1/*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.txt for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * 	(mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15#include <linux/errno.h>
16#include <linux/stddef.h>
17#include <linux/slab.h>
18#include <linux/export.h>
19#include <linux/string.h>
20#include <linux/relay.h>
21#include <linux/vmalloc.h>
22#include <linux/mm.h>
23#include <linux/cpu.h>
24#include <linux/splice.h>
25
26/* list of open channels, for cpu hotplug */
27static DEFINE_MUTEX(relay_channels_mutex);
28static LIST_HEAD(relay_channels);
29
30/*
31 * close() vm_op implementation for relay file mapping.
32 */
33static void relay_file_mmap_close(struct vm_area_struct *vma)
34{
35	struct rchan_buf *buf = vma->vm_private_data;
36	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37}
38
39/*
40 * fault() vm_op implementation for relay file mapping.
41 */
42static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43{
44	struct page *page;
45	struct rchan_buf *buf = vma->vm_private_data;
46	pgoff_t pgoff = vmf->pgoff;
47
48	if (!buf)
49		return VM_FAULT_OOM;
50
51	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52	if (!page)
53		return VM_FAULT_SIGBUS;
54	get_page(page);
55	vmf->page = page;
56
57	return 0;
58}
59
60/*
61 * vm_ops for relay file mappings.
62 */
63static const struct vm_operations_struct relay_file_mmap_ops = {
64	.fault = relay_buf_fault,
65	.close = relay_file_mmap_close,
66};
67
68/*
69 * allocate an array of pointers of struct page
70 */
71static struct page **relay_alloc_page_array(unsigned int n_pages)
72{
73	const size_t pa_size = n_pages * sizeof(struct page *);
74	if (pa_size > PAGE_SIZE)
75		return vzalloc(pa_size);
76	return kzalloc(pa_size, GFP_KERNEL);
77}
78
79/*
80 * free an array of pointers of struct page
81 */
82static void relay_free_page_array(struct page **array)
83{
84	if (is_vmalloc_addr(array))
85		vfree(array);
86	else
87		kfree(array);
88}
89
90/**
91 *	relay_mmap_buf: - mmap channel buffer to process address space
92 *	@buf: relay channel buffer
93 *	@vma: vm_area_struct describing memory to be mapped
94 *
95 *	Returns 0 if ok, negative on error
96 *
97 *	Caller should already have grabbed mmap_sem.
98 */
99static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
100{
101	unsigned long length = vma->vm_end - vma->vm_start;
102	struct file *filp = vma->vm_file;
103
104	if (!buf)
105		return -EBADF;
106
107	if (length != (unsigned long)buf->chan->alloc_size)
108		return -EINVAL;
109
110	vma->vm_ops = &relay_file_mmap_ops;
111	vma->vm_flags |= VM_DONTEXPAND;
112	vma->vm_private_data = buf;
113	buf->chan->cb->buf_mapped(buf, filp);
114
115	return 0;
116}
117
118/**
119 *	relay_alloc_buf - allocate a channel buffer
120 *	@buf: the buffer struct
121 *	@size: total size of the buffer
122 *
123 *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
124 *	passed in size will get page aligned, if it isn't already.
125 */
126static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
127{
128	void *mem;
129	unsigned int i, j, n_pages;
130
131	*size = PAGE_ALIGN(*size);
132	n_pages = *size >> PAGE_SHIFT;
133
134	buf->page_array = relay_alloc_page_array(n_pages);
135	if (!buf->page_array)
136		return NULL;
137
138	for (i = 0; i < n_pages; i++) {
139		buf->page_array[i] = alloc_page(GFP_KERNEL);
140		if (unlikely(!buf->page_array[i]))
141			goto depopulate;
142		set_page_private(buf->page_array[i], (unsigned long)buf);
143	}
144	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
145	if (!mem)
146		goto depopulate;
147
148	memset(mem, 0, *size);
149	buf->page_count = n_pages;
150	return mem;
151
152depopulate:
153	for (j = 0; j < i; j++)
154		__free_page(buf->page_array[j]);
155	relay_free_page_array(buf->page_array);
156	return NULL;
157}
158
159/**
160 *	relay_create_buf - allocate and initialize a channel buffer
161 *	@chan: the relay channel
162 *
163 *	Returns channel buffer if successful, %NULL otherwise.
164 */
165static struct rchan_buf *relay_create_buf(struct rchan *chan)
166{
167	struct rchan_buf *buf;
168
169	if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
170		return NULL;
171
172	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
173	if (!buf)
174		return NULL;
175	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
176	if (!buf->padding)
177		goto free_buf;
178
179	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
180	if (!buf->start)
181		goto free_buf;
182
183	buf->chan = chan;
184	kref_get(&buf->chan->kref);
185	return buf;
186
187free_buf:
188	kfree(buf->padding);
189	kfree(buf);
190	return NULL;
191}
192
193/**
194 *	relay_destroy_channel - free the channel struct
195 *	@kref: target kernel reference that contains the relay channel
196 *
197 *	Should only be called from kref_put().
198 */
199static void relay_destroy_channel(struct kref *kref)
200{
201	struct rchan *chan = container_of(kref, struct rchan, kref);
202	kfree(chan);
203}
204
205/**
206 *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
207 *	@buf: the buffer struct
208 */
209static void relay_destroy_buf(struct rchan_buf *buf)
210{
211	struct rchan *chan = buf->chan;
212	unsigned int i;
213
214	if (likely(buf->start)) {
215		vunmap(buf->start);
216		for (i = 0; i < buf->page_count; i++)
217			__free_page(buf->page_array[i]);
218		relay_free_page_array(buf->page_array);
219	}
220	chan->buf[buf->cpu] = NULL;
221	kfree(buf->padding);
222	kfree(buf);
223	kref_put(&chan->kref, relay_destroy_channel);
224}
225
226/**
227 *	relay_remove_buf - remove a channel buffer
228 *	@kref: target kernel reference that contains the relay buffer
229 *
230 *	Removes the file from the filesystem, which also frees the
231 *	rchan_buf_struct and the channel buffer.  Should only be called from
232 *	kref_put().
233 */
234static void relay_remove_buf(struct kref *kref)
235{
236	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
237	relay_destroy_buf(buf);
238}
239
240/**
241 *	relay_buf_empty - boolean, is the channel buffer empty?
242 *	@buf: channel buffer
243 *
244 *	Returns 1 if the buffer is empty, 0 otherwise.
245 */
246static int relay_buf_empty(struct rchan_buf *buf)
247{
248	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
249}
250
251/**
252 *	relay_buf_full - boolean, is the channel buffer full?
253 *	@buf: channel buffer
254 *
255 *	Returns 1 if the buffer is full, 0 otherwise.
256 */
257int relay_buf_full(struct rchan_buf *buf)
258{
259	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
260	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
261}
262EXPORT_SYMBOL_GPL(relay_buf_full);
263
264/*
265 * High-level relay kernel API and associated functions.
266 */
267
268/*
269 * rchan_callback implementations defining default channel behavior.  Used
270 * in place of corresponding NULL values in client callback struct.
271 */
272
273/*
274 * subbuf_start() default callback.  Does nothing.
275 */
276static int subbuf_start_default_callback (struct rchan_buf *buf,
277					  void *subbuf,
278					  void *prev_subbuf,
279					  size_t prev_padding)
280{
281	if (relay_buf_full(buf))
282		return 0;
283
284	return 1;
285}
286
287/*
288 * buf_mapped() default callback.  Does nothing.
289 */
290static void buf_mapped_default_callback(struct rchan_buf *buf,
291					struct file *filp)
292{
293}
294
295/*
296 * buf_unmapped() default callback.  Does nothing.
297 */
298static void buf_unmapped_default_callback(struct rchan_buf *buf,
299					  struct file *filp)
300{
301}
302
303/*
304 * create_buf_file_create() default callback.  Does nothing.
305 */
306static struct dentry *create_buf_file_default_callback(const char *filename,
307						       struct dentry *parent,
308						       umode_t mode,
309						       struct rchan_buf *buf,
310						       int *is_global)
311{
312	return NULL;
313}
314
315/*
316 * remove_buf_file() default callback.  Does nothing.
317 */
318static int remove_buf_file_default_callback(struct dentry *dentry)
319{
320	return -EINVAL;
321}
322
323/* relay channel default callbacks */
324static struct rchan_callbacks default_channel_callbacks = {
325	.subbuf_start = subbuf_start_default_callback,
326	.buf_mapped = buf_mapped_default_callback,
327	.buf_unmapped = buf_unmapped_default_callback,
328	.create_buf_file = create_buf_file_default_callback,
329	.remove_buf_file = remove_buf_file_default_callback,
330};
331
332/**
333 *	wakeup_readers - wake up readers waiting on a channel
334 *	@data: contains the channel buffer
335 *
336 *	This is the timer function used to defer reader waking.
337 */
338static void wakeup_readers(unsigned long data)
339{
340	struct rchan_buf *buf = (struct rchan_buf *)data;
341	wake_up_interruptible(&buf->read_wait);
342}
343
344/**
345 *	__relay_reset - reset a channel buffer
346 *	@buf: the channel buffer
347 *	@init: 1 if this is a first-time initialization
348 *
349 *	See relay_reset() for description of effect.
350 */
351static void __relay_reset(struct rchan_buf *buf, unsigned int init)
352{
353	size_t i;
354
355	if (init) {
356		init_waitqueue_head(&buf->read_wait);
357		kref_init(&buf->kref);
358		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
359	} else
360		del_timer_sync(&buf->timer);
361
362	buf->subbufs_produced = 0;
363	buf->subbufs_consumed = 0;
364	buf->bytes_consumed = 0;
365	buf->finalized = 0;
366	buf->data = buf->start;
367	buf->offset = 0;
368
369	for (i = 0; i < buf->chan->n_subbufs; i++)
370		buf->padding[i] = 0;
371
372	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
373}
374
375/**
376 *	relay_reset - reset the channel
377 *	@chan: the channel
378 *
379 *	This has the effect of erasing all data from all channel buffers
380 *	and restarting the channel in its initial state.  The buffers
381 *	are not freed, so any mappings are still in effect.
382 *
383 *	NOTE. Care should be taken that the channel isn't actually
384 *	being used by anything when this call is made.
385 */
386void relay_reset(struct rchan *chan)
387{
388	unsigned int i;
389
390	if (!chan)
391		return;
392
393	if (chan->is_global && chan->buf[0]) {
394		__relay_reset(chan->buf[0], 0);
395		return;
396	}
397
398	mutex_lock(&relay_channels_mutex);
399	for_each_possible_cpu(i)
400		if (chan->buf[i])
401			__relay_reset(chan->buf[i], 0);
402	mutex_unlock(&relay_channels_mutex);
403}
404EXPORT_SYMBOL_GPL(relay_reset);
405
406static inline void relay_set_buf_dentry(struct rchan_buf *buf,
407					struct dentry *dentry)
408{
409	buf->dentry = dentry;
410	d_inode(buf->dentry)->i_size = buf->early_bytes;
411}
412
413static struct dentry *relay_create_buf_file(struct rchan *chan,
414					    struct rchan_buf *buf,
415					    unsigned int cpu)
416{
417	struct dentry *dentry;
418	char *tmpname;
419
420	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
421	if (!tmpname)
422		return NULL;
423	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
424
425	/* Create file in fs */
426	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
427					   S_IRUSR, buf,
428					   &chan->is_global);
429
430	kfree(tmpname);
431
432	return dentry;
433}
434
435/*
436 *	relay_open_buf - create a new relay channel buffer
437 *
438 *	used by relay_open() and CPU hotplug.
439 */
440static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
441{
442 	struct rchan_buf *buf = NULL;
443	struct dentry *dentry;
444
445 	if (chan->is_global)
446		return chan->buf[0];
447
448	buf = relay_create_buf(chan);
449	if (!buf)
450		return NULL;
451
452	if (chan->has_base_filename) {
453		dentry = relay_create_buf_file(chan, buf, cpu);
454		if (!dentry)
455			goto free_buf;
456		relay_set_buf_dentry(buf, dentry);
457	}
458
459 	buf->cpu = cpu;
460 	__relay_reset(buf, 1);
461
462 	if(chan->is_global) {
463 		chan->buf[0] = buf;
464 		buf->cpu = 0;
465  	}
466
467	return buf;
468
469free_buf:
470 	relay_destroy_buf(buf);
471	return NULL;
472}
473
474/**
475 *	relay_close_buf - close a channel buffer
476 *	@buf: channel buffer
477 *
478 *	Marks the buffer finalized and restores the default callbacks.
479 *	The channel buffer and channel buffer data structure are then freed
480 *	automatically when the last reference is given up.
481 */
482static void relay_close_buf(struct rchan_buf *buf)
483{
484	buf->finalized = 1;
485	del_timer_sync(&buf->timer);
486	buf->chan->cb->remove_buf_file(buf->dentry);
487	kref_put(&buf->kref, relay_remove_buf);
488}
489
490static void setup_callbacks(struct rchan *chan,
491				   struct rchan_callbacks *cb)
492{
493	if (!cb) {
494		chan->cb = &default_channel_callbacks;
495		return;
496	}
497
498	if (!cb->subbuf_start)
499		cb->subbuf_start = subbuf_start_default_callback;
500	if (!cb->buf_mapped)
501		cb->buf_mapped = buf_mapped_default_callback;
502	if (!cb->buf_unmapped)
503		cb->buf_unmapped = buf_unmapped_default_callback;
504	if (!cb->create_buf_file)
505		cb->create_buf_file = create_buf_file_default_callback;
506	if (!cb->remove_buf_file)
507		cb->remove_buf_file = remove_buf_file_default_callback;
508	chan->cb = cb;
509}
510
511/**
512 * 	relay_hotcpu_callback - CPU hotplug callback
513 * 	@nb: notifier block
514 * 	@action: hotplug action to take
515 * 	@hcpu: CPU number
516 *
517 * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
518 */
519static int relay_hotcpu_callback(struct notifier_block *nb,
520				unsigned long action,
521				void *hcpu)
522{
523	unsigned int hotcpu = (unsigned long)hcpu;
524	struct rchan *chan;
525
526	switch(action) {
527	case CPU_UP_PREPARE:
528	case CPU_UP_PREPARE_FROZEN:
529		mutex_lock(&relay_channels_mutex);
530		list_for_each_entry(chan, &relay_channels, list) {
531			if (chan->buf[hotcpu])
532				continue;
533			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
534			if(!chan->buf[hotcpu]) {
535				printk(KERN_ERR
536					"relay_hotcpu_callback: cpu %d buffer "
537					"creation failed\n", hotcpu);
538				mutex_unlock(&relay_channels_mutex);
539				return notifier_from_errno(-ENOMEM);
540			}
541		}
542		mutex_unlock(&relay_channels_mutex);
543		break;
544	case CPU_DEAD:
545	case CPU_DEAD_FROZEN:
546		/* No need to flush the cpu : will be flushed upon
547		 * final relay_flush() call. */
548		break;
549	}
550	return NOTIFY_OK;
551}
552
553/**
554 *	relay_open - create a new relay channel
555 *	@base_filename: base name of files to create, %NULL for buffering only
556 *	@parent: dentry of parent directory, %NULL for root directory or buffer
557 *	@subbuf_size: size of sub-buffers
558 *	@n_subbufs: number of sub-buffers
559 *	@cb: client callback functions
560 *	@private_data: user-defined data
561 *
562 *	Returns channel pointer if successful, %NULL otherwise.
563 *
564 *	Creates a channel buffer for each cpu using the sizes and
565 *	attributes specified.  The created channel buffer files
566 *	will be named base_filename0...base_filenameN-1.  File
567 *	permissions will be %S_IRUSR.
568 */
569struct rchan *relay_open(const char *base_filename,
570			 struct dentry *parent,
571			 size_t subbuf_size,
572			 size_t n_subbufs,
573			 struct rchan_callbacks *cb,
574			 void *private_data)
575{
576	unsigned int i;
577	struct rchan *chan;
578
579	if (!(subbuf_size && n_subbufs))
580		return NULL;
581	if (subbuf_size > UINT_MAX / n_subbufs)
582		return NULL;
583
584	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
585	if (!chan)
586		return NULL;
587
588	chan->version = RELAYFS_CHANNEL_VERSION;
589	chan->n_subbufs = n_subbufs;
590	chan->subbuf_size = subbuf_size;
591	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
592	chan->parent = parent;
593	chan->private_data = private_data;
594	if (base_filename) {
595		chan->has_base_filename = 1;
596		strlcpy(chan->base_filename, base_filename, NAME_MAX);
597	}
598	setup_callbacks(chan, cb);
599	kref_init(&chan->kref);
600
601	mutex_lock(&relay_channels_mutex);
602	for_each_online_cpu(i) {
603		chan->buf[i] = relay_open_buf(chan, i);
604		if (!chan->buf[i])
605			goto free_bufs;
606	}
607	list_add(&chan->list, &relay_channels);
608	mutex_unlock(&relay_channels_mutex);
609
610	return chan;
611
612free_bufs:
613	for_each_possible_cpu(i) {
614		if (chan->buf[i])
615			relay_close_buf(chan->buf[i]);
616	}
617
618	kref_put(&chan->kref, relay_destroy_channel);
619	mutex_unlock(&relay_channels_mutex);
620	return NULL;
621}
622EXPORT_SYMBOL_GPL(relay_open);
623
624struct rchan_percpu_buf_dispatcher {
625	struct rchan_buf *buf;
626	struct dentry *dentry;
627};
628
629/* Called in atomic context. */
630static void __relay_set_buf_dentry(void *info)
631{
632	struct rchan_percpu_buf_dispatcher *p = info;
633
634	relay_set_buf_dentry(p->buf, p->dentry);
635}
636
637/**
638 *	relay_late_setup_files - triggers file creation
639 *	@chan: channel to operate on
640 *	@base_filename: base name of files to create
641 *	@parent: dentry of parent directory, %NULL for root directory
642 *
643 *	Returns 0 if successful, non-zero otherwise.
644 *
645 *	Use to setup files for a previously buffer-only channel.
646 *	Useful to do early tracing in kernel, before VFS is up, for example.
647 */
648int relay_late_setup_files(struct rchan *chan,
649			   const char *base_filename,
650			   struct dentry *parent)
651{
652	int err = 0;
653	unsigned int i, curr_cpu;
654	unsigned long flags;
655	struct dentry *dentry;
656	struct rchan_percpu_buf_dispatcher disp;
657
658	if (!chan || !base_filename)
659		return -EINVAL;
660
661	strlcpy(chan->base_filename, base_filename, NAME_MAX);
662
663	mutex_lock(&relay_channels_mutex);
664	/* Is chan already set up? */
665	if (unlikely(chan->has_base_filename)) {
666		mutex_unlock(&relay_channels_mutex);
667		return -EEXIST;
668	}
669	chan->has_base_filename = 1;
670	chan->parent = parent;
671	curr_cpu = get_cpu();
672	/*
673	 * The CPU hotplug notifier ran before us and created buffers with
674	 * no files associated. So it's safe to call relay_setup_buf_file()
675	 * on all currently online CPUs.
676	 */
677	for_each_online_cpu(i) {
678		if (unlikely(!chan->buf[i])) {
679			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
680			err = -EINVAL;
681			break;
682		}
683
684		dentry = relay_create_buf_file(chan, chan->buf[i], i);
685		if (unlikely(!dentry)) {
686			err = -EINVAL;
687			break;
688		}
689
690		if (curr_cpu == i) {
691			local_irq_save(flags);
692			relay_set_buf_dentry(chan->buf[i], dentry);
693			local_irq_restore(flags);
694		} else {
695			disp.buf = chan->buf[i];
696			disp.dentry = dentry;
697			smp_mb();
698			/* relay_channels_mutex must be held, so wait. */
699			err = smp_call_function_single(i,
700						       __relay_set_buf_dentry,
701						       &disp, 1);
702		}
703		if (unlikely(err))
704			break;
705	}
706	put_cpu();
707	mutex_unlock(&relay_channels_mutex);
708
709	return err;
710}
711
712/**
713 *	relay_switch_subbuf - switch to a new sub-buffer
714 *	@buf: channel buffer
715 *	@length: size of current event
716 *
717 *	Returns either the length passed in or 0 if full.
718 *
719 *	Performs sub-buffer-switch tasks such as invoking callbacks,
720 *	updating padding counts, waking up readers, etc.
721 */
722size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
723{
724	void *old, *new;
725	size_t old_subbuf, new_subbuf;
726
727	if (unlikely(length > buf->chan->subbuf_size))
728		goto toobig;
729
730	if (buf->offset != buf->chan->subbuf_size + 1) {
731		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
732		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
733		buf->padding[old_subbuf] = buf->prev_padding;
734		buf->subbufs_produced++;
735		if (buf->dentry)
736			d_inode(buf->dentry)->i_size +=
737				buf->chan->subbuf_size -
738				buf->padding[old_subbuf];
739		else
740			buf->early_bytes += buf->chan->subbuf_size -
741					    buf->padding[old_subbuf];
742		smp_mb();
743		if (waitqueue_active(&buf->read_wait))
744			/*
745			 * Calling wake_up_interruptible() from here
746			 * will deadlock if we happen to be logging
747			 * from the scheduler (trying to re-grab
748			 * rq->lock), so defer it.
749			 */
750			mod_timer(&buf->timer, jiffies + 1);
751	}
752
753	old = buf->data;
754	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
755	new = buf->start + new_subbuf * buf->chan->subbuf_size;
756	buf->offset = 0;
757	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
758		buf->offset = buf->chan->subbuf_size + 1;
759		return 0;
760	}
761	buf->data = new;
762	buf->padding[new_subbuf] = 0;
763
764	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
765		goto toobig;
766
767	return length;
768
769toobig:
770	buf->chan->last_toobig = length;
771	return 0;
772}
773EXPORT_SYMBOL_GPL(relay_switch_subbuf);
774
775/**
776 *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
777 *	@chan: the channel
778 *	@cpu: the cpu associated with the channel buffer to update
779 *	@subbufs_consumed: number of sub-buffers to add to current buf's count
780 *
781 *	Adds to the channel buffer's consumed sub-buffer count.
782 *	subbufs_consumed should be the number of sub-buffers newly consumed,
783 *	not the total consumed.
784 *
785 *	NOTE. Kernel clients don't need to call this function if the channel
786 *	mode is 'overwrite'.
787 */
788void relay_subbufs_consumed(struct rchan *chan,
789			    unsigned int cpu,
790			    size_t subbufs_consumed)
791{
792	struct rchan_buf *buf;
793
794	if (!chan)
795		return;
796
797	if (cpu >= NR_CPUS || !chan->buf[cpu] ||
798					subbufs_consumed > chan->n_subbufs)
799		return;
800
801	buf = chan->buf[cpu];
802	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
803		buf->subbufs_consumed = buf->subbufs_produced;
804	else
805		buf->subbufs_consumed += subbufs_consumed;
806}
807EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
808
809/**
810 *	relay_close - close the channel
811 *	@chan: the channel
812 *
813 *	Closes all channel buffers and frees the channel.
814 */
815void relay_close(struct rchan *chan)
816{
817	unsigned int i;
818
819	if (!chan)
820		return;
821
822	mutex_lock(&relay_channels_mutex);
823	if (chan->is_global && chan->buf[0])
824		relay_close_buf(chan->buf[0]);
825	else
826		for_each_possible_cpu(i)
827			if (chan->buf[i])
828				relay_close_buf(chan->buf[i]);
829
830	if (chan->last_toobig)
831		printk(KERN_WARNING "relay: one or more items not logged "
832		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
833		       chan->last_toobig, chan->subbuf_size);
834
835	list_del(&chan->list);
836	kref_put(&chan->kref, relay_destroy_channel);
837	mutex_unlock(&relay_channels_mutex);
838}
839EXPORT_SYMBOL_GPL(relay_close);
840
841/**
842 *	relay_flush - close the channel
843 *	@chan: the channel
844 *
845 *	Flushes all channel buffers, i.e. forces buffer switch.
846 */
847void relay_flush(struct rchan *chan)
848{
849	unsigned int i;
850
851	if (!chan)
852		return;
853
854	if (chan->is_global && chan->buf[0]) {
855		relay_switch_subbuf(chan->buf[0], 0);
856		return;
857	}
858
859	mutex_lock(&relay_channels_mutex);
860	for_each_possible_cpu(i)
861		if (chan->buf[i])
862			relay_switch_subbuf(chan->buf[i], 0);
863	mutex_unlock(&relay_channels_mutex);
864}
865EXPORT_SYMBOL_GPL(relay_flush);
866
867/**
868 *	relay_file_open - open file op for relay files
869 *	@inode: the inode
870 *	@filp: the file
871 *
872 *	Increments the channel buffer refcount.
873 */
874static int relay_file_open(struct inode *inode, struct file *filp)
875{
876	struct rchan_buf *buf = inode->i_private;
877	kref_get(&buf->kref);
878	filp->private_data = buf;
879
880	return nonseekable_open(inode, filp);
881}
882
883/**
884 *	relay_file_mmap - mmap file op for relay files
885 *	@filp: the file
886 *	@vma: the vma describing what to map
887 *
888 *	Calls upon relay_mmap_buf() to map the file into user space.
889 */
890static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
891{
892	struct rchan_buf *buf = filp->private_data;
893	return relay_mmap_buf(buf, vma);
894}
895
896/**
897 *	relay_file_poll - poll file op for relay files
898 *	@filp: the file
899 *	@wait: poll table
900 *
901 *	Poll implemention.
902 */
903static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
904{
905	unsigned int mask = 0;
906	struct rchan_buf *buf = filp->private_data;
907
908	if (buf->finalized)
909		return POLLERR;
910
911	if (filp->f_mode & FMODE_READ) {
912		poll_wait(filp, &buf->read_wait, wait);
913		if (!relay_buf_empty(buf))
914			mask |= POLLIN | POLLRDNORM;
915	}
916
917	return mask;
918}
919
920/**
921 *	relay_file_release - release file op for relay files
922 *	@inode: the inode
923 *	@filp: the file
924 *
925 *	Decrements the channel refcount, as the filesystem is
926 *	no longer using it.
927 */
928static int relay_file_release(struct inode *inode, struct file *filp)
929{
930	struct rchan_buf *buf = filp->private_data;
931	kref_put(&buf->kref, relay_remove_buf);
932
933	return 0;
934}
935
936/*
937 *	relay_file_read_consume - update the consumed count for the buffer
938 */
939static void relay_file_read_consume(struct rchan_buf *buf,
940				    size_t read_pos,
941				    size_t bytes_consumed)
942{
943	size_t subbuf_size = buf->chan->subbuf_size;
944	size_t n_subbufs = buf->chan->n_subbufs;
945	size_t read_subbuf;
946
947	if (buf->subbufs_produced == buf->subbufs_consumed &&
948	    buf->offset == buf->bytes_consumed)
949		return;
950
951	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
952		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
953		buf->bytes_consumed = 0;
954	}
955
956	buf->bytes_consumed += bytes_consumed;
957	if (!read_pos)
958		read_subbuf = buf->subbufs_consumed % n_subbufs;
959	else
960		read_subbuf = read_pos / buf->chan->subbuf_size;
961	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
962		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
963		    (buf->offset == subbuf_size))
964			return;
965		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
966		buf->bytes_consumed = 0;
967	}
968}
969
970/*
971 *	relay_file_read_avail - boolean, are there unconsumed bytes available?
972 */
973static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
974{
975	size_t subbuf_size = buf->chan->subbuf_size;
976	size_t n_subbufs = buf->chan->n_subbufs;
977	size_t produced = buf->subbufs_produced;
978	size_t consumed = buf->subbufs_consumed;
979
980	relay_file_read_consume(buf, read_pos, 0);
981
982	consumed = buf->subbufs_consumed;
983
984	if (unlikely(buf->offset > subbuf_size)) {
985		if (produced == consumed)
986			return 0;
987		return 1;
988	}
989
990	if (unlikely(produced - consumed >= n_subbufs)) {
991		consumed = produced - n_subbufs + 1;
992		buf->subbufs_consumed = consumed;
993		buf->bytes_consumed = 0;
994	}
995
996	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
997	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
998
999	if (consumed > produced)
1000		produced += n_subbufs * subbuf_size;
1001
1002	if (consumed == produced) {
1003		if (buf->offset == subbuf_size &&
1004		    buf->subbufs_produced > buf->subbufs_consumed)
1005			return 1;
1006		return 0;
1007	}
1008
1009	return 1;
1010}
1011
1012/**
1013 *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1014 *	@read_pos: file read position
1015 *	@buf: relay channel buffer
1016 */
1017static size_t relay_file_read_subbuf_avail(size_t read_pos,
1018					   struct rchan_buf *buf)
1019{
1020	size_t padding, avail = 0;
1021	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1022	size_t subbuf_size = buf->chan->subbuf_size;
1023
1024	write_subbuf = (buf->data - buf->start) / subbuf_size;
1025	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1026	read_subbuf = read_pos / subbuf_size;
1027	read_offset = read_pos % subbuf_size;
1028	padding = buf->padding[read_subbuf];
1029
1030	if (read_subbuf == write_subbuf) {
1031		if (read_offset + padding < write_offset)
1032			avail = write_offset - (read_offset + padding);
1033	} else
1034		avail = (subbuf_size - padding) - read_offset;
1035
1036	return avail;
1037}
1038
1039/**
1040 *	relay_file_read_start_pos - find the first available byte to read
1041 *	@read_pos: file read position
1042 *	@buf: relay channel buffer
1043 *
1044 *	If the @read_pos is in the middle of padding, return the
1045 *	position of the first actually available byte, otherwise
1046 *	return the original value.
1047 */
1048static size_t relay_file_read_start_pos(size_t read_pos,
1049					struct rchan_buf *buf)
1050{
1051	size_t read_subbuf, padding, padding_start, padding_end;
1052	size_t subbuf_size = buf->chan->subbuf_size;
1053	size_t n_subbufs = buf->chan->n_subbufs;
1054	size_t consumed = buf->subbufs_consumed % n_subbufs;
1055
1056	if (!read_pos)
1057		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1058	read_subbuf = read_pos / subbuf_size;
1059	padding = buf->padding[read_subbuf];
1060	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1061	padding_end = (read_subbuf + 1) * subbuf_size;
1062	if (read_pos >= padding_start && read_pos < padding_end) {
1063		read_subbuf = (read_subbuf + 1) % n_subbufs;
1064		read_pos = read_subbuf * subbuf_size;
1065	}
1066
1067	return read_pos;
1068}
1069
1070/**
1071 *	relay_file_read_end_pos - return the new read position
1072 *	@read_pos: file read position
1073 *	@buf: relay channel buffer
1074 *	@count: number of bytes to be read
1075 */
1076static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1077				      size_t read_pos,
1078				      size_t count)
1079{
1080	size_t read_subbuf, padding, end_pos;
1081	size_t subbuf_size = buf->chan->subbuf_size;
1082	size_t n_subbufs = buf->chan->n_subbufs;
1083
1084	read_subbuf = read_pos / subbuf_size;
1085	padding = buf->padding[read_subbuf];
1086	if (read_pos % subbuf_size + count + padding == subbuf_size)
1087		end_pos = (read_subbuf + 1) * subbuf_size;
1088	else
1089		end_pos = read_pos + count;
1090	if (end_pos >= subbuf_size * n_subbufs)
1091		end_pos = 0;
1092
1093	return end_pos;
1094}
1095
1096/*
1097 *	subbuf_read_actor - read up to one subbuf's worth of data
1098 */
1099static int subbuf_read_actor(size_t read_start,
1100			     struct rchan_buf *buf,
1101			     size_t avail,
1102			     read_descriptor_t *desc)
1103{
1104	void *from;
1105	int ret = 0;
1106
1107	from = buf->start + read_start;
1108	ret = avail;
1109	if (copy_to_user(desc->arg.buf, from, avail)) {
1110		desc->error = -EFAULT;
1111		ret = 0;
1112	}
1113	desc->arg.data += ret;
1114	desc->written += ret;
1115	desc->count -= ret;
1116
1117	return ret;
1118}
1119
1120typedef int (*subbuf_actor_t) (size_t read_start,
1121			       struct rchan_buf *buf,
1122			       size_t avail,
1123			       read_descriptor_t *desc);
1124
1125/*
1126 *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1127 */
1128static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1129					subbuf_actor_t subbuf_actor,
1130					read_descriptor_t *desc)
1131{
1132	struct rchan_buf *buf = filp->private_data;
1133	size_t read_start, avail;
1134	int ret;
1135
1136	if (!desc->count)
1137		return 0;
1138
1139	mutex_lock(&file_inode(filp)->i_mutex);
1140	do {
1141		if (!relay_file_read_avail(buf, *ppos))
1142			break;
1143
1144		read_start = relay_file_read_start_pos(*ppos, buf);
1145		avail = relay_file_read_subbuf_avail(read_start, buf);
1146		if (!avail)
1147			break;
1148
1149		avail = min(desc->count, avail);
1150		ret = subbuf_actor(read_start, buf, avail, desc);
1151		if (desc->error < 0)
1152			break;
1153
1154		if (ret) {
1155			relay_file_read_consume(buf, read_start, ret);
1156			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1157		}
1158	} while (desc->count && ret);
1159	mutex_unlock(&file_inode(filp)->i_mutex);
1160
1161	return desc->written;
1162}
1163
1164static ssize_t relay_file_read(struct file *filp,
1165			       char __user *buffer,
1166			       size_t count,
1167			       loff_t *ppos)
1168{
1169	read_descriptor_t desc;
1170	desc.written = 0;
1171	desc.count = count;
1172	desc.arg.buf = buffer;
1173	desc.error = 0;
1174	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc);
1175}
1176
1177static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1178{
1179	rbuf->bytes_consumed += bytes_consumed;
1180
1181	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1182		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1183		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1184	}
1185}
1186
1187static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1188				   struct pipe_buffer *buf)
1189{
1190	struct rchan_buf *rbuf;
1191
1192	rbuf = (struct rchan_buf *)page_private(buf->page);
1193	relay_consume_bytes(rbuf, buf->private);
1194}
1195
1196static const struct pipe_buf_operations relay_pipe_buf_ops = {
1197	.can_merge = 0,
1198	.confirm = generic_pipe_buf_confirm,
1199	.release = relay_pipe_buf_release,
1200	.steal = generic_pipe_buf_steal,
1201	.get = generic_pipe_buf_get,
1202};
1203
1204static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1205{
1206}
1207
1208/*
1209 *	subbuf_splice_actor - splice up to one subbuf's worth of data
1210 */
1211static ssize_t subbuf_splice_actor(struct file *in,
1212			       loff_t *ppos,
1213			       struct pipe_inode_info *pipe,
1214			       size_t len,
1215			       unsigned int flags,
1216			       int *nonpad_ret)
1217{
1218	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1219	struct rchan_buf *rbuf = in->private_data;
1220	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1221	uint64_t pos = (uint64_t) *ppos;
1222	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1223	size_t read_start = (size_t) do_div(pos, alloc_size);
1224	size_t read_subbuf = read_start / subbuf_size;
1225	size_t padding = rbuf->padding[read_subbuf];
1226	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1227	struct page *pages[PIPE_DEF_BUFFERS];
1228	struct partial_page partial[PIPE_DEF_BUFFERS];
1229	struct splice_pipe_desc spd = {
1230		.pages = pages,
1231		.nr_pages = 0,
1232		.nr_pages_max = PIPE_DEF_BUFFERS,
1233		.partial = partial,
1234		.flags = flags,
1235		.ops = &relay_pipe_buf_ops,
1236		.spd_release = relay_page_release,
1237	};
1238	ssize_t ret;
1239
1240	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1241		return 0;
1242	if (splice_grow_spd(pipe, &spd))
1243		return -ENOMEM;
1244
1245	/*
1246	 * Adjust read len, if longer than what is available
1247	 */
1248	if (len > (subbuf_size - read_start % subbuf_size))
1249		len = subbuf_size - read_start % subbuf_size;
1250
1251	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1252	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1253	poff = read_start & ~PAGE_MASK;
1254	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1255
1256	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1257		unsigned int this_len, this_end, private;
1258		unsigned int cur_pos = read_start + total_len;
1259
1260		if (!len)
1261			break;
1262
1263		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1264		private = this_len;
1265
1266		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1267		spd.partial[spd.nr_pages].offset = poff;
1268
1269		this_end = cur_pos + this_len;
1270		if (this_end >= nonpad_end) {
1271			this_len = nonpad_end - cur_pos;
1272			private = this_len + padding;
1273		}
1274		spd.partial[spd.nr_pages].len = this_len;
1275		spd.partial[spd.nr_pages].private = private;
1276
1277		len -= this_len;
1278		total_len += this_len;
1279		poff = 0;
1280		pidx = (pidx + 1) % subbuf_pages;
1281
1282		if (this_end >= nonpad_end) {
1283			spd.nr_pages++;
1284			break;
1285		}
1286	}
1287
1288	ret = 0;
1289	if (!spd.nr_pages)
1290		goto out;
1291
1292	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1293	if (ret < 0 || ret < total_len)
1294		goto out;
1295
1296        if (read_start + ret == nonpad_end)
1297                ret += padding;
1298
1299out:
1300	splice_shrink_spd(&spd);
1301	return ret;
1302}
1303
1304static ssize_t relay_file_splice_read(struct file *in,
1305				      loff_t *ppos,
1306				      struct pipe_inode_info *pipe,
1307				      size_t len,
1308				      unsigned int flags)
1309{
1310	ssize_t spliced;
1311	int ret;
1312	int nonpad_ret = 0;
1313
1314	ret = 0;
1315	spliced = 0;
1316
1317	while (len && !spliced) {
1318		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1319		if (ret < 0)
1320			break;
1321		else if (!ret) {
1322			if (flags & SPLICE_F_NONBLOCK)
1323				ret = -EAGAIN;
1324			break;
1325		}
1326
1327		*ppos += ret;
1328		if (ret > len)
1329			len = 0;
1330		else
1331			len -= ret;
1332		spliced += nonpad_ret;
1333		nonpad_ret = 0;
1334	}
1335
1336	if (spliced)
1337		return spliced;
1338
1339	return ret;
1340}
1341
1342const struct file_operations relay_file_operations = {
1343	.open		= relay_file_open,
1344	.poll		= relay_file_poll,
1345	.mmap		= relay_file_mmap,
1346	.read		= relay_file_read,
1347	.llseek		= no_llseek,
1348	.release	= relay_file_release,
1349	.splice_read	= relay_file_splice_read,
1350};
1351EXPORT_SYMBOL_GPL(relay_file_operations);
1352
1353static __init int relay_init(void)
1354{
1355
1356	hotcpu_notifier(relay_hotcpu_callback, 0);
1357	return 0;
1358}
1359
1360early_initcall(relay_init);
1361