_file_post_load_cleanup(struct kimage *image)
452{
453	struct purgatory_info *pi = &image->purgatory_info;
454
455	vfree(image->kernel_buf);
456	image->kernel_buf = NULL;
457
458	vfree(image->initrd_buf);
459	image->initrd_buf = NULL;
460
461	kfree(image->cmdline_buf);
462	image->cmdline_buf = NULL;
463
464	vfree(pi->purgatory_buf);
465	pi->purgatory_buf = NULL;
466
467	vfree(pi->sechdrs);
468	pi->sechdrs = NULL;
469
470	/* See if architecture has anything to cleanup post load */
471	arch_kimage_file_post_load_cleanup(image);
472
473	/*
474	 * Above call should have called into bootloader to free up
475	 * any data stored in kimage->image_loader_data. It should
476	 * be ok now to free it up.
477	 */
478	kfree(image->image_loader_data);
479	image->image_loader_data = NULL;
480}
481
482/*
483 * In file mode list of segments is prepared by kernel. Copy relevant
484 * data from user space, do error checking, prepare segment list
485 */
486static int
487kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
488			     const char __user *cmdline_ptr,
489			     unsigned long cmdline_len, unsigned flags)
490{
491	int ret = 0;
492	void *ldata;
493
494	ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
495				&image->kernel_buf_len);
496	if (ret)
497		return ret;
498
499	/* Call arch image probe handlers */
500	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
501					    image->kernel_buf_len);
502
503	if (ret)
504		goto out;
505
506#ifdef CONFIG_KEXEC_VERIFY_SIG
507	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
508					   image->kernel_buf_len);
509	if (ret) {
510		pr_debug("kernel signature verification failed.\n");
511		goto out;
512	}
513	pr_debug("kernel signature verification successful.\n");
514#endif
515	/* It is possible that there no initramfs is being loaded */
516	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
517		ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
518					&image->initrd_buf_len);
519		if (ret)
520			goto out;
521	}
522
523	if (cmdline_len) {
524		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
525		if (!image->cmdline_buf) {
526			ret = -ENOMEM;
527			goto out;
528		}
529
530		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
531				     cmdline_len);
532		if (ret) {
533			ret = -EFAULT;
534			goto out;
535		}
536
537		image->cmdline_buf_len = cmdline_len;
538
539		/* command line should be a string with last byte null */
540		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
541			ret = -EINVAL;
542			goto out;
543		}
544	}
545
546	/* Call arch image load handlers */
547	ldata = arch_kexec_kernel_image_load(image);
548
549	if (IS_ERR(ldata)) {
550		ret = PTR_ERR(ldata);
551		goto out;
552	}
553
554	image->image_loader_data = ldata;
555out:
556	/* In case of error, free up all allocated memory in this function */
557	if (ret)
558		kimage_file_post_load_cleanup(image);
559	return ret;
560}
561
562static int
563kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
564		       int initrd_fd, const char __user *cmdline_ptr,
565		       unsigned long cmdline_len, unsigned long flags)
566{
567	int ret;
568	struct kimage *image;
569	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
570
571	image = do_kimage_alloc_init();
572	if (!image)
573		return -ENOMEM;
574
575	image->file_mode = 1;
576
577	if (kexec_on_panic) {
578		/* Enable special crash kernel control page alloc policy. */
579		image->control_page = crashk_res.start;
580		image->type = KEXEC_TYPE_CRASH;
581	}
582
583	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
584					   cmdline_ptr, cmdline_len, flags);
585	if (ret)
586		goto out_free_image;
587
588	ret = sanity_check_segment_list(image);
589	if (ret)
590		goto out_free_post_load_bufs;
591
592	ret = -ENOMEM;
593	image->control_code_page = kimage_alloc_control_pages(image,
594					   get_order(KEXEC_CONTROL_PAGE_SIZE));
595	if (!image->control_code_page) {
596		pr_err("Could not allocate control_code_buffer\n");
597		goto out_free_post_load_bufs;
598	}
599
600	if (!kexec_on_panic) {
601		image->swap_page = kimage_alloc_control_pages(image, 0);
602		if (!image->swap_page) {
603			pr_err("Could not allocate swap buffer\n");
604			goto out_free_control_pages;
605		}
606	}
607
608	*rimage = image;
609	return 0;
610out_free_control_pages:
611	kimage_free_page_list(&image->control_pages);
612out_free_post_load_bufs:
613	kimage_file_post_load_cleanup(image);
614out_free_image:
615	kfree(image);
616	return ret;
617}
618#else /* CONFIG_KEXEC_FILE */
619static inline void kimage_file_post_load_cleanup(struct kimage *image) { }
620#endif /* CONFIG_KEXEC_FILE */
621
622static int kimage_is_destination_range(struct kimage *image,
623					unsigned long start,
624					unsigned long end)
625{
626	unsigned long i;
627
628	for (i = 0; i < image->nr_segments; i++) {
629		unsigned long mstart, mend;
630
631		mstart = image->segment[i].mem;
632		mend = mstart + image->segment[i].memsz;
633		if ((end > mstart) && (start < mend))
634			return 1;
635	}
636
637	return 0;
638}
639
640static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
641{
642	struct page *pages;
643
644	pages = alloc_pages(gfp_mask, order);
645	if (pages) {
646		unsigned int count, i;
647		pages->mapping = NULL;
648		set_page_private(pages, order);
649		count = 1 << order;
650		for (i = 0; i < count; i++)
651			SetPageReserved(pages + i);
652	}
653
654	return pages;
655}
656
657static void kimage_free_pages(struct page *page)
658{
659	unsigned int order, count, i;
660
661	order = page_private(page);
662	count = 1 << order;
663	for (i = 0; i < count; i++)
664		ClearPageReserved(page + i);
665	__free_pages(page, order);
666}
667
668static void kimage_free_page_list(struct list_head *list)
669{
670	struct list_head *pos, *next;
671
672	list_for_each_safe(pos, next, list) {
673		struct page *page;
674
675		page = list_entry(pos, struct page, lru);
676		list_del(&page->lru);
677		kimage_free_pages(page);
678	}
679}
680
681static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
682							unsigned int order)
683{
684	/* Control pages are special, they are the intermediaries
685	 * that are needed while we copy the rest of the pages
686	 * to their final resting place.  As such they must
687	 * not conflict with either the destination addresses
688	 * or memory the kernel is already using.
689	 *
690	 * The only case where we really need more than one of
691	 * these are for architectures where we cannot disable
692	 * the MMU and must instead generate an identity mapped
693	 * page table for all of the memory.
694	 *
695	 * At worst this runs in O(N) of the image size.
696	 */
697	struct list_head extra_pages;
698	struct page *pages;
699	unsigned int count;
700
701	count = 1 << order;
702	INIT_LIST_HEAD(&extra_pages);
703
704	/* Loop while I can allocate a page and the page allocated
705	 * is a destination page.
706	 */
707	do {
708		unsigned long pfn, epfn, addr, eaddr;
709
710		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
711		if (!pages)
712			break;
713		pfn   = page_to_pfn(pages);
714		epfn  = pfn + count;
715		addr  = pfn << PAGE_SHIFT;
716		eaddr = epfn << PAGE_SHIFT;
717		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
718			      kimage_is_destination_range(image, addr, eaddr)) {
719			list_add(&pages->lru, &extra_pages);
720			pages = NULL;
721		}
722	} while (!pages);
723
724	if (pages) {
725		/* Remember the allocated page... */
726		list_add(&pages->lru, &image->control_pages);
727
728		/* Because the page is already in it's destination
729		 * location we will never allocate another page at
730		 * that address.  Therefore kimage_alloc_pages
731		 * will not return it (again) and we don't need
732		 * to give it an entry in image->segment[].
733		 */
734	}
735	/* Deal with the destination pages I have inadvertently allocated.
736	 *
737	 * Ideally I would convert multi-page allocations into single
738	 * page allocations, and add everything to image->dest_pages.
739	 *
740	 * For now it is simpler to just free the pages.
741	 */
742	kimage_free_page_list(&extra_pages);
743
744	return pages;
745}
746
747static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
748						      unsigned int order)
749{
750	/* Control pages are special, they are the intermediaries
751	 * that are needed while we copy the rest of the pages
752	 * to their final resting place.  As such they must
753	 * not conflict with either the destination addresses
754	 * or memory the kernel is already using.
755	 *
756	 * Control pages are also the only pags we must allocate
757	 * when loading a crash kernel.  All of the other pages
758	 * are specified by the segments and we just memcpy
759	 * into them directly.
760	 *
761	 * The only case where we really need more than one of
762	 * these are for architectures where we cannot disable
763	 * the MMU and must instead generate an identity mapped
764	 * page table for all of the memory.
765	 *
766	 * Given the low demand this implements a very simple
767	 * allocator that finds the first hole of the appropriate
768	 * size in the reserved memory region, and allocates all
769	 * of the memory up to and including the hole.
770	 */
771	unsigned long hole_start, hole_end, size;
772	struct page *pages;
773
774	pages = NULL;
775	size = (1 << order) << PAGE_SHIFT;
776	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
777	hole_end   = hole_start + size - 1;
778	while (hole_end <= crashk_res.end) {
779		unsigned long i;
780
781		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
782			break;
783		/* See if I overlap any of the segments */
784		for (i = 0; i < image->nr_segments; i++) {
785			unsigned long mstart, mend;
786
787			mstart = image->segment[i].mem;
788			mend   = mstart + image->segment[i].memsz - 1;
789			if ((hole_end >= mstart) && (hole_start <= mend)) {
790				/* Advance the hole to the end of the segment */
791				hole_start = (mend + (size - 1)) & ~(size - 1);
792				hole_end   = hole_start + size - 1;
793				break;
794			}
795		}
796		/* If I don't overlap any segments I have found my hole! */
797		if (i == image->nr_segments) {
798			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
799			break;
800		}
801	}
802	if (pages)
803		image->control_page = hole_end;
804
805	return pages;
806}
807
808
809struct page *kimage_alloc_control_pages(struct kimage *image,
810					 unsigned int order)
811{
812	struct page *pages = NULL;
813
814	switch (image->type) {
815	case KEXEC_TYPE_DEFAULT:
816		pages = kimage_alloc_normal_control_pages(image, order);
817		break;
818	case KEXEC_TYPE_CRASH:
819		pages = kimage_alloc_crash_control_pages(image, order);
820		break;
821	}
822
823	return pages;
824}
825
826static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
827{
828	if (*image->entry != 0)
829		image->entry++;
830
831	if (image->entry == image->last_entry) {
832		kimage_entry_t *ind_page;
833		struct page *page;
834
835		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
836		if (!page)
837			return -ENOMEM;
838
839		ind_page = page_address(page);
840		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
841		image->entry = ind_page;
842		image->last_entry = ind_page +
843				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
844	}
845	*image->entry = entry;
846	image->entry++;
847	*image->entry = 0;
848
849	return 0;
850}
851
852static int kimage_set_destination(struct kimage *image,
853				   unsigned long destination)
854{
855	int result;
856
857	destination &= PAGE_MASK;
858	result = kimage_add_entry(image, destination | IND_DESTINATION);
859
860	return result;
861}
862
863
864static int kimage_add_page(struct kimage *image, unsigned long page)
865{
866	int result;
867
868	page &= PAGE_MASK;
869	result = kimage_add_entry(image, page | IND_SOURCE);
870
871	return result;
872}
873
874
875static void kimage_free_extra_pages(struct kimage *image)
876{
877	/* Walk through and free any extra destination pages I may have */
878	kimage_free_page_list(&image->dest_pages);
879
880	/* Walk through and free any unusable pages I have cached */
881	kimage_free_page_list(&image->unusable_pages);
882
883}
884static void kimage_terminate(struct kimage *image)
885{
886	if (*image->entry != 0)
887		image->entry++;
888
889	*image->entry = IND_DONE;
890}
891
892#define for_each_kimage_entry(image, ptr, entry) \
893	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
894		ptr = (entry & IND_INDIRECTION) ? \
895			phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
896
897static void kimage_free_entry(kimage_entry_t entry)
898{
899	struct page *page;
900
901	page = pfn_to_page(entry >> PAGE_SHIFT);
902	kimage_free_pages(page);
903}
904
905static void kimage_free(struct kimage *image)
906{
907	kimage_entry_t *ptr, entry;
908	kimage_entry_t ind = 0;
909
910	if (!image)
911		return;
912
913	kimage_free_extra_pages(image);
914	for_each_kimage_entry(image, ptr, entry) {
915		if (entry & IND_INDIRECTION) {
916			/* Free the previous indirection page */
917			if (ind & IND_INDIRECTION)
918				kimage_free_entry(ind);
919			/* Save this indirection page until we are
920			 * done with it.
921			 */
922			ind = entry;
923		} else if (entry & IND_SOURCE)
924			kimage_free_entry(entry);
925	}
926	/* Free the final indirection page */
927	if (ind & IND_INDIRECTION)
928		kimage_free_entry(ind);
929
930	/* Handle any machine specific cleanup */
931	machine_kexec_cleanup(image);
932
933	/* Free the kexec control pages... */
934	kimage_free_page_list(&image->control_pages);
935
936	/*
937	 * Free up any temporary buffers allocated. This might hit if
938	 * error occurred much later after buffer allocation.
939	 */
940	if (image->file_mode)
941		kimage_file_post_load_cleanup(image);
942
943	kfree(image);
944}
945
946static kimage_entry_t *kimage_dst_used(struct kimage *image,
947					unsigned long page)
948{
949	kimage_entry_t *ptr, entry;
950	unsigned long destination = 0;
951
952	for_each_kimage_entry(image, ptr, entry) {
953		if (entry & IND_DESTINATION)
954			destination = entry & PAGE_MASK;
955		else if (entry & IND_SOURCE) {
956			if (page == destination)
957				return ptr;
958			destination += PAGE_SIZE;
959		}
960	}
961
962	return NULL;
963}
964
965static struct page *kimage_alloc_page(struct kimage *image,
966					gfp_t gfp_mask,
967					unsigned long destination)
968{
969	/*
970	 * Here we implement safeguards to ensure that a source page
971	 * is not copied to its destination page before the data on
972	 * the destination page is no longer useful.
973	 *
974	 * To do this we maintain the invariant that a source page is
975	 * either its own destination page, or it is not a
976	 * destination page at all.
977	 *
978	 * That is slightly stronger than required, but the proof
979	 * that no problems will not occur is trivial, and the
980	 * implementation is simply to verify.
981	 *
982	 * When allocating all pages normally this algorithm will run
983	 * in O(N) time, but in the worst case it will run in O(N^2)
984	 * time.   If the runtime is a problem the data structures can
985	 * be fixed.
986	 */
987	struct page *page;
988	unsigned long addr;
989
990	/*
991	 * Walk through the list of destination pages, and see if I
992	 * have a match.
993	 */
994	list_for_each_entry(page, &image->dest_pages, lru) {
995		addr = page_to_pfn(page) << PAGE_SHIFT;
996		if (addr == destination) {
997			list_del(&page->lru);
998			return page;
999		}
1000	}
1001	page = NULL;
1002	while (1) {
1003		kimage_entry_t *old;
1004
1005		/* Allocate a page, if we run out of memory give up */
1006		page = kimage_alloc_pages(gfp_mask, 0);
1007		if (!page)
1008			return NULL;
1009		/* If the page cannot be used file it away */
1010		if (page_to_pfn(page) >
1011				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
1012			list_add(&page->lru, &image->unusable_pages);
1013			continue;
1014		}
1015		addr = page_to_pfn(page) << PAGE_SHIFT;
1016
1017		/* If it is the destination page we want use it */
1018		if (addr == destination)
1019			break;
1020
1021		/* If the page is not a destination page use it */
1022		if (!kimage_is_destination_range(image, addr,
1023						  addr + PAGE_SIZE))
1024			break;
1025
1026		/*
1027		 * I know that the page is someones destination page.
1028		 * See if there is already a source page for this
1029		 * destination page.  And if so swap the source pages.
1030		 */
1031		old = kimage_dst_used(image, addr);
1032		if (old) {
1033			/* If so move it */
1034			unsigned long old_addr;
1035			struct page *old_page;
1036
1037			old_addr = *old & PAGE_MASK;
1038			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
1039			copy_highpage(page, old_page);
1040			*old = addr | (*old & ~PAGE_MASK);
1041
1042			/* The old page I have found cannot be a
1043			 * destination page, so return it if it's
1044			 * gfp_flags honor the ones passed in.
1045			 */
1046			if (!(gfp_mask & __GFP_HIGHMEM) &&
1047			    PageHighMem(old_page)) {
1048				kimage_free_pages(old_page);
1049				continue;
1050			}
1051			addr = old_addr;
1052			page = old_page;
1053			break;
1054		} else {
1055			/* Place the page on the destination list I
1056			 * will use it later.
1057			 */
1058			list_add(&page->lru, &image->dest_pages);
1059		}
1060	}
1061
1062	return page;
1063}
1064
1065static int kimage_load_normal_segment(struct kimage *image,
1066					 struct kexec_segment *segment)
1067{
1068	unsigned long maddr;
1069	size_t ubytes, mbytes;
1070	int result;
1071	unsigned char __user *buf = NULL;
1072	unsigned char *kbuf = NULL;
1073
1074	result = 0;
1075	if (image->file_mode)
1076		kbuf = segment->kbuf;
1077	else
1078		buf = segment->buf;
1079	ubytes = segment->bufsz;
1080	mbytes = segment->memsz;
1081	maddr = segment->mem;
1082
1083	result = kimage_set_destination(image, maddr);
1084	if (result < 0)
1085		goto out;
1086
1087	while (mbytes) {
1088		struct page *page;
1089		char *ptr;
1090		size_t uchunk, mchunk;
1091
1092		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
1093		if (!page) {
1094			result  = -ENOMEM;
1095			goto out;
1096		}
1097		result = kimage_add_page(image, page_to_pfn(page)
1098								<< PAGE_SHIFT);
1099		if (result < 0)
1100			goto out;
1101
1102		ptr = kmap(page);
1103		/* Start with a clear page */
1104		clear_page(ptr);
1105		ptr += maddr & ~PAGE_MASK;
1106		mchunk = min_t(size_t, mbytes,
1107				PAGE_SIZE - (maddr & ~PAGE_MASK));
1108		uchunk = min(ubytes, mchunk);
1109
1110		/* For file based kexec, source pages are in kernel memory */
1111		if (image->file_mode)
1112			memcpy(ptr, kbuf, uchunk);
1113		else
1114			result = copy_from_user(ptr, buf, uchunk);
1115		kunmap(page);
1116		if (result) {
1117			result = -EFAULT;
1118			goto out;
1119		}
1120		ubytes -= uchunk;
1121		maddr  += mchunk;
1122		if (image->file_mode)
1123			kbuf += mchunk;
1124		else
1125			buf += mchunk;
1126		mbytes -= mchunk;
1127	}
1128out:
1129	return result;
1130}
1131
1132static int kimage_load_crash_segment(struct kimage *image,
1133					struct kexec_segment *segment)
1134{
1135	/* For crash dumps kernels we simply copy the data from
1136	 * user space to it's destination.
1137	 * We do things a page at a time for the sake of kmap.
1138	 */
1139	unsigned long maddr;
1140	size_t ubytes, mbytes;
1141	int result;
1142	unsigned char __user *buf = NULL;
1143	unsigned char *kbuf = NULL;
1144
1145	result = 0;
1146	if (image->file_mode)
1147		kbuf = segment->kbuf;
1148	else
1149		buf = segment->buf;
1150	ubytes = segment->bufsz;
1151	mbytes = segment->memsz;
1152	maddr = segment->mem;
1153	while (mbytes) {
1154		struct page *page;
1155		char *ptr;
1156		size_t uchunk, mchunk;
1157
1158		page = pfn_to_page(maddr >> PAGE_SHIFT);
1159		if (!page) {
1160			result  = -ENOMEM;
1161			goto out;
1162		}
1163		ptr = kmap(page);
1164		ptr += maddr & ~PAGE_MASK;
1165		mchunk = min_t(size_t, mbytes,
1166				PAGE_SIZE - (maddr & ~PAGE_MASK));
1167		uchunk = min(ubytes, mchunk);
1168		if (mchunk > uchunk) {
1169			/* Zero the trailing part of the page */
1170			memset(ptr + uchunk, 0, mchunk - uchunk);
1171		}
1172
1173		/* For file based kexec, source pages are in kernel memory */
1174		if (image->file_mode)
1175			memcpy(ptr, kbuf, uchunk);
1176		else
1177			result = copy_from_user(ptr, buf, uchunk);
1178		kexec_flush_icache_page(page);
1179		kunmap(page);
1180		if (result) {
1181			result = -EFAULT;
1182			goto out;
1183		}
1184		ubytes -= uchunk;
1185		maddr  += mchunk;
1186		if (image->file_mode)
1187			kbuf += mchunk;
1188		else
1189			buf += mchunk;
1190		mbytes -= mchunk;
1191	}
1192out:
1193	return result;
1194}
1195
1196static int kimage_load_segment(struct kimage *image,
1197				struct kexec_segment *segment)
1198{
1199	int result = -ENOMEM;
1200
1201	switch (image->type) {
1202	case KEXEC_TYPE_DEFAULT:
1203		result = kimage_load_normal_segment(image, segment);
1204		break;
1205	case KEXEC_TYPE_CRASH:
1206		result = kimage_load_crash_segment(image, segment);
1207		break;
1208	}
1209
1210	return result;
1211}
1212
1213/*
1214 * Exec Kernel system call: for obvious reasons only root may call it.
1215 *
1216 * This call breaks up into three pieces.
1217 * - A generic part which loads the new kernel from the current
1218 *   address space, and very carefully places the data in the
1219 *   allocated pages.
1220 *
1221 * - A generic part that interacts with the kernel and tells all of
1222 *   the devices to shut down.  Preventing on-going dmas, and placing
1223 *   the devices in a consistent state so a later kernel can
1224 *   reinitialize them.
1225 *
1226 * - A machine specific part that includes the syscall number
1227 *   and then copies the image to it's final destination.  And
1228 *   jumps into the image at entry.
1229 *
1230 * kexec does not sync, or unmount filesystems so if you need
1231 * that to happen you need to do that yourself.
1232 */
1233struct kimage *kexec_image;
1234struct kimage *kexec_crash_image;
1235int kexec_load_disabled;
1236
1237static DEFINE_MUTEX(kexec_mutex);
1238
1239SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
1240		struct kexec_segment __user *, segments, unsigned long, flags)
1241{
1242	struct kimage **dest_image, *image;
1243	int result;
1244
1245	/* We only trust the superuser with rebooting the system. */
1246	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1247		return -EPERM;
1248
1249	/*
1250	 * Verify we have a legal set of flags
1251	 * This leaves us room for future extensions.
1252	 */
1253	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
1254		return -EINVAL;
1255
1256	/* Verify we are on the appropriate architecture */
1257	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
1258		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
1259		return -EINVAL;
1260
1261	/* Put an artificial cap on the number
1262	 * of segments passed to kexec_load.
1263	 */
1264	if (nr_segments > KEXEC_SEGMENT_MAX)
1265		return -EINVAL;
1266
1267	image = NULL;
1268	result = 0;
1269
1270	/* Because we write directly to the reserved memory
1271	 * region when loading crash kernels we need a mutex here to
1272	 * prevent multiple crash  kernels from attempting to load
1273	 * simultaneously, and to prevent a crash kernel from loading
1274	 * over the top of a in use crash kernel.
1275	 *
1276	 * KISS: always take the mutex.
1277	 */
1278	if (!mutex_trylock(&kexec_mutex))
1279		return -EBUSY;
1280
1281	dest_image = &kexec_image;
1282	if (flags & KEXEC_ON_CRASH)
1283		dest_image = &kexec_crash_image;
1284	if (nr_segments > 0) {
1285		unsigned long i;
1286
1287		if (flags & KEXEC_ON_CRASH) {
1288			/*
1289			 * Loading another kernel to switch to if this one
1290			 * crashes.  Free any current crash dump kernel before
1291			 * we corrupt it.
1292			 */
1293
1294			kimage_free(xchg(&kexec_crash_image, NULL));
1295			result = kimage_alloc_init(&image, entry, nr_segments,
1296						   segments, flags);
1297			crash_map_reserved_pages();
1298		} else {
1299			/* Loading another kernel to reboot into. */
1300
1301			result = kimage_alloc_init(&image, entry, nr_segments,
1302						   segments, flags);
1303		}
1304		if (result)
1305			goto out;
1306
1307		if (flags & KEXEC_PRESERVE_CONTEXT)
1308			image->preserve_context = 1;
1309		result = machine_kexec_prepare(image);
1310		if (result)
1311			goto out;
1312
1313		for (i = 0; i < nr_segments; i++) {
1314			result = kimage_load_segment(image, &image->segment[i]);
1315			if (result)
1316				goto out;
1317		}
1318		kimage_terminate(image);
1319		if (flags & KEXEC_ON_CRASH)
1320			crash_unmap_reserved_pages();
1321	}
1322	/* Install the new kernel, and  Uninstall the old */
1323	image = xchg(dest_image, image);
1324
1325out:
1326	mutex_unlock(&kexec_mutex);
1327	kimage_free(image);
1328
1329	return result;
1330}
1331
1332/*
1333 * Add and remove page tables for crashkernel memory
1334 *
1335 * Provide an empty default implementation here -- architecture
1336 * code may override this
1337 */
1338void __weak crash_map_reserved_pages(void)
1339{}
1340
1341void __weak crash_unmap_reserved_pages(void)
1342{}
1343
1344#ifdef CONFIG_COMPAT
1345COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1346		       compat_ulong_t, nr_segments,
1347		       struct compat_kexec_segment __user *, segments,
1348		       compat_ulong_t, flags)
1349{
1350	struct compat_kexec_segment in;
1351	struct kexec_segment out, __user *ksegments;
1352	unsigned long i, result;
1353
1354	/* Don't allow clients that don't understand the native
1355	 * architecture to do anything.
1356	 */
1357	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1358		return -EINVAL;
1359
1360	if (nr_segments > KEXEC_SEGMENT_MAX)
1361		return -EINVAL;
1362
1363	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1364	for (i = 0; i < nr_segments; i++) {
1365		result = copy_from_user(&in, &segments[i], sizeof(in));
1366		if (result)
1367			return -EFAULT;
1368
1369		out.buf   = compat_ptr(in.buf);
1370		out.bufsz = in.bufsz;
1371		out.mem   = in.mem;
1372		out.memsz = in.memsz;
1373
1374		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1375		if (result)
1376			return -EFAULT;
1377	}
1378
1379	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1380}
1381#endif
1382
1383#ifdef CONFIG_KEXEC_FILE
1384SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
1385		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
1386		unsigned long, flags)
1387{
1388	int ret = 0, i;
1389	struct kimage **dest_image, *image;
1390
1391	/* We only trust the superuser with rebooting the system. */
1392	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1393		return -EPERM;
1394
1395	/* Make sure we have a legal set of flags */
1396	if (flags != (flags & KEXEC_FILE_FLAGS))
1397		return -EINVAL;
1398
1399	image = NULL;
1400
1401	if (!mutex_trylock(&kexec_mutex))
1402		return -EBUSY;
1403
1404	dest_image = &kexec_image;
1405	if (flags & KEXEC_FILE_ON_CRASH)
1406		dest_image = &kexec_crash_image;
1407
1408	if (flags & KEXEC_FILE_UNLOAD)
1409		goto exchange;
1410
1411	/*
1412	 * In case of crash, new kernel gets loaded in reserved region. It is
1413	 * same memory where old crash kernel might be loaded. Free any
1414	 * current crash dump kernel before we corrupt it.
1415	 */
1416	if (flags & KEXEC_FILE_ON_CRASH)
1417		kimage_free(xchg(&kexec_crash_image, NULL));
1418
1419	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
1420				     cmdline_len, flags);
1421	if (ret)
1422		goto out;
1423
1424	ret = machine_kexec_prepare(image);
1425	if (ret)
1426		goto out;
1427
1428	ret = kexec_calculate_store_digests(image);
1429	if (ret)
1430		goto out;
1431
1432	for (i = 0; i < image->nr_segments; i++) {
1433		struct kexec_segment *ksegment;
1434
1435		ksegment = &image->segment[i];
1436		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
1437			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
1438			 ksegment->memsz);
1439
1440		ret = kimage_load_segment(image, &image->segment[i]);
1441		if (ret)
1442			goto out;
1443	}
1444
1445	kimage_terminate(image);
1446
1447	/*
1448	 * Free up any temporary buffers allocated which are not needed
1449	 * after image has been loaded
1450	 */
1451	kimage_file_post_load_cleanup(image);
1452exchange:
1453	image = xchg(dest_image, image);
1454out:
1455	mutex_unlock(&kexec_mutex);
1456	kimage_free(image);
1457	return ret;
1458}
1459
1460#endif /* CONFIG_KEXEC_FILE */
1461
1462void crash_kexec(struct pt_regs *regs)
1463{
1464	/* Take the kexec_mutex here to prevent sys_kexec_load
1465	 * running on one cpu from replacing the crash kernel
1466	 * we are using after a panic on a different cpu.
1467	 *
1468	 * If the crash kernel was not located in a fixed area
1469	 * of memory the xchg(&kexec_crash_image) would be
1470	 * sufficient.  But since I reuse the memory...
1471	 */
1472	if (mutex_trylock(&kexec_mutex)) {
1473		if (kexec_crash_image) {
1474			struct pt_regs fixed_regs;
1475
1476			crash_setup_regs(&fixed_regs, regs);
1477			crash_save_vmcoreinfo();
1478			machine_crash_shutdown(&fixed_regs);
1479			machine_kexec(kexec_crash_image);
1480		}
1481		mutex_unlock(&kexec_mutex);
1482	}
1483}
1484
1485size_t crash_get_memory_size(void)
1486{
1487	size_t size = 0;
1488	mutex_lock(&kexec_mutex);
1489	if (crashk_res.end != crashk_res.start)
1490		size = resource_size(&crashk_res);
1491	mutex_unlock(&kexec_mutex);
1492	return size;
1493}
1494
1495void __weak crash_free_reserved_phys_range(unsigned long begin,
1496					   unsigned long end)
1497{
1498	unsigned long addr;
1499
1500	for (addr = begin; addr < end; addr += PAGE_SIZE)
1501		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1502}
1503
1504int crash_shrink_memory(unsigned long new_size)
1505{
1506	int ret = 0;
1507	unsigned long start, end;
1508	unsigned long old_size;
1509	struct resource *ram_res;
1510
1511	mutex_lock(&kexec_mutex);
1512
1513	if (kexec_crash_image) {
1514		ret = -ENOENT;
1515		goto unlock;
1516	}
1517	start = crashk_res.start;
1518	end = crashk_res.end;
1519	old_size = (end == 0) ? 0 : end - start + 1;
1520	if (new_size >= old_size) {
1521		ret = (new_size == old_size) ? 0 : -EINVAL;
1522		goto unlock;
1523	}
1524
1525	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1526	if (!ram_res) {
1527		ret = -ENOMEM;
1528		goto unlock;
1529	}
1530
1531	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1532	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1533
1534	crash_map_reserved_pages();
1535	crash_free_reserved_phys_range(end, crashk_res.end);
1536
1537	if ((start == end) && (crashk_res.parent != NULL))
1538		release_resource(&crashk_res);
1539
1540	ram_res->start = end;
1541	ram_res->end = crashk_res.end;
1542	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1543	ram_res->name = "System RAM";
1544
1545	crashk_res.end = end - 1;
1546
1547	insert_resource(&iomem_resource, ram_res);
1548	crash_unmap_reserved_pages();
1549
1550unlock:
1551	mutex_unlock(&kexec_mutex);
1552	return ret;
1553}
1554
1555static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1556			    size_t data_len)
1557{
1558	struct elf_note note;
1559
1560	note.n_namesz = strlen(name) + 1;
1561	note.n_descsz = data_len;
1562	note.n_type   = type;
1563	memcpy(buf, &note, sizeof(note));
1564	buf += (sizeof(note) + 3)/4;
1565	memcpy(buf, name, note.n_namesz);
1566	buf += (note.n_namesz + 3)/4;
1567	memcpy(buf, data, note.n_descsz);
1568	buf += (note.n_descsz + 3)/4;
1569
1570	return buf;
1571}
1572
1573static void final_note(u32 *buf)
1574{
1575	struct elf_note note;
1576
1577	note.n_namesz = 0;
1578	note.n_descsz = 0;
1579	note.n_type   = 0;
1580	memcpy(buf, &note, sizeof(note));
1581}
1582
1583void crash_save_cpu(struct pt_regs *regs, int cpu)
1584{
1585	struct elf_prstatus prstatus;
1586	u32 *buf;
1587
1588	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1589		return;
1590
1591	/* Using ELF notes here is opportunistic.
1592	 * I need a well defined structure format
1593	 * for the data I pass, and I need tags
1594	 * on the data to indicate what information I have
1595	 * squirrelled away.  ELF notes happen to provide
1596	 * all of that, so there is no need to invent something new.
1597	 */
1598	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1599	if (!buf)
1600		return;
1601	memset(&prstatus, 0, sizeof(prstatus));
1602	prstatus.pr_pid = current->pid;
1603	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1604	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1605			      &prstatus, sizeof(prstatus));
1606	final_note(buf);
1607}
1608
1609static int __init crash_notes_memory_init(void)
1610{
1611	/* Allocate memory for saving cpu registers. */
1612	crash_notes = alloc_percpu(note_buf_t);
1613	if (!crash_notes) {
1614		pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1615		return -ENOMEM;
1616	}
1617	return 0;
1618}
1619subsys_initcall(crash_notes_memory_init);
1620
1621
1622/*
1623 * parsing the "crashkernel" commandline
1624 *
1625 * this code is intended to be called from architecture specific code
1626 */
1627
1628
1629/*
1630 * This function parses command lines in the format
1631 *
1632 *   crashkernel=ramsize-range:size[,...][@offset]
1633 *
1634 * The function returns 0 on success and -EINVAL on failure.
1635 */
1636static int __init parse_crashkernel_mem(char *cmdline,
1637					unsigned long long system_ram,
1638					unsigned long long *crash_size,
1639					unsigned long long *crash_base)
1640{
1641	char *cur = cmdline, *tmp;
1642
1643	/* for each entry of the comma-separated list */
1644	do {
1645		unsigned long long start, end = ULLONG_MAX, size;
1646
1647		/* get the start of the range */
1648		start = memparse(cur, &tmp);
1649		if (cur == tmp) {
1650			pr_warn("crashkernel: Memory value expected\n");
1651			return -EINVAL;
1652		}
1653		cur = tmp;
1654		if (*cur != '-') {
1655			pr_warn("crashkernel: '-' expected\n");
1656			return -EINVAL;
1657		}
1658		cur++;
1659
1660		/* if no ':' is here, than we read the end */
1661		if (*cur != ':') {
1662			end = memparse(cur, &tmp);
1663			if (cur == tmp) {
1664				pr_warn("crashkernel: Memory value expected\n");
1665				return -EINVAL;
1666			}
1667			cur = tmp;
1668			if (end <= start) {
1669				pr_warn("crashkernel: end <= start\n");
1670				return -EINVAL;
1671			}
1672		}
1673
1674		if (*cur != ':') {
1675			pr_warn("crashkernel: ':' expected\n");
1676			return -EINVAL;
1677		}
1678		cur++;
1679
1680		size = memparse(cur, &tmp);
1681		if (cur == tmp) {
1682			pr_warn("Memory value expected\n");
1683			return -EINVAL;
1684		}
1685		cur = tmp;
1686		if (size >= system_ram) {
1687			pr_warn("crashkernel: invalid size\n");
1688			return -EINVAL;
1689		}
1690
1691		/* match ? */
1692		if (system_ram >= start && system_ram < end) {
1693			*crash_size = size;
1694			break;
1695		}
1696	} while (*cur++ == ',');
1697
1698	if (*crash_size > 0) {
1699		while (*cur && *cur != ' ' && *cur != '@')
1700			cur++;
1701		if (*cur == '@') {
1702			cur++;
1703			*crash_base = memparse(cur, &tmp);
1704			if (cur == tmp) {
1705				pr_warn("Memory value expected after '@'\n");
1706				return -EINVAL;
1707			}
1708		}
1709	}
1710
1711	return 0;
1712}
1713
1714/*
1715 * That function parses "simple" (old) crashkernel command lines like
1716 *
1717 *	crashkernel=size[@offset]
1718 *
1719 * It returns 0 on success and -EINVAL on failure.
1720 */
1721static int __init parse_crashkernel_simple(char *cmdline,
1722					   unsigned long long *crash_size,
1723					   unsigned long long *crash_base)
1724{
1725	char *cur = cmdline;
1726
1727	*crash_size = memparse(cmdline, &cur);
1728	if (cmdline == cur) {
1729		pr_warn("crashkernel: memory value expected\n");
1730		return -EINVAL;
1731	}
1732
1733	if (*cur == '@')
1734		*crash_base = memparse(cur+1, &cur);
1735	else if (*cur != ' ' && *cur != '\0') {
1736		pr_warn("crashkernel: unrecognized char\n");
1737		return -EINVAL;
1738	}
1739
1740	return 0;
1741}
1742
1743#define SUFFIX_HIGH 0
1744#define SUFFIX_LOW  1
1745#define SUFFIX_NULL 2
1746static __initdata char *suffix_tbl[] = {
1747	[SUFFIX_HIGH] = ",high",
1748	[SUFFIX_LOW]  = ",low",
1749	[SUFFIX_NULL] = NULL,
1750};
1751
1752/*
1753 * That function parses "suffix"  crashkernel command lines like
1754 *
1755 *	crashkernel=size,[high|low]
1756 *
1757 * It returns 0 on success and -EINVAL on failure.
1758 */
1759static int __init parse_crashkernel_suffix(char *cmdline,
1760					   unsigned long long	*crash_size,
1761					   const char *suffix)
1762{
1763	char *cur = cmdline;
1764
1765	*crash_size = memparse(cmdline, &cur);
1766	if (cmdline == cur) {
1767		pr_warn("crashkernel: memory value expected\n");
1768		return -EINVAL;
1769	}
1770
1771	/* check with suffix */
1772	if (strncmp(cur, suffix, strlen(suffix))) {
1773		pr_warn("crashkernel: unrecognized char\n");
1774		return -EINVAL;
1775	}
1776	cur += strlen(suffix);
1777	if (*cur != ' ' && *cur != '\0') {
1778		pr_warn("crashkernel: unrecognized char\n");
1779		return -EINVAL;
1780	}
1781
1782	return 0;
1783}
1784
1785static __init char *get_last_crashkernel(char *cmdline,
1786			     const char *name,
1787			     const char *suffix)
1788{
1789	char *p = cmdline, *ck_cmdline = NULL;
1790
1791	/* find crashkernel and use the last one if there are more */
1792	p = strstr(p, name);
1793	while (p) {
1794		char *end_p = strchr(p, ' ');
1795		char *q;
1796
1797		if (!end_p)
1798			end_p = p + strlen(p);
1799
1800		if (!suffix) {
1801			int i;
1802
1803			/* skip the one with any known suffix */
1804			for (i = 0; suffix_tbl[i]; i++) {
1805				q = end_p - strlen(suffix_tbl[i]);
1806				if (!strncmp(q, suffix_tbl[i],
1807					     strlen(suffix_tbl[i])))
1808					goto next;
1809			}
1810			ck_cmdline = p;
1811		} else {
1812			q = end_p - strlen(suffix);
1813			if (!strncmp(q, suffix, strlen(suffix)))
1814				ck_cmdline = p;
1815		}
1816next:
1817		p = strstr(p+1, name);
1818	}
1819
1820	if (!ck_cmdline)
1821		return NULL;
1822
1823	return ck_cmdline;
1824}
1825
1826static int __init __parse_crashkernel(char *cmdline,
1827			     unsigned long long system_ram,
1828			     unsigned long long *crash_size,
1829			     unsigned long long *crash_base,
1830			     const char *name,
1831			     const char *suffix)
1832{
1833	char	*first_colon, *first_space;
1834	char	*ck_cmdline;
1835
1836	BUG_ON(!crash_size || !crash_base);
1837	*crash_size = 0;
1838	*crash_base = 0;
1839
1840	ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1841
1842	if (!ck_cmdline)
1843		return -EINVAL;
1844
1845	ck_cmdline += strlen(name);
1846
1847	if (suffix)
1848		return parse_crashkernel_suffix(ck_cmdline, crash_size,
1849				suffix);
1850	/*
1851	 * if the commandline contains a ':', then that's the extended
1852	 * syntax -- if not, it must be the classic syntax
1853	 */
1854	first_colon = strchr(ck_cmdline, ':');
1855	first_space = strchr(ck_cmdline, ' ');
1856	if (first_colon && (!first_space || first_colon < first_space))
1857		return parse_crashkernel_mem(ck_cmdline, system_ram,
1858				crash_size, crash_base);
1859
1860	return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1861}
1862
1863/*
1864 * That function is the entry point for command line parsing and should be
1865 * called from the arch-specific code.
1866 */
1867int __init parse_crashkernel(char *cmdline,
1868			     unsigned long long system_ram,
1869			     unsigned long long *crash_size,
1870			     unsigned long long *crash_base)
1871{
1872	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1873					"crashkernel=", NULL);
1874}
1875
1876int __init parse_crashkernel_high(char *cmdline,
1877			     unsigned long long system_ram,
1878			     unsigned long long *crash_size,
1879			     unsigned long long *crash_base)
1880{
1881	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1882				"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1883}
1884
1885int __init parse_crashkernel_low(char *cmdline,
1886			     unsigned long long system_ram,
1887			     unsigned long long *crash_size,
1888			     unsigned long long *crash_base)
1889{
1890	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1891				"crashkernel=", suffix_tbl[SUFFIX_LOW]);
1892}
1893
1894static void update_vmcoreinfo_note(void)
1895{
1896	u32 *buf = vmcoreinfo_note;
1897
1898	if (!vmcoreinfo_size)
1899		return;
1900	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1901			      vmcoreinfo_size);
1902	final_note(buf);
1903}
1904
1905void crash_save_vmcoreinfo(void)
1906{
1907	vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1908	update_vmcoreinfo_note();
1909}
1910
1911void vmcoreinfo_append_str(const char *fmt, ...)
1912{
1913	va_list args;
1914	char buf[0x50];
1915	size_t r;
1916
1917	va_start(args, fmt);
1918	r = vscnprintf(buf, sizeof(buf), fmt, args);
1919	va_end(args);
1920
1921	r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1922
1923	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1924
1925	vmcoreinfo_size += r;
1926}
1927
1928/*
1929 * provide an empty default implementation here -- architecture
1930 * code may override this
1931 */
1932void __weak arch_crash_save_vmcoreinfo(void)
1933{}
1934
1935unsigned long __weak paddr_vmcoreinfo_note(void)
1936{
1937	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1938}
1939
1940static int __init crash_save_vmcoreinfo_init(void)
1941{
1942	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1943	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1944
1945	VMCOREINFO_SYMBOL(init_uts_ns);
1946	VMCOREINFO_SYMBOL(node_online_map);
1947#ifdef CONFIG_MMU
1948	VMCOREINFO_SYMBOL(swapper_pg_dir);
1949#endif
1950	VMCOREINFO_SYMBOL(_stext);
1951	VMCOREINFO_SYMBOL(vmap_area_list);
1952
1953#ifndef CONFIG_NEED_MULTIPLE_NODES
1954	VMCOREINFO_SYMBOL(mem_map);
1955	VMCOREINFO_SYMBOL(contig_page_data);
1956#endif
1957#ifdef CONFIG_SPARSEMEM
1958	VMCOREINFO_SYMBOL(mem_section);
1959	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1960	VMCOREINFO_STRUCT_SIZE(mem_section);
1961	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1962#endif
1963	VMCOREINFO_STRUCT_SIZE(page);
1964	VMCOREINFO_STRUCT_SIZE(pglist_data);
1965	VMCOREINFO_STRUCT_SIZE(zone);
1966	VMCOREINFO_STRUCT_SIZE(free_area);
1967	VMCOREINFO_STRUCT_SIZE(list_head);
1968	VMCOREINFO_SIZE(nodemask_t);
1969	VMCOREINFO_OFFSET(page, flags);
1970	VMCOREINFO_OFFSET(page, _count);
1971	VMCOREINFO_OFFSET(page, mapping);
1972	VMCOREINFO_OFFSET(page, lru);
1973	VMCOREINFO_OFFSET(page, _mapcount);
1974	VMCOREINFO_OFFSET(page, private);
1975	VMCOREINFO_OFFSET(pglist_data, node_zones);
1976	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1977#ifdef CONFIG_FLAT_NODE_MEM_MAP
1978	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1979#endif
1980	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1981	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1982	VMCOREINFO_OFFSET(pglist_data, node_id);
1983	VMCOREINFO_OFFSET(zone, free_area);
1984	VMCOREINFO_OFFSET(zone, vm_stat);
1985	VMCOREINFO_OFFSET(zone, spanned_pages);
1986	VMCOREINFO_OFFSET(free_area, free_list);
1987	VMCOREINFO_OFFSET(list_head, next);
1988	VMCOREINFO_OFFSET(list_head, prev);
1989	VMCOREINFO_OFFSET(vmap_area, va_start);
1990	VMCOREINFO_OFFSET(vmap_area, list);
1991	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1992	log_buf_kexec_setup();
1993	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1994	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1995	VMCOREINFO_NUMBER(PG_lru);
1996	VMCOREINFO_NUMBER(PG_private);
1997	VMCOREINFO_NUMBER(PG_swapcache);
1998	VMCOREINFO_NUMBER(PG_slab);
1999#ifdef CONFIG_MEMORY_FAILURE
2000	VMCOREINFO_NUMBER(PG_hwpoison);
2001#endif
2002	VMCOREINFO_NUMBER(PG_head_mask);
2003	VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
2004#ifdef CONFIG_HUGETLBFS
2005	VMCOREINFO_SYMBOL(free_huge_page);
2006#endif
2007
2008	arch_crash_save_vmcoreinfo();
2009	update_vmcoreinfo_note();
2010
2011	return 0;
2012}
2013
2014subsys_initcall(crash_save_vmcoreinfo_init);
2015
2016#ifdef CONFIG_KEXEC_FILE
2017static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
2018				    struct kexec_buf *kbuf)
2019{
2020	struct kimage *image = kbuf->image;
2021	unsigned long temp_start, temp_end;
2022
2023	temp_end = min(end, kbuf->buf_max);
2024	temp_start = temp_end - kbuf->memsz;
2025
2026	do {
2027		/* align down start */
2028		temp_start = temp_start & (~(kbuf->buf_align - 1));
2029
2030		if (temp_start < start || temp_start < kbuf->buf_min)
2031			return 0;
2032
2033		temp_end = temp_start + kbuf->memsz - 1;
2034
2035		/*
2036		 * Make sure this does not conflict with any of existing
2037		 * segments
2038		 */
2039		if (kimage_is_destination_range(image, temp_start, temp_end)) {
2040			temp_start = temp_start - PAGE_SIZE;
2041			continue;
2042		}
2043
2044		/* We found a suitable memory range */
2045		break;
2046	} while (1);
2047
2048	/* If we are here, we found a suitable memory range */
2049	kbuf->mem = temp_start;
2050
2051	/* Success, stop navigating through remaining System RAM ranges */
2052	return 1;
2053}
2054
2055static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
2056				     struct kexec_buf *kbuf)
2057{
2058	struct kimage *image = kbuf->image;
2059	unsigned long temp_start, temp_end;
2060
2061	temp_start = max(start, kbuf->buf_min);
2062
2063	do {
2064		temp_start = ALIGN(temp_start, kbuf->buf_align);
2065		temp_end = temp_start + kbuf->memsz - 1;
2066
2067		if (temp_end > end || temp_end > kbuf->buf_max)
2068			return 0;
2069		/*
2070		 * Make sure this does not conflict with any of existing
2071		 * segments
2072		 */
2073		if (kimage_is_destination_range(image, temp_start, temp_end)) {
2074			temp_start = temp_start + PAGE_SIZE;
2075			continue;
2076		}
2077
2078		/* We found a suitable memory range */
2079		break;
2080	} while (1);
2081
2082	/* If we are here, we found a suitable memory range */
2083	kbuf->mem = temp_start;
2084
2085	/* Success, stop navigating through remaining System RAM ranges */
2086	return 1;
2087}
2088
2089static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
2090{
2091	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
2092	unsigned long sz = end - start + 1;
2093
2094	/* Returning 0 will take to next memory range */
2095	if (sz < kbuf->memsz)
2096		return 0;
2097
2098	if (end < kbuf->buf_min || start > kbuf->buf_max)
2099		return 0;
2100
2101	/*
2102	 * Allocate memory top down with-in ram range. Otherwise bottom up
2103	 * allocation.
2104	 */
2105	if (kbuf->top_down)
2106		return locate_mem_hole_top_down(start, end, kbuf);
2107	return locate_mem_hole_bottom_up(start, end, kbuf);
2108}
2109
2110/*
2111 * Helper function for placing a buffer in a kexec segment. This assumes
2112 * that kexec_mutex is held.
2113 */
2114int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
2115		     unsigned long memsz, unsigned long buf_align,
2116		     unsigned long buf_min, unsigned long buf_max,
2117		     bool top_down, unsigned long *load_addr)
2118{
2119
2120	struct kexec_segment *ksegment;
2121	struct kexec_buf buf, *kbuf;
2122	int ret;
2123
2124	/* Currently adding segment this way is allowed only in file mode */
2125	if (!image->file_mode)
2126		return -EINVAL;
2127
2128	if (image->nr_segments >= KEXEC_SEGMENT_MAX)
2129		return -EINVAL;
2130
2131	/*
2132	 * Make sure we are not trying to add buffer after allocating
2133	 * control pages. All segments need to be placed first before
2134	 * any control pages are allocated. As control page allocation
2135	 * logic goes through list of segments to make sure there are
2136	 * no destination overlaps.
2137	 */
2138	if (!list_empty(&image->control_pages)) {
2139		WARN_ON(1);
2140		return -EINVAL;
2141	}
2142
2143	memset(&buf, 0, sizeof(struct kexec_buf));
2144	kbuf = &buf;
2145	kbuf->image = image;
2146	kbuf->buffer = buffer;
2147	kbuf->bufsz = bufsz;
2148
2149	kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
2150	kbuf->buf_align = max(buf_align, PAGE_SIZE);
2151	kbuf->buf_min = buf_min;
2152	kbuf->buf_max = buf_max;
2153	kbuf->top_down = top_down;
2154
2155	/* Walk the RAM ranges and allocate a suitable range for the buffer */
2156	if (image->type == KEXEC_TYPE_CRASH)
2157		ret = walk_iomem_res("Crash kernel",
2158				     IORESOURCE_MEM | IORESOURCE_BUSY,
2159				     crashk_res.start, crashk_res.end, kbuf,
2160				     locate_mem_hole_callback);
2161	else
2162		ret = walk_system_ram_res(0, -1, kbuf,
2163					  locate_mem_hole_callback);
2164	if (ret != 1) {
2165		/* A suitable memory range could not be found for buffer */
2166		return -EADDRNOTAVAIL;
2167	}
2168
2169	/* Found a suitable memory range */
2170	ksegment = &image->segment[image->nr_segments];
2171	ksegment->kbuf = kbuf->buffer;
2172	ksegment->bufsz = kbuf->bufsz;
2173	ksegment->mem = kbuf->mem;
2174	ksegment->memsz = kbuf->memsz;
2175	image->nr_segments++;
2176	*load_addr = ksegment->mem;
2177	return 0;
2178}
2179
2180/* Calculate and store the digest of segments */
2181static int kexec_calculate_store_digests(struct kimage *image)
2182{
2183	struct crypto_shash *tfm;
2184	struct shash_desc *desc;
2185	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
2186	size_t desc_size, nullsz;
2187	char *digest;
2188	void *zero_buf;
2189	struct kexec_sha_region *sha_regions;
2190	struct purgatory_info *pi = &image->purgatory_info;
2191
2192	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
2193	zero_buf_sz = PAGE_SIZE;
2194
2195	tfm = crypto_alloc_shash("sha256", 0, 0);
2196	if (IS_ERR(tfm)) {
2197		ret = PTR_ERR(tfm);
2198		goto out;
2199	}
2200
2201	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
2202	desc = kzalloc(desc_size, GFP_KERNEL);
2203	if (!desc) {
2204		ret = -ENOMEM;
2205		goto out_free_tfm;
2206	}
2207
2208	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
2209	sha_regions = vzalloc(sha_region_sz);
2210	if (!sha_regions)
2211		goto out_free_desc;
2212
2213	desc->tfm   = tfm;
2214	desc->flags = 0;
2215
2216	ret = crypto_shash_init(desc);
2217	if (ret < 0)
2218		goto out_free_sha_regions;
2219
2220	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
2221	if (!digest) {
2222		ret = -ENOMEM;
2223		goto out_free_sha_regions;
2224	}
2225
2226	for (j = i = 0; i < image->nr_segments; i++) {
2227		struct kexec_segment *ksegment;
2228
2229		ksegment = &image->segment[i];
2230		/*
2231		 * Skip purgatory as it will be modified once we put digest
2232		 * info in purgatory.
2233		 */
2234		if (ksegment->kbuf == pi->purgatory_buf)
2235			continue;
2236
2237		ret = crypto_shash_update(desc, ksegment->kbuf,
2238					  ksegment->bufsz);
2239		if (ret)
2240			break;
2241
2242		/*
2243		 * Assume rest of the buffer is filled with zero and
2244		 * update digest accordingly.
2245		 */
2246		nullsz = ksegment->memsz - ksegment->bufsz;
2247		while (nullsz) {
2248			unsigned long bytes = nullsz;
2249
2250			if (bytes > zero_buf_sz)
2251				bytes = zero_buf_sz;
2252			ret = crypto_shash_update(desc, zero_buf, bytes);
2253			if (ret)
2254				break;
2255			nullsz -= bytes;
2256		}
2257
2258		if (ret)
2259			break;
2260
2261		sha_regions[j].start = ksegment->mem;
2262		sha_regions[j].len = ksegment->memsz;
2263		j++;
2264	}
2265
2266	if (!ret) {
2267		ret = crypto_shash_final(desc, digest);
2268		if (ret)
2269			goto out_free_digest;
2270		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
2271						sha_regions, sha_region_sz, 0);
2272		if (ret)
2273			goto out_free_digest;
2274
2275		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
2276						digest, SHA256_DIGEST_SIZE, 0);
2277		if (ret)
2278			goto out_free_digest;
2279	}
2280
2281out_free_digest:
2282	kfree(digest);
2283out_free_sha_regions:
2284	vfree(sha_regions);
2285out_free_desc:
2286	kfree(desc);
2287out_free_tfm:
2288	kfree(tfm);
2289out:
2290	return ret;
2291}
2292
2293/* Actually load purgatory. Lot of code taken from kexec-tools */
2294static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
2295				  unsigned long max, int top_down)
2296{
2297	struct purgatory_info *pi = &image->purgatory_info;
2298	unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
2299	unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
2300	unsigned char *buf_addr, *src;
2301	int i, ret = 0, entry_sidx = -1;
2302	const Elf_Shdr *sechdrs_c;
2303	Elf_Shdr *sechdrs = NULL;
2304	void *purgatory_buf = NULL;
2305
2306	/*
2307	 * sechdrs_c points to section headers in purgatory and are read
2308	 * only. No modifications allowed.
2309	 */
2310	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
2311
2312	/*
2313	 * We can not modify sechdrs_c[] and its fields. It is read only.
2314	 * Copy it over to a local copy where one can store some temporary
2315	 * data and free it at the end. We need to modify ->sh_addr and
2316	 * ->sh_offset fields to keep track of permanent and temporary
2317	 * locations of sections.
2318	 */
2319	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2320	if (!sechdrs)
2321		return -ENOMEM;
2322
2323	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2324
2325	/*
2326	 * We seem to have multiple copies of sections. First copy is which
2327	 * is embedded in kernel in read only section. Some of these sections
2328	 * will be copied to a temporary buffer and relocated. And these
2329	 * sections will finally be copied to their final destination at
2330	 * segment load time.
2331	 *
2332	 * Use ->sh_offset to reflect section address in memory. It will
2333	 * point to original read only copy if section is not allocatable.
2334	 * Otherwise it will point to temporary copy which will be relocated.
2335	 *
2336	 * Use ->sh_addr to contain final address of the section where it
2337	 * will go during execution time.
2338	 */
2339	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2340		if (sechdrs[i].sh_type == SHT_NOBITS)
2341			continue;
2342
2343		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
2344						sechdrs[i].sh_offset;
2345	}
2346
2347	/*
2348	 * Identify entry point section and make entry relative to section
2349	 * start.
2350	 */
2351	entry = pi->ehdr->e_entry;
2352	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2353		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2354			continue;
2355
2356		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
2357			continue;
2358
2359		/* Make entry section relative */
2360		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
2361		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
2362		     pi->ehdr->e_entry)) {
2363			entry_sidx = i;
2364			entry -= sechdrs[i].sh_addr;
2365			break;
2366		}
2367	}
2368
2369	/* Determine how much memory is needed to load relocatable object. */
2370	buf_align = 1;
2371	bss_align = 1;
2372	buf_sz = 0;
2373	bss_sz = 0;
2374
2375	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2376		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2377			continue;
2378
2379		align = sechdrs[i].sh_addralign;
2380		if (sechdrs[i].sh_type != SHT_NOBITS) {
2381			if (buf_align < align)
2382				buf_align = align;
2383			buf_sz = ALIGN(buf_sz, align);
2384			buf_sz += sechdrs[i].sh_size;
2385		} else {
2386			/* bss section */
2387			if (bss_align < align)
2388				bss_align = align;
2389			bss_sz = ALIGN(bss_sz, align);
2390			bss_sz += sechdrs[i].sh_size;
2391		}
2392	}
2393
2394	/* Determine the bss padding required to align bss properly */
2395	bss_pad = 0;
2396	if (buf_sz & (bss_align - 1))
2397		bss_pad = bss_align - (buf_sz & (bss_align - 1));
2398
2399	memsz = buf_sz + bss_pad + bss_sz;
2400
2401	/* Allocate buffer for purgatory */
2402	purgatory_buf = vzalloc(buf_sz);
2403	if (!purgatory_buf) {
2404		ret = -ENOMEM;
2405		goto out;
2406	}
2407
2408	if (buf_align < bss_align)
2409		buf_align = bss_align;
2410
2411	/* Add buffer to segment list */
2412	ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
2413				buf_align, min, max, top_down,
2414				&pi->purgatory_load_addr);
2415	if (ret)
2416		goto out;
2417
2418	/* Load SHF_ALLOC sections */
2419	buf_addr = purgatory_buf;
2420	load_addr = curr_load_addr = pi->purgatory_load_addr;
2421	bss_addr = load_addr + buf_sz + bss_pad;
2422
2423	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2424		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2425			continue;
2426
2427		align = sechdrs[i].sh_addralign;
2428		if (sechdrs[i].sh_type != SHT_NOBITS) {
2429			curr_load_addr = ALIGN(curr_load_addr, align);
2430			offset = curr_load_addr - load_addr;
2431			/* We already modifed ->sh_offset to keep src addr */
2432			src = (char *) sechdrs[i].sh_offset;
2433			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
2434
2435			/* Store load address and source address of section */
2436			sechdrs[i].sh_addr = curr_load_addr;
2437
2438			/*
2439			 * This section got copied to temporary buffer. Update
2440			 * ->sh_offset accordingly.
2441			 */
2442			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
2443
2444			/* Advance to the next address */
2445			curr_load_addr += sechdrs[i].sh_size;
2446		} else {
2447			bss_addr = ALIGN(bss_addr, align);
2448			sechdrs[i].sh_addr = bss_addr;
2449			bss_addr += sechdrs[i].sh_size;
2450		}
2451	}
2452
2453	/* Update entry point based on load address of text section */
2454	if (entry_sidx >= 0)
2455		entry += sechdrs[entry_sidx].sh_addr;
2456
2457	/* Make kernel jump to purgatory after shutdown */
2458	image->start = entry;
2459
2460	/* Used later to get/set symbol values */
2461	pi->sechdrs = sechdrs;
2462
2463	/*
2464	 * Used later to identify which section is purgatory and skip it
2465	 * from checksumming.
2466	 */
2467	pi->purgatory_buf = purgatory_buf;
2468	return ret;
2469out:
2470	vfree(sechdrs);
2471	vfree(purgatory_buf);
2472	return ret;
2473}
2474
2475static int kexec_apply_relocations(struct kimage *image)
2476{
2477	int i, ret;
2478	struct purgatory_info *pi = &image->purgatory_info;
2479	Elf_Shdr *sechdrs = pi->sechdrs;
2480
2481	/* Apply relocations */
2482	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2483		Elf_Shdr *section, *symtab;
2484
2485		if (sechdrs[i].sh_type != SHT_RELA &&
2486		    sechdrs[i].sh_type != SHT_REL)
2487			continue;
2488
2489		/*
2490		 * For section of type SHT_RELA/SHT_REL,
2491		 * ->sh_link contains section header index of associated
2492		 * symbol table. And ->sh_info contains section header
2493		 * index of section to which relocations apply.
2494		 */
2495		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
2496		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
2497			return -ENOEXEC;
2498
2499		section = &sechdrs[sechdrs[i].sh_info];
2500		symtab = &sechdrs[sechdrs[i].sh_link];
2501
2502		if (!(section->sh_flags & SHF_ALLOC))
2503			continue;
2504
2505		/*
2506		 * symtab->sh_link contain section header index of associated
2507		 * string table.
2508		 */
2509		if (symtab->sh_link >= pi->ehdr->e_shnum)
2510			/* Invalid section number? */
2511			continue;
2512
2513		/*
2514		 * Respective architecture needs to provide support for applying
2515		 * relocations of type SHT_RELA/SHT_REL.
2516		 */
2517		if (sechdrs[i].sh_type == SHT_RELA)
2518			ret = arch_kexec_apply_relocations_add(pi->ehdr,
2519							       sechdrs, i);
2520		else if (sechdrs[i].sh_type == SHT_REL)
2521			ret = arch_kexec_apply_relocations(pi->ehdr,
2522							   sechdrs, i);
2523		if (ret)
2524			return ret;
2525	}
2526
2527	return 0;
2528}
2529
2530/* Load relocatable purgatory object and relocate it appropriately */
2531int kexec_load_purgatory(struct kimage *image, unsigned long min,
2532			 unsigned long max, int top_down,
2533			 unsigned long *load_addr)
2534{
2535	struct purgatory_info *pi = &image->purgatory_info;
2536	int ret;
2537
2538	if (kexec_purgatory_size <= 0)
2539		return -EINVAL;
2540
2541	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
2542		return -ENOEXEC;
2543
2544	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
2545
2546	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
2547	    || pi->ehdr->e_type != ET_REL
2548	    || !elf_check_arch(pi->ehdr)
2549	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
2550		return -ENOEXEC;
2551
2552	if (pi->ehdr->e_shoff >= kexec_purgatory_size
2553	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
2554	    kexec_purgatory_size - pi->ehdr->e_shoff))
2555		return -ENOEXEC;
2556
2557	ret = __kexec_load_purgatory(image, min, max, top_down);
2558	if (ret)
2559		return ret;
2560
2561	ret = kexec_apply_relocations(image);
2562	if (ret)
2563		goto out;
2564
2565	*load_addr = pi->purgatory_load_addr;
2566	return 0;
2567out:
2568	vfree(pi->sechdrs);
2569	vfree(pi->purgatory_buf);
2570	return ret;
2571}
2572
2573static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
2574					    const char *name)
2575{
2576	Elf_Sym *syms;
2577	Elf_Shdr *sechdrs;
2578	Elf_Ehdr *ehdr;
2579	int i, k;
2580	const char *strtab;
2581
2582	if (!pi->sechdrs || !pi->ehdr)
2583		return NULL;
2584
2585	sechdrs = pi->sechdrs;
2586	ehdr = pi->ehdr;
2587
2588	for (i = 0; i < ehdr->e_shnum; i++) {
2589		if (sechdrs[i].sh_type != SHT_SYMTAB)
2590			continue;
2591
2592		if (sechdrs[i].sh_link >= ehdr->e_shnum)
2593			/* Invalid strtab section number */
2594			continue;
2595		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
2596		syms = (Elf_Sym *)sechdrs[i].sh_offset;
2597
2598		/* Go through symbols for a match */
2599		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
2600			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
2601				continue;
2602
2603			if (strcmp(strtab + syms[k].st_name, name) != 0)
2604				continue;
2605
2606			if (syms[k].st_shndx == SHN_UNDEF ||
2607			    syms[k].st_shndx >= ehdr->e_shnum) {
2608				pr_debug("Symbol: %s has bad section index %d.\n",
2609						name, syms[k].st_shndx);
2610				return NULL;
2611			}
2612
2613			/* Found the symbol we are looking for */
2614			return &syms[k];
2615		}
2616	}
2617
2618	return NULL;
2619}
2620
2621void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
2622{
2623	struct purgatory_info *pi = &image->purgatory_info;
2624	Elf_Sym *sym;
2625	Elf_Shdr *sechdr;
2626
2627	sym = kexec_purgatory_find_symbol(pi, name);
2628	if (!sym)
2629		return ERR_PTR(-EINVAL);
2630
2631	sechdr = &pi->sechdrs[sym->st_shndx];
2632
2633	/*
2634	 * Returns the address where symbol will finally be loaded after
2635	 * kexec_load_segment()
2636	 */
2637	return (void *)(sechdr->sh_addr + sym->st_value);
2638}
2639
2640/*
2641 * Get or set value of a symbol. If "get_value" is true, symbol value is
2642 * returned in buf otherwise symbol value is set based on value in buf.
2643 */
2644int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
2645				   void *buf, unsigned int size, bool get_value)
2646{
2647	Elf_Sym *sym;
2648	Elf_Shdr *sechdrs;
2649	struct purgatory_info *pi = &image->purgatory_info;
2650	char *sym_buf;
2651
2652	sym = kexec_purgatory_find_symbol(pi, name);
2653	if (!sym)
2654		return -EINVAL;
2655
2656	if (sym->st_size != size) {
2657		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
2658		       name, (unsigned long)sym->st_size, size);
2659		return -EINVAL;
2660	}
2661
2662	sechdrs = pi->sechdrs;
2663
2664	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2665		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
2666		       get_value ? "get" : "set");
2667		return -EINVAL;
2668	}
2669
2670	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
2671					sym->st_value;
2672
2673	if (get_value)
2674		memcpy((void *)buf, sym_buf, size);
2675	else
2676		memcpy((void *)sym_buf, buf, size);
2677
2678	return 0;
2679}
2680#endif /* CONFIG_KEXEC_FILE */
2681
2682/*
2683 * Move into place and start executing a preloaded standalone
2684 * executable.  If nothing was preloaded return an error.
2685 */
2686int kernel_kexec(void)
2687{
2688	int error = 0;
2689
2690	if (!mutex_trylock(&kexec_mutex))
2691		return -EBUSY;
2692	if (!kexec_image) {
2693		error = -EINVAL;
2694		goto Unlock;
2695	}
2696
2697#ifdef CONFIG_KEXEC_JUMP
2698	if (kexec_image->preserve_context) {
2699		lock_system_sleep();
2700		pm_prepare_console();
2701		error = freeze_processes();
2702		if (error) {
2703			error = -EBUSY;
2704			goto Restore_console;
2705		}
2706		suspend_console();
2707		error = dpm_suspend_start(PMSG_FREEZE);
2708		if (error)
2709			goto Resume_console;
2710		/* At this point, dpm_suspend_start() has been called,
2711		 * but *not* dpm_suspend_end(). We *must* call
2712		 * dpm_suspend_end() now.  Otherwise, drivers for
2713		 * some devices (e.g. interrupt controllers) become
2714		 * desynchronized with the actual state of the
2715		 * hardware at resume time, and evil weirdness ensues.
2716		 */
2717		error = dpm_suspend_end(PMSG_FREEZE);
2718		if (error)
2719			goto Resume_devices;
2720		error = disable_nonboot_cpus();
2721		if (error)
2722			goto Enable_cpus;
2723		local_irq_disable();
2724		error = syscore_suspend();
2725		if (error)
2726			goto Enable_irqs;
2727	} else
2728#endif
2729	{
2730		kexec_in_progress = true;
2731		kernel_restart_prepare(NULL);
2732		migrate_to_reboot_cpu();
2733
2734		/*
2735		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
2736		 * no further code needs to use CPU hotplug (which is true in
2737		 * the reboot case). However, the kexec path depends on using
2738		 * CPU hotplug again; so re-enable it here.
2739		 */
2740		cpu_hotplug_enable();
2741		pr_emerg("Starting new kernel\n");
2742		machine_shutdown();
2743	}
2744
2745	machine_kexec(kexec_image);
2746
2747#ifdef CONFIG_KEXEC_JUMP
2748	if (kexec_image->preserve_context) {
2749		syscore_resume();
2750 Enable_irqs:
2751		local_irq_enable();
2752 Enable_cpus:
2753		enable_nonboot_cpus();
2754		dpm_resume_start(PMSG_RESTORE);
2755 Resume_devices:
2756		dpm_resume_end(PMSG_RESTORE);
2757 Resume_console:
2758		resume_console();
2759		thaw_processes();
2760 Restore_console:
2761		pm_restore_console();
2762		unlock_system_sleep();
2763	}
2764#endif
2765
2766 Unlock:
2767	mutex_unlock(&kexec_mutex);
2768	return error;
2769}
2770