1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27#include <linux/delay.h>
28#include <linux/gfp.h>
29#include <linux/oom.h>
30#include <linux/smpboot.h>
31#include "../time/tick-internal.h"
32
33#ifdef CONFIG_RCU_BOOST
34
35#include "../locking/rtmutex_common.h"
36
37/*
38 * Control variables for per-CPU and per-rcu_node kthreads.  These
39 * handle all flavors of RCU.
40 */
41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46#endif /* #ifdef CONFIG_RCU_BOOST */
47
48#ifdef CONFIG_RCU_NOCB_CPU
49static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
50static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
51static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
52#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
53
54/*
55 * Check the RCU kernel configuration parameters and print informative
56 * messages about anything out of the ordinary.  If you like #ifdef, you
57 * will love this function.
58 */
59static void __init rcu_bootup_announce_oddness(void)
60{
61	if (IS_ENABLED(CONFIG_RCU_TRACE))
62		pr_info("\tRCU debugfs-based tracing is enabled.\n");
63	if ((IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) ||
64	    (!IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32))
65		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
66		       CONFIG_RCU_FANOUT);
67	if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT))
68		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
69	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
70		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
71	if (IS_ENABLED(CONFIG_PROVE_RCU))
72		pr_info("\tRCU lockdep checking is enabled.\n");
73	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
74		pr_info("\tRCU torture testing starts during boot.\n");
75	if (IS_ENABLED(CONFIG_RCU_CPU_STALL_INFO))
76		pr_info("\tAdditional per-CPU info printed with stalls.\n");
77	if (NUM_RCU_LVL_4 != 0)
78		pr_info("\tFour-level hierarchy is enabled.\n");
79	if (CONFIG_RCU_FANOUT_LEAF != 16)
80		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
81			CONFIG_RCU_FANOUT_LEAF);
82	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
83		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
84	if (nr_cpu_ids != NR_CPUS)
85		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
86	if (IS_ENABLED(CONFIG_RCU_BOOST))
87		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
88}
89
90#ifdef CONFIG_PREEMPT_RCU
91
92RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
93static struct rcu_state *rcu_state_p = &rcu_preempt_state;
94
95static int rcu_preempted_readers_exp(struct rcu_node *rnp);
96static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
97			       bool wake);
98
99/*
100 * Tell them what RCU they are running.
101 */
102static void __init rcu_bootup_announce(void)
103{
104	pr_info("Preemptible hierarchical RCU implementation.\n");
105	rcu_bootup_announce_oddness();
106}
107
108/*
109 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
110 * that this just means that the task currently running on the CPU is
111 * not in a quiescent state.  There might be any number of tasks blocked
112 * while in an RCU read-side critical section.
113 *
114 * As with the other rcu_*_qs() functions, callers to this function
115 * must disable preemption.
116 */
117static void rcu_preempt_qs(void)
118{
119	if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
120		trace_rcu_grace_period(TPS("rcu_preempt"),
121				       __this_cpu_read(rcu_preempt_data.gpnum),
122				       TPS("cpuqs"));
123		__this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
124		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
125		current->rcu_read_unlock_special.b.need_qs = false;
126	}
127}
128
129/*
130 * We have entered the scheduler, and the current task might soon be
131 * context-switched away from.  If this task is in an RCU read-side
132 * critical section, we will no longer be able to rely on the CPU to
133 * record that fact, so we enqueue the task on the blkd_tasks list.
134 * The task will dequeue itself when it exits the outermost enclosing
135 * RCU read-side critical section.  Therefore, the current grace period
136 * cannot be permitted to complete until the blkd_tasks list entries
137 * predating the current grace period drain, in other words, until
138 * rnp->gp_tasks becomes NULL.
139 *
140 * Caller must disable preemption.
141 */
142static void rcu_preempt_note_context_switch(void)
143{
144	struct task_struct *t = current;
145	unsigned long flags;
146	struct rcu_data *rdp;
147	struct rcu_node *rnp;
148
149	if (t->rcu_read_lock_nesting > 0 &&
150	    !t->rcu_read_unlock_special.b.blocked) {
151
152		/* Possibly blocking in an RCU read-side critical section. */
153		rdp = this_cpu_ptr(rcu_preempt_state.rda);
154		rnp = rdp->mynode;
155		raw_spin_lock_irqsave(&rnp->lock, flags);
156		smp_mb__after_unlock_lock();
157		t->rcu_read_unlock_special.b.blocked = true;
158		t->rcu_blocked_node = rnp;
159
160		/*
161		 * If this CPU has already checked in, then this task
162		 * will hold up the next grace period rather than the
163		 * current grace period.  Queue the task accordingly.
164		 * If the task is queued for the current grace period
165		 * (i.e., this CPU has not yet passed through a quiescent
166		 * state for the current grace period), then as long
167		 * as that task remains queued, the current grace period
168		 * cannot end.  Note that there is some uncertainty as
169		 * to exactly when the current grace period started.
170		 * We take a conservative approach, which can result
171		 * in unnecessarily waiting on tasks that started very
172		 * slightly after the current grace period began.  C'est
173		 * la vie!!!
174		 *
175		 * But first, note that the current CPU must still be
176		 * on line!
177		 */
178		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
179		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
180		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
181			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
182			rnp->gp_tasks = &t->rcu_node_entry;
183#ifdef CONFIG_RCU_BOOST
184			if (rnp->boost_tasks != NULL)
185				rnp->boost_tasks = rnp->gp_tasks;
186#endif /* #ifdef CONFIG_RCU_BOOST */
187		} else {
188			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
189			if (rnp->qsmask & rdp->grpmask)
190				rnp->gp_tasks = &t->rcu_node_entry;
191		}
192		trace_rcu_preempt_task(rdp->rsp->name,
193				       t->pid,
194				       (rnp->qsmask & rdp->grpmask)
195				       ? rnp->gpnum
196				       : rnp->gpnum + 1);
197		raw_spin_unlock_irqrestore(&rnp->lock, flags);
198	} else if (t->rcu_read_lock_nesting < 0 &&
199		   t->rcu_read_unlock_special.s) {
200
201		/*
202		 * Complete exit from RCU read-side critical section on
203		 * behalf of preempted instance of __rcu_read_unlock().
204		 */
205		rcu_read_unlock_special(t);
206	}
207
208	/*
209	 * Either we were not in an RCU read-side critical section to
210	 * begin with, or we have now recorded that critical section
211	 * globally.  Either way, we can now note a quiescent state
212	 * for this CPU.  Again, if we were in an RCU read-side critical
213	 * section, and if that critical section was blocking the current
214	 * grace period, then the fact that the task has been enqueued
215	 * means that we continue to block the current grace period.
216	 */
217	rcu_preempt_qs();
218}
219
220/*
221 * Check for preempted RCU readers blocking the current grace period
222 * for the specified rcu_node structure.  If the caller needs a reliable
223 * answer, it must hold the rcu_node's ->lock.
224 */
225static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
226{
227	return rnp->gp_tasks != NULL;
228}
229
230/*
231 * Advance a ->blkd_tasks-list pointer to the next entry, instead
232 * returning NULL if at the end of the list.
233 */
234static struct list_head *rcu_next_node_entry(struct task_struct *t,
235					     struct rcu_node *rnp)
236{
237	struct list_head *np;
238
239	np = t->rcu_node_entry.next;
240	if (np == &rnp->blkd_tasks)
241		np = NULL;
242	return np;
243}
244
245/*
246 * Return true if the specified rcu_node structure has tasks that were
247 * preempted within an RCU read-side critical section.
248 */
249static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
250{
251	return !list_empty(&rnp->blkd_tasks);
252}
253
254/*
255 * Handle special cases during rcu_read_unlock(), such as needing to
256 * notify RCU core processing or task having blocked during the RCU
257 * read-side critical section.
258 */
259void rcu_read_unlock_special(struct task_struct *t)
260{
261	bool empty_exp;
262	bool empty_norm;
263	bool empty_exp_now;
264	unsigned long flags;
265	struct list_head *np;
266#ifdef CONFIG_RCU_BOOST
267	bool drop_boost_mutex = false;
268#endif /* #ifdef CONFIG_RCU_BOOST */
269	struct rcu_node *rnp;
270	union rcu_special special;
271
272	/* NMI handlers cannot block and cannot safely manipulate state. */
273	if (in_nmi())
274		return;
275
276	local_irq_save(flags);
277
278	/*
279	 * If RCU core is waiting for this CPU to exit critical section,
280	 * let it know that we have done so.  Because irqs are disabled,
281	 * t->rcu_read_unlock_special cannot change.
282	 */
283	special = t->rcu_read_unlock_special;
284	if (special.b.need_qs) {
285		rcu_preempt_qs();
286		t->rcu_read_unlock_special.b.need_qs = false;
287		if (!t->rcu_read_unlock_special.s) {
288			local_irq_restore(flags);
289			return;
290		}
291	}
292
293	/* Hardware IRQ handlers cannot block, complain if they get here. */
294	if (in_irq() || in_serving_softirq()) {
295		lockdep_rcu_suspicious(__FILE__, __LINE__,
296				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
297		pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
298			 t->rcu_read_unlock_special.s,
299			 t->rcu_read_unlock_special.b.blocked,
300			 t->rcu_read_unlock_special.b.need_qs);
301		local_irq_restore(flags);
302		return;
303	}
304
305	/* Clean up if blocked during RCU read-side critical section. */
306	if (special.b.blocked) {
307		t->rcu_read_unlock_special.b.blocked = false;
308
309		/*
310		 * Remove this task from the list it blocked on.  The
311		 * task can migrate while we acquire the lock, but at
312		 * most one time.  So at most two passes through loop.
313		 */
314		for (;;) {
315			rnp = t->rcu_blocked_node;
316			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
317			smp_mb__after_unlock_lock();
318			if (rnp == t->rcu_blocked_node)
319				break;
320			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
321		}
322		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
323		empty_exp = !rcu_preempted_readers_exp(rnp);
324		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
325		np = rcu_next_node_entry(t, rnp);
326		list_del_init(&t->rcu_node_entry);
327		t->rcu_blocked_node = NULL;
328		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
329						rnp->gpnum, t->pid);
330		if (&t->rcu_node_entry == rnp->gp_tasks)
331			rnp->gp_tasks = np;
332		if (&t->rcu_node_entry == rnp->exp_tasks)
333			rnp->exp_tasks = np;
334#ifdef CONFIG_RCU_BOOST
335		if (&t->rcu_node_entry == rnp->boost_tasks)
336			rnp->boost_tasks = np;
337		/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
338		drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
339#endif /* #ifdef CONFIG_RCU_BOOST */
340
341		/*
342		 * If this was the last task on the current list, and if
343		 * we aren't waiting on any CPUs, report the quiescent state.
344		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
345		 * so we must take a snapshot of the expedited state.
346		 */
347		empty_exp_now = !rcu_preempted_readers_exp(rnp);
348		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
349			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
350							 rnp->gpnum,
351							 0, rnp->qsmask,
352							 rnp->level,
353							 rnp->grplo,
354							 rnp->grphi,
355							 !!rnp->gp_tasks);
356			rcu_report_unblock_qs_rnp(&rcu_preempt_state,
357						  rnp, flags);
358		} else {
359			raw_spin_unlock_irqrestore(&rnp->lock, flags);
360		}
361
362#ifdef CONFIG_RCU_BOOST
363		/* Unboost if we were boosted. */
364		if (drop_boost_mutex)
365			rt_mutex_unlock(&rnp->boost_mtx);
366#endif /* #ifdef CONFIG_RCU_BOOST */
367
368		/*
369		 * If this was the last task on the expedited lists,
370		 * then we need to report up the rcu_node hierarchy.
371		 */
372		if (!empty_exp && empty_exp_now)
373			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
374	} else {
375		local_irq_restore(flags);
376	}
377}
378
379/*
380 * Dump detailed information for all tasks blocking the current RCU
381 * grace period on the specified rcu_node structure.
382 */
383static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
384{
385	unsigned long flags;
386	struct task_struct *t;
387
388	raw_spin_lock_irqsave(&rnp->lock, flags);
389	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
390		raw_spin_unlock_irqrestore(&rnp->lock, flags);
391		return;
392	}
393	t = list_entry(rnp->gp_tasks,
394		       struct task_struct, rcu_node_entry);
395	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
396		sched_show_task(t);
397	raw_spin_unlock_irqrestore(&rnp->lock, flags);
398}
399
400/*
401 * Dump detailed information for all tasks blocking the current RCU
402 * grace period.
403 */
404static void rcu_print_detail_task_stall(struct rcu_state *rsp)
405{
406	struct rcu_node *rnp = rcu_get_root(rsp);
407
408	rcu_print_detail_task_stall_rnp(rnp);
409	rcu_for_each_leaf_node(rsp, rnp)
410		rcu_print_detail_task_stall_rnp(rnp);
411}
412
413#ifdef CONFIG_RCU_CPU_STALL_INFO
414
415static void rcu_print_task_stall_begin(struct rcu_node *rnp)
416{
417	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
418	       rnp->level, rnp->grplo, rnp->grphi);
419}
420
421static void rcu_print_task_stall_end(void)
422{
423	pr_cont("\n");
424}
425
426#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
427
428static void rcu_print_task_stall_begin(struct rcu_node *rnp)
429{
430}
431
432static void rcu_print_task_stall_end(void)
433{
434}
435
436#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
437
438/*
439 * Scan the current list of tasks blocked within RCU read-side critical
440 * sections, printing out the tid of each.
441 */
442static int rcu_print_task_stall(struct rcu_node *rnp)
443{
444	struct task_struct *t;
445	int ndetected = 0;
446
447	if (!rcu_preempt_blocked_readers_cgp(rnp))
448		return 0;
449	rcu_print_task_stall_begin(rnp);
450	t = list_entry(rnp->gp_tasks,
451		       struct task_struct, rcu_node_entry);
452	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
453		pr_cont(" P%d", t->pid);
454		ndetected++;
455	}
456	rcu_print_task_stall_end();
457	return ndetected;
458}
459
460/*
461 * Check that the list of blocked tasks for the newly completed grace
462 * period is in fact empty.  It is a serious bug to complete a grace
463 * period that still has RCU readers blocked!  This function must be
464 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
465 * must be held by the caller.
466 *
467 * Also, if there are blocked tasks on the list, they automatically
468 * block the newly created grace period, so set up ->gp_tasks accordingly.
469 */
470static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
471{
472	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
473	if (rcu_preempt_has_tasks(rnp))
474		rnp->gp_tasks = rnp->blkd_tasks.next;
475	WARN_ON_ONCE(rnp->qsmask);
476}
477
478/*
479 * Check for a quiescent state from the current CPU.  When a task blocks,
480 * the task is recorded in the corresponding CPU's rcu_node structure,
481 * which is checked elsewhere.
482 *
483 * Caller must disable hard irqs.
484 */
485static void rcu_preempt_check_callbacks(void)
486{
487	struct task_struct *t = current;
488
489	if (t->rcu_read_lock_nesting == 0) {
490		rcu_preempt_qs();
491		return;
492	}
493	if (t->rcu_read_lock_nesting > 0 &&
494	    __this_cpu_read(rcu_preempt_data.qs_pending) &&
495	    !__this_cpu_read(rcu_preempt_data.passed_quiesce))
496		t->rcu_read_unlock_special.b.need_qs = true;
497}
498
499#ifdef CONFIG_RCU_BOOST
500
501static void rcu_preempt_do_callbacks(void)
502{
503	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
504}
505
506#endif /* #ifdef CONFIG_RCU_BOOST */
507
508/*
509 * Queue a preemptible-RCU callback for invocation after a grace period.
510 */
511void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
512{
513	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
514}
515EXPORT_SYMBOL_GPL(call_rcu);
516
517/**
518 * synchronize_rcu - wait until a grace period has elapsed.
519 *
520 * Control will return to the caller some time after a full grace
521 * period has elapsed, in other words after all currently executing RCU
522 * read-side critical sections have completed.  Note, however, that
523 * upon return from synchronize_rcu(), the caller might well be executing
524 * concurrently with new RCU read-side critical sections that began while
525 * synchronize_rcu() was waiting.  RCU read-side critical sections are
526 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
527 *
528 * See the description of synchronize_sched() for more detailed information
529 * on memory ordering guarantees.
530 */
531void synchronize_rcu(void)
532{
533	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
534			   !lock_is_held(&rcu_lock_map) &&
535			   !lock_is_held(&rcu_sched_lock_map),
536			   "Illegal synchronize_rcu() in RCU read-side critical section");
537	if (!rcu_scheduler_active)
538		return;
539	if (rcu_gp_is_expedited())
540		synchronize_rcu_expedited();
541	else
542		wait_rcu_gp(call_rcu);
543}
544EXPORT_SYMBOL_GPL(synchronize_rcu);
545
546static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
547static unsigned long sync_rcu_preempt_exp_count;
548static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
549
550/*
551 * Return non-zero if there are any tasks in RCU read-side critical
552 * sections blocking the current preemptible-RCU expedited grace period.
553 * If there is no preemptible-RCU expedited grace period currently in
554 * progress, returns zero unconditionally.
555 */
556static int rcu_preempted_readers_exp(struct rcu_node *rnp)
557{
558	return rnp->exp_tasks != NULL;
559}
560
561/*
562 * return non-zero if there is no RCU expedited grace period in progress
563 * for the specified rcu_node structure, in other words, if all CPUs and
564 * tasks covered by the specified rcu_node structure have done their bit
565 * for the current expedited grace period.  Works only for preemptible
566 * RCU -- other RCU implementation use other means.
567 *
568 * Caller must hold sync_rcu_preempt_exp_mutex.
569 */
570static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
571{
572	return !rcu_preempted_readers_exp(rnp) &&
573	       ACCESS_ONCE(rnp->expmask) == 0;
574}
575
576/*
577 * Report the exit from RCU read-side critical section for the last task
578 * that queued itself during or before the current expedited preemptible-RCU
579 * grace period.  This event is reported either to the rcu_node structure on
580 * which the task was queued or to one of that rcu_node structure's ancestors,
581 * recursively up the tree.  (Calm down, calm down, we do the recursion
582 * iteratively!)
583 *
584 * Caller must hold sync_rcu_preempt_exp_mutex.
585 */
586static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
587			       bool wake)
588{
589	unsigned long flags;
590	unsigned long mask;
591
592	raw_spin_lock_irqsave(&rnp->lock, flags);
593	smp_mb__after_unlock_lock();
594	for (;;) {
595		if (!sync_rcu_preempt_exp_done(rnp)) {
596			raw_spin_unlock_irqrestore(&rnp->lock, flags);
597			break;
598		}
599		if (rnp->parent == NULL) {
600			raw_spin_unlock_irqrestore(&rnp->lock, flags);
601			if (wake) {
602				smp_mb(); /* EGP done before wake_up(). */
603				wake_up(&sync_rcu_preempt_exp_wq);
604			}
605			break;
606		}
607		mask = rnp->grpmask;
608		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
609		rnp = rnp->parent;
610		raw_spin_lock(&rnp->lock); /* irqs already disabled */
611		smp_mb__after_unlock_lock();
612		rnp->expmask &= ~mask;
613	}
614}
615
616/*
617 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
618 * grace period for the specified rcu_node structure, phase 1.  If there
619 * are such tasks, set the ->expmask bits up the rcu_node tree and also
620 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
621 * that work is needed here.
622 *
623 * Caller must hold sync_rcu_preempt_exp_mutex.
624 */
625static void
626sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
627{
628	unsigned long flags;
629	unsigned long mask;
630	struct rcu_node *rnp_up;
631
632	raw_spin_lock_irqsave(&rnp->lock, flags);
633	smp_mb__after_unlock_lock();
634	WARN_ON_ONCE(rnp->expmask);
635	WARN_ON_ONCE(rnp->exp_tasks);
636	if (!rcu_preempt_has_tasks(rnp)) {
637		/* No blocked tasks, nothing to do. */
638		raw_spin_unlock_irqrestore(&rnp->lock, flags);
639		return;
640	}
641	/* Call for Phase 2 and propagate ->expmask bits up the tree. */
642	rnp->expmask = 1;
643	rnp_up = rnp;
644	while (rnp_up->parent) {
645		mask = rnp_up->grpmask;
646		rnp_up = rnp_up->parent;
647		if (rnp_up->expmask & mask)
648			break;
649		raw_spin_lock(&rnp_up->lock); /* irqs already off */
650		smp_mb__after_unlock_lock();
651		rnp_up->expmask |= mask;
652		raw_spin_unlock(&rnp_up->lock); /* irqs still off */
653	}
654	raw_spin_unlock_irqrestore(&rnp->lock, flags);
655}
656
657/*
658 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
659 * grace period for the specified rcu_node structure, phase 2.  If the
660 * leaf rcu_node structure has its ->expmask field set, check for tasks.
661 * If there are some, clear ->expmask and set ->exp_tasks accordingly,
662 * then initiate RCU priority boosting.  Otherwise, clear ->expmask and
663 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
664 * enabling rcu_read_unlock_special() to do the bit-clearing.
665 *
666 * Caller must hold sync_rcu_preempt_exp_mutex.
667 */
668static void
669sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
670{
671	unsigned long flags;
672
673	raw_spin_lock_irqsave(&rnp->lock, flags);
674	smp_mb__after_unlock_lock();
675	if (!rnp->expmask) {
676		/* Phase 1 didn't do anything, so Phase 2 doesn't either. */
677		raw_spin_unlock_irqrestore(&rnp->lock, flags);
678		return;
679	}
680
681	/* Phase 1 is over. */
682	rnp->expmask = 0;
683
684	/*
685	 * If there are still blocked tasks, set up ->exp_tasks so that
686	 * rcu_read_unlock_special() will wake us and then boost them.
687	 */
688	if (rcu_preempt_has_tasks(rnp)) {
689		rnp->exp_tasks = rnp->blkd_tasks.next;
690		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
691		return;
692	}
693
694	/* No longer any blocked tasks, so undo bit setting. */
695	raw_spin_unlock_irqrestore(&rnp->lock, flags);
696	rcu_report_exp_rnp(rsp, rnp, false);
697}
698
699/**
700 * synchronize_rcu_expedited - Brute-force RCU grace period
701 *
702 * Wait for an RCU-preempt grace period, but expedite it.  The basic
703 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
704 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
705 * significant time on all CPUs and is unfriendly to real-time workloads,
706 * so is thus not recommended for any sort of common-case code.
707 * In fact, if you are using synchronize_rcu_expedited() in a loop,
708 * please restructure your code to batch your updates, and then Use a
709 * single synchronize_rcu() instead.
710 */
711void synchronize_rcu_expedited(void)
712{
713	struct rcu_node *rnp;
714	struct rcu_state *rsp = &rcu_preempt_state;
715	unsigned long snap;
716	int trycount = 0;
717
718	smp_mb(); /* Caller's modifications seen first by other CPUs. */
719	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
720	smp_mb(); /* Above access cannot bleed into critical section. */
721
722	/*
723	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
724	 * operation that finds an rcu_node structure with tasks in the
725	 * process of being boosted will know that all tasks blocking
726	 * this expedited grace period will already be in the process of
727	 * being boosted.  This simplifies the process of moving tasks
728	 * from leaf to root rcu_node structures.
729	 */
730	if (!try_get_online_cpus()) {
731		/* CPU-hotplug operation in flight, fall back to normal GP. */
732		wait_rcu_gp(call_rcu);
733		return;
734	}
735
736	/*
737	 * Acquire lock, falling back to synchronize_rcu() if too many
738	 * lock-acquisition failures.  Of course, if someone does the
739	 * expedited grace period for us, just leave.
740	 */
741	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
742		if (ULONG_CMP_LT(snap,
743		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
744			put_online_cpus();
745			goto mb_ret; /* Others did our work for us. */
746		}
747		if (trycount++ < 10) {
748			udelay(trycount * num_online_cpus());
749		} else {
750			put_online_cpus();
751			wait_rcu_gp(call_rcu);
752			return;
753		}
754	}
755	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
756		put_online_cpus();
757		goto unlock_mb_ret; /* Others did our work for us. */
758	}
759
760	/* force all RCU readers onto ->blkd_tasks lists. */
761	synchronize_sched_expedited();
762
763	/*
764	 * Snapshot current state of ->blkd_tasks lists into ->expmask.
765	 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
766	 * to start clearing them.  Doing this in one phase leads to
767	 * strange races between setting and clearing bits, so just say "no"!
768	 */
769	rcu_for_each_leaf_node(rsp, rnp)
770		sync_rcu_preempt_exp_init1(rsp, rnp);
771	rcu_for_each_leaf_node(rsp, rnp)
772		sync_rcu_preempt_exp_init2(rsp, rnp);
773
774	put_online_cpus();
775
776	/* Wait for snapshotted ->blkd_tasks lists to drain. */
777	rnp = rcu_get_root(rsp);
778	wait_event(sync_rcu_preempt_exp_wq,
779		   sync_rcu_preempt_exp_done(rnp));
780
781	/* Clean up and exit. */
782	smp_mb(); /* ensure expedited GP seen before counter increment. */
783	ACCESS_ONCE(sync_rcu_preempt_exp_count) =
784					sync_rcu_preempt_exp_count + 1;
785unlock_mb_ret:
786	mutex_unlock(&sync_rcu_preempt_exp_mutex);
787mb_ret:
788	smp_mb(); /* ensure subsequent action seen after grace period. */
789}
790EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
791
792/**
793 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
794 *
795 * Note that this primitive does not necessarily wait for an RCU grace period
796 * to complete.  For example, if there are no RCU callbacks queued anywhere
797 * in the system, then rcu_barrier() is within its rights to return
798 * immediately, without waiting for anything, much less an RCU grace period.
799 */
800void rcu_barrier(void)
801{
802	_rcu_barrier(&rcu_preempt_state);
803}
804EXPORT_SYMBOL_GPL(rcu_barrier);
805
806/*
807 * Initialize preemptible RCU's state structures.
808 */
809static void __init __rcu_init_preempt(void)
810{
811	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
812}
813
814/*
815 * Check for a task exiting while in a preemptible-RCU read-side
816 * critical section, clean up if so.  No need to issue warnings,
817 * as debug_check_no_locks_held() already does this if lockdep
818 * is enabled.
819 */
820void exit_rcu(void)
821{
822	struct task_struct *t = current;
823
824	if (likely(list_empty(&current->rcu_node_entry)))
825		return;
826	t->rcu_read_lock_nesting = 1;
827	barrier();
828	t->rcu_read_unlock_special.b.blocked = true;
829	__rcu_read_unlock();
830}
831
832#else /* #ifdef CONFIG_PREEMPT_RCU */
833
834static struct rcu_state *rcu_state_p = &rcu_sched_state;
835
836/*
837 * Tell them what RCU they are running.
838 */
839static void __init rcu_bootup_announce(void)
840{
841	pr_info("Hierarchical RCU implementation.\n");
842	rcu_bootup_announce_oddness();
843}
844
845/*
846 * Because preemptible RCU does not exist, we never have to check for
847 * CPUs being in quiescent states.
848 */
849static void rcu_preempt_note_context_switch(void)
850{
851}
852
853/*
854 * Because preemptible RCU does not exist, there are never any preempted
855 * RCU readers.
856 */
857static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
858{
859	return 0;
860}
861
862/*
863 * Because there is no preemptible RCU, there can be no readers blocked.
864 */
865static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
866{
867	return false;
868}
869
870/*
871 * Because preemptible RCU does not exist, we never have to check for
872 * tasks blocked within RCU read-side critical sections.
873 */
874static void rcu_print_detail_task_stall(struct rcu_state *rsp)
875{
876}
877
878/*
879 * Because preemptible RCU does not exist, we never have to check for
880 * tasks blocked within RCU read-side critical sections.
881 */
882static int rcu_print_task_stall(struct rcu_node *rnp)
883{
884	return 0;
885}
886
887/*
888 * Because there is no preemptible RCU, there can be no readers blocked,
889 * so there is no need to check for blocked tasks.  So check only for
890 * bogus qsmask values.
891 */
892static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
893{
894	WARN_ON_ONCE(rnp->qsmask);
895}
896
897/*
898 * Because preemptible RCU does not exist, it never has any callbacks
899 * to check.
900 */
901static void rcu_preempt_check_callbacks(void)
902{
903}
904
905/*
906 * Wait for an rcu-preempt grace period, but make it happen quickly.
907 * But because preemptible RCU does not exist, map to rcu-sched.
908 */
909void synchronize_rcu_expedited(void)
910{
911	synchronize_sched_expedited();
912}
913EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
914
915/*
916 * Because preemptible RCU does not exist, rcu_barrier() is just
917 * another name for rcu_barrier_sched().
918 */
919void rcu_barrier(void)
920{
921	rcu_barrier_sched();
922}
923EXPORT_SYMBOL_GPL(rcu_barrier);
924
925/*
926 * Because preemptible RCU does not exist, it need not be initialized.
927 */
928static void __init __rcu_init_preempt(void)
929{
930}
931
932/*
933 * Because preemptible RCU does not exist, tasks cannot possibly exit
934 * while in preemptible RCU read-side critical sections.
935 */
936void exit_rcu(void)
937{
938}
939
940#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
941
942#ifdef CONFIG_RCU_BOOST
943
944#include "../locking/rtmutex_common.h"
945
946#ifdef CONFIG_RCU_TRACE
947
948static void rcu_initiate_boost_trace(struct rcu_node *rnp)
949{
950	if (!rcu_preempt_has_tasks(rnp))
951		rnp->n_balk_blkd_tasks++;
952	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
953		rnp->n_balk_exp_gp_tasks++;
954	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
955		rnp->n_balk_boost_tasks++;
956	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
957		rnp->n_balk_notblocked++;
958	else if (rnp->gp_tasks != NULL &&
959		 ULONG_CMP_LT(jiffies, rnp->boost_time))
960		rnp->n_balk_notyet++;
961	else
962		rnp->n_balk_nos++;
963}
964
965#else /* #ifdef CONFIG_RCU_TRACE */
966
967static void rcu_initiate_boost_trace(struct rcu_node *rnp)
968{
969}
970
971#endif /* #else #ifdef CONFIG_RCU_TRACE */
972
973static void rcu_wake_cond(struct task_struct *t, int status)
974{
975	/*
976	 * If the thread is yielding, only wake it when this
977	 * is invoked from idle
978	 */
979	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
980		wake_up_process(t);
981}
982
983/*
984 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
985 * or ->boost_tasks, advancing the pointer to the next task in the
986 * ->blkd_tasks list.
987 *
988 * Note that irqs must be enabled: boosting the task can block.
989 * Returns 1 if there are more tasks needing to be boosted.
990 */
991static int rcu_boost(struct rcu_node *rnp)
992{
993	unsigned long flags;
994	struct task_struct *t;
995	struct list_head *tb;
996
997	if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
998	    ACCESS_ONCE(rnp->boost_tasks) == NULL)
999		return 0;  /* Nothing left to boost. */
1000
1001	raw_spin_lock_irqsave(&rnp->lock, flags);
1002	smp_mb__after_unlock_lock();
1003
1004	/*
1005	 * Recheck under the lock: all tasks in need of boosting
1006	 * might exit their RCU read-side critical sections on their own.
1007	 */
1008	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1009		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1010		return 0;
1011	}
1012
1013	/*
1014	 * Preferentially boost tasks blocking expedited grace periods.
1015	 * This cannot starve the normal grace periods because a second
1016	 * expedited grace period must boost all blocked tasks, including
1017	 * those blocking the pre-existing normal grace period.
1018	 */
1019	if (rnp->exp_tasks != NULL) {
1020		tb = rnp->exp_tasks;
1021		rnp->n_exp_boosts++;
1022	} else {
1023		tb = rnp->boost_tasks;
1024		rnp->n_normal_boosts++;
1025	}
1026	rnp->n_tasks_boosted++;
1027
1028	/*
1029	 * We boost task t by manufacturing an rt_mutex that appears to
1030	 * be held by task t.  We leave a pointer to that rt_mutex where
1031	 * task t can find it, and task t will release the mutex when it
1032	 * exits its outermost RCU read-side critical section.  Then
1033	 * simply acquiring this artificial rt_mutex will boost task
1034	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1035	 *
1036	 * Note that task t must acquire rnp->lock to remove itself from
1037	 * the ->blkd_tasks list, which it will do from exit() if from
1038	 * nowhere else.  We therefore are guaranteed that task t will
1039	 * stay around at least until we drop rnp->lock.  Note that
1040	 * rnp->lock also resolves races between our priority boosting
1041	 * and task t's exiting its outermost RCU read-side critical
1042	 * section.
1043	 */
1044	t = container_of(tb, struct task_struct, rcu_node_entry);
1045	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1046	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1047	/* Lock only for side effect: boosts task t's priority. */
1048	rt_mutex_lock(&rnp->boost_mtx);
1049	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1050
1051	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1052	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1053}
1054
1055/*
1056 * Priority-boosting kthread.  One per leaf rcu_node and one for the
1057 * root rcu_node.
1058 */
1059static int rcu_boost_kthread(void *arg)
1060{
1061	struct rcu_node *rnp = (struct rcu_node *)arg;
1062	int spincnt = 0;
1063	int more2boost;
1064
1065	trace_rcu_utilization(TPS("Start boost kthread@init"));
1066	for (;;) {
1067		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1068		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1069		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1070		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1071		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1072		more2boost = rcu_boost(rnp);
1073		if (more2boost)
1074			spincnt++;
1075		else
1076			spincnt = 0;
1077		if (spincnt > 10) {
1078			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1079			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1080			schedule_timeout_interruptible(2);
1081			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1082			spincnt = 0;
1083		}
1084	}
1085	/* NOTREACHED */
1086	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1087	return 0;
1088}
1089
1090/*
1091 * Check to see if it is time to start boosting RCU readers that are
1092 * blocking the current grace period, and, if so, tell the per-rcu_node
1093 * kthread to start boosting them.  If there is an expedited grace
1094 * period in progress, it is always time to boost.
1095 *
1096 * The caller must hold rnp->lock, which this function releases.
1097 * The ->boost_kthread_task is immortal, so we don't need to worry
1098 * about it going away.
1099 */
1100static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1101	__releases(rnp->lock)
1102{
1103	struct task_struct *t;
1104
1105	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1106		rnp->n_balk_exp_gp_tasks++;
1107		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1108		return;
1109	}
1110	if (rnp->exp_tasks != NULL ||
1111	    (rnp->gp_tasks != NULL &&
1112	     rnp->boost_tasks == NULL &&
1113	     rnp->qsmask == 0 &&
1114	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1115		if (rnp->exp_tasks == NULL)
1116			rnp->boost_tasks = rnp->gp_tasks;
1117		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1118		t = rnp->boost_kthread_task;
1119		if (t)
1120			rcu_wake_cond(t, rnp->boost_kthread_status);
1121	} else {
1122		rcu_initiate_boost_trace(rnp);
1123		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1124	}
1125}
1126
1127/*
1128 * Wake up the per-CPU kthread to invoke RCU callbacks.
1129 */
1130static void invoke_rcu_callbacks_kthread(void)
1131{
1132	unsigned long flags;
1133
1134	local_irq_save(flags);
1135	__this_cpu_write(rcu_cpu_has_work, 1);
1136	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1137	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1138		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1139			      __this_cpu_read(rcu_cpu_kthread_status));
1140	}
1141	local_irq_restore(flags);
1142}
1143
1144/*
1145 * Is the current CPU running the RCU-callbacks kthread?
1146 * Caller must have preemption disabled.
1147 */
1148static bool rcu_is_callbacks_kthread(void)
1149{
1150	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1151}
1152
1153#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1154
1155/*
1156 * Do priority-boost accounting for the start of a new grace period.
1157 */
1158static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1159{
1160	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1161}
1162
1163/*
1164 * Create an RCU-boost kthread for the specified node if one does not
1165 * already exist.  We only create this kthread for preemptible RCU.
1166 * Returns zero if all is well, a negated errno otherwise.
1167 */
1168static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1169				       struct rcu_node *rnp)
1170{
1171	int rnp_index = rnp - &rsp->node[0];
1172	unsigned long flags;
1173	struct sched_param sp;
1174	struct task_struct *t;
1175
1176	if (&rcu_preempt_state != rsp)
1177		return 0;
1178
1179	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1180		return 0;
1181
1182	rsp->boost = 1;
1183	if (rnp->boost_kthread_task != NULL)
1184		return 0;
1185	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1186			   "rcub/%d", rnp_index);
1187	if (IS_ERR(t))
1188		return PTR_ERR(t);
1189	raw_spin_lock_irqsave(&rnp->lock, flags);
1190	smp_mb__after_unlock_lock();
1191	rnp->boost_kthread_task = t;
1192	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1193	sp.sched_priority = kthread_prio;
1194	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1195	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1196	return 0;
1197}
1198
1199static void rcu_kthread_do_work(void)
1200{
1201	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1202	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1203	rcu_preempt_do_callbacks();
1204}
1205
1206static void rcu_cpu_kthread_setup(unsigned int cpu)
1207{
1208	struct sched_param sp;
1209
1210	sp.sched_priority = kthread_prio;
1211	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1212}
1213
1214static void rcu_cpu_kthread_park(unsigned int cpu)
1215{
1216	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1217}
1218
1219static int rcu_cpu_kthread_should_run(unsigned int cpu)
1220{
1221	return __this_cpu_read(rcu_cpu_has_work);
1222}
1223
1224/*
1225 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1226 * RCU softirq used in flavors and configurations of RCU that do not
1227 * support RCU priority boosting.
1228 */
1229static void rcu_cpu_kthread(unsigned int cpu)
1230{
1231	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1232	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1233	int spincnt;
1234
1235	for (spincnt = 0; spincnt < 10; spincnt++) {
1236		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1237		local_bh_disable();
1238		*statusp = RCU_KTHREAD_RUNNING;
1239		this_cpu_inc(rcu_cpu_kthread_loops);
1240		local_irq_disable();
1241		work = *workp;
1242		*workp = 0;
1243		local_irq_enable();
1244		if (work)
1245			rcu_kthread_do_work();
1246		local_bh_enable();
1247		if (*workp == 0) {
1248			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1249			*statusp = RCU_KTHREAD_WAITING;
1250			return;
1251		}
1252	}
1253	*statusp = RCU_KTHREAD_YIELDING;
1254	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1255	schedule_timeout_interruptible(2);
1256	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1257	*statusp = RCU_KTHREAD_WAITING;
1258}
1259
1260/*
1261 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1262 * served by the rcu_node in question.  The CPU hotplug lock is still
1263 * held, so the value of rnp->qsmaskinit will be stable.
1264 *
1265 * We don't include outgoingcpu in the affinity set, use -1 if there is
1266 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1267 * this function allows the kthread to execute on any CPU.
1268 */
1269static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1270{
1271	struct task_struct *t = rnp->boost_kthread_task;
1272	unsigned long mask = rcu_rnp_online_cpus(rnp);
1273	cpumask_var_t cm;
1274	int cpu;
1275
1276	if (!t)
1277		return;
1278	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1279		return;
1280	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1281		if ((mask & 0x1) && cpu != outgoingcpu)
1282			cpumask_set_cpu(cpu, cm);
1283	if (cpumask_weight(cm) == 0)
1284		cpumask_setall(cm);
1285	set_cpus_allowed_ptr(t, cm);
1286	free_cpumask_var(cm);
1287}
1288
1289static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1290	.store			= &rcu_cpu_kthread_task,
1291	.thread_should_run	= rcu_cpu_kthread_should_run,
1292	.thread_fn		= rcu_cpu_kthread,
1293	.thread_comm		= "rcuc/%u",
1294	.setup			= rcu_cpu_kthread_setup,
1295	.park			= rcu_cpu_kthread_park,
1296};
1297
1298/*
1299 * Spawn boost kthreads -- called as soon as the scheduler is running.
1300 */
1301static void __init rcu_spawn_boost_kthreads(void)
1302{
1303	struct rcu_node *rnp;
1304	int cpu;
1305
1306	for_each_possible_cpu(cpu)
1307		per_cpu(rcu_cpu_has_work, cpu) = 0;
1308	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1309	rcu_for_each_leaf_node(rcu_state_p, rnp)
1310		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1311}
1312
1313static void rcu_prepare_kthreads(int cpu)
1314{
1315	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1316	struct rcu_node *rnp = rdp->mynode;
1317
1318	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1319	if (rcu_scheduler_fully_active)
1320		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1321}
1322
1323#else /* #ifdef CONFIG_RCU_BOOST */
1324
1325static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1326	__releases(rnp->lock)
1327{
1328	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1329}
1330
1331static void invoke_rcu_callbacks_kthread(void)
1332{
1333	WARN_ON_ONCE(1);
1334}
1335
1336static bool rcu_is_callbacks_kthread(void)
1337{
1338	return false;
1339}
1340
1341static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1342{
1343}
1344
1345static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1346{
1347}
1348
1349static void __init rcu_spawn_boost_kthreads(void)
1350{
1351}
1352
1353static void rcu_prepare_kthreads(int cpu)
1354{
1355}
1356
1357#endif /* #else #ifdef CONFIG_RCU_BOOST */
1358
1359#if !defined(CONFIG_RCU_FAST_NO_HZ)
1360
1361/*
1362 * Check to see if any future RCU-related work will need to be done
1363 * by the current CPU, even if none need be done immediately, returning
1364 * 1 if so.  This function is part of the RCU implementation; it is -not-
1365 * an exported member of the RCU API.
1366 *
1367 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1368 * any flavor of RCU.
1369 */
1370#ifndef CONFIG_RCU_NOCB_CPU_ALL
1371int rcu_needs_cpu(unsigned long *delta_jiffies)
1372{
1373	*delta_jiffies = ULONG_MAX;
1374	return rcu_cpu_has_callbacks(NULL);
1375}
1376#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1377
1378/*
1379 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1380 * after it.
1381 */
1382static void rcu_cleanup_after_idle(void)
1383{
1384}
1385
1386/*
1387 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1388 * is nothing.
1389 */
1390static void rcu_prepare_for_idle(void)
1391{
1392}
1393
1394/*
1395 * Don't bother keeping a running count of the number of RCU callbacks
1396 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1397 */
1398static void rcu_idle_count_callbacks_posted(void)
1399{
1400}
1401
1402#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1403
1404/*
1405 * This code is invoked when a CPU goes idle, at which point we want
1406 * to have the CPU do everything required for RCU so that it can enter
1407 * the energy-efficient dyntick-idle mode.  This is handled by a
1408 * state machine implemented by rcu_prepare_for_idle() below.
1409 *
1410 * The following three proprocessor symbols control this state machine:
1411 *
1412 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1413 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1414 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1415 *	benchmarkers who might otherwise be tempted to set this to a large
1416 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1417 *	system.  And if you are -that- concerned about energy efficiency,
1418 *	just power the system down and be done with it!
1419 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1420 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1421 *	callbacks pending.  Setting this too high can OOM your system.
1422 *
1423 * The values below work well in practice.  If future workloads require
1424 * adjustment, they can be converted into kernel config parameters, though
1425 * making the state machine smarter might be a better option.
1426 */
1427#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1428#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1429
1430static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1431module_param(rcu_idle_gp_delay, int, 0644);
1432static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1433module_param(rcu_idle_lazy_gp_delay, int, 0644);
1434
1435extern int tick_nohz_active;
1436
1437/*
1438 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1439 * only if it has been awhile since the last time we did so.  Afterwards,
1440 * if there are any callbacks ready for immediate invocation, return true.
1441 */
1442static bool __maybe_unused rcu_try_advance_all_cbs(void)
1443{
1444	bool cbs_ready = false;
1445	struct rcu_data *rdp;
1446	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1447	struct rcu_node *rnp;
1448	struct rcu_state *rsp;
1449
1450	/* Exit early if we advanced recently. */
1451	if (jiffies == rdtp->last_advance_all)
1452		return false;
1453	rdtp->last_advance_all = jiffies;
1454
1455	for_each_rcu_flavor(rsp) {
1456		rdp = this_cpu_ptr(rsp->rda);
1457		rnp = rdp->mynode;
1458
1459		/*
1460		 * Don't bother checking unless a grace period has
1461		 * completed since we last checked and there are
1462		 * callbacks not yet ready to invoke.
1463		 */
1464		if ((rdp->completed != rnp->completed ||
1465		     unlikely(ACCESS_ONCE(rdp->gpwrap))) &&
1466		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1467			note_gp_changes(rsp, rdp);
1468
1469		if (cpu_has_callbacks_ready_to_invoke(rdp))
1470			cbs_ready = true;
1471	}
1472	return cbs_ready;
1473}
1474
1475/*
1476 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1477 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1478 * caller to set the timeout based on whether or not there are non-lazy
1479 * callbacks.
1480 *
1481 * The caller must have disabled interrupts.
1482 */
1483#ifndef CONFIG_RCU_NOCB_CPU_ALL
1484int rcu_needs_cpu(unsigned long *dj)
1485{
1486	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1487
1488	/* Snapshot to detect later posting of non-lazy callback. */
1489	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1490
1491	/* If no callbacks, RCU doesn't need the CPU. */
1492	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1493		*dj = ULONG_MAX;
1494		return 0;
1495	}
1496
1497	/* Attempt to advance callbacks. */
1498	if (rcu_try_advance_all_cbs()) {
1499		/* Some ready to invoke, so initiate later invocation. */
1500		invoke_rcu_core();
1501		return 1;
1502	}
1503	rdtp->last_accelerate = jiffies;
1504
1505	/* Request timer delay depending on laziness, and round. */
1506	if (!rdtp->all_lazy) {
1507		*dj = round_up(rcu_idle_gp_delay + jiffies,
1508			       rcu_idle_gp_delay) - jiffies;
1509	} else {
1510		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1511	}
1512	return 0;
1513}
1514#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1515
1516/*
1517 * Prepare a CPU for idle from an RCU perspective.  The first major task
1518 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1519 * The second major task is to check to see if a non-lazy callback has
1520 * arrived at a CPU that previously had only lazy callbacks.  The third
1521 * major task is to accelerate (that is, assign grace-period numbers to)
1522 * any recently arrived callbacks.
1523 *
1524 * The caller must have disabled interrupts.
1525 */
1526static void rcu_prepare_for_idle(void)
1527{
1528#ifndef CONFIG_RCU_NOCB_CPU_ALL
1529	bool needwake;
1530	struct rcu_data *rdp;
1531	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1532	struct rcu_node *rnp;
1533	struct rcu_state *rsp;
1534	int tne;
1535
1536	/* Handle nohz enablement switches conservatively. */
1537	tne = ACCESS_ONCE(tick_nohz_active);
1538	if (tne != rdtp->tick_nohz_enabled_snap) {
1539		if (rcu_cpu_has_callbacks(NULL))
1540			invoke_rcu_core(); /* force nohz to see update. */
1541		rdtp->tick_nohz_enabled_snap = tne;
1542		return;
1543	}
1544	if (!tne)
1545		return;
1546
1547	/* If this is a no-CBs CPU, no callbacks, just return. */
1548	if (rcu_is_nocb_cpu(smp_processor_id()))
1549		return;
1550
1551	/*
1552	 * If a non-lazy callback arrived at a CPU having only lazy
1553	 * callbacks, invoke RCU core for the side-effect of recalculating
1554	 * idle duration on re-entry to idle.
1555	 */
1556	if (rdtp->all_lazy &&
1557	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1558		rdtp->all_lazy = false;
1559		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1560		invoke_rcu_core();
1561		return;
1562	}
1563
1564	/*
1565	 * If we have not yet accelerated this jiffy, accelerate all
1566	 * callbacks on this CPU.
1567	 */
1568	if (rdtp->last_accelerate == jiffies)
1569		return;
1570	rdtp->last_accelerate = jiffies;
1571	for_each_rcu_flavor(rsp) {
1572		rdp = this_cpu_ptr(rsp->rda);
1573		if (!*rdp->nxttail[RCU_DONE_TAIL])
1574			continue;
1575		rnp = rdp->mynode;
1576		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1577		smp_mb__after_unlock_lock();
1578		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1579		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1580		if (needwake)
1581			rcu_gp_kthread_wake(rsp);
1582	}
1583#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1584}
1585
1586/*
1587 * Clean up for exit from idle.  Attempt to advance callbacks based on
1588 * any grace periods that elapsed while the CPU was idle, and if any
1589 * callbacks are now ready to invoke, initiate invocation.
1590 */
1591static void rcu_cleanup_after_idle(void)
1592{
1593#ifndef CONFIG_RCU_NOCB_CPU_ALL
1594	if (rcu_is_nocb_cpu(smp_processor_id()))
1595		return;
1596	if (rcu_try_advance_all_cbs())
1597		invoke_rcu_core();
1598#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1599}
1600
1601/*
1602 * Keep a running count of the number of non-lazy callbacks posted
1603 * on this CPU.  This running counter (which is never decremented) allows
1604 * rcu_prepare_for_idle() to detect when something out of the idle loop
1605 * posts a callback, even if an equal number of callbacks are invoked.
1606 * Of course, callbacks should only be posted from within a trace event
1607 * designed to be called from idle or from within RCU_NONIDLE().
1608 */
1609static void rcu_idle_count_callbacks_posted(void)
1610{
1611	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1612}
1613
1614/*
1615 * Data for flushing lazy RCU callbacks at OOM time.
1616 */
1617static atomic_t oom_callback_count;
1618static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1619
1620/*
1621 * RCU OOM callback -- decrement the outstanding count and deliver the
1622 * wake-up if we are the last one.
1623 */
1624static void rcu_oom_callback(struct rcu_head *rhp)
1625{
1626	if (atomic_dec_and_test(&oom_callback_count))
1627		wake_up(&oom_callback_wq);
1628}
1629
1630/*
1631 * Post an rcu_oom_notify callback on the current CPU if it has at
1632 * least one lazy callback.  This will unnecessarily post callbacks
1633 * to CPUs that already have a non-lazy callback at the end of their
1634 * callback list, but this is an infrequent operation, so accept some
1635 * extra overhead to keep things simple.
1636 */
1637static void rcu_oom_notify_cpu(void *unused)
1638{
1639	struct rcu_state *rsp;
1640	struct rcu_data *rdp;
1641
1642	for_each_rcu_flavor(rsp) {
1643		rdp = raw_cpu_ptr(rsp->rda);
1644		if (rdp->qlen_lazy != 0) {
1645			atomic_inc(&oom_callback_count);
1646			rsp->call(&rdp->oom_head, rcu_oom_callback);
1647		}
1648	}
1649}
1650
1651/*
1652 * If low on memory, ensure that each CPU has a non-lazy callback.
1653 * This will wake up CPUs that have only lazy callbacks, in turn
1654 * ensuring that they free up the corresponding memory in a timely manner.
1655 * Because an uncertain amount of memory will be freed in some uncertain
1656 * timeframe, we do not claim to have freed anything.
1657 */
1658static int rcu_oom_notify(struct notifier_block *self,
1659			  unsigned long notused, void *nfreed)
1660{
1661	int cpu;
1662
1663	/* Wait for callbacks from earlier instance to complete. */
1664	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1665	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1666
1667	/*
1668	 * Prevent premature wakeup: ensure that all increments happen
1669	 * before there is a chance of the counter reaching zero.
1670	 */
1671	atomic_set(&oom_callback_count, 1);
1672
1673	get_online_cpus();
1674	for_each_online_cpu(cpu) {
1675		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1676		cond_resched_rcu_qs();
1677	}
1678	put_online_cpus();
1679
1680	/* Unconditionally decrement: no need to wake ourselves up. */
1681	atomic_dec(&oom_callback_count);
1682
1683	return NOTIFY_OK;
1684}
1685
1686static struct notifier_block rcu_oom_nb = {
1687	.notifier_call = rcu_oom_notify
1688};
1689
1690static int __init rcu_register_oom_notifier(void)
1691{
1692	register_oom_notifier(&rcu_oom_nb);
1693	return 0;
1694}
1695early_initcall(rcu_register_oom_notifier);
1696
1697#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1698
1699#ifdef CONFIG_RCU_CPU_STALL_INFO
1700
1701#ifdef CONFIG_RCU_FAST_NO_HZ
1702
1703static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1704{
1705	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1706	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1707
1708	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1709		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1710		ulong2long(nlpd),
1711		rdtp->all_lazy ? 'L' : '.',
1712		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1713}
1714
1715#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1716
1717static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1718{
1719	*cp = '\0';
1720}
1721
1722#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1723
1724/* Initiate the stall-info list. */
1725static void print_cpu_stall_info_begin(void)
1726{
1727	pr_cont("\n");
1728}
1729
1730/*
1731 * Print out diagnostic information for the specified stalled CPU.
1732 *
1733 * If the specified CPU is aware of the current RCU grace period
1734 * (flavor specified by rsp), then print the number of scheduling
1735 * clock interrupts the CPU has taken during the time that it has
1736 * been aware.  Otherwise, print the number of RCU grace periods
1737 * that this CPU is ignorant of, for example, "1" if the CPU was
1738 * aware of the previous grace period.
1739 *
1740 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1741 */
1742static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1743{
1744	char fast_no_hz[72];
1745	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1746	struct rcu_dynticks *rdtp = rdp->dynticks;
1747	char *ticks_title;
1748	unsigned long ticks_value;
1749
1750	if (rsp->gpnum == rdp->gpnum) {
1751		ticks_title = "ticks this GP";
1752		ticks_value = rdp->ticks_this_gp;
1753	} else {
1754		ticks_title = "GPs behind";
1755		ticks_value = rsp->gpnum - rdp->gpnum;
1756	}
1757	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1758	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1759	       cpu, ticks_value, ticks_title,
1760	       atomic_read(&rdtp->dynticks) & 0xfff,
1761	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1762	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1763	       ACCESS_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1764	       fast_no_hz);
1765}
1766
1767/* Terminate the stall-info list. */
1768static void print_cpu_stall_info_end(void)
1769{
1770	pr_err("\t");
1771}
1772
1773/* Zero ->ticks_this_gp for all flavors of RCU. */
1774static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1775{
1776	rdp->ticks_this_gp = 0;
1777	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1778}
1779
1780/* Increment ->ticks_this_gp for all flavors of RCU. */
1781static void increment_cpu_stall_ticks(void)
1782{
1783	struct rcu_state *rsp;
1784
1785	for_each_rcu_flavor(rsp)
1786		raw_cpu_inc(rsp->rda->ticks_this_gp);
1787}
1788
1789#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1790
1791static void print_cpu_stall_info_begin(void)
1792{
1793	pr_cont(" {");
1794}
1795
1796static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1797{
1798	pr_cont(" %d", cpu);
1799}
1800
1801static void print_cpu_stall_info_end(void)
1802{
1803	pr_cont("} ");
1804}
1805
1806static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1807{
1808}
1809
1810static void increment_cpu_stall_ticks(void)
1811{
1812}
1813
1814#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1815
1816#ifdef CONFIG_RCU_NOCB_CPU
1817
1818/*
1819 * Offload callback processing from the boot-time-specified set of CPUs
1820 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1821 * kthread created that pulls the callbacks from the corresponding CPU,
1822 * waits for a grace period to elapse, and invokes the callbacks.
1823 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1824 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1825 * has been specified, in which case each kthread actively polls its
1826 * CPU.  (Which isn't so great for energy efficiency, but which does
1827 * reduce RCU's overhead on that CPU.)
1828 *
1829 * This is intended to be used in conjunction with Frederic Weisbecker's
1830 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1831 * running CPU-bound user-mode computations.
1832 *
1833 * Offloading of callback processing could also in theory be used as
1834 * an energy-efficiency measure because CPUs with no RCU callbacks
1835 * queued are more aggressive about entering dyntick-idle mode.
1836 */
1837
1838
1839/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1840static int __init rcu_nocb_setup(char *str)
1841{
1842	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1843	have_rcu_nocb_mask = true;
1844	cpulist_parse(str, rcu_nocb_mask);
1845	return 1;
1846}
1847__setup("rcu_nocbs=", rcu_nocb_setup);
1848
1849static int __init parse_rcu_nocb_poll(char *arg)
1850{
1851	rcu_nocb_poll = 1;
1852	return 0;
1853}
1854early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1855
1856/*
1857 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1858 * grace period.
1859 */
1860static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1861{
1862	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1863}
1864
1865/*
1866 * Set the root rcu_node structure's ->need_future_gp field
1867 * based on the sum of those of all rcu_node structures.  This does
1868 * double-count the root rcu_node structure's requests, but this
1869 * is necessary to handle the possibility of a rcu_nocb_kthread()
1870 * having awakened during the time that the rcu_node structures
1871 * were being updated for the end of the previous grace period.
1872 */
1873static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1874{
1875	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1876}
1877
1878static void rcu_init_one_nocb(struct rcu_node *rnp)
1879{
1880	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1881	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1882}
1883
1884#ifndef CONFIG_RCU_NOCB_CPU_ALL
1885/* Is the specified CPU a no-CBs CPU? */
1886bool rcu_is_nocb_cpu(int cpu)
1887{
1888	if (have_rcu_nocb_mask)
1889		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1890	return false;
1891}
1892#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1893
1894/*
1895 * Kick the leader kthread for this NOCB group.
1896 */
1897static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1898{
1899	struct rcu_data *rdp_leader = rdp->nocb_leader;
1900
1901	if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
1902		return;
1903	if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1904		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1905		ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
1906		wake_up(&rdp_leader->nocb_wq);
1907	}
1908}
1909
1910/*
1911 * Does the specified CPU need an RCU callback for the specified flavor
1912 * of rcu_barrier()?
1913 */
1914static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1915{
1916	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1917	unsigned long ret;
1918#ifdef CONFIG_PROVE_RCU
1919	struct rcu_head *rhp;
1920#endif /* #ifdef CONFIG_PROVE_RCU */
1921
1922	/*
1923	 * Check count of all no-CBs callbacks awaiting invocation.
1924	 * There needs to be a barrier before this function is called,
1925	 * but associated with a prior determination that no more
1926	 * callbacks would be posted.  In the worst case, the first
1927	 * barrier in _rcu_barrier() suffices (but the caller cannot
1928	 * necessarily rely on this, not a substitute for the caller
1929	 * getting the concurrency design right!).  There must also be
1930	 * a barrier between the following load an posting of a callback
1931	 * (if a callback is in fact needed).  This is associated with an
1932	 * atomic_inc() in the caller.
1933	 */
1934	ret = atomic_long_read(&rdp->nocb_q_count);
1935
1936#ifdef CONFIG_PROVE_RCU
1937	rhp = ACCESS_ONCE(rdp->nocb_head);
1938	if (!rhp)
1939		rhp = ACCESS_ONCE(rdp->nocb_gp_head);
1940	if (!rhp)
1941		rhp = ACCESS_ONCE(rdp->nocb_follower_head);
1942
1943	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1944	if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp &&
1945	    rcu_scheduler_fully_active) {
1946		/* RCU callback enqueued before CPU first came online??? */
1947		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1948		       cpu, rhp->func);
1949		WARN_ON_ONCE(1);
1950	}
1951#endif /* #ifdef CONFIG_PROVE_RCU */
1952
1953	return !!ret;
1954}
1955
1956/*
1957 * Enqueue the specified string of rcu_head structures onto the specified
1958 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1959 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1960 * counts are supplied by rhcount and rhcount_lazy.
1961 *
1962 * If warranted, also wake up the kthread servicing this CPUs queues.
1963 */
1964static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1965				    struct rcu_head *rhp,
1966				    struct rcu_head **rhtp,
1967				    int rhcount, int rhcount_lazy,
1968				    unsigned long flags)
1969{
1970	int len;
1971	struct rcu_head **old_rhpp;
1972	struct task_struct *t;
1973
1974	/* Enqueue the callback on the nocb list and update counts. */
1975	atomic_long_add(rhcount, &rdp->nocb_q_count);
1976	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1977	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1978	ACCESS_ONCE(*old_rhpp) = rhp;
1979	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1980	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1981
1982	/* If we are not being polled and there is a kthread, awaken it ... */
1983	t = ACCESS_ONCE(rdp->nocb_kthread);
1984	if (rcu_nocb_poll || !t) {
1985		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1986				    TPS("WakeNotPoll"));
1987		return;
1988	}
1989	len = atomic_long_read(&rdp->nocb_q_count);
1990	if (old_rhpp == &rdp->nocb_head) {
1991		if (!irqs_disabled_flags(flags)) {
1992			/* ... if queue was empty ... */
1993			wake_nocb_leader(rdp, false);
1994			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1995					    TPS("WakeEmpty"));
1996		} else {
1997			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1998			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1999					    TPS("WakeEmptyIsDeferred"));
2000		}
2001		rdp->qlen_last_fqs_check = 0;
2002	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2003		/* ... or if many callbacks queued. */
2004		if (!irqs_disabled_flags(flags)) {
2005			wake_nocb_leader(rdp, true);
2006			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2007					    TPS("WakeOvf"));
2008		} else {
2009			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2010			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2011					    TPS("WakeOvfIsDeferred"));
2012		}
2013		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2014	} else {
2015		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2016	}
2017	return;
2018}
2019
2020/*
2021 * This is a helper for __call_rcu(), which invokes this when the normal
2022 * callback queue is inoperable.  If this is not a no-CBs CPU, this
2023 * function returns failure back to __call_rcu(), which can complain
2024 * appropriately.
2025 *
2026 * Otherwise, this function queues the callback where the corresponding
2027 * "rcuo" kthread can find it.
2028 */
2029static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2030			    bool lazy, unsigned long flags)
2031{
2032
2033	if (!rcu_is_nocb_cpu(rdp->cpu))
2034		return false;
2035	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2036	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2037		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2038					 (unsigned long)rhp->func,
2039					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2040					 -atomic_long_read(&rdp->nocb_q_count));
2041	else
2042		trace_rcu_callback(rdp->rsp->name, rhp,
2043				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2044				   -atomic_long_read(&rdp->nocb_q_count));
2045
2046	/*
2047	 * If called from an extended quiescent state with interrupts
2048	 * disabled, invoke the RCU core in order to allow the idle-entry
2049	 * deferred-wakeup check to function.
2050	 */
2051	if (irqs_disabled_flags(flags) &&
2052	    !rcu_is_watching() &&
2053	    cpu_online(smp_processor_id()))
2054		invoke_rcu_core();
2055
2056	return true;
2057}
2058
2059/*
2060 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2061 * not a no-CBs CPU.
2062 */
2063static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2064						     struct rcu_data *rdp,
2065						     unsigned long flags)
2066{
2067	long ql = rsp->qlen;
2068	long qll = rsp->qlen_lazy;
2069
2070	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2071	if (!rcu_is_nocb_cpu(smp_processor_id()))
2072		return false;
2073	rsp->qlen = 0;
2074	rsp->qlen_lazy = 0;
2075
2076	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2077	if (rsp->orphan_donelist != NULL) {
2078		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2079					rsp->orphan_donetail, ql, qll, flags);
2080		ql = qll = 0;
2081		rsp->orphan_donelist = NULL;
2082		rsp->orphan_donetail = &rsp->orphan_donelist;
2083	}
2084	if (rsp->orphan_nxtlist != NULL) {
2085		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2086					rsp->orphan_nxttail, ql, qll, flags);
2087		ql = qll = 0;
2088		rsp->orphan_nxtlist = NULL;
2089		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2090	}
2091	return true;
2092}
2093
2094/*
2095 * If necessary, kick off a new grace period, and either way wait
2096 * for a subsequent grace period to complete.
2097 */
2098static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2099{
2100	unsigned long c;
2101	bool d;
2102	unsigned long flags;
2103	bool needwake;
2104	struct rcu_node *rnp = rdp->mynode;
2105
2106	raw_spin_lock_irqsave(&rnp->lock, flags);
2107	smp_mb__after_unlock_lock();
2108	needwake = rcu_start_future_gp(rnp, rdp, &c);
2109	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2110	if (needwake)
2111		rcu_gp_kthread_wake(rdp->rsp);
2112
2113	/*
2114	 * Wait for the grace period.  Do so interruptibly to avoid messing
2115	 * up the load average.
2116	 */
2117	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2118	for (;;) {
2119		wait_event_interruptible(
2120			rnp->nocb_gp_wq[c & 0x1],
2121			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2122		if (likely(d))
2123			break;
2124		WARN_ON(signal_pending(current));
2125		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2126	}
2127	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2128	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2129}
2130
2131/*
2132 * Leaders come here to wait for additional callbacks to show up.
2133 * This function does not return until callbacks appear.
2134 */
2135static void nocb_leader_wait(struct rcu_data *my_rdp)
2136{
2137	bool firsttime = true;
2138	bool gotcbs;
2139	struct rcu_data *rdp;
2140	struct rcu_head **tail;
2141
2142wait_again:
2143
2144	/* Wait for callbacks to appear. */
2145	if (!rcu_nocb_poll) {
2146		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2147		wait_event_interruptible(my_rdp->nocb_wq,
2148				!ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2149		/* Memory barrier handled by smp_mb() calls below and repoll. */
2150	} else if (firsttime) {
2151		firsttime = false; /* Don't drown trace log with "Poll"! */
2152		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2153	}
2154
2155	/*
2156	 * Each pass through the following loop checks a follower for CBs.
2157	 * We are our own first follower.  Any CBs found are moved to
2158	 * nocb_gp_head, where they await a grace period.
2159	 */
2160	gotcbs = false;
2161	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2162		rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2163		if (!rdp->nocb_gp_head)
2164			continue;  /* No CBs here, try next follower. */
2165
2166		/* Move callbacks to wait-for-GP list, which is empty. */
2167		ACCESS_ONCE(rdp->nocb_head) = NULL;
2168		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2169		gotcbs = true;
2170	}
2171
2172	/*
2173	 * If there were no callbacks, sleep a bit, rescan after a
2174	 * memory barrier, and go retry.
2175	 */
2176	if (unlikely(!gotcbs)) {
2177		if (!rcu_nocb_poll)
2178			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2179					    "WokeEmpty");
2180		WARN_ON(signal_pending(current));
2181		schedule_timeout_interruptible(1);
2182
2183		/* Rescan in case we were a victim of memory ordering. */
2184		my_rdp->nocb_leader_sleep = true;
2185		smp_mb();  /* Ensure _sleep true before scan. */
2186		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2187			if (ACCESS_ONCE(rdp->nocb_head)) {
2188				/* Found CB, so short-circuit next wait. */
2189				my_rdp->nocb_leader_sleep = false;
2190				break;
2191			}
2192		goto wait_again;
2193	}
2194
2195	/* Wait for one grace period. */
2196	rcu_nocb_wait_gp(my_rdp);
2197
2198	/*
2199	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2200	 * We set it now, but recheck for new callbacks while
2201	 * traversing our follower list.
2202	 */
2203	my_rdp->nocb_leader_sleep = true;
2204	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2205
2206	/* Each pass through the following loop wakes a follower, if needed. */
2207	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2208		if (ACCESS_ONCE(rdp->nocb_head))
2209			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2210		if (!rdp->nocb_gp_head)
2211			continue; /* No CBs, so no need to wake follower. */
2212
2213		/* Append callbacks to follower's "done" list. */
2214		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2215		*tail = rdp->nocb_gp_head;
2216		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2217		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2218			/*
2219			 * List was empty, wake up the follower.
2220			 * Memory barriers supplied by atomic_long_add().
2221			 */
2222			wake_up(&rdp->nocb_wq);
2223		}
2224	}
2225
2226	/* If we (the leader) don't have CBs, go wait some more. */
2227	if (!my_rdp->nocb_follower_head)
2228		goto wait_again;
2229}
2230
2231/*
2232 * Followers come here to wait for additional callbacks to show up.
2233 * This function does not return until callbacks appear.
2234 */
2235static void nocb_follower_wait(struct rcu_data *rdp)
2236{
2237	bool firsttime = true;
2238
2239	for (;;) {
2240		if (!rcu_nocb_poll) {
2241			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2242					    "FollowerSleep");
2243			wait_event_interruptible(rdp->nocb_wq,
2244						 ACCESS_ONCE(rdp->nocb_follower_head));
2245		} else if (firsttime) {
2246			/* Don't drown trace log with "Poll"! */
2247			firsttime = false;
2248			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2249		}
2250		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2251			/* ^^^ Ensure CB invocation follows _head test. */
2252			return;
2253		}
2254		if (!rcu_nocb_poll)
2255			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2256					    "WokeEmpty");
2257		WARN_ON(signal_pending(current));
2258		schedule_timeout_interruptible(1);
2259	}
2260}
2261
2262/*
2263 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2264 * callbacks queued by the corresponding no-CBs CPU, however, there is
2265 * an optional leader-follower relationship so that the grace-period
2266 * kthreads don't have to do quite so many wakeups.
2267 */
2268static int rcu_nocb_kthread(void *arg)
2269{
2270	int c, cl;
2271	struct rcu_head *list;
2272	struct rcu_head *next;
2273	struct rcu_head **tail;
2274	struct rcu_data *rdp = arg;
2275
2276	/* Each pass through this loop invokes one batch of callbacks */
2277	for (;;) {
2278		/* Wait for callbacks. */
2279		if (rdp->nocb_leader == rdp)
2280			nocb_leader_wait(rdp);
2281		else
2282			nocb_follower_wait(rdp);
2283
2284		/* Pull the ready-to-invoke callbacks onto local list. */
2285		list = ACCESS_ONCE(rdp->nocb_follower_head);
2286		BUG_ON(!list);
2287		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2288		ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2289		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2290
2291		/* Each pass through the following loop invokes a callback. */
2292		trace_rcu_batch_start(rdp->rsp->name,
2293				      atomic_long_read(&rdp->nocb_q_count_lazy),
2294				      atomic_long_read(&rdp->nocb_q_count), -1);
2295		c = cl = 0;
2296		while (list) {
2297			next = list->next;
2298			/* Wait for enqueuing to complete, if needed. */
2299			while (next == NULL && &list->next != tail) {
2300				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2301						    TPS("WaitQueue"));
2302				schedule_timeout_interruptible(1);
2303				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2304						    TPS("WokeQueue"));
2305				next = list->next;
2306			}
2307			debug_rcu_head_unqueue(list);
2308			local_bh_disable();
2309			if (__rcu_reclaim(rdp->rsp->name, list))
2310				cl++;
2311			c++;
2312			local_bh_enable();
2313			list = next;
2314		}
2315		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2316		smp_mb__before_atomic();  /* _add after CB invocation. */
2317		atomic_long_add(-c, &rdp->nocb_q_count);
2318		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2319		rdp->n_nocbs_invoked += c;
2320	}
2321	return 0;
2322}
2323
2324/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2325static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2326{
2327	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2328}
2329
2330/* Do a deferred wakeup of rcu_nocb_kthread(). */
2331static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2332{
2333	int ndw;
2334
2335	if (!rcu_nocb_need_deferred_wakeup(rdp))
2336		return;
2337	ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2338	ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2339	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2340	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2341}
2342
2343void __init rcu_init_nohz(void)
2344{
2345	int cpu;
2346	bool need_rcu_nocb_mask = true;
2347	struct rcu_state *rsp;
2348
2349#ifdef CONFIG_RCU_NOCB_CPU_NONE
2350	need_rcu_nocb_mask = false;
2351#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2352
2353#if defined(CONFIG_NO_HZ_FULL)
2354	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2355		need_rcu_nocb_mask = true;
2356#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2357
2358	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2359		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2360			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2361			return;
2362		}
2363		have_rcu_nocb_mask = true;
2364	}
2365	if (!have_rcu_nocb_mask)
2366		return;
2367
2368#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2369	pr_info("\tOffload RCU callbacks from CPU 0\n");
2370	cpumask_set_cpu(0, rcu_nocb_mask);
2371#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2372#ifdef CONFIG_RCU_NOCB_CPU_ALL
2373	pr_info("\tOffload RCU callbacks from all CPUs\n");
2374	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2375#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2376#if defined(CONFIG_NO_HZ_FULL)
2377	if (tick_nohz_full_running)
2378		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2379#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2380
2381	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2382		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2383		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2384			    rcu_nocb_mask);
2385	}
2386	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2387		cpumask_pr_args(rcu_nocb_mask));
2388	if (rcu_nocb_poll)
2389		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2390
2391	for_each_rcu_flavor(rsp) {
2392		for_each_cpu(cpu, rcu_nocb_mask)
2393			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2394		rcu_organize_nocb_kthreads(rsp);
2395	}
2396}
2397
2398/* Initialize per-rcu_data variables for no-CBs CPUs. */
2399static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2400{
2401	rdp->nocb_tail = &rdp->nocb_head;
2402	init_waitqueue_head(&rdp->nocb_wq);
2403	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2404}
2405
2406/*
2407 * If the specified CPU is a no-CBs CPU that does not already have its
2408 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2409 * brought online out of order, this can require re-organizing the
2410 * leader-follower relationships.
2411 */
2412static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2413{
2414	struct rcu_data *rdp;
2415	struct rcu_data *rdp_last;
2416	struct rcu_data *rdp_old_leader;
2417	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2418	struct task_struct *t;
2419
2420	/*
2421	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2422	 * then nothing to do.
2423	 */
2424	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2425		return;
2426
2427	/* If we didn't spawn the leader first, reorganize! */
2428	rdp_old_leader = rdp_spawn->nocb_leader;
2429	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2430		rdp_last = NULL;
2431		rdp = rdp_old_leader;
2432		do {
2433			rdp->nocb_leader = rdp_spawn;
2434			if (rdp_last && rdp != rdp_spawn)
2435				rdp_last->nocb_next_follower = rdp;
2436			if (rdp == rdp_spawn) {
2437				rdp = rdp->nocb_next_follower;
2438			} else {
2439				rdp_last = rdp;
2440				rdp = rdp->nocb_next_follower;
2441				rdp_last->nocb_next_follower = NULL;
2442			}
2443		} while (rdp);
2444		rdp_spawn->nocb_next_follower = rdp_old_leader;
2445	}
2446
2447	/* Spawn the kthread for this CPU and RCU flavor. */
2448	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2449			"rcuo%c/%d", rsp->abbr, cpu);
2450	BUG_ON(IS_ERR(t));
2451	ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2452}
2453
2454/*
2455 * If the specified CPU is a no-CBs CPU that does not already have its
2456 * rcuo kthreads, spawn them.
2457 */
2458static void rcu_spawn_all_nocb_kthreads(int cpu)
2459{
2460	struct rcu_state *rsp;
2461
2462	if (rcu_scheduler_fully_active)
2463		for_each_rcu_flavor(rsp)
2464			rcu_spawn_one_nocb_kthread(rsp, cpu);
2465}
2466
2467/*
2468 * Once the scheduler is running, spawn rcuo kthreads for all online
2469 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2470 * non-boot CPUs come online -- if this changes, we will need to add
2471 * some mutual exclusion.
2472 */
2473static void __init rcu_spawn_nocb_kthreads(void)
2474{
2475	int cpu;
2476
2477	for_each_online_cpu(cpu)
2478		rcu_spawn_all_nocb_kthreads(cpu);
2479}
2480
2481/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2482static int rcu_nocb_leader_stride = -1;
2483module_param(rcu_nocb_leader_stride, int, 0444);
2484
2485/*
2486 * Initialize leader-follower relationships for all no-CBs CPU.
2487 */
2488static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2489{
2490	int cpu;
2491	int ls = rcu_nocb_leader_stride;
2492	int nl = 0;  /* Next leader. */
2493	struct rcu_data *rdp;
2494	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2495	struct rcu_data *rdp_prev = NULL;
2496
2497	if (!have_rcu_nocb_mask)
2498		return;
2499	if (ls == -1) {
2500		ls = int_sqrt(nr_cpu_ids);
2501		rcu_nocb_leader_stride = ls;
2502	}
2503
2504	/*
2505	 * Each pass through this loop sets up one rcu_data structure and
2506	 * spawns one rcu_nocb_kthread().
2507	 */
2508	for_each_cpu(cpu, rcu_nocb_mask) {
2509		rdp = per_cpu_ptr(rsp->rda, cpu);
2510		if (rdp->cpu >= nl) {
2511			/* New leader, set up for followers & next leader. */
2512			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2513			rdp->nocb_leader = rdp;
2514			rdp_leader = rdp;
2515		} else {
2516			/* Another follower, link to previous leader. */
2517			rdp->nocb_leader = rdp_leader;
2518			rdp_prev->nocb_next_follower = rdp;
2519		}
2520		rdp_prev = rdp;
2521	}
2522}
2523
2524/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2525static bool init_nocb_callback_list(struct rcu_data *rdp)
2526{
2527	if (!rcu_is_nocb_cpu(rdp->cpu))
2528		return false;
2529
2530	/* If there are early-boot callbacks, move them to nocb lists. */
2531	if (rdp->nxtlist) {
2532		rdp->nocb_head = rdp->nxtlist;
2533		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2534		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2535		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2536		rdp->nxtlist = NULL;
2537		rdp->qlen = 0;
2538		rdp->qlen_lazy = 0;
2539	}
2540	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2541	return true;
2542}
2543
2544#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2545
2546static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2547{
2548	WARN_ON_ONCE(1); /* Should be dead code. */
2549	return false;
2550}
2551
2552static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2553{
2554}
2555
2556static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2557{
2558}
2559
2560static void rcu_init_one_nocb(struct rcu_node *rnp)
2561{
2562}
2563
2564static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2565			    bool lazy, unsigned long flags)
2566{
2567	return false;
2568}
2569
2570static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2571						     struct rcu_data *rdp,
2572						     unsigned long flags)
2573{
2574	return false;
2575}
2576
2577static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2578{
2579}
2580
2581static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2582{
2583	return false;
2584}
2585
2586static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2587{
2588}
2589
2590static void rcu_spawn_all_nocb_kthreads(int cpu)
2591{
2592}
2593
2594static void __init rcu_spawn_nocb_kthreads(void)
2595{
2596}
2597
2598static bool init_nocb_callback_list(struct rcu_data *rdp)
2599{
2600	return false;
2601}
2602
2603#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2604
2605/*
2606 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2607 * arbitrarily long period of time with the scheduling-clock tick turned
2608 * off.  RCU will be paying attention to this CPU because it is in the
2609 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2610 * machine because the scheduling-clock tick has been disabled.  Therefore,
2611 * if an adaptive-ticks CPU is failing to respond to the current grace
2612 * period and has not be idle from an RCU perspective, kick it.
2613 */
2614static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2615{
2616#ifdef CONFIG_NO_HZ_FULL
2617	if (tick_nohz_full_cpu(cpu))
2618		smp_send_reschedule(cpu);
2619#endif /* #ifdef CONFIG_NO_HZ_FULL */
2620}
2621
2622
2623#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2624
2625static int full_sysidle_state;		/* Current system-idle state. */
2626#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2627#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2628#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2629#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2630#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2631
2632/*
2633 * Invoked to note exit from irq or task transition to idle.  Note that
2634 * usermode execution does -not- count as idle here!  After all, we want
2635 * to detect full-system idle states, not RCU quiescent states and grace
2636 * periods.  The caller must have disabled interrupts.
2637 */
2638static void rcu_sysidle_enter(int irq)
2639{
2640	unsigned long j;
2641	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2642
2643	/* If there are no nohz_full= CPUs, no need to track this. */
2644	if (!tick_nohz_full_enabled())
2645		return;
2646
2647	/* Adjust nesting, check for fully idle. */
2648	if (irq) {
2649		rdtp->dynticks_idle_nesting--;
2650		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2651		if (rdtp->dynticks_idle_nesting != 0)
2652			return;  /* Still not fully idle. */
2653	} else {
2654		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2655		    DYNTICK_TASK_NEST_VALUE) {
2656			rdtp->dynticks_idle_nesting = 0;
2657		} else {
2658			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2659			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2660			return;  /* Still not fully idle. */
2661		}
2662	}
2663
2664	/* Record start of fully idle period. */
2665	j = jiffies;
2666	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2667	smp_mb__before_atomic();
2668	atomic_inc(&rdtp->dynticks_idle);
2669	smp_mb__after_atomic();
2670	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2671}
2672
2673/*
2674 * Unconditionally force exit from full system-idle state.  This is
2675 * invoked when a normal CPU exits idle, but must be called separately
2676 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2677 * is that the timekeeping CPU is permitted to take scheduling-clock
2678 * interrupts while the system is in system-idle state, and of course
2679 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2680 * interrupt from any other type of interrupt.
2681 */
2682void rcu_sysidle_force_exit(void)
2683{
2684	int oldstate = ACCESS_ONCE(full_sysidle_state);
2685	int newoldstate;
2686
2687	/*
2688	 * Each pass through the following loop attempts to exit full
2689	 * system-idle state.  If contention proves to be a problem,
2690	 * a trylock-based contention tree could be used here.
2691	 */
2692	while (oldstate > RCU_SYSIDLE_SHORT) {
2693		newoldstate = cmpxchg(&full_sysidle_state,
2694				      oldstate, RCU_SYSIDLE_NOT);
2695		if (oldstate == newoldstate &&
2696		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2697			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2698			return; /* We cleared it, done! */
2699		}
2700		oldstate = newoldstate;
2701	}
2702	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2703}
2704
2705/*
2706 * Invoked to note entry to irq or task transition from idle.  Note that
2707 * usermode execution does -not- count as idle here!  The caller must
2708 * have disabled interrupts.
2709 */
2710static void rcu_sysidle_exit(int irq)
2711{
2712	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2713
2714	/* If there are no nohz_full= CPUs, no need to track this. */
2715	if (!tick_nohz_full_enabled())
2716		return;
2717
2718	/* Adjust nesting, check for already non-idle. */
2719	if (irq) {
2720		rdtp->dynticks_idle_nesting++;
2721		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2722		if (rdtp->dynticks_idle_nesting != 1)
2723			return; /* Already non-idle. */
2724	} else {
2725		/*
2726		 * Allow for irq misnesting.  Yes, it really is possible
2727		 * to enter an irq handler then never leave it, and maybe
2728		 * also vice versa.  Handle both possibilities.
2729		 */
2730		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2731			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2732			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2733			return; /* Already non-idle. */
2734		} else {
2735			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2736		}
2737	}
2738
2739	/* Record end of idle period. */
2740	smp_mb__before_atomic();
2741	atomic_inc(&rdtp->dynticks_idle);
2742	smp_mb__after_atomic();
2743	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2744
2745	/*
2746	 * If we are the timekeeping CPU, we are permitted to be non-idle
2747	 * during a system-idle state.  This must be the case, because
2748	 * the timekeeping CPU has to take scheduling-clock interrupts
2749	 * during the time that the system is transitioning to full
2750	 * system-idle state.  This means that the timekeeping CPU must
2751	 * invoke rcu_sysidle_force_exit() directly if it does anything
2752	 * more than take a scheduling-clock interrupt.
2753	 */
2754	if (smp_processor_id() == tick_do_timer_cpu)
2755		return;
2756
2757	/* Update system-idle state: We are clearly no longer fully idle! */
2758	rcu_sysidle_force_exit();
2759}
2760
2761/*
2762 * Check to see if the current CPU is idle.  Note that usermode execution
2763 * does not count as idle.  The caller must have disabled interrupts,
2764 * and must be running on tick_do_timer_cpu.
2765 */
2766static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2767				  unsigned long *maxj)
2768{
2769	int cur;
2770	unsigned long j;
2771	struct rcu_dynticks *rdtp = rdp->dynticks;
2772
2773	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2774	if (!tick_nohz_full_enabled())
2775		return;
2776
2777	/*
2778	 * If some other CPU has already reported non-idle, if this is
2779	 * not the flavor of RCU that tracks sysidle state, or if this
2780	 * is an offline or the timekeeping CPU, nothing to do.
2781	 */
2782	if (!*isidle || rdp->rsp != rcu_state_p ||
2783	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2784		return;
2785	/* Verify affinity of current kthread. */
2786	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2787
2788	/* Pick up current idle and NMI-nesting counter and check. */
2789	cur = atomic_read(&rdtp->dynticks_idle);
2790	if (cur & 0x1) {
2791		*isidle = false; /* We are not idle! */
2792		return;
2793	}
2794	smp_mb(); /* Read counters before timestamps. */
2795
2796	/* Pick up timestamps. */
2797	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2798	/* If this CPU entered idle more recently, update maxj timestamp. */
2799	if (ULONG_CMP_LT(*maxj, j))
2800		*maxj = j;
2801}
2802
2803/*
2804 * Is this the flavor of RCU that is handling full-system idle?
2805 */
2806static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2807{
2808	return rsp == rcu_state_p;
2809}
2810
2811/*
2812 * Return a delay in jiffies based on the number of CPUs, rcu_node
2813 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2814 * systems more time to transition to full-idle state in order to
2815 * avoid the cache thrashing that otherwise occur on the state variable.
2816 * Really small systems (less than a couple of tens of CPUs) should
2817 * instead use a single global atomically incremented counter, and later
2818 * versions of this will automatically reconfigure themselves accordingly.
2819 */
2820static unsigned long rcu_sysidle_delay(void)
2821{
2822	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2823		return 0;
2824	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2825}
2826
2827/*
2828 * Advance the full-system-idle state.  This is invoked when all of
2829 * the non-timekeeping CPUs are idle.
2830 */
2831static void rcu_sysidle(unsigned long j)
2832{
2833	/* Check the current state. */
2834	switch (ACCESS_ONCE(full_sysidle_state)) {
2835	case RCU_SYSIDLE_NOT:
2836
2837		/* First time all are idle, so note a short idle period. */
2838		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2839		break;
2840
2841	case RCU_SYSIDLE_SHORT:
2842
2843		/*
2844		 * Idle for a bit, time to advance to next state?
2845		 * cmpxchg failure means race with non-idle, let them win.
2846		 */
2847		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2848			(void)cmpxchg(&full_sysidle_state,
2849				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2850		break;
2851
2852	case RCU_SYSIDLE_LONG:
2853
2854		/*
2855		 * Do an additional check pass before advancing to full.
2856		 * cmpxchg failure means race with non-idle, let them win.
2857		 */
2858		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2859			(void)cmpxchg(&full_sysidle_state,
2860				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2861		break;
2862
2863	default:
2864		break;
2865	}
2866}
2867
2868/*
2869 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2870 * back to the beginning.
2871 */
2872static void rcu_sysidle_cancel(void)
2873{
2874	smp_mb();
2875	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2876		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2877}
2878
2879/*
2880 * Update the sysidle state based on the results of a force-quiescent-state
2881 * scan of the CPUs' dyntick-idle state.
2882 */
2883static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2884			       unsigned long maxj, bool gpkt)
2885{
2886	if (rsp != rcu_state_p)
2887		return;  /* Wrong flavor, ignore. */
2888	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2889		return;  /* Running state machine from timekeeping CPU. */
2890	if (isidle)
2891		rcu_sysidle(maxj);    /* More idle! */
2892	else
2893		rcu_sysidle_cancel(); /* Idle is over. */
2894}
2895
2896/*
2897 * Wrapper for rcu_sysidle_report() when called from the grace-period
2898 * kthread's context.
2899 */
2900static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2901				  unsigned long maxj)
2902{
2903	/* If there are no nohz_full= CPUs, no need to track this. */
2904	if (!tick_nohz_full_enabled())
2905		return;
2906
2907	rcu_sysidle_report(rsp, isidle, maxj, true);
2908}
2909
2910/* Callback and function for forcing an RCU grace period. */
2911struct rcu_sysidle_head {
2912	struct rcu_head rh;
2913	int inuse;
2914};
2915
2916static void rcu_sysidle_cb(struct rcu_head *rhp)
2917{
2918	struct rcu_sysidle_head *rshp;
2919
2920	/*
2921	 * The following memory barrier is needed to replace the
2922	 * memory barriers that would normally be in the memory
2923	 * allocator.
2924	 */
2925	smp_mb();  /* grace period precedes setting inuse. */
2926
2927	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2928	ACCESS_ONCE(rshp->inuse) = 0;
2929}
2930
2931/*
2932 * Check to see if the system is fully idle, other than the timekeeping CPU.
2933 * The caller must have disabled interrupts.  This is not intended to be
2934 * called unless tick_nohz_full_enabled().
2935 */
2936bool rcu_sys_is_idle(void)
2937{
2938	static struct rcu_sysidle_head rsh;
2939	int rss = ACCESS_ONCE(full_sysidle_state);
2940
2941	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2942		return false;
2943
2944	/* Handle small-system case by doing a full scan of CPUs. */
2945	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2946		int oldrss = rss - 1;
2947
2948		/*
2949		 * One pass to advance to each state up to _FULL.
2950		 * Give up if any pass fails to advance the state.
2951		 */
2952		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2953			int cpu;
2954			bool isidle = true;
2955			unsigned long maxj = jiffies - ULONG_MAX / 4;
2956			struct rcu_data *rdp;
2957
2958			/* Scan all the CPUs looking for nonidle CPUs. */
2959			for_each_possible_cpu(cpu) {
2960				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2961				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2962				if (!isidle)
2963					break;
2964			}
2965			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2966			oldrss = rss;
2967			rss = ACCESS_ONCE(full_sysidle_state);
2968		}
2969	}
2970
2971	/* If this is the first observation of an idle period, record it. */
2972	if (rss == RCU_SYSIDLE_FULL) {
2973		rss = cmpxchg(&full_sysidle_state,
2974			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2975		return rss == RCU_SYSIDLE_FULL;
2976	}
2977
2978	smp_mb(); /* ensure rss load happens before later caller actions. */
2979
2980	/* If already fully idle, tell the caller (in case of races). */
2981	if (rss == RCU_SYSIDLE_FULL_NOTED)
2982		return true;
2983
2984	/*
2985	 * If we aren't there yet, and a grace period is not in flight,
2986	 * initiate a grace period.  Either way, tell the caller that
2987	 * we are not there yet.  We use an xchg() rather than an assignment
2988	 * to make up for the memory barriers that would otherwise be
2989	 * provided by the memory allocator.
2990	 */
2991	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2992	    !rcu_gp_in_progress(rcu_state_p) &&
2993	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2994		call_rcu(&rsh.rh, rcu_sysidle_cb);
2995	return false;
2996}
2997
2998/*
2999 * Initialize dynticks sysidle state for CPUs coming online.
3000 */
3001static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3002{
3003	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3004}
3005
3006#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3007
3008static void rcu_sysidle_enter(int irq)
3009{
3010}
3011
3012static void rcu_sysidle_exit(int irq)
3013{
3014}
3015
3016static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3017				  unsigned long *maxj)
3018{
3019}
3020
3021static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3022{
3023	return false;
3024}
3025
3026static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3027				  unsigned long maxj)
3028{
3029}
3030
3031static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3032{
3033}
3034
3035#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3036
3037/*
3038 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3039 * grace-period kthread will do force_quiescent_state() processing?
3040 * The idea is to avoid waking up RCU core processing on such a
3041 * CPU unless the grace period has extended for too long.
3042 *
3043 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3044 * CONFIG_RCU_NOCB_CPU CPUs.
3045 */
3046static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3047{
3048#ifdef CONFIG_NO_HZ_FULL
3049	if (tick_nohz_full_cpu(smp_processor_id()) &&
3050	    (!rcu_gp_in_progress(rsp) ||
3051	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3052		return 1;
3053#endif /* #ifdef CONFIG_NO_HZ_FULL */
3054	return 0;
3055}
3056
3057/*
3058 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3059 * timekeeping CPU.
3060 */
3061static void rcu_bind_gp_kthread(void)
3062{
3063	int __maybe_unused cpu;
3064
3065	if (!tick_nohz_full_enabled())
3066		return;
3067#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3068	cpu = tick_do_timer_cpu;
3069	if (cpu >= 0 && cpu < nr_cpu_ids)
3070		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3071#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3072	housekeeping_affine(current);
3073#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3074}
3075
3076/* Record the current task on dyntick-idle entry. */
3077static void rcu_dynticks_task_enter(void)
3078{
3079#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3080	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3081#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3082}
3083
3084/* Record no current task on dyntick-idle exit. */
3085static void rcu_dynticks_task_exit(void)
3086{
3087#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3088	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3089#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3090}
3091