1/* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23#include <linux/latencytop.h> 24#include <linux/sched.h> 25#include <linux/cpumask.h> 26#include <linux/cpuidle.h> 27#include <linux/slab.h> 28#include <linux/profile.h> 29#include <linux/interrupt.h> 30#include <linux/mempolicy.h> 31#include <linux/migrate.h> 32#include <linux/task_work.h> 33 34#include <trace/events/sched.h> 35 36#include "sched.h" 37 38/* 39 * Targeted preemption latency for CPU-bound tasks: 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 41 * 42 * NOTE: this latency value is not the same as the concept of 43 * 'timeslice length' - timeslices in CFS are of variable length 44 * and have no persistent notion like in traditional, time-slice 45 * based scheduling concepts. 46 * 47 * (to see the precise effective timeslice length of your workload, 48 * run vmstat and monitor the context-switches (cs) field) 49 */ 50unsigned int sysctl_sched_latency = 6000000ULL; 51unsigned int normalized_sysctl_sched_latency = 6000000ULL; 52 53/* 54 * The initial- and re-scaling of tunables is configurable 55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 56 * 57 * Options are: 58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 61 */ 62enum sched_tunable_scaling sysctl_sched_tunable_scaling 63 = SCHED_TUNABLESCALING_LOG; 64 65/* 66 * Minimal preemption granularity for CPU-bound tasks: 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 68 */ 69unsigned int sysctl_sched_min_granularity = 750000ULL; 70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 71 72/* 73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 74 */ 75static unsigned int sched_nr_latency = 8; 76 77/* 78 * After fork, child runs first. If set to 0 (default) then 79 * parent will (try to) run first. 80 */ 81unsigned int sysctl_sched_child_runs_first __read_mostly; 82 83/* 84 * SCHED_OTHER wake-up granularity. 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 86 * 87 * This option delays the preemption effects of decoupled workloads 88 * and reduces their over-scheduling. Synchronous workloads will still 89 * have immediate wakeup/sleep latencies. 90 */ 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 93 94const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 95 96/* 97 * The exponential sliding window over which load is averaged for shares 98 * distribution. 99 * (default: 10msec) 100 */ 101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 102 103#ifdef CONFIG_CFS_BANDWIDTH 104/* 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 106 * each time a cfs_rq requests quota. 107 * 108 * Note: in the case that the slice exceeds the runtime remaining (either due 109 * to consumption or the quota being specified to be smaller than the slice) 110 * we will always only issue the remaining available time. 111 * 112 * default: 5 msec, units: microseconds 113 */ 114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 115#endif 116 117static inline void update_load_add(struct load_weight *lw, unsigned long inc) 118{ 119 lw->weight += inc; 120 lw->inv_weight = 0; 121} 122 123static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 124{ 125 lw->weight -= dec; 126 lw->inv_weight = 0; 127} 128 129static inline void update_load_set(struct load_weight *lw, unsigned long w) 130{ 131 lw->weight = w; 132 lw->inv_weight = 0; 133} 134 135/* 136 * Increase the granularity value when there are more CPUs, 137 * because with more CPUs the 'effective latency' as visible 138 * to users decreases. But the relationship is not linear, 139 * so pick a second-best guess by going with the log2 of the 140 * number of CPUs. 141 * 142 * This idea comes from the SD scheduler of Con Kolivas: 143 */ 144static int get_update_sysctl_factor(void) 145{ 146 unsigned int cpus = min_t(int, num_online_cpus(), 8); 147 unsigned int factor; 148 149 switch (sysctl_sched_tunable_scaling) { 150 case SCHED_TUNABLESCALING_NONE: 151 factor = 1; 152 break; 153 case SCHED_TUNABLESCALING_LINEAR: 154 factor = cpus; 155 break; 156 case SCHED_TUNABLESCALING_LOG: 157 default: 158 factor = 1 + ilog2(cpus); 159 break; 160 } 161 162 return factor; 163} 164 165static void update_sysctl(void) 166{ 167 unsigned int factor = get_update_sysctl_factor(); 168 169#define SET_SYSCTL(name) \ 170 (sysctl_##name = (factor) * normalized_sysctl_##name) 171 SET_SYSCTL(sched_min_granularity); 172 SET_SYSCTL(sched_latency); 173 SET_SYSCTL(sched_wakeup_granularity); 174#undef SET_SYSCTL 175} 176 177void sched_init_granularity(void) 178{ 179 update_sysctl(); 180} 181 182#define WMULT_CONST (~0U) 183#define WMULT_SHIFT 32 184 185static void __update_inv_weight(struct load_weight *lw) 186{ 187 unsigned long w; 188 189 if (likely(lw->inv_weight)) 190 return; 191 192 w = scale_load_down(lw->weight); 193 194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 195 lw->inv_weight = 1; 196 else if (unlikely(!w)) 197 lw->inv_weight = WMULT_CONST; 198 else 199 lw->inv_weight = WMULT_CONST / w; 200} 201 202/* 203 * delta_exec * weight / lw.weight 204 * OR 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 206 * 207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 210 * 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 212 * weight/lw.weight <= 1, and therefore our shift will also be positive. 213 */ 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 215{ 216 u64 fact = scale_load_down(weight); 217 int shift = WMULT_SHIFT; 218 219 __update_inv_weight(lw); 220 221 if (unlikely(fact >> 32)) { 222 while (fact >> 32) { 223 fact >>= 1; 224 shift--; 225 } 226 } 227 228 /* hint to use a 32x32->64 mul */ 229 fact = (u64)(u32)fact * lw->inv_weight; 230 231 while (fact >> 32) { 232 fact >>= 1; 233 shift--; 234 } 235 236 return mul_u64_u32_shr(delta_exec, fact, shift); 237} 238 239 240const struct sched_class fair_sched_class; 241 242/************************************************************** 243 * CFS operations on generic schedulable entities: 244 */ 245 246#ifdef CONFIG_FAIR_GROUP_SCHED 247 248/* cpu runqueue to which this cfs_rq is attached */ 249static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 250{ 251 return cfs_rq->rq; 252} 253 254/* An entity is a task if it doesn't "own" a runqueue */ 255#define entity_is_task(se) (!se->my_q) 256 257static inline struct task_struct *task_of(struct sched_entity *se) 258{ 259#ifdef CONFIG_SCHED_DEBUG 260 WARN_ON_ONCE(!entity_is_task(se)); 261#endif 262 return container_of(se, struct task_struct, se); 263} 264 265/* Walk up scheduling entities hierarchy */ 266#define for_each_sched_entity(se) \ 267 for (; se; se = se->parent) 268 269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 270{ 271 return p->se.cfs_rq; 272} 273 274/* runqueue on which this entity is (to be) queued */ 275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 276{ 277 return se->cfs_rq; 278} 279 280/* runqueue "owned" by this group */ 281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 282{ 283 return grp->my_q; 284} 285 286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 287 int force_update); 288 289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 290{ 291 if (!cfs_rq->on_list) { 292 /* 293 * Ensure we either appear before our parent (if already 294 * enqueued) or force our parent to appear after us when it is 295 * enqueued. The fact that we always enqueue bottom-up 296 * reduces this to two cases. 297 */ 298 if (cfs_rq->tg->parent && 299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } else { 303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 304 &rq_of(cfs_rq)->leaf_cfs_rq_list); 305 } 306 307 cfs_rq->on_list = 1; 308 /* We should have no load, but we need to update last_decay. */ 309 update_cfs_rq_blocked_load(cfs_rq, 0); 310 } 311} 312 313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 314{ 315 if (cfs_rq->on_list) { 316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 317 cfs_rq->on_list = 0; 318 } 319} 320 321/* Iterate thr' all leaf cfs_rq's on a runqueue */ 322#define for_each_leaf_cfs_rq(rq, cfs_rq) \ 323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 324 325/* Do the two (enqueued) entities belong to the same group ? */ 326static inline struct cfs_rq * 327is_same_group(struct sched_entity *se, struct sched_entity *pse) 328{ 329 if (se->cfs_rq == pse->cfs_rq) 330 return se->cfs_rq; 331 332 return NULL; 333} 334 335static inline struct sched_entity *parent_entity(struct sched_entity *se) 336{ 337 return se->parent; 338} 339 340static void 341find_matching_se(struct sched_entity **se, struct sched_entity **pse) 342{ 343 int se_depth, pse_depth; 344 345 /* 346 * preemption test can be made between sibling entities who are in the 347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 348 * both tasks until we find their ancestors who are siblings of common 349 * parent. 350 */ 351 352 /* First walk up until both entities are at same depth */ 353 se_depth = (*se)->depth; 354 pse_depth = (*pse)->depth; 355 356 while (se_depth > pse_depth) { 357 se_depth--; 358 *se = parent_entity(*se); 359 } 360 361 while (pse_depth > se_depth) { 362 pse_depth--; 363 *pse = parent_entity(*pse); 364 } 365 366 while (!is_same_group(*se, *pse)) { 367 *se = parent_entity(*se); 368 *pse = parent_entity(*pse); 369 } 370} 371 372#else /* !CONFIG_FAIR_GROUP_SCHED */ 373 374static inline struct task_struct *task_of(struct sched_entity *se) 375{ 376 return container_of(se, struct task_struct, se); 377} 378 379static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 380{ 381 return container_of(cfs_rq, struct rq, cfs); 382} 383 384#define entity_is_task(se) 1 385 386#define for_each_sched_entity(se) \ 387 for (; se; se = NULL) 388 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 390{ 391 return &task_rq(p)->cfs; 392} 393 394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 395{ 396 struct task_struct *p = task_of(se); 397 struct rq *rq = task_rq(p); 398 399 return &rq->cfs; 400} 401 402/* runqueue "owned" by this group */ 403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 404{ 405 return NULL; 406} 407 408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 409{ 410} 411 412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 413{ 414} 415 416#define for_each_leaf_cfs_rq(rq, cfs_rq) \ 417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 418 419static inline struct sched_entity *parent_entity(struct sched_entity *se) 420{ 421 return NULL; 422} 423 424static inline void 425find_matching_se(struct sched_entity **se, struct sched_entity **pse) 426{ 427} 428 429#endif /* CONFIG_FAIR_GROUP_SCHED */ 430 431static __always_inline 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 433 434/************************************************************** 435 * Scheduling class tree data structure manipulation methods: 436 */ 437 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 439{ 440 s64 delta = (s64)(vruntime - max_vruntime); 441 if (delta > 0) 442 max_vruntime = vruntime; 443 444 return max_vruntime; 445} 446 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 448{ 449 s64 delta = (s64)(vruntime - min_vruntime); 450 if (delta < 0) 451 min_vruntime = vruntime; 452 453 return min_vruntime; 454} 455 456static inline int entity_before(struct sched_entity *a, 457 struct sched_entity *b) 458{ 459 return (s64)(a->vruntime - b->vruntime) < 0; 460} 461 462static void update_min_vruntime(struct cfs_rq *cfs_rq) 463{ 464 u64 vruntime = cfs_rq->min_vruntime; 465 466 if (cfs_rq->curr) 467 vruntime = cfs_rq->curr->vruntime; 468 469 if (cfs_rq->rb_leftmost) { 470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 471 struct sched_entity, 472 run_node); 473 474 if (!cfs_rq->curr) 475 vruntime = se->vruntime; 476 else 477 vruntime = min_vruntime(vruntime, se->vruntime); 478 } 479 480 /* ensure we never gain time by being placed backwards. */ 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 482#ifndef CONFIG_64BIT 483 smp_wmb(); 484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 485#endif 486} 487 488/* 489 * Enqueue an entity into the rb-tree: 490 */ 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 492{ 493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 494 struct rb_node *parent = NULL; 495 struct sched_entity *entry; 496 int leftmost = 1; 497 498 /* 499 * Find the right place in the rbtree: 500 */ 501 while (*link) { 502 parent = *link; 503 entry = rb_entry(parent, struct sched_entity, run_node); 504 /* 505 * We dont care about collisions. Nodes with 506 * the same key stay together. 507 */ 508 if (entity_before(se, entry)) { 509 link = &parent->rb_left; 510 } else { 511 link = &parent->rb_right; 512 leftmost = 0; 513 } 514 } 515 516 /* 517 * Maintain a cache of leftmost tree entries (it is frequently 518 * used): 519 */ 520 if (leftmost) 521 cfs_rq->rb_leftmost = &se->run_node; 522 523 rb_link_node(&se->run_node, parent, link); 524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 525} 526 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 528{ 529 if (cfs_rq->rb_leftmost == &se->run_node) { 530 struct rb_node *next_node; 531 532 next_node = rb_next(&se->run_node); 533 cfs_rq->rb_leftmost = next_node; 534 } 535 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 537} 538 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 540{ 541 struct rb_node *left = cfs_rq->rb_leftmost; 542 543 if (!left) 544 return NULL; 545 546 return rb_entry(left, struct sched_entity, run_node); 547} 548 549static struct sched_entity *__pick_next_entity(struct sched_entity *se) 550{ 551 struct rb_node *next = rb_next(&se->run_node); 552 553 if (!next) 554 return NULL; 555 556 return rb_entry(next, struct sched_entity, run_node); 557} 558 559#ifdef CONFIG_SCHED_DEBUG 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 561{ 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 563 564 if (!last) 565 return NULL; 566 567 return rb_entry(last, struct sched_entity, run_node); 568} 569 570/************************************************************** 571 * Scheduling class statistics methods: 572 */ 573 574int sched_proc_update_handler(struct ctl_table *table, int write, 575 void __user *buffer, size_t *lenp, 576 loff_t *ppos) 577{ 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 579 int factor = get_update_sysctl_factor(); 580 581 if (ret || !write) 582 return ret; 583 584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 585 sysctl_sched_min_granularity); 586 587#define WRT_SYSCTL(name) \ 588 (normalized_sysctl_##name = sysctl_##name / (factor)) 589 WRT_SYSCTL(sched_min_granularity); 590 WRT_SYSCTL(sched_latency); 591 WRT_SYSCTL(sched_wakeup_granularity); 592#undef WRT_SYSCTL 593 594 return 0; 595} 596#endif 597 598/* 599 * delta /= w 600 */ 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 602{ 603 if (unlikely(se->load.weight != NICE_0_LOAD)) 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 605 606 return delta; 607} 608 609/* 610 * The idea is to set a period in which each task runs once. 611 * 612 * When there are too many tasks (sched_nr_latency) we have to stretch 613 * this period because otherwise the slices get too small. 614 * 615 * p = (nr <= nl) ? l : l*nr/nl 616 */ 617static u64 __sched_period(unsigned long nr_running) 618{ 619 u64 period = sysctl_sched_latency; 620 unsigned long nr_latency = sched_nr_latency; 621 622 if (unlikely(nr_running > nr_latency)) { 623 period = sysctl_sched_min_granularity; 624 period *= nr_running; 625 } 626 627 return period; 628} 629 630/* 631 * We calculate the wall-time slice from the period by taking a part 632 * proportional to the weight. 633 * 634 * s = p*P[w/rw] 635 */ 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 637{ 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 639 640 for_each_sched_entity(se) { 641 struct load_weight *load; 642 struct load_weight lw; 643 644 cfs_rq = cfs_rq_of(se); 645 load = &cfs_rq->load; 646 647 if (unlikely(!se->on_rq)) { 648 lw = cfs_rq->load; 649 650 update_load_add(&lw, se->load.weight); 651 load = &lw; 652 } 653 slice = __calc_delta(slice, se->load.weight, load); 654 } 655 return slice; 656} 657 658/* 659 * We calculate the vruntime slice of a to-be-inserted task. 660 * 661 * vs = s/w 662 */ 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 664{ 665 return calc_delta_fair(sched_slice(cfs_rq, se), se); 666} 667 668#ifdef CONFIG_SMP 669static int select_idle_sibling(struct task_struct *p, int cpu); 670static unsigned long task_h_load(struct task_struct *p); 671 672static inline void __update_task_entity_contrib(struct sched_entity *se); 673static inline void __update_task_entity_utilization(struct sched_entity *se); 674 675/* Give new task start runnable values to heavy its load in infant time */ 676void init_task_runnable_average(struct task_struct *p) 677{ 678 u32 slice; 679 680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; 681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice; 682 p->se.avg.avg_period = slice; 683 __update_task_entity_contrib(&p->se); 684 __update_task_entity_utilization(&p->se); 685} 686#else 687void init_task_runnable_average(struct task_struct *p) 688{ 689} 690#endif 691 692/* 693 * Update the current task's runtime statistics. 694 */ 695static void update_curr(struct cfs_rq *cfs_rq) 696{ 697 struct sched_entity *curr = cfs_rq->curr; 698 u64 now = rq_clock_task(rq_of(cfs_rq)); 699 u64 delta_exec; 700 701 if (unlikely(!curr)) 702 return; 703 704 delta_exec = now - curr->exec_start; 705 if (unlikely((s64)delta_exec <= 0)) 706 return; 707 708 curr->exec_start = now; 709 710 schedstat_set(curr->statistics.exec_max, 711 max(delta_exec, curr->statistics.exec_max)); 712 713 curr->sum_exec_runtime += delta_exec; 714 schedstat_add(cfs_rq, exec_clock, delta_exec); 715 716 curr->vruntime += calc_delta_fair(delta_exec, curr); 717 update_min_vruntime(cfs_rq); 718 719 if (entity_is_task(curr)) { 720 struct task_struct *curtask = task_of(curr); 721 722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 723 cpuacct_charge(curtask, delta_exec); 724 account_group_exec_runtime(curtask, delta_exec); 725 } 726 727 account_cfs_rq_runtime(cfs_rq, delta_exec); 728} 729 730static void update_curr_fair(struct rq *rq) 731{ 732 update_curr(cfs_rq_of(&rq->curr->se)); 733} 734 735static inline void 736update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 737{ 738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 739} 740 741/* 742 * Task is being enqueued - update stats: 743 */ 744static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 745{ 746 /* 747 * Are we enqueueing a waiting task? (for current tasks 748 * a dequeue/enqueue event is a NOP) 749 */ 750 if (se != cfs_rq->curr) 751 update_stats_wait_start(cfs_rq, se); 752} 753 754static void 755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 756{ 757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 762#ifdef CONFIG_SCHEDSTATS 763 if (entity_is_task(se)) { 764 trace_sched_stat_wait(task_of(se), 765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 766 } 767#endif 768 schedstat_set(se->statistics.wait_start, 0); 769} 770 771static inline void 772update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 773{ 774 /* 775 * Mark the end of the wait period if dequeueing a 776 * waiting task: 777 */ 778 if (se != cfs_rq->curr) 779 update_stats_wait_end(cfs_rq, se); 780} 781 782/* 783 * We are picking a new current task - update its stats: 784 */ 785static inline void 786update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 787{ 788 /* 789 * We are starting a new run period: 790 */ 791 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 792} 793 794/************************************************** 795 * Scheduling class queueing methods: 796 */ 797 798#ifdef CONFIG_NUMA_BALANCING 799/* 800 * Approximate time to scan a full NUMA task in ms. The task scan period is 801 * calculated based on the tasks virtual memory size and 802 * numa_balancing_scan_size. 803 */ 804unsigned int sysctl_numa_balancing_scan_period_min = 1000; 805unsigned int sysctl_numa_balancing_scan_period_max = 60000; 806 807/* Portion of address space to scan in MB */ 808unsigned int sysctl_numa_balancing_scan_size = 256; 809 810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 811unsigned int sysctl_numa_balancing_scan_delay = 1000; 812 813static unsigned int task_nr_scan_windows(struct task_struct *p) 814{ 815 unsigned long rss = 0; 816 unsigned long nr_scan_pages; 817 818 /* 819 * Calculations based on RSS as non-present and empty pages are skipped 820 * by the PTE scanner and NUMA hinting faults should be trapped based 821 * on resident pages 822 */ 823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 824 rss = get_mm_rss(p->mm); 825 if (!rss) 826 rss = nr_scan_pages; 827 828 rss = round_up(rss, nr_scan_pages); 829 return rss / nr_scan_pages; 830} 831 832/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 833#define MAX_SCAN_WINDOW 2560 834 835static unsigned int task_scan_min(struct task_struct *p) 836{ 837 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size); 838 unsigned int scan, floor; 839 unsigned int windows = 1; 840 841 if (scan_size < MAX_SCAN_WINDOW) 842 windows = MAX_SCAN_WINDOW / scan_size; 843 floor = 1000 / windows; 844 845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 846 return max_t(unsigned int, floor, scan); 847} 848 849static unsigned int task_scan_max(struct task_struct *p) 850{ 851 unsigned int smin = task_scan_min(p); 852 unsigned int smax; 853 854 /* Watch for min being lower than max due to floor calculations */ 855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 856 return max(smin, smax); 857} 858 859static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 860{ 861 rq->nr_numa_running += (p->numa_preferred_nid != -1); 862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 863} 864 865static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 866{ 867 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 869} 870 871struct numa_group { 872 atomic_t refcount; 873 874 spinlock_t lock; /* nr_tasks, tasks */ 875 int nr_tasks; 876 pid_t gid; 877 878 struct rcu_head rcu; 879 nodemask_t active_nodes; 880 unsigned long total_faults; 881 /* 882 * Faults_cpu is used to decide whether memory should move 883 * towards the CPU. As a consequence, these stats are weighted 884 * more by CPU use than by memory faults. 885 */ 886 unsigned long *faults_cpu; 887 unsigned long faults[0]; 888}; 889 890/* Shared or private faults. */ 891#define NR_NUMA_HINT_FAULT_TYPES 2 892 893/* Memory and CPU locality */ 894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 895 896/* Averaged statistics, and temporary buffers. */ 897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 898 899pid_t task_numa_group_id(struct task_struct *p) 900{ 901 return p->numa_group ? p->numa_group->gid : 0; 902} 903 904/* 905 * The averaged statistics, shared & private, memory & cpu, 906 * occupy the first half of the array. The second half of the 907 * array is for current counters, which are averaged into the 908 * first set by task_numa_placement. 909 */ 910static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 911{ 912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 913} 914 915static inline unsigned long task_faults(struct task_struct *p, int nid) 916{ 917 if (!p->numa_faults) 918 return 0; 919 920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 922} 923 924static inline unsigned long group_faults(struct task_struct *p, int nid) 925{ 926 if (!p->numa_group) 927 return 0; 928 929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 931} 932 933static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 934{ 935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 937} 938 939/* Handle placement on systems where not all nodes are directly connected. */ 940static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 941 int maxdist, bool task) 942{ 943 unsigned long score = 0; 944 int node; 945 946 /* 947 * All nodes are directly connected, and the same distance 948 * from each other. No need for fancy placement algorithms. 949 */ 950 if (sched_numa_topology_type == NUMA_DIRECT) 951 return 0; 952 953 /* 954 * This code is called for each node, introducing N^2 complexity, 955 * which should be ok given the number of nodes rarely exceeds 8. 956 */ 957 for_each_online_node(node) { 958 unsigned long faults; 959 int dist = node_distance(nid, node); 960 961 /* 962 * The furthest away nodes in the system are not interesting 963 * for placement; nid was already counted. 964 */ 965 if (dist == sched_max_numa_distance || node == nid) 966 continue; 967 968 /* 969 * On systems with a backplane NUMA topology, compare groups 970 * of nodes, and move tasks towards the group with the most 971 * memory accesses. When comparing two nodes at distance 972 * "hoplimit", only nodes closer by than "hoplimit" are part 973 * of each group. Skip other nodes. 974 */ 975 if (sched_numa_topology_type == NUMA_BACKPLANE && 976 dist > maxdist) 977 continue; 978 979 /* Add up the faults from nearby nodes. */ 980 if (task) 981 faults = task_faults(p, node); 982 else 983 faults = group_faults(p, node); 984 985 /* 986 * On systems with a glueless mesh NUMA topology, there are 987 * no fixed "groups of nodes". Instead, nodes that are not 988 * directly connected bounce traffic through intermediate 989 * nodes; a numa_group can occupy any set of nodes. 990 * The further away a node is, the less the faults count. 991 * This seems to result in good task placement. 992 */ 993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 994 faults *= (sched_max_numa_distance - dist); 995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 996 } 997 998 score += faults; 999 } 1000 1001 return score; 1002} 1003 1004/* 1005 * These return the fraction of accesses done by a particular task, or 1006 * task group, on a particular numa node. The group weight is given a 1007 * larger multiplier, in order to group tasks together that are almost 1008 * evenly spread out between numa nodes. 1009 */ 1010static inline unsigned long task_weight(struct task_struct *p, int nid, 1011 int dist) 1012{ 1013 unsigned long faults, total_faults; 1014 1015 if (!p->numa_faults) 1016 return 0; 1017 1018 total_faults = p->total_numa_faults; 1019 1020 if (!total_faults) 1021 return 0; 1022 1023 faults = task_faults(p, nid); 1024 faults += score_nearby_nodes(p, nid, dist, true); 1025 1026 return 1000 * faults / total_faults; 1027} 1028 1029static inline unsigned long group_weight(struct task_struct *p, int nid, 1030 int dist) 1031{ 1032 unsigned long faults, total_faults; 1033 1034 if (!p->numa_group) 1035 return 0; 1036 1037 total_faults = p->numa_group->total_faults; 1038 1039 if (!total_faults) 1040 return 0; 1041 1042 faults = group_faults(p, nid); 1043 faults += score_nearby_nodes(p, nid, dist, false); 1044 1045 return 1000 * faults / total_faults; 1046} 1047 1048bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1049 int src_nid, int dst_cpu) 1050{ 1051 struct numa_group *ng = p->numa_group; 1052 int dst_nid = cpu_to_node(dst_cpu); 1053 int last_cpupid, this_cpupid; 1054 1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1056 1057 /* 1058 * Multi-stage node selection is used in conjunction with a periodic 1059 * migration fault to build a temporal task<->page relation. By using 1060 * a two-stage filter we remove short/unlikely relations. 1061 * 1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1063 * a task's usage of a particular page (n_p) per total usage of this 1064 * page (n_t) (in a given time-span) to a probability. 1065 * 1066 * Our periodic faults will sample this probability and getting the 1067 * same result twice in a row, given these samples are fully 1068 * independent, is then given by P(n)^2, provided our sample period 1069 * is sufficiently short compared to the usage pattern. 1070 * 1071 * This quadric squishes small probabilities, making it less likely we 1072 * act on an unlikely task<->page relation. 1073 */ 1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1075 if (!cpupid_pid_unset(last_cpupid) && 1076 cpupid_to_nid(last_cpupid) != dst_nid) 1077 return false; 1078 1079 /* Always allow migrate on private faults */ 1080 if (cpupid_match_pid(p, last_cpupid)) 1081 return true; 1082 1083 /* A shared fault, but p->numa_group has not been set up yet. */ 1084 if (!ng) 1085 return true; 1086 1087 /* 1088 * Do not migrate if the destination is not a node that 1089 * is actively used by this numa group. 1090 */ 1091 if (!node_isset(dst_nid, ng->active_nodes)) 1092 return false; 1093 1094 /* 1095 * Source is a node that is not actively used by this 1096 * numa group, while the destination is. Migrate. 1097 */ 1098 if (!node_isset(src_nid, ng->active_nodes)) 1099 return true; 1100 1101 /* 1102 * Both source and destination are nodes in active 1103 * use by this numa group. Maximize memory bandwidth 1104 * by migrating from more heavily used groups, to less 1105 * heavily used ones, spreading the load around. 1106 * Use a 1/4 hysteresis to avoid spurious page movement. 1107 */ 1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); 1109} 1110 1111static unsigned long weighted_cpuload(const int cpu); 1112static unsigned long source_load(int cpu, int type); 1113static unsigned long target_load(int cpu, int type); 1114static unsigned long capacity_of(int cpu); 1115static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1116 1117/* Cached statistics for all CPUs within a node */ 1118struct numa_stats { 1119 unsigned long nr_running; 1120 unsigned long load; 1121 1122 /* Total compute capacity of CPUs on a node */ 1123 unsigned long compute_capacity; 1124 1125 /* Approximate capacity in terms of runnable tasks on a node */ 1126 unsigned long task_capacity; 1127 int has_free_capacity; 1128}; 1129 1130/* 1131 * XXX borrowed from update_sg_lb_stats 1132 */ 1133static void update_numa_stats(struct numa_stats *ns, int nid) 1134{ 1135 int smt, cpu, cpus = 0; 1136 unsigned long capacity; 1137 1138 memset(ns, 0, sizeof(*ns)); 1139 for_each_cpu(cpu, cpumask_of_node(nid)) { 1140 struct rq *rq = cpu_rq(cpu); 1141 1142 ns->nr_running += rq->nr_running; 1143 ns->load += weighted_cpuload(cpu); 1144 ns->compute_capacity += capacity_of(cpu); 1145 1146 cpus++; 1147 } 1148 1149 /* 1150 * If we raced with hotplug and there are no CPUs left in our mask 1151 * the @ns structure is NULL'ed and task_numa_compare() will 1152 * not find this node attractive. 1153 * 1154 * We'll either bail at !has_free_capacity, or we'll detect a huge 1155 * imbalance and bail there. 1156 */ 1157 if (!cpus) 1158 return; 1159 1160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1162 capacity = cpus / smt; /* cores */ 1163 1164 ns->task_capacity = min_t(unsigned, capacity, 1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1167} 1168 1169struct task_numa_env { 1170 struct task_struct *p; 1171 1172 int src_cpu, src_nid; 1173 int dst_cpu, dst_nid; 1174 1175 struct numa_stats src_stats, dst_stats; 1176 1177 int imbalance_pct; 1178 int dist; 1179 1180 struct task_struct *best_task; 1181 long best_imp; 1182 int best_cpu; 1183}; 1184 1185static void task_numa_assign(struct task_numa_env *env, 1186 struct task_struct *p, long imp) 1187{ 1188 if (env->best_task) 1189 put_task_struct(env->best_task); 1190 if (p) 1191 get_task_struct(p); 1192 1193 env->best_task = p; 1194 env->best_imp = imp; 1195 env->best_cpu = env->dst_cpu; 1196} 1197 1198static bool load_too_imbalanced(long src_load, long dst_load, 1199 struct task_numa_env *env) 1200{ 1201 long src_capacity, dst_capacity; 1202 long orig_src_load; 1203 long load_a, load_b; 1204 long moved_load; 1205 long imb; 1206 1207 /* 1208 * The load is corrected for the CPU capacity available on each node. 1209 * 1210 * src_load dst_load 1211 * ------------ vs --------- 1212 * src_capacity dst_capacity 1213 */ 1214 src_capacity = env->src_stats.compute_capacity; 1215 dst_capacity = env->dst_stats.compute_capacity; 1216 1217 /* We care about the slope of the imbalance, not the direction. */ 1218 load_a = dst_load; 1219 load_b = src_load; 1220 if (load_a < load_b) 1221 swap(load_a, load_b); 1222 1223 /* Is the difference below the threshold? */ 1224 imb = load_a * src_capacity * 100 - 1225 load_b * dst_capacity * env->imbalance_pct; 1226 if (imb <= 0) 1227 return false; 1228 1229 /* 1230 * The imbalance is above the allowed threshold. 1231 * Allow a move that brings us closer to a balanced situation, 1232 * without moving things past the point of balance. 1233 */ 1234 orig_src_load = env->src_stats.load; 1235 1236 /* 1237 * In a task swap, there will be one load moving from src to dst, 1238 * and another moving back. This is the net sum of both moves. 1239 * A simple task move will always have a positive value. 1240 * Allow the move if it brings the system closer to a balanced 1241 * situation, without crossing over the balance point. 1242 */ 1243 moved_load = orig_src_load - src_load; 1244 1245 if (moved_load > 0) 1246 /* Moving src -> dst. Did we overshoot balance? */ 1247 return src_load * dst_capacity < dst_load * src_capacity; 1248 else 1249 /* Moving dst -> src. Did we overshoot balance? */ 1250 return dst_load * src_capacity < src_load * dst_capacity; 1251} 1252 1253/* 1254 * This checks if the overall compute and NUMA accesses of the system would 1255 * be improved if the source tasks was migrated to the target dst_cpu taking 1256 * into account that it might be best if task running on the dst_cpu should 1257 * be exchanged with the source task 1258 */ 1259static void task_numa_compare(struct task_numa_env *env, 1260 long taskimp, long groupimp) 1261{ 1262 struct rq *src_rq = cpu_rq(env->src_cpu); 1263 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1264 struct task_struct *cur; 1265 long src_load, dst_load; 1266 long load; 1267 long imp = env->p->numa_group ? groupimp : taskimp; 1268 long moveimp = imp; 1269 int dist = env->dist; 1270 1271 rcu_read_lock(); 1272 1273 raw_spin_lock_irq(&dst_rq->lock); 1274 cur = dst_rq->curr; 1275 /* 1276 * No need to move the exiting task, and this ensures that ->curr 1277 * wasn't reaped and thus get_task_struct() in task_numa_assign() 1278 * is safe under RCU read lock. 1279 * Note that rcu_read_lock() itself can't protect from the final 1280 * put_task_struct() after the last schedule(). 1281 */ 1282 if ((cur->flags & PF_EXITING) || is_idle_task(cur)) 1283 cur = NULL; 1284 raw_spin_unlock_irq(&dst_rq->lock); 1285 1286 /* 1287 * Because we have preemption enabled we can get migrated around and 1288 * end try selecting ourselves (current == env->p) as a swap candidate. 1289 */ 1290 if (cur == env->p) 1291 goto unlock; 1292 1293 /* 1294 * "imp" is the fault differential for the source task between the 1295 * source and destination node. Calculate the total differential for 1296 * the source task and potential destination task. The more negative 1297 * the value is, the more rmeote accesses that would be expected to 1298 * be incurred if the tasks were swapped. 1299 */ 1300 if (cur) { 1301 /* Skip this swap candidate if cannot move to the source cpu */ 1302 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1303 goto unlock; 1304 1305 /* 1306 * If dst and source tasks are in the same NUMA group, or not 1307 * in any group then look only at task weights. 1308 */ 1309 if (cur->numa_group == env->p->numa_group) { 1310 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1311 task_weight(cur, env->dst_nid, dist); 1312 /* 1313 * Add some hysteresis to prevent swapping the 1314 * tasks within a group over tiny differences. 1315 */ 1316 if (cur->numa_group) 1317 imp -= imp/16; 1318 } else { 1319 /* 1320 * Compare the group weights. If a task is all by 1321 * itself (not part of a group), use the task weight 1322 * instead. 1323 */ 1324 if (cur->numa_group) 1325 imp += group_weight(cur, env->src_nid, dist) - 1326 group_weight(cur, env->dst_nid, dist); 1327 else 1328 imp += task_weight(cur, env->src_nid, dist) - 1329 task_weight(cur, env->dst_nid, dist); 1330 } 1331 } 1332 1333 if (imp <= env->best_imp && moveimp <= env->best_imp) 1334 goto unlock; 1335 1336 if (!cur) { 1337 /* Is there capacity at our destination? */ 1338 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1339 !env->dst_stats.has_free_capacity) 1340 goto unlock; 1341 1342 goto balance; 1343 } 1344 1345 /* Balance doesn't matter much if we're running a task per cpu */ 1346 if (imp > env->best_imp && src_rq->nr_running == 1 && 1347 dst_rq->nr_running == 1) 1348 goto assign; 1349 1350 /* 1351 * In the overloaded case, try and keep the load balanced. 1352 */ 1353balance: 1354 load = task_h_load(env->p); 1355 dst_load = env->dst_stats.load + load; 1356 src_load = env->src_stats.load - load; 1357 1358 if (moveimp > imp && moveimp > env->best_imp) { 1359 /* 1360 * If the improvement from just moving env->p direction is 1361 * better than swapping tasks around, check if a move is 1362 * possible. Store a slightly smaller score than moveimp, 1363 * so an actually idle CPU will win. 1364 */ 1365 if (!load_too_imbalanced(src_load, dst_load, env)) { 1366 imp = moveimp - 1; 1367 cur = NULL; 1368 goto assign; 1369 } 1370 } 1371 1372 if (imp <= env->best_imp) 1373 goto unlock; 1374 1375 if (cur) { 1376 load = task_h_load(cur); 1377 dst_load -= load; 1378 src_load += load; 1379 } 1380 1381 if (load_too_imbalanced(src_load, dst_load, env)) 1382 goto unlock; 1383 1384 /* 1385 * One idle CPU per node is evaluated for a task numa move. 1386 * Call select_idle_sibling to maybe find a better one. 1387 */ 1388 if (!cur) 1389 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); 1390 1391assign: 1392 task_numa_assign(env, cur, imp); 1393unlock: 1394 rcu_read_unlock(); 1395} 1396 1397static void task_numa_find_cpu(struct task_numa_env *env, 1398 long taskimp, long groupimp) 1399{ 1400 int cpu; 1401 1402 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1403 /* Skip this CPU if the source task cannot migrate */ 1404 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1405 continue; 1406 1407 env->dst_cpu = cpu; 1408 task_numa_compare(env, taskimp, groupimp); 1409 } 1410} 1411 1412static int task_numa_migrate(struct task_struct *p) 1413{ 1414 struct task_numa_env env = { 1415 .p = p, 1416 1417 .src_cpu = task_cpu(p), 1418 .src_nid = task_node(p), 1419 1420 .imbalance_pct = 112, 1421 1422 .best_task = NULL, 1423 .best_imp = 0, 1424 .best_cpu = -1 1425 }; 1426 struct sched_domain *sd; 1427 unsigned long taskweight, groupweight; 1428 int nid, ret, dist; 1429 long taskimp, groupimp; 1430 1431 /* 1432 * Pick the lowest SD_NUMA domain, as that would have the smallest 1433 * imbalance and would be the first to start moving tasks about. 1434 * 1435 * And we want to avoid any moving of tasks about, as that would create 1436 * random movement of tasks -- counter the numa conditions we're trying 1437 * to satisfy here. 1438 */ 1439 rcu_read_lock(); 1440 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1441 if (sd) 1442 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1443 rcu_read_unlock(); 1444 1445 /* 1446 * Cpusets can break the scheduler domain tree into smaller 1447 * balance domains, some of which do not cross NUMA boundaries. 1448 * Tasks that are "trapped" in such domains cannot be migrated 1449 * elsewhere, so there is no point in (re)trying. 1450 */ 1451 if (unlikely(!sd)) { 1452 p->numa_preferred_nid = task_node(p); 1453 return -EINVAL; 1454 } 1455 1456 env.dst_nid = p->numa_preferred_nid; 1457 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1458 taskweight = task_weight(p, env.src_nid, dist); 1459 groupweight = group_weight(p, env.src_nid, dist); 1460 update_numa_stats(&env.src_stats, env.src_nid); 1461 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1462 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1463 update_numa_stats(&env.dst_stats, env.dst_nid); 1464 1465 /* Try to find a spot on the preferred nid. */ 1466 task_numa_find_cpu(&env, taskimp, groupimp); 1467 1468 /* 1469 * Look at other nodes in these cases: 1470 * - there is no space available on the preferred_nid 1471 * - the task is part of a numa_group that is interleaved across 1472 * multiple NUMA nodes; in order to better consolidate the group, 1473 * we need to check other locations. 1474 */ 1475 if (env.best_cpu == -1 || (p->numa_group && 1476 nodes_weight(p->numa_group->active_nodes) > 1)) { 1477 for_each_online_node(nid) { 1478 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1479 continue; 1480 1481 dist = node_distance(env.src_nid, env.dst_nid); 1482 if (sched_numa_topology_type == NUMA_BACKPLANE && 1483 dist != env.dist) { 1484 taskweight = task_weight(p, env.src_nid, dist); 1485 groupweight = group_weight(p, env.src_nid, dist); 1486 } 1487 1488 /* Only consider nodes where both task and groups benefit */ 1489 taskimp = task_weight(p, nid, dist) - taskweight; 1490 groupimp = group_weight(p, nid, dist) - groupweight; 1491 if (taskimp < 0 && groupimp < 0) 1492 continue; 1493 1494 env.dist = dist; 1495 env.dst_nid = nid; 1496 update_numa_stats(&env.dst_stats, env.dst_nid); 1497 task_numa_find_cpu(&env, taskimp, groupimp); 1498 } 1499 } 1500 1501 /* 1502 * If the task is part of a workload that spans multiple NUMA nodes, 1503 * and is migrating into one of the workload's active nodes, remember 1504 * this node as the task's preferred numa node, so the workload can 1505 * settle down. 1506 * A task that migrated to a second choice node will be better off 1507 * trying for a better one later. Do not set the preferred node here. 1508 */ 1509 if (p->numa_group) { 1510 if (env.best_cpu == -1) 1511 nid = env.src_nid; 1512 else 1513 nid = env.dst_nid; 1514 1515 if (node_isset(nid, p->numa_group->active_nodes)) 1516 sched_setnuma(p, env.dst_nid); 1517 } 1518 1519 /* No better CPU than the current one was found. */ 1520 if (env.best_cpu == -1) 1521 return -EAGAIN; 1522 1523 /* 1524 * Reset the scan period if the task is being rescheduled on an 1525 * alternative node to recheck if the tasks is now properly placed. 1526 */ 1527 p->numa_scan_period = task_scan_min(p); 1528 1529 if (env.best_task == NULL) { 1530 ret = migrate_task_to(p, env.best_cpu); 1531 if (ret != 0) 1532 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1533 return ret; 1534 } 1535 1536 ret = migrate_swap(p, env.best_task); 1537 if (ret != 0) 1538 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1539 put_task_struct(env.best_task); 1540 return ret; 1541} 1542 1543/* Attempt to migrate a task to a CPU on the preferred node. */ 1544static void numa_migrate_preferred(struct task_struct *p) 1545{ 1546 unsigned long interval = HZ; 1547 1548 /* This task has no NUMA fault statistics yet */ 1549 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1550 return; 1551 1552 /* Periodically retry migrating the task to the preferred node */ 1553 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1554 p->numa_migrate_retry = jiffies + interval; 1555 1556 /* Success if task is already running on preferred CPU */ 1557 if (task_node(p) == p->numa_preferred_nid) 1558 return; 1559 1560 /* Otherwise, try migrate to a CPU on the preferred node */ 1561 task_numa_migrate(p); 1562} 1563 1564/* 1565 * Find the nodes on which the workload is actively running. We do this by 1566 * tracking the nodes from which NUMA hinting faults are triggered. This can 1567 * be different from the set of nodes where the workload's memory is currently 1568 * located. 1569 * 1570 * The bitmask is used to make smarter decisions on when to do NUMA page 1571 * migrations, To prevent flip-flopping, and excessive page migrations, nodes 1572 * are added when they cause over 6/16 of the maximum number of faults, but 1573 * only removed when they drop below 3/16. 1574 */ 1575static void update_numa_active_node_mask(struct numa_group *numa_group) 1576{ 1577 unsigned long faults, max_faults = 0; 1578 int nid; 1579 1580 for_each_online_node(nid) { 1581 faults = group_faults_cpu(numa_group, nid); 1582 if (faults > max_faults) 1583 max_faults = faults; 1584 } 1585 1586 for_each_online_node(nid) { 1587 faults = group_faults_cpu(numa_group, nid); 1588 if (!node_isset(nid, numa_group->active_nodes)) { 1589 if (faults > max_faults * 6 / 16) 1590 node_set(nid, numa_group->active_nodes); 1591 } else if (faults < max_faults * 3 / 16) 1592 node_clear(nid, numa_group->active_nodes); 1593 } 1594} 1595 1596/* 1597 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1598 * increments. The more local the fault statistics are, the higher the scan 1599 * period will be for the next scan window. If local/(local+remote) ratio is 1600 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1601 * the scan period will decrease. Aim for 70% local accesses. 1602 */ 1603#define NUMA_PERIOD_SLOTS 10 1604#define NUMA_PERIOD_THRESHOLD 7 1605 1606/* 1607 * Increase the scan period (slow down scanning) if the majority of 1608 * our memory is already on our local node, or if the majority of 1609 * the page accesses are shared with other processes. 1610 * Otherwise, decrease the scan period. 1611 */ 1612static void update_task_scan_period(struct task_struct *p, 1613 unsigned long shared, unsigned long private) 1614{ 1615 unsigned int period_slot; 1616 int ratio; 1617 int diff; 1618 1619 unsigned long remote = p->numa_faults_locality[0]; 1620 unsigned long local = p->numa_faults_locality[1]; 1621 1622 /* 1623 * If there were no record hinting faults then either the task is 1624 * completely idle or all activity is areas that are not of interest 1625 * to automatic numa balancing. Related to that, if there were failed 1626 * migration then it implies we are migrating too quickly or the local 1627 * node is overloaded. In either case, scan slower 1628 */ 1629 if (local + shared == 0 || p->numa_faults_locality[2]) { 1630 p->numa_scan_period = min(p->numa_scan_period_max, 1631 p->numa_scan_period << 1); 1632 1633 p->mm->numa_next_scan = jiffies + 1634 msecs_to_jiffies(p->numa_scan_period); 1635 1636 return; 1637 } 1638 1639 /* 1640 * Prepare to scale scan period relative to the current period. 1641 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1642 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1643 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1644 */ 1645 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1646 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1647 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1648 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1649 if (!slot) 1650 slot = 1; 1651 diff = slot * period_slot; 1652 } else { 1653 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1654 1655 /* 1656 * Scale scan rate increases based on sharing. There is an 1657 * inverse relationship between the degree of sharing and 1658 * the adjustment made to the scanning period. Broadly 1659 * speaking the intent is that there is little point 1660 * scanning faster if shared accesses dominate as it may 1661 * simply bounce migrations uselessly 1662 */ 1663 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1664 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1665 } 1666 1667 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1668 task_scan_min(p), task_scan_max(p)); 1669 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1670} 1671 1672/* 1673 * Get the fraction of time the task has been running since the last 1674 * NUMA placement cycle. The scheduler keeps similar statistics, but 1675 * decays those on a 32ms period, which is orders of magnitude off 1676 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1677 * stats only if the task is so new there are no NUMA statistics yet. 1678 */ 1679static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1680{ 1681 u64 runtime, delta, now; 1682 /* Use the start of this time slice to avoid calculations. */ 1683 now = p->se.exec_start; 1684 runtime = p->se.sum_exec_runtime; 1685 1686 if (p->last_task_numa_placement) { 1687 delta = runtime - p->last_sum_exec_runtime; 1688 *period = now - p->last_task_numa_placement; 1689 } else { 1690 delta = p->se.avg.runnable_avg_sum; 1691 *period = p->se.avg.avg_period; 1692 } 1693 1694 p->last_sum_exec_runtime = runtime; 1695 p->last_task_numa_placement = now; 1696 1697 return delta; 1698} 1699 1700/* 1701 * Determine the preferred nid for a task in a numa_group. This needs to 1702 * be done in a way that produces consistent results with group_weight, 1703 * otherwise workloads might not converge. 1704 */ 1705static int preferred_group_nid(struct task_struct *p, int nid) 1706{ 1707 nodemask_t nodes; 1708 int dist; 1709 1710 /* Direct connections between all NUMA nodes. */ 1711 if (sched_numa_topology_type == NUMA_DIRECT) 1712 return nid; 1713 1714 /* 1715 * On a system with glueless mesh NUMA topology, group_weight 1716 * scores nodes according to the number of NUMA hinting faults on 1717 * both the node itself, and on nearby nodes. 1718 */ 1719 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1720 unsigned long score, max_score = 0; 1721 int node, max_node = nid; 1722 1723 dist = sched_max_numa_distance; 1724 1725 for_each_online_node(node) { 1726 score = group_weight(p, node, dist); 1727 if (score > max_score) { 1728 max_score = score; 1729 max_node = node; 1730 } 1731 } 1732 return max_node; 1733 } 1734 1735 /* 1736 * Finding the preferred nid in a system with NUMA backplane 1737 * interconnect topology is more involved. The goal is to locate 1738 * tasks from numa_groups near each other in the system, and 1739 * untangle workloads from different sides of the system. This requires 1740 * searching down the hierarchy of node groups, recursively searching 1741 * inside the highest scoring group of nodes. The nodemask tricks 1742 * keep the complexity of the search down. 1743 */ 1744 nodes = node_online_map; 1745 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 1746 unsigned long max_faults = 0; 1747 nodemask_t max_group = NODE_MASK_NONE; 1748 int a, b; 1749 1750 /* Are there nodes at this distance from each other? */ 1751 if (!find_numa_distance(dist)) 1752 continue; 1753 1754 for_each_node_mask(a, nodes) { 1755 unsigned long faults = 0; 1756 nodemask_t this_group; 1757 nodes_clear(this_group); 1758 1759 /* Sum group's NUMA faults; includes a==b case. */ 1760 for_each_node_mask(b, nodes) { 1761 if (node_distance(a, b) < dist) { 1762 faults += group_faults(p, b); 1763 node_set(b, this_group); 1764 node_clear(b, nodes); 1765 } 1766 } 1767 1768 /* Remember the top group. */ 1769 if (faults > max_faults) { 1770 max_faults = faults; 1771 max_group = this_group; 1772 /* 1773 * subtle: at the smallest distance there is 1774 * just one node left in each "group", the 1775 * winner is the preferred nid. 1776 */ 1777 nid = a; 1778 } 1779 } 1780 /* Next round, evaluate the nodes within max_group. */ 1781 if (!max_faults) 1782 break; 1783 nodes = max_group; 1784 } 1785 return nid; 1786} 1787 1788static void task_numa_placement(struct task_struct *p) 1789{ 1790 int seq, nid, max_nid = -1, max_group_nid = -1; 1791 unsigned long max_faults = 0, max_group_faults = 0; 1792 unsigned long fault_types[2] = { 0, 0 }; 1793 unsigned long total_faults; 1794 u64 runtime, period; 1795 spinlock_t *group_lock = NULL; 1796 1797 seq = ACCESS_ONCE(p->mm->numa_scan_seq); 1798 if (p->numa_scan_seq == seq) 1799 return; 1800 p->numa_scan_seq = seq; 1801 p->numa_scan_period_max = task_scan_max(p); 1802 1803 total_faults = p->numa_faults_locality[0] + 1804 p->numa_faults_locality[1]; 1805 runtime = numa_get_avg_runtime(p, &period); 1806 1807 /* If the task is part of a group prevent parallel updates to group stats */ 1808 if (p->numa_group) { 1809 group_lock = &p->numa_group->lock; 1810 spin_lock_irq(group_lock); 1811 } 1812 1813 /* Find the node with the highest number of faults */ 1814 for_each_online_node(nid) { 1815 /* Keep track of the offsets in numa_faults array */ 1816 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 1817 unsigned long faults = 0, group_faults = 0; 1818 int priv; 1819 1820 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1821 long diff, f_diff, f_weight; 1822 1823 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 1824 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 1825 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 1826 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 1827 1828 /* Decay existing window, copy faults since last scan */ 1829 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 1830 fault_types[priv] += p->numa_faults[membuf_idx]; 1831 p->numa_faults[membuf_idx] = 0; 1832 1833 /* 1834 * Normalize the faults_from, so all tasks in a group 1835 * count according to CPU use, instead of by the raw 1836 * number of faults. Tasks with little runtime have 1837 * little over-all impact on throughput, and thus their 1838 * faults are less important. 1839 */ 1840 f_weight = div64_u64(runtime << 16, period + 1); 1841 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 1842 (total_faults + 1); 1843 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 1844 p->numa_faults[cpubuf_idx] = 0; 1845 1846 p->numa_faults[mem_idx] += diff; 1847 p->numa_faults[cpu_idx] += f_diff; 1848 faults += p->numa_faults[mem_idx]; 1849 p->total_numa_faults += diff; 1850 if (p->numa_group) { 1851 /* 1852 * safe because we can only change our own group 1853 * 1854 * mem_idx represents the offset for a given 1855 * nid and priv in a specific region because it 1856 * is at the beginning of the numa_faults array. 1857 */ 1858 p->numa_group->faults[mem_idx] += diff; 1859 p->numa_group->faults_cpu[mem_idx] += f_diff; 1860 p->numa_group->total_faults += diff; 1861 group_faults += p->numa_group->faults[mem_idx]; 1862 } 1863 } 1864 1865 if (faults > max_faults) { 1866 max_faults = faults; 1867 max_nid = nid; 1868 } 1869 1870 if (group_faults > max_group_faults) { 1871 max_group_faults = group_faults; 1872 max_group_nid = nid; 1873 } 1874 } 1875 1876 update_task_scan_period(p, fault_types[0], fault_types[1]); 1877 1878 if (p->numa_group) { 1879 update_numa_active_node_mask(p->numa_group); 1880 spin_unlock_irq(group_lock); 1881 max_nid = preferred_group_nid(p, max_group_nid); 1882 } 1883 1884 if (max_faults) { 1885 /* Set the new preferred node */ 1886 if (max_nid != p->numa_preferred_nid) 1887 sched_setnuma(p, max_nid); 1888 1889 if (task_node(p) != p->numa_preferred_nid) 1890 numa_migrate_preferred(p); 1891 } 1892} 1893 1894static inline int get_numa_group(struct numa_group *grp) 1895{ 1896 return atomic_inc_not_zero(&grp->refcount); 1897} 1898 1899static inline void put_numa_group(struct numa_group *grp) 1900{ 1901 if (atomic_dec_and_test(&grp->refcount)) 1902 kfree_rcu(grp, rcu); 1903} 1904 1905static void task_numa_group(struct task_struct *p, int cpupid, int flags, 1906 int *priv) 1907{ 1908 struct numa_group *grp, *my_grp; 1909 struct task_struct *tsk; 1910 bool join = false; 1911 int cpu = cpupid_to_cpu(cpupid); 1912 int i; 1913 1914 if (unlikely(!p->numa_group)) { 1915 unsigned int size = sizeof(struct numa_group) + 1916 4*nr_node_ids*sizeof(unsigned long); 1917 1918 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1919 if (!grp) 1920 return; 1921 1922 atomic_set(&grp->refcount, 1); 1923 spin_lock_init(&grp->lock); 1924 grp->gid = p->pid; 1925 /* Second half of the array tracks nids where faults happen */ 1926 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 1927 nr_node_ids; 1928 1929 node_set(task_node(current), grp->active_nodes); 1930 1931 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 1932 grp->faults[i] = p->numa_faults[i]; 1933 1934 grp->total_faults = p->total_numa_faults; 1935 1936 grp->nr_tasks++; 1937 rcu_assign_pointer(p->numa_group, grp); 1938 } 1939 1940 rcu_read_lock(); 1941 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr); 1942 1943 if (!cpupid_match_pid(tsk, cpupid)) 1944 goto no_join; 1945 1946 grp = rcu_dereference(tsk->numa_group); 1947 if (!grp) 1948 goto no_join; 1949 1950 my_grp = p->numa_group; 1951 if (grp == my_grp) 1952 goto no_join; 1953 1954 /* 1955 * Only join the other group if its bigger; if we're the bigger group, 1956 * the other task will join us. 1957 */ 1958 if (my_grp->nr_tasks > grp->nr_tasks) 1959 goto no_join; 1960 1961 /* 1962 * Tie-break on the grp address. 1963 */ 1964 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 1965 goto no_join; 1966 1967 /* Always join threads in the same process. */ 1968 if (tsk->mm == current->mm) 1969 join = true; 1970 1971 /* Simple filter to avoid false positives due to PID collisions */ 1972 if (flags & TNF_SHARED) 1973 join = true; 1974 1975 /* Update priv based on whether false sharing was detected */ 1976 *priv = !join; 1977 1978 if (join && !get_numa_group(grp)) 1979 goto no_join; 1980 1981 rcu_read_unlock(); 1982 1983 if (!join) 1984 return; 1985 1986 BUG_ON(irqs_disabled()); 1987 double_lock_irq(&my_grp->lock, &grp->lock); 1988 1989 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 1990 my_grp->faults[i] -= p->numa_faults[i]; 1991 grp->faults[i] += p->numa_faults[i]; 1992 } 1993 my_grp->total_faults -= p->total_numa_faults; 1994 grp->total_faults += p->total_numa_faults; 1995 1996 my_grp->nr_tasks--; 1997 grp->nr_tasks++; 1998 1999 spin_unlock(&my_grp->lock); 2000 spin_unlock_irq(&grp->lock); 2001 2002 rcu_assign_pointer(p->numa_group, grp); 2003 2004 put_numa_group(my_grp); 2005 return; 2006 2007no_join: 2008 rcu_read_unlock(); 2009 return; 2010} 2011 2012void task_numa_free(struct task_struct *p) 2013{ 2014 struct numa_group *grp = p->numa_group; 2015 void *numa_faults = p->numa_faults; 2016 unsigned long flags; 2017 int i; 2018 2019 if (grp) { 2020 spin_lock_irqsave(&grp->lock, flags); 2021 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2022 grp->faults[i] -= p->numa_faults[i]; 2023 grp->total_faults -= p->total_numa_faults; 2024 2025 grp->nr_tasks--; 2026 spin_unlock_irqrestore(&grp->lock, flags); 2027 RCU_INIT_POINTER(p->numa_group, NULL); 2028 put_numa_group(grp); 2029 } 2030 2031 p->numa_faults = NULL; 2032 kfree(numa_faults); 2033} 2034 2035/* 2036 * Got a PROT_NONE fault for a page on @node. 2037 */ 2038void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2039{ 2040 struct task_struct *p = current; 2041 bool migrated = flags & TNF_MIGRATED; 2042 int cpu_node = task_node(current); 2043 int local = !!(flags & TNF_FAULT_LOCAL); 2044 int priv; 2045 2046 if (!numabalancing_enabled) 2047 return; 2048 2049 /* for example, ksmd faulting in a user's mm */ 2050 if (!p->mm) 2051 return; 2052 2053 /* Allocate buffer to track faults on a per-node basis */ 2054 if (unlikely(!p->numa_faults)) { 2055 int size = sizeof(*p->numa_faults) * 2056 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2057 2058 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2059 if (!p->numa_faults) 2060 return; 2061 2062 p->total_numa_faults = 0; 2063 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2064 } 2065 2066 /* 2067 * First accesses are treated as private, otherwise consider accesses 2068 * to be private if the accessing pid has not changed 2069 */ 2070 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2071 priv = 1; 2072 } else { 2073 priv = cpupid_match_pid(p, last_cpupid); 2074 if (!priv && !(flags & TNF_NO_GROUP)) 2075 task_numa_group(p, last_cpupid, flags, &priv); 2076 } 2077 2078 /* 2079 * If a workload spans multiple NUMA nodes, a shared fault that 2080 * occurs wholly within the set of nodes that the workload is 2081 * actively using should be counted as local. This allows the 2082 * scan rate to slow down when a workload has settled down. 2083 */ 2084 if (!priv && !local && p->numa_group && 2085 node_isset(cpu_node, p->numa_group->active_nodes) && 2086 node_isset(mem_node, p->numa_group->active_nodes)) 2087 local = 1; 2088 2089 task_numa_placement(p); 2090 2091 /* 2092 * Retry task to preferred node migration periodically, in case it 2093 * case it previously failed, or the scheduler moved us. 2094 */ 2095 if (time_after(jiffies, p->numa_migrate_retry)) 2096 numa_migrate_preferred(p); 2097 2098 if (migrated) 2099 p->numa_pages_migrated += pages; 2100 if (flags & TNF_MIGRATE_FAIL) 2101 p->numa_faults_locality[2] += pages; 2102 2103 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2104 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2105 p->numa_faults_locality[local] += pages; 2106} 2107 2108static void reset_ptenuma_scan(struct task_struct *p) 2109{ 2110 ACCESS_ONCE(p->mm->numa_scan_seq)++; 2111 p->mm->numa_scan_offset = 0; 2112} 2113 2114/* 2115 * The expensive part of numa migration is done from task_work context. 2116 * Triggered from task_tick_numa(). 2117 */ 2118void task_numa_work(struct callback_head *work) 2119{ 2120 unsigned long migrate, next_scan, now = jiffies; 2121 struct task_struct *p = current; 2122 struct mm_struct *mm = p->mm; 2123 struct vm_area_struct *vma; 2124 unsigned long start, end; 2125 unsigned long nr_pte_updates = 0; 2126 long pages; 2127 2128 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 2129 2130 work->next = work; /* protect against double add */ 2131 /* 2132 * Who cares about NUMA placement when they're dying. 2133 * 2134 * NOTE: make sure not to dereference p->mm before this check, 2135 * exit_task_work() happens _after_ exit_mm() so we could be called 2136 * without p->mm even though we still had it when we enqueued this 2137 * work. 2138 */ 2139 if (p->flags & PF_EXITING) 2140 return; 2141 2142 if (!mm->numa_next_scan) { 2143 mm->numa_next_scan = now + 2144 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2145 } 2146 2147 /* 2148 * Enforce maximal scan/migration frequency.. 2149 */ 2150 migrate = mm->numa_next_scan; 2151 if (time_before(now, migrate)) 2152 return; 2153 2154 if (p->numa_scan_period == 0) { 2155 p->numa_scan_period_max = task_scan_max(p); 2156 p->numa_scan_period = task_scan_min(p); 2157 } 2158 2159 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2160 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2161 return; 2162 2163 /* 2164 * Delay this task enough that another task of this mm will likely win 2165 * the next time around. 2166 */ 2167 p->node_stamp += 2 * TICK_NSEC; 2168 2169 start = mm->numa_scan_offset; 2170 pages = sysctl_numa_balancing_scan_size; 2171 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2172 if (!pages) 2173 return; 2174 2175 down_read(&mm->mmap_sem); 2176 vma = find_vma(mm, start); 2177 if (!vma) { 2178 reset_ptenuma_scan(p); 2179 start = 0; 2180 vma = mm->mmap; 2181 } 2182 for (; vma; vma = vma->vm_next) { 2183 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2184 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2185 continue; 2186 } 2187 2188 /* 2189 * Shared library pages mapped by multiple processes are not 2190 * migrated as it is expected they are cache replicated. Avoid 2191 * hinting faults in read-only file-backed mappings or the vdso 2192 * as migrating the pages will be of marginal benefit. 2193 */ 2194 if (!vma->vm_mm || 2195 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2196 continue; 2197 2198 /* 2199 * Skip inaccessible VMAs to avoid any confusion between 2200 * PROT_NONE and NUMA hinting ptes 2201 */ 2202 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2203 continue; 2204 2205 do { 2206 start = max(start, vma->vm_start); 2207 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2208 end = min(end, vma->vm_end); 2209 nr_pte_updates += change_prot_numa(vma, start, end); 2210 2211 /* 2212 * Scan sysctl_numa_balancing_scan_size but ensure that 2213 * at least one PTE is updated so that unused virtual 2214 * address space is quickly skipped. 2215 */ 2216 if (nr_pte_updates) 2217 pages -= (end - start) >> PAGE_SHIFT; 2218 2219 start = end; 2220 if (pages <= 0) 2221 goto out; 2222 2223 cond_resched(); 2224 } while (end != vma->vm_end); 2225 } 2226 2227out: 2228 /* 2229 * It is possible to reach the end of the VMA list but the last few 2230 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2231 * would find the !migratable VMA on the next scan but not reset the 2232 * scanner to the start so check it now. 2233 */ 2234 if (vma) 2235 mm->numa_scan_offset = start; 2236 else 2237 reset_ptenuma_scan(p); 2238 up_read(&mm->mmap_sem); 2239} 2240 2241/* 2242 * Drive the periodic memory faults.. 2243 */ 2244void task_tick_numa(struct rq *rq, struct task_struct *curr) 2245{ 2246 struct callback_head *work = &curr->numa_work; 2247 u64 period, now; 2248 2249 /* 2250 * We don't care about NUMA placement if we don't have memory. 2251 */ 2252 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2253 return; 2254 2255 /* 2256 * Using runtime rather than walltime has the dual advantage that 2257 * we (mostly) drive the selection from busy threads and that the 2258 * task needs to have done some actual work before we bother with 2259 * NUMA placement. 2260 */ 2261 now = curr->se.sum_exec_runtime; 2262 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2263 2264 if (now - curr->node_stamp > period) { 2265 if (!curr->node_stamp) 2266 curr->numa_scan_period = task_scan_min(curr); 2267 curr->node_stamp += period; 2268 2269 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2270 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2271 task_work_add(curr, work, true); 2272 } 2273 } 2274} 2275#else 2276static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2277{ 2278} 2279 2280static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2281{ 2282} 2283 2284static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2285{ 2286} 2287#endif /* CONFIG_NUMA_BALANCING */ 2288 2289static void 2290account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2291{ 2292 update_load_add(&cfs_rq->load, se->load.weight); 2293 if (!parent_entity(se)) 2294 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2295#ifdef CONFIG_SMP 2296 if (entity_is_task(se)) { 2297 struct rq *rq = rq_of(cfs_rq); 2298 2299 account_numa_enqueue(rq, task_of(se)); 2300 list_add(&se->group_node, &rq->cfs_tasks); 2301 } 2302#endif 2303 cfs_rq->nr_running++; 2304} 2305 2306static void 2307account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2308{ 2309 update_load_sub(&cfs_rq->load, se->load.weight); 2310 if (!parent_entity(se)) 2311 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2312 if (entity_is_task(se)) { 2313 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2314 list_del_init(&se->group_node); 2315 } 2316 cfs_rq->nr_running--; 2317} 2318 2319#ifdef CONFIG_FAIR_GROUP_SCHED 2320# ifdef CONFIG_SMP 2321static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 2322{ 2323 long tg_weight; 2324 2325 /* 2326 * Use this CPU's actual weight instead of the last load_contribution 2327 * to gain a more accurate current total weight. See 2328 * update_cfs_rq_load_contribution(). 2329 */ 2330 tg_weight = atomic_long_read(&tg->load_avg); 2331 tg_weight -= cfs_rq->tg_load_contrib; 2332 tg_weight += cfs_rq->load.weight; 2333 2334 return tg_weight; 2335} 2336 2337static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2338{ 2339 long tg_weight, load, shares; 2340 2341 tg_weight = calc_tg_weight(tg, cfs_rq); 2342 load = cfs_rq->load.weight; 2343 2344 shares = (tg->shares * load); 2345 if (tg_weight) 2346 shares /= tg_weight; 2347 2348 if (shares < MIN_SHARES) 2349 shares = MIN_SHARES; 2350 if (shares > tg->shares) 2351 shares = tg->shares; 2352 2353 return shares; 2354} 2355# else /* CONFIG_SMP */ 2356static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2357{ 2358 return tg->shares; 2359} 2360# endif /* CONFIG_SMP */ 2361static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2362 unsigned long weight) 2363{ 2364 if (se->on_rq) { 2365 /* commit outstanding execution time */ 2366 if (cfs_rq->curr == se) 2367 update_curr(cfs_rq); 2368 account_entity_dequeue(cfs_rq, se); 2369 } 2370 2371 update_load_set(&se->load, weight); 2372 2373 if (se->on_rq) 2374 account_entity_enqueue(cfs_rq, se); 2375} 2376 2377static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2378 2379static void update_cfs_shares(struct cfs_rq *cfs_rq) 2380{ 2381 struct task_group *tg; 2382 struct sched_entity *se; 2383 long shares; 2384 2385 tg = cfs_rq->tg; 2386 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2387 if (!se || throttled_hierarchy(cfs_rq)) 2388 return; 2389#ifndef CONFIG_SMP 2390 if (likely(se->load.weight == tg->shares)) 2391 return; 2392#endif 2393 shares = calc_cfs_shares(cfs_rq, tg); 2394 2395 reweight_entity(cfs_rq_of(se), se, shares); 2396} 2397#else /* CONFIG_FAIR_GROUP_SCHED */ 2398static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2399{ 2400} 2401#endif /* CONFIG_FAIR_GROUP_SCHED */ 2402 2403#ifdef CONFIG_SMP 2404/* 2405 * We choose a half-life close to 1 scheduling period. 2406 * Note: The tables below are dependent on this value. 2407 */ 2408#define LOAD_AVG_PERIOD 32 2409#define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 2410#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 2411 2412/* Precomputed fixed inverse multiplies for multiplication by y^n */ 2413static const u32 runnable_avg_yN_inv[] = { 2414 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2415 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2416 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2417 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2418 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2419 0x85aac367, 0x82cd8698, 2420}; 2421 2422/* 2423 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2424 * over-estimates when re-combining. 2425 */ 2426static const u32 runnable_avg_yN_sum[] = { 2427 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2428 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2429 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2430}; 2431 2432/* 2433 * Approximate: 2434 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2435 */ 2436static __always_inline u64 decay_load(u64 val, u64 n) 2437{ 2438 unsigned int local_n; 2439 2440 if (!n) 2441 return val; 2442 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2443 return 0; 2444 2445 /* after bounds checking we can collapse to 32-bit */ 2446 local_n = n; 2447 2448 /* 2449 * As y^PERIOD = 1/2, we can combine 2450 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2451 * With a look-up table which covers y^n (n<PERIOD) 2452 * 2453 * To achieve constant time decay_load. 2454 */ 2455 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2456 val >>= local_n / LOAD_AVG_PERIOD; 2457 local_n %= LOAD_AVG_PERIOD; 2458 } 2459 2460 val *= runnable_avg_yN_inv[local_n]; 2461 /* We don't use SRR here since we always want to round down. */ 2462 return val >> 32; 2463} 2464 2465/* 2466 * For updates fully spanning n periods, the contribution to runnable 2467 * average will be: \Sum 1024*y^n 2468 * 2469 * We can compute this reasonably efficiently by combining: 2470 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2471 */ 2472static u32 __compute_runnable_contrib(u64 n) 2473{ 2474 u32 contrib = 0; 2475 2476 if (likely(n <= LOAD_AVG_PERIOD)) 2477 return runnable_avg_yN_sum[n]; 2478 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2479 return LOAD_AVG_MAX; 2480 2481 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 2482 do { 2483 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 2484 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 2485 2486 n -= LOAD_AVG_PERIOD; 2487 } while (n > LOAD_AVG_PERIOD); 2488 2489 contrib = decay_load(contrib, n); 2490 return contrib + runnable_avg_yN_sum[n]; 2491} 2492 2493/* 2494 * We can represent the historical contribution to runnable average as the 2495 * coefficients of a geometric series. To do this we sub-divide our runnable 2496 * history into segments of approximately 1ms (1024us); label the segment that 2497 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2498 * 2499 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2500 * p0 p1 p2 2501 * (now) (~1ms ago) (~2ms ago) 2502 * 2503 * Let u_i denote the fraction of p_i that the entity was runnable. 2504 * 2505 * We then designate the fractions u_i as our co-efficients, yielding the 2506 * following representation of historical load: 2507 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2508 * 2509 * We choose y based on the with of a reasonably scheduling period, fixing: 2510 * y^32 = 0.5 2511 * 2512 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2513 * approximately half as much as the contribution to load within the last ms 2514 * (u_0). 2515 * 2516 * When a period "rolls over" and we have new u_0`, multiplying the previous 2517 * sum again by y is sufficient to update: 2518 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2519 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2520 */ 2521static __always_inline int __update_entity_runnable_avg(u64 now, int cpu, 2522 struct sched_avg *sa, 2523 int runnable, 2524 int running) 2525{ 2526 u64 delta, periods; 2527 u32 runnable_contrib; 2528 int delta_w, decayed = 0; 2529 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu); 2530 2531 delta = now - sa->last_runnable_update; 2532 /* 2533 * This should only happen when time goes backwards, which it 2534 * unfortunately does during sched clock init when we swap over to TSC. 2535 */ 2536 if ((s64)delta < 0) { 2537 sa->last_runnable_update = now; 2538 return 0; 2539 } 2540 2541 /* 2542 * Use 1024ns as the unit of measurement since it's a reasonable 2543 * approximation of 1us and fast to compute. 2544 */ 2545 delta >>= 10; 2546 if (!delta) 2547 return 0; 2548 sa->last_runnable_update = now; 2549 2550 /* delta_w is the amount already accumulated against our next period */ 2551 delta_w = sa->avg_period % 1024; 2552 if (delta + delta_w >= 1024) { 2553 /* period roll-over */ 2554 decayed = 1; 2555 2556 /* 2557 * Now that we know we're crossing a period boundary, figure 2558 * out how much from delta we need to complete the current 2559 * period and accrue it. 2560 */ 2561 delta_w = 1024 - delta_w; 2562 if (runnable) 2563 sa->runnable_avg_sum += delta_w; 2564 if (running) 2565 sa->running_avg_sum += delta_w * scale_freq 2566 >> SCHED_CAPACITY_SHIFT; 2567 sa->avg_period += delta_w; 2568 2569 delta -= delta_w; 2570 2571 /* Figure out how many additional periods this update spans */ 2572 periods = delta / 1024; 2573 delta %= 1024; 2574 2575 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 2576 periods + 1); 2577 sa->running_avg_sum = decay_load(sa->running_avg_sum, 2578 periods + 1); 2579 sa->avg_period = decay_load(sa->avg_period, 2580 periods + 1); 2581 2582 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2583 runnable_contrib = __compute_runnable_contrib(periods); 2584 if (runnable) 2585 sa->runnable_avg_sum += runnable_contrib; 2586 if (running) 2587 sa->running_avg_sum += runnable_contrib * scale_freq 2588 >> SCHED_CAPACITY_SHIFT; 2589 sa->avg_period += runnable_contrib; 2590 } 2591 2592 /* Remainder of delta accrued against u_0` */ 2593 if (runnable) 2594 sa->runnable_avg_sum += delta; 2595 if (running) 2596 sa->running_avg_sum += delta * scale_freq 2597 >> SCHED_CAPACITY_SHIFT; 2598 sa->avg_period += delta; 2599 2600 return decayed; 2601} 2602 2603/* Synchronize an entity's decay with its parenting cfs_rq.*/ 2604static inline u64 __synchronize_entity_decay(struct sched_entity *se) 2605{ 2606 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2607 u64 decays = atomic64_read(&cfs_rq->decay_counter); 2608 2609 decays -= se->avg.decay_count; 2610 se->avg.decay_count = 0; 2611 if (!decays) 2612 return 0; 2613 2614 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 2615 se->avg.utilization_avg_contrib = 2616 decay_load(se->avg.utilization_avg_contrib, decays); 2617 2618 return decays; 2619} 2620 2621#ifdef CONFIG_FAIR_GROUP_SCHED 2622static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2623 int force_update) 2624{ 2625 struct task_group *tg = cfs_rq->tg; 2626 long tg_contrib; 2627 2628 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 2629 tg_contrib -= cfs_rq->tg_load_contrib; 2630 2631 if (!tg_contrib) 2632 return; 2633 2634 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 2635 atomic_long_add(tg_contrib, &tg->load_avg); 2636 cfs_rq->tg_load_contrib += tg_contrib; 2637 } 2638} 2639 2640/* 2641 * Aggregate cfs_rq runnable averages into an equivalent task_group 2642 * representation for computing load contributions. 2643 */ 2644static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2645 struct cfs_rq *cfs_rq) 2646{ 2647 struct task_group *tg = cfs_rq->tg; 2648 long contrib; 2649 2650 /* The fraction of a cpu used by this cfs_rq */ 2651 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, 2652 sa->avg_period + 1); 2653 contrib -= cfs_rq->tg_runnable_contrib; 2654 2655 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 2656 atomic_add(contrib, &tg->runnable_avg); 2657 cfs_rq->tg_runnable_contrib += contrib; 2658 } 2659} 2660 2661static inline void __update_group_entity_contrib(struct sched_entity *se) 2662{ 2663 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2664 struct task_group *tg = cfs_rq->tg; 2665 int runnable_avg; 2666 2667 u64 contrib; 2668 2669 contrib = cfs_rq->tg_load_contrib * tg->shares; 2670 se->avg.load_avg_contrib = div_u64(contrib, 2671 atomic_long_read(&tg->load_avg) + 1); 2672 2673 /* 2674 * For group entities we need to compute a correction term in the case 2675 * that they are consuming <1 cpu so that we would contribute the same 2676 * load as a task of equal weight. 2677 * 2678 * Explicitly co-ordinating this measurement would be expensive, but 2679 * fortunately the sum of each cpus contribution forms a usable 2680 * lower-bound on the true value. 2681 * 2682 * Consider the aggregate of 2 contributions. Either they are disjoint 2683 * (and the sum represents true value) or they are disjoint and we are 2684 * understating by the aggregate of their overlap. 2685 * 2686 * Extending this to N cpus, for a given overlap, the maximum amount we 2687 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 2688 * cpus that overlap for this interval and w_i is the interval width. 2689 * 2690 * On a small machine; the first term is well-bounded which bounds the 2691 * total error since w_i is a subset of the period. Whereas on a 2692 * larger machine, while this first term can be larger, if w_i is the 2693 * of consequential size guaranteed to see n_i*w_i quickly converge to 2694 * our upper bound of 1-cpu. 2695 */ 2696 runnable_avg = atomic_read(&tg->runnable_avg); 2697 if (runnable_avg < NICE_0_LOAD) { 2698 se->avg.load_avg_contrib *= runnable_avg; 2699 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 2700 } 2701} 2702 2703static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 2704{ 2705 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg, 2706 runnable, runnable); 2707 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 2708} 2709#else /* CONFIG_FAIR_GROUP_SCHED */ 2710static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2711 int force_update) {} 2712static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2713 struct cfs_rq *cfs_rq) {} 2714static inline void __update_group_entity_contrib(struct sched_entity *se) {} 2715static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2716#endif /* CONFIG_FAIR_GROUP_SCHED */ 2717 2718static inline void __update_task_entity_contrib(struct sched_entity *se) 2719{ 2720 u32 contrib; 2721 2722 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 2723 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 2724 contrib /= (se->avg.avg_period + 1); 2725 se->avg.load_avg_contrib = scale_load(contrib); 2726} 2727 2728/* Compute the current contribution to load_avg by se, return any delta */ 2729static long __update_entity_load_avg_contrib(struct sched_entity *se) 2730{ 2731 long old_contrib = se->avg.load_avg_contrib; 2732 2733 if (entity_is_task(se)) { 2734 __update_task_entity_contrib(se); 2735 } else { 2736 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 2737 __update_group_entity_contrib(se); 2738 } 2739 2740 return se->avg.load_avg_contrib - old_contrib; 2741} 2742 2743 2744static inline void __update_task_entity_utilization(struct sched_entity *se) 2745{ 2746 u32 contrib; 2747 2748 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 2749 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE); 2750 contrib /= (se->avg.avg_period + 1); 2751 se->avg.utilization_avg_contrib = scale_load(contrib); 2752} 2753 2754static long __update_entity_utilization_avg_contrib(struct sched_entity *se) 2755{ 2756 long old_contrib = se->avg.utilization_avg_contrib; 2757 2758 if (entity_is_task(se)) 2759 __update_task_entity_utilization(se); 2760 else 2761 se->avg.utilization_avg_contrib = 2762 group_cfs_rq(se)->utilization_load_avg; 2763 2764 return se->avg.utilization_avg_contrib - old_contrib; 2765} 2766 2767static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 2768 long load_contrib) 2769{ 2770 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 2771 cfs_rq->blocked_load_avg -= load_contrib; 2772 else 2773 cfs_rq->blocked_load_avg = 0; 2774} 2775 2776static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2777 2778/* Update a sched_entity's runnable average */ 2779static inline void update_entity_load_avg(struct sched_entity *se, 2780 int update_cfs_rq) 2781{ 2782 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2783 long contrib_delta, utilization_delta; 2784 int cpu = cpu_of(rq_of(cfs_rq)); 2785 u64 now; 2786 2787 /* 2788 * For a group entity we need to use their owned cfs_rq_clock_task() in 2789 * case they are the parent of a throttled hierarchy. 2790 */ 2791 if (entity_is_task(se)) 2792 now = cfs_rq_clock_task(cfs_rq); 2793 else 2794 now = cfs_rq_clock_task(group_cfs_rq(se)); 2795 2796 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq, 2797 cfs_rq->curr == se)) 2798 return; 2799 2800 contrib_delta = __update_entity_load_avg_contrib(se); 2801 utilization_delta = __update_entity_utilization_avg_contrib(se); 2802 2803 if (!update_cfs_rq) 2804 return; 2805 2806 if (se->on_rq) { 2807 cfs_rq->runnable_load_avg += contrib_delta; 2808 cfs_rq->utilization_load_avg += utilization_delta; 2809 } else { 2810 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 2811 } 2812} 2813 2814/* 2815 * Decay the load contributed by all blocked children and account this so that 2816 * their contribution may appropriately discounted when they wake up. 2817 */ 2818static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 2819{ 2820 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 2821 u64 decays; 2822 2823 decays = now - cfs_rq->last_decay; 2824 if (!decays && !force_update) 2825 return; 2826 2827 if (atomic_long_read(&cfs_rq->removed_load)) { 2828 unsigned long removed_load; 2829 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); 2830 subtract_blocked_load_contrib(cfs_rq, removed_load); 2831 } 2832 2833 if (decays) { 2834 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 2835 decays); 2836 atomic64_add(decays, &cfs_rq->decay_counter); 2837 cfs_rq->last_decay = now; 2838 } 2839 2840 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 2841} 2842 2843/* Add the load generated by se into cfs_rq's child load-average */ 2844static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2845 struct sched_entity *se, 2846 int wakeup) 2847{ 2848 /* 2849 * We track migrations using entity decay_count <= 0, on a wake-up 2850 * migration we use a negative decay count to track the remote decays 2851 * accumulated while sleeping. 2852 * 2853 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they 2854 * are seen by enqueue_entity_load_avg() as a migration with an already 2855 * constructed load_avg_contrib. 2856 */ 2857 if (unlikely(se->avg.decay_count <= 0)) { 2858 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); 2859 if (se->avg.decay_count) { 2860 /* 2861 * In a wake-up migration we have to approximate the 2862 * time sleeping. This is because we can't synchronize 2863 * clock_task between the two cpus, and it is not 2864 * guaranteed to be read-safe. Instead, we can 2865 * approximate this using our carried decays, which are 2866 * explicitly atomically readable. 2867 */ 2868 se->avg.last_runnable_update -= (-se->avg.decay_count) 2869 << 20; 2870 update_entity_load_avg(se, 0); 2871 /* Indicate that we're now synchronized and on-rq */ 2872 se->avg.decay_count = 0; 2873 } 2874 wakeup = 0; 2875 } else { 2876 __synchronize_entity_decay(se); 2877 } 2878 2879 /* migrated tasks did not contribute to our blocked load */ 2880 if (wakeup) { 2881 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 2882 update_entity_load_avg(se, 0); 2883 } 2884 2885 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 2886 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib; 2887 /* we force update consideration on load-balancer moves */ 2888 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 2889} 2890 2891/* 2892 * Remove se's load from this cfs_rq child load-average, if the entity is 2893 * transitioning to a blocked state we track its projected decay using 2894 * blocked_load_avg. 2895 */ 2896static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2897 struct sched_entity *se, 2898 int sleep) 2899{ 2900 update_entity_load_avg(se, 1); 2901 /* we force update consideration on load-balancer moves */ 2902 update_cfs_rq_blocked_load(cfs_rq, !sleep); 2903 2904 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 2905 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib; 2906 if (sleep) { 2907 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 2908 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 2909 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 2910} 2911 2912/* 2913 * Update the rq's load with the elapsed running time before entering 2914 * idle. if the last scheduled task is not a CFS task, idle_enter will 2915 * be the only way to update the runnable statistic. 2916 */ 2917void idle_enter_fair(struct rq *this_rq) 2918{ 2919 update_rq_runnable_avg(this_rq, 1); 2920} 2921 2922/* 2923 * Update the rq's load with the elapsed idle time before a task is 2924 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 2925 * be the only way to update the runnable statistic. 2926 */ 2927void idle_exit_fair(struct rq *this_rq) 2928{ 2929 update_rq_runnable_avg(this_rq, 0); 2930} 2931 2932static int idle_balance(struct rq *this_rq); 2933 2934#else /* CONFIG_SMP */ 2935 2936static inline void update_entity_load_avg(struct sched_entity *se, 2937 int update_cfs_rq) {} 2938static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2939static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2940 struct sched_entity *se, 2941 int wakeup) {} 2942static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2943 struct sched_entity *se, 2944 int sleep) {} 2945static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 2946 int force_update) {} 2947 2948static inline int idle_balance(struct rq *rq) 2949{ 2950 return 0; 2951} 2952 2953#endif /* CONFIG_SMP */ 2954 2955static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 2956{ 2957#ifdef CONFIG_SCHEDSTATS 2958 struct task_struct *tsk = NULL; 2959 2960 if (entity_is_task(se)) 2961 tsk = task_of(se); 2962 2963 if (se->statistics.sleep_start) { 2964 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 2965 2966 if ((s64)delta < 0) 2967 delta = 0; 2968 2969 if (unlikely(delta > se->statistics.sleep_max)) 2970 se->statistics.sleep_max = delta; 2971 2972 se->statistics.sleep_start = 0; 2973 se->statistics.sum_sleep_runtime += delta; 2974 2975 if (tsk) { 2976 account_scheduler_latency(tsk, delta >> 10, 1); 2977 trace_sched_stat_sleep(tsk, delta); 2978 } 2979 } 2980 if (se->statistics.block_start) { 2981 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 2982 2983 if ((s64)delta < 0) 2984 delta = 0; 2985 2986 if (unlikely(delta > se->statistics.block_max)) 2987 se->statistics.block_max = delta; 2988 2989 se->statistics.block_start = 0; 2990 se->statistics.sum_sleep_runtime += delta; 2991 2992 if (tsk) { 2993 if (tsk->in_iowait) { 2994 se->statistics.iowait_sum += delta; 2995 se->statistics.iowait_count++; 2996 trace_sched_stat_iowait(tsk, delta); 2997 } 2998 2999 trace_sched_stat_blocked(tsk, delta); 3000 3001 /* 3002 * Blocking time is in units of nanosecs, so shift by 3003 * 20 to get a milliseconds-range estimation of the 3004 * amount of time that the task spent sleeping: 3005 */ 3006 if (unlikely(prof_on == SLEEP_PROFILING)) { 3007 profile_hits(SLEEP_PROFILING, 3008 (void *)get_wchan(tsk), 3009 delta >> 20); 3010 } 3011 account_scheduler_latency(tsk, delta >> 10, 0); 3012 } 3013 } 3014#endif 3015} 3016 3017static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3018{ 3019#ifdef CONFIG_SCHED_DEBUG 3020 s64 d = se->vruntime - cfs_rq->min_vruntime; 3021 3022 if (d < 0) 3023 d = -d; 3024 3025 if (d > 3*sysctl_sched_latency) 3026 schedstat_inc(cfs_rq, nr_spread_over); 3027#endif 3028} 3029 3030static void 3031place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3032{ 3033 u64 vruntime = cfs_rq->min_vruntime; 3034 3035 /* 3036 * The 'current' period is already promised to the current tasks, 3037 * however the extra weight of the new task will slow them down a 3038 * little, place the new task so that it fits in the slot that 3039 * stays open at the end. 3040 */ 3041 if (initial && sched_feat(START_DEBIT)) 3042 vruntime += sched_vslice(cfs_rq, se); 3043 3044 /* sleeps up to a single latency don't count. */ 3045 if (!initial) { 3046 unsigned long thresh = sysctl_sched_latency; 3047 3048 /* 3049 * Halve their sleep time's effect, to allow 3050 * for a gentler effect of sleepers: 3051 */ 3052 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3053 thresh >>= 1; 3054 3055 vruntime -= thresh; 3056 } 3057 3058 /* ensure we never gain time by being placed backwards. */ 3059 se->vruntime = max_vruntime(se->vruntime, vruntime); 3060} 3061 3062static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3063 3064static void 3065enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3066{ 3067 /* 3068 * Update the normalized vruntime before updating min_vruntime 3069 * through calling update_curr(). 3070 */ 3071 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 3072 se->vruntime += cfs_rq->min_vruntime; 3073 3074 /* 3075 * Update run-time statistics of the 'current'. 3076 */ 3077 update_curr(cfs_rq); 3078 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 3079 account_entity_enqueue(cfs_rq, se); 3080 update_cfs_shares(cfs_rq); 3081 3082 if (flags & ENQUEUE_WAKEUP) { 3083 place_entity(cfs_rq, se, 0); 3084 enqueue_sleeper(cfs_rq, se); 3085 } 3086 3087 update_stats_enqueue(cfs_rq, se); 3088 check_spread(cfs_rq, se); 3089 if (se != cfs_rq->curr) 3090 __enqueue_entity(cfs_rq, se); 3091 se->on_rq = 1; 3092 3093 if (cfs_rq->nr_running == 1) { 3094 list_add_leaf_cfs_rq(cfs_rq); 3095 check_enqueue_throttle(cfs_rq); 3096 } 3097} 3098 3099static void __clear_buddies_last(struct sched_entity *se) 3100{ 3101 for_each_sched_entity(se) { 3102 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3103 if (cfs_rq->last != se) 3104 break; 3105 3106 cfs_rq->last = NULL; 3107 } 3108} 3109 3110static void __clear_buddies_next(struct sched_entity *se) 3111{ 3112 for_each_sched_entity(se) { 3113 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3114 if (cfs_rq->next != se) 3115 break; 3116 3117 cfs_rq->next = NULL; 3118 } 3119} 3120 3121static void __clear_buddies_skip(struct sched_entity *se) 3122{ 3123 for_each_sched_entity(se) { 3124 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3125 if (cfs_rq->skip != se) 3126 break; 3127 3128 cfs_rq->skip = NULL; 3129 } 3130} 3131 3132static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3133{ 3134 if (cfs_rq->last == se) 3135 __clear_buddies_last(se); 3136 3137 if (cfs_rq->next == se) 3138 __clear_buddies_next(se); 3139 3140 if (cfs_rq->skip == se) 3141 __clear_buddies_skip(se); 3142} 3143 3144static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3145 3146static void 3147dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3148{ 3149 /* 3150 * Update run-time statistics of the 'current'. 3151 */ 3152 update_curr(cfs_rq); 3153 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 3154 3155 update_stats_dequeue(cfs_rq, se); 3156 if (flags & DEQUEUE_SLEEP) { 3157#ifdef CONFIG_SCHEDSTATS 3158 if (entity_is_task(se)) { 3159 struct task_struct *tsk = task_of(se); 3160 3161 if (tsk->state & TASK_INTERRUPTIBLE) 3162 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 3163 if (tsk->state & TASK_UNINTERRUPTIBLE) 3164 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 3165 } 3166#endif 3167 } 3168 3169 clear_buddies(cfs_rq, se); 3170 3171 if (se != cfs_rq->curr) 3172 __dequeue_entity(cfs_rq, se); 3173 se->on_rq = 0; 3174 account_entity_dequeue(cfs_rq, se); 3175 3176 /* 3177 * Normalize the entity after updating the min_vruntime because the 3178 * update can refer to the ->curr item and we need to reflect this 3179 * movement in our normalized position. 3180 */ 3181 if (!(flags & DEQUEUE_SLEEP)) 3182 se->vruntime -= cfs_rq->min_vruntime; 3183 3184 /* return excess runtime on last dequeue */ 3185 return_cfs_rq_runtime(cfs_rq); 3186 3187 update_min_vruntime(cfs_rq); 3188 update_cfs_shares(cfs_rq); 3189} 3190 3191/* 3192 * Preempt the current task with a newly woken task if needed: 3193 */ 3194static void 3195check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3196{ 3197 unsigned long ideal_runtime, delta_exec; 3198 struct sched_entity *se; 3199 s64 delta; 3200 3201 ideal_runtime = sched_slice(cfs_rq, curr); 3202 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3203 if (delta_exec > ideal_runtime) { 3204 resched_curr(rq_of(cfs_rq)); 3205 /* 3206 * The current task ran long enough, ensure it doesn't get 3207 * re-elected due to buddy favours. 3208 */ 3209 clear_buddies(cfs_rq, curr); 3210 return; 3211 } 3212 3213 /* 3214 * Ensure that a task that missed wakeup preemption by a 3215 * narrow margin doesn't have to wait for a full slice. 3216 * This also mitigates buddy induced latencies under load. 3217 */ 3218 if (delta_exec < sysctl_sched_min_granularity) 3219 return; 3220 3221 se = __pick_first_entity(cfs_rq); 3222 delta = curr->vruntime - se->vruntime; 3223 3224 if (delta < 0) 3225 return; 3226 3227 if (delta > ideal_runtime) 3228 resched_curr(rq_of(cfs_rq)); 3229} 3230 3231static void 3232set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3233{ 3234 /* 'current' is not kept within the tree. */ 3235 if (se->on_rq) { 3236 /* 3237 * Any task has to be enqueued before it get to execute on 3238 * a CPU. So account for the time it spent waiting on the 3239 * runqueue. 3240 */ 3241 update_stats_wait_end(cfs_rq, se); 3242 __dequeue_entity(cfs_rq, se); 3243 update_entity_load_avg(se, 1); 3244 } 3245 3246 update_stats_curr_start(cfs_rq, se); 3247 cfs_rq->curr = se; 3248#ifdef CONFIG_SCHEDSTATS 3249 /* 3250 * Track our maximum slice length, if the CPU's load is at 3251 * least twice that of our own weight (i.e. dont track it 3252 * when there are only lesser-weight tasks around): 3253 */ 3254 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3255 se->statistics.slice_max = max(se->statistics.slice_max, 3256 se->sum_exec_runtime - se->prev_sum_exec_runtime); 3257 } 3258#endif 3259 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3260} 3261 3262static int 3263wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3264 3265/* 3266 * Pick the next process, keeping these things in mind, in this order: 3267 * 1) keep things fair between processes/task groups 3268 * 2) pick the "next" process, since someone really wants that to run 3269 * 3) pick the "last" process, for cache locality 3270 * 4) do not run the "skip" process, if something else is available 3271 */ 3272static struct sched_entity * 3273pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3274{ 3275 struct sched_entity *left = __pick_first_entity(cfs_rq); 3276 struct sched_entity *se; 3277 3278 /* 3279 * If curr is set we have to see if its left of the leftmost entity 3280 * still in the tree, provided there was anything in the tree at all. 3281 */ 3282 if (!left || (curr && entity_before(curr, left))) 3283 left = curr; 3284 3285 se = left; /* ideally we run the leftmost entity */ 3286 3287 /* 3288 * Avoid running the skip buddy, if running something else can 3289 * be done without getting too unfair. 3290 */ 3291 if (cfs_rq->skip == se) { 3292 struct sched_entity *second; 3293 3294 if (se == curr) { 3295 second = __pick_first_entity(cfs_rq); 3296 } else { 3297 second = __pick_next_entity(se); 3298 if (!second || (curr && entity_before(curr, second))) 3299 second = curr; 3300 } 3301 3302 if (second && wakeup_preempt_entity(second, left) < 1) 3303 se = second; 3304 } 3305 3306 /* 3307 * Prefer last buddy, try to return the CPU to a preempted task. 3308 */ 3309 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3310 se = cfs_rq->last; 3311 3312 /* 3313 * Someone really wants this to run. If it's not unfair, run it. 3314 */ 3315 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3316 se = cfs_rq->next; 3317 3318 clear_buddies(cfs_rq, se); 3319 3320 return se; 3321} 3322 3323static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3324 3325static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3326{ 3327 /* 3328 * If still on the runqueue then deactivate_task() 3329 * was not called and update_curr() has to be done: 3330 */ 3331 if (prev->on_rq) 3332 update_curr(cfs_rq); 3333 3334 /* throttle cfs_rqs exceeding runtime */ 3335 check_cfs_rq_runtime(cfs_rq); 3336 3337 check_spread(cfs_rq, prev); 3338 if (prev->on_rq) { 3339 update_stats_wait_start(cfs_rq, prev); 3340 /* Put 'current' back into the tree. */ 3341 __enqueue_entity(cfs_rq, prev); 3342 /* in !on_rq case, update occurred at dequeue */ 3343 update_entity_load_avg(prev, 1); 3344 } 3345 cfs_rq->curr = NULL; 3346} 3347 3348static void 3349entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3350{ 3351 /* 3352 * Update run-time statistics of the 'current'. 3353 */ 3354 update_curr(cfs_rq); 3355 3356 /* 3357 * Ensure that runnable average is periodically updated. 3358 */ 3359 update_entity_load_avg(curr, 1); 3360 update_cfs_rq_blocked_load(cfs_rq, 1); 3361 update_cfs_shares(cfs_rq); 3362 3363#ifdef CONFIG_SCHED_HRTICK 3364 /* 3365 * queued ticks are scheduled to match the slice, so don't bother 3366 * validating it and just reschedule. 3367 */ 3368 if (queued) { 3369 resched_curr(rq_of(cfs_rq)); 3370 return; 3371 } 3372 /* 3373 * don't let the period tick interfere with the hrtick preemption 3374 */ 3375 if (!sched_feat(DOUBLE_TICK) && 3376 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3377 return; 3378#endif 3379 3380 if (cfs_rq->nr_running > 1) 3381 check_preempt_tick(cfs_rq, curr); 3382} 3383 3384 3385/************************************************** 3386 * CFS bandwidth control machinery 3387 */ 3388 3389#ifdef CONFIG_CFS_BANDWIDTH 3390 3391#ifdef HAVE_JUMP_LABEL 3392static struct static_key __cfs_bandwidth_used; 3393 3394static inline bool cfs_bandwidth_used(void) 3395{ 3396 return static_key_false(&__cfs_bandwidth_used); 3397} 3398 3399void cfs_bandwidth_usage_inc(void) 3400{ 3401 static_key_slow_inc(&__cfs_bandwidth_used); 3402} 3403 3404void cfs_bandwidth_usage_dec(void) 3405{ 3406 static_key_slow_dec(&__cfs_bandwidth_used); 3407} 3408#else /* HAVE_JUMP_LABEL */ 3409static bool cfs_bandwidth_used(void) 3410{ 3411 return true; 3412} 3413 3414void cfs_bandwidth_usage_inc(void) {} 3415void cfs_bandwidth_usage_dec(void) {} 3416#endif /* HAVE_JUMP_LABEL */ 3417 3418/* 3419 * default period for cfs group bandwidth. 3420 * default: 0.1s, units: nanoseconds 3421 */ 3422static inline u64 default_cfs_period(void) 3423{ 3424 return 100000000ULL; 3425} 3426 3427static inline u64 sched_cfs_bandwidth_slice(void) 3428{ 3429 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3430} 3431 3432/* 3433 * Replenish runtime according to assigned quota and update expiration time. 3434 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3435 * additional synchronization around rq->lock. 3436 * 3437 * requires cfs_b->lock 3438 */ 3439void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3440{ 3441 u64 now; 3442 3443 if (cfs_b->quota == RUNTIME_INF) 3444 return; 3445 3446 now = sched_clock_cpu(smp_processor_id()); 3447 cfs_b->runtime = cfs_b->quota; 3448 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3449} 3450 3451static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3452{ 3453 return &tg->cfs_bandwidth; 3454} 3455 3456/* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3457static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3458{ 3459 if (unlikely(cfs_rq->throttle_count)) 3460 return cfs_rq->throttled_clock_task; 3461 3462 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3463} 3464 3465/* returns 0 on failure to allocate runtime */ 3466static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3467{ 3468 struct task_group *tg = cfs_rq->tg; 3469 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3470 u64 amount = 0, min_amount, expires; 3471 3472 /* note: this is a positive sum as runtime_remaining <= 0 */ 3473 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3474 3475 raw_spin_lock(&cfs_b->lock); 3476 if (cfs_b->quota == RUNTIME_INF) 3477 amount = min_amount; 3478 else { 3479 /* 3480 * If the bandwidth pool has become inactive, then at least one 3481 * period must have elapsed since the last consumption. 3482 * Refresh the global state and ensure bandwidth timer becomes 3483 * active. 3484 */ 3485 if (!cfs_b->timer_active) { 3486 __refill_cfs_bandwidth_runtime(cfs_b); 3487 __start_cfs_bandwidth(cfs_b, false); 3488 } 3489 3490 if (cfs_b->runtime > 0) { 3491 amount = min(cfs_b->runtime, min_amount); 3492 cfs_b->runtime -= amount; 3493 cfs_b->idle = 0; 3494 } 3495 } 3496 expires = cfs_b->runtime_expires; 3497 raw_spin_unlock(&cfs_b->lock); 3498 3499 cfs_rq->runtime_remaining += amount; 3500 /* 3501 * we may have advanced our local expiration to account for allowed 3502 * spread between our sched_clock and the one on which runtime was 3503 * issued. 3504 */ 3505 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3506 cfs_rq->runtime_expires = expires; 3507 3508 return cfs_rq->runtime_remaining > 0; 3509} 3510 3511/* 3512 * Note: This depends on the synchronization provided by sched_clock and the 3513 * fact that rq->clock snapshots this value. 3514 */ 3515static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3516{ 3517 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3518 3519 /* if the deadline is ahead of our clock, nothing to do */ 3520 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3521 return; 3522 3523 if (cfs_rq->runtime_remaining < 0) 3524 return; 3525 3526 /* 3527 * If the local deadline has passed we have to consider the 3528 * possibility that our sched_clock is 'fast' and the global deadline 3529 * has not truly expired. 3530 * 3531 * Fortunately we can check determine whether this the case by checking 3532 * whether the global deadline has advanced. It is valid to compare 3533 * cfs_b->runtime_expires without any locks since we only care about 3534 * exact equality, so a partial write will still work. 3535 */ 3536 3537 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 3538 /* extend local deadline, drift is bounded above by 2 ticks */ 3539 cfs_rq->runtime_expires += TICK_NSEC; 3540 } else { 3541 /* global deadline is ahead, expiration has passed */ 3542 cfs_rq->runtime_remaining = 0; 3543 } 3544} 3545 3546static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3547{ 3548 /* dock delta_exec before expiring quota (as it could span periods) */ 3549 cfs_rq->runtime_remaining -= delta_exec; 3550 expire_cfs_rq_runtime(cfs_rq); 3551 3552 if (likely(cfs_rq->runtime_remaining > 0)) 3553 return; 3554 3555 /* 3556 * if we're unable to extend our runtime we resched so that the active 3557 * hierarchy can be throttled 3558 */ 3559 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3560 resched_curr(rq_of(cfs_rq)); 3561} 3562 3563static __always_inline 3564void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3565{ 3566 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3567 return; 3568 3569 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3570} 3571 3572static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3573{ 3574 return cfs_bandwidth_used() && cfs_rq->throttled; 3575} 3576 3577/* check whether cfs_rq, or any parent, is throttled */ 3578static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3579{ 3580 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3581} 3582 3583/* 3584 * Ensure that neither of the group entities corresponding to src_cpu or 3585 * dest_cpu are members of a throttled hierarchy when performing group 3586 * load-balance operations. 3587 */ 3588static inline int throttled_lb_pair(struct task_group *tg, 3589 int src_cpu, int dest_cpu) 3590{ 3591 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3592 3593 src_cfs_rq = tg->cfs_rq[src_cpu]; 3594 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3595 3596 return throttled_hierarchy(src_cfs_rq) || 3597 throttled_hierarchy(dest_cfs_rq); 3598} 3599 3600/* updated child weight may affect parent so we have to do this bottom up */ 3601static int tg_unthrottle_up(struct task_group *tg, void *data) 3602{ 3603 struct rq *rq = data; 3604 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3605 3606 cfs_rq->throttle_count--; 3607#ifdef CONFIG_SMP 3608 if (!cfs_rq->throttle_count) { 3609 /* adjust cfs_rq_clock_task() */ 3610 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3611 cfs_rq->throttled_clock_task; 3612 } 3613#endif 3614 3615 return 0; 3616} 3617 3618static int tg_throttle_down(struct task_group *tg, void *data) 3619{ 3620 struct rq *rq = data; 3621 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3622 3623 /* group is entering throttled state, stop time */ 3624 if (!cfs_rq->throttle_count) 3625 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3626 cfs_rq->throttle_count++; 3627 3628 return 0; 3629} 3630 3631static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3632{ 3633 struct rq *rq = rq_of(cfs_rq); 3634 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3635 struct sched_entity *se; 3636 long task_delta, dequeue = 1; 3637 3638 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3639 3640 /* freeze hierarchy runnable averages while throttled */ 3641 rcu_read_lock(); 3642 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3643 rcu_read_unlock(); 3644 3645 task_delta = cfs_rq->h_nr_running; 3646 for_each_sched_entity(se) { 3647 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3648 /* throttled entity or throttle-on-deactivate */ 3649 if (!se->on_rq) 3650 break; 3651 3652 if (dequeue) 3653 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3654 qcfs_rq->h_nr_running -= task_delta; 3655 3656 if (qcfs_rq->load.weight) 3657 dequeue = 0; 3658 } 3659 3660 if (!se) 3661 sub_nr_running(rq, task_delta); 3662 3663 cfs_rq->throttled = 1; 3664 cfs_rq->throttled_clock = rq_clock(rq); 3665 raw_spin_lock(&cfs_b->lock); 3666 /* 3667 * Add to the _head_ of the list, so that an already-started 3668 * distribute_cfs_runtime will not see us 3669 */ 3670 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3671 if (!cfs_b->timer_active) 3672 __start_cfs_bandwidth(cfs_b, false); 3673 raw_spin_unlock(&cfs_b->lock); 3674} 3675 3676void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3677{ 3678 struct rq *rq = rq_of(cfs_rq); 3679 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3680 struct sched_entity *se; 3681 int enqueue = 1; 3682 long task_delta; 3683 3684 se = cfs_rq->tg->se[cpu_of(rq)]; 3685 3686 cfs_rq->throttled = 0; 3687 3688 update_rq_clock(rq); 3689 3690 raw_spin_lock(&cfs_b->lock); 3691 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3692 list_del_rcu(&cfs_rq->throttled_list); 3693 raw_spin_unlock(&cfs_b->lock); 3694 3695 /* update hierarchical throttle state */ 3696 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3697 3698 if (!cfs_rq->load.weight) 3699 return; 3700 3701 task_delta = cfs_rq->h_nr_running; 3702 for_each_sched_entity(se) { 3703 if (se->on_rq) 3704 enqueue = 0; 3705 3706 cfs_rq = cfs_rq_of(se); 3707 if (enqueue) 3708 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3709 cfs_rq->h_nr_running += task_delta; 3710 3711 if (cfs_rq_throttled(cfs_rq)) 3712 break; 3713 } 3714 3715 if (!se) 3716 add_nr_running(rq, task_delta); 3717 3718 /* determine whether we need to wake up potentially idle cpu */ 3719 if (rq->curr == rq->idle && rq->cfs.nr_running) 3720 resched_curr(rq); 3721} 3722 3723static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3724 u64 remaining, u64 expires) 3725{ 3726 struct cfs_rq *cfs_rq; 3727 u64 runtime; 3728 u64 starting_runtime = remaining; 3729 3730 rcu_read_lock(); 3731 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3732 throttled_list) { 3733 struct rq *rq = rq_of(cfs_rq); 3734 3735 raw_spin_lock(&rq->lock); 3736 if (!cfs_rq_throttled(cfs_rq)) 3737 goto next; 3738 3739 runtime = -cfs_rq->runtime_remaining + 1; 3740 if (runtime > remaining) 3741 runtime = remaining; 3742 remaining -= runtime; 3743 3744 cfs_rq->runtime_remaining += runtime; 3745 cfs_rq->runtime_expires = expires; 3746 3747 /* we check whether we're throttled above */ 3748 if (cfs_rq->runtime_remaining > 0) 3749 unthrottle_cfs_rq(cfs_rq); 3750 3751next: 3752 raw_spin_unlock(&rq->lock); 3753 3754 if (!remaining) 3755 break; 3756 } 3757 rcu_read_unlock(); 3758 3759 return starting_runtime - remaining; 3760} 3761 3762/* 3763 * Responsible for refilling a task_group's bandwidth and unthrottling its 3764 * cfs_rqs as appropriate. If there has been no activity within the last 3765 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3766 * used to track this state. 3767 */ 3768static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 3769{ 3770 u64 runtime, runtime_expires; 3771 int throttled; 3772 3773 /* no need to continue the timer with no bandwidth constraint */ 3774 if (cfs_b->quota == RUNTIME_INF) 3775 goto out_deactivate; 3776 3777 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3778 cfs_b->nr_periods += overrun; 3779 3780 /* 3781 * idle depends on !throttled (for the case of a large deficit), and if 3782 * we're going inactive then everything else can be deferred 3783 */ 3784 if (cfs_b->idle && !throttled) 3785 goto out_deactivate; 3786 3787 /* 3788 * if we have relooped after returning idle once, we need to update our 3789 * status as actually running, so that other cpus doing 3790 * __start_cfs_bandwidth will stop trying to cancel us. 3791 */ 3792 cfs_b->timer_active = 1; 3793 3794 __refill_cfs_bandwidth_runtime(cfs_b); 3795 3796 if (!throttled) { 3797 /* mark as potentially idle for the upcoming period */ 3798 cfs_b->idle = 1; 3799 return 0; 3800 } 3801 3802 /* account preceding periods in which throttling occurred */ 3803 cfs_b->nr_throttled += overrun; 3804 3805 runtime_expires = cfs_b->runtime_expires; 3806 3807 /* 3808 * This check is repeated as we are holding onto the new bandwidth while 3809 * we unthrottle. This can potentially race with an unthrottled group 3810 * trying to acquire new bandwidth from the global pool. This can result 3811 * in us over-using our runtime if it is all used during this loop, but 3812 * only by limited amounts in that extreme case. 3813 */ 3814 while (throttled && cfs_b->runtime > 0) { 3815 runtime = cfs_b->runtime; 3816 raw_spin_unlock(&cfs_b->lock); 3817 /* we can't nest cfs_b->lock while distributing bandwidth */ 3818 runtime = distribute_cfs_runtime(cfs_b, runtime, 3819 runtime_expires); 3820 raw_spin_lock(&cfs_b->lock); 3821 3822 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3823 3824 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3825 } 3826 3827 /* 3828 * While we are ensured activity in the period following an 3829 * unthrottle, this also covers the case in which the new bandwidth is 3830 * insufficient to cover the existing bandwidth deficit. (Forcing the 3831 * timer to remain active while there are any throttled entities.) 3832 */ 3833 cfs_b->idle = 0; 3834 3835 return 0; 3836 3837out_deactivate: 3838 cfs_b->timer_active = 0; 3839 return 1; 3840} 3841 3842/* a cfs_rq won't donate quota below this amount */ 3843static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 3844/* minimum remaining period time to redistribute slack quota */ 3845static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 3846/* how long we wait to gather additional slack before distributing */ 3847static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 3848 3849/* 3850 * Are we near the end of the current quota period? 3851 * 3852 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 3853 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of 3854 * migrate_hrtimers, base is never cleared, so we are fine. 3855 */ 3856static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 3857{ 3858 struct hrtimer *refresh_timer = &cfs_b->period_timer; 3859 u64 remaining; 3860 3861 /* if the call-back is running a quota refresh is already occurring */ 3862 if (hrtimer_callback_running(refresh_timer)) 3863 return 1; 3864 3865 /* is a quota refresh about to occur? */ 3866 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 3867 if (remaining < min_expire) 3868 return 1; 3869 3870 return 0; 3871} 3872 3873static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 3874{ 3875 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 3876 3877 /* if there's a quota refresh soon don't bother with slack */ 3878 if (runtime_refresh_within(cfs_b, min_left)) 3879 return; 3880 3881 start_bandwidth_timer(&cfs_b->slack_timer, 3882 ns_to_ktime(cfs_bandwidth_slack_period)); 3883} 3884 3885/* we know any runtime found here is valid as update_curr() precedes return */ 3886static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3887{ 3888 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3889 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 3890 3891 if (slack_runtime <= 0) 3892 return; 3893 3894 raw_spin_lock(&cfs_b->lock); 3895 if (cfs_b->quota != RUNTIME_INF && 3896 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 3897 cfs_b->runtime += slack_runtime; 3898 3899 /* we are under rq->lock, defer unthrottling using a timer */ 3900 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 3901 !list_empty(&cfs_b->throttled_cfs_rq)) 3902 start_cfs_slack_bandwidth(cfs_b); 3903 } 3904 raw_spin_unlock(&cfs_b->lock); 3905 3906 /* even if it's not valid for return we don't want to try again */ 3907 cfs_rq->runtime_remaining -= slack_runtime; 3908} 3909 3910static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3911{ 3912 if (!cfs_bandwidth_used()) 3913 return; 3914 3915 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 3916 return; 3917 3918 __return_cfs_rq_runtime(cfs_rq); 3919} 3920 3921/* 3922 * This is done with a timer (instead of inline with bandwidth return) since 3923 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 3924 */ 3925static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 3926{ 3927 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 3928 u64 expires; 3929 3930 /* confirm we're still not at a refresh boundary */ 3931 raw_spin_lock(&cfs_b->lock); 3932 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 3933 raw_spin_unlock(&cfs_b->lock); 3934 return; 3935 } 3936 3937 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 3938 runtime = cfs_b->runtime; 3939 3940 expires = cfs_b->runtime_expires; 3941 raw_spin_unlock(&cfs_b->lock); 3942 3943 if (!runtime) 3944 return; 3945 3946 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 3947 3948 raw_spin_lock(&cfs_b->lock); 3949 if (expires == cfs_b->runtime_expires) 3950 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3951 raw_spin_unlock(&cfs_b->lock); 3952} 3953 3954/* 3955 * When a group wakes up we want to make sure that its quota is not already 3956 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 3957 * runtime as update_curr() throttling can not not trigger until it's on-rq. 3958 */ 3959static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 3960{ 3961 if (!cfs_bandwidth_used()) 3962 return; 3963 3964 /* an active group must be handled by the update_curr()->put() path */ 3965 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 3966 return; 3967 3968 /* ensure the group is not already throttled */ 3969 if (cfs_rq_throttled(cfs_rq)) 3970 return; 3971 3972 /* update runtime allocation */ 3973 account_cfs_rq_runtime(cfs_rq, 0); 3974 if (cfs_rq->runtime_remaining <= 0) 3975 throttle_cfs_rq(cfs_rq); 3976} 3977 3978/* conditionally throttle active cfs_rq's from put_prev_entity() */ 3979static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3980{ 3981 if (!cfs_bandwidth_used()) 3982 return false; 3983 3984 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 3985 return false; 3986 3987 /* 3988 * it's possible for a throttled entity to be forced into a running 3989 * state (e.g. set_curr_task), in this case we're finished. 3990 */ 3991 if (cfs_rq_throttled(cfs_rq)) 3992 return true; 3993 3994 throttle_cfs_rq(cfs_rq); 3995 return true; 3996} 3997 3998static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 3999{ 4000 struct cfs_bandwidth *cfs_b = 4001 container_of(timer, struct cfs_bandwidth, slack_timer); 4002 do_sched_cfs_slack_timer(cfs_b); 4003 4004 return HRTIMER_NORESTART; 4005} 4006 4007static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4008{ 4009 struct cfs_bandwidth *cfs_b = 4010 container_of(timer, struct cfs_bandwidth, period_timer); 4011 ktime_t now; 4012 int overrun; 4013 int idle = 0; 4014 4015 raw_spin_lock(&cfs_b->lock); 4016 for (;;) { 4017 now = hrtimer_cb_get_time(timer); 4018 overrun = hrtimer_forward(timer, now, cfs_b->period); 4019 4020 if (!overrun) 4021 break; 4022 4023 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4024 } 4025 raw_spin_unlock(&cfs_b->lock); 4026 4027 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4028} 4029 4030void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4031{ 4032 raw_spin_lock_init(&cfs_b->lock); 4033 cfs_b->runtime = 0; 4034 cfs_b->quota = RUNTIME_INF; 4035 cfs_b->period = ns_to_ktime(default_cfs_period()); 4036 4037 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4038 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4039 cfs_b->period_timer.function = sched_cfs_period_timer; 4040 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4041 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4042} 4043 4044static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4045{ 4046 cfs_rq->runtime_enabled = 0; 4047 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4048} 4049 4050/* requires cfs_b->lock, may release to reprogram timer */ 4051void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force) 4052{ 4053 /* 4054 * The timer may be active because we're trying to set a new bandwidth 4055 * period or because we're racing with the tear-down path 4056 * (timer_active==0 becomes visible before the hrtimer call-back 4057 * terminates). In either case we ensure that it's re-programmed 4058 */ 4059 while (unlikely(hrtimer_active(&cfs_b->period_timer)) && 4060 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) { 4061 /* bounce the lock to allow do_sched_cfs_period_timer to run */ 4062 raw_spin_unlock(&cfs_b->lock); 4063 cpu_relax(); 4064 raw_spin_lock(&cfs_b->lock); 4065 /* if someone else restarted the timer then we're done */ 4066 if (!force && cfs_b->timer_active) 4067 return; 4068 } 4069 4070 cfs_b->timer_active = 1; 4071 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 4072} 4073 4074static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4075{ 4076 /* init_cfs_bandwidth() was not called */ 4077 if (!cfs_b->throttled_cfs_rq.next) 4078 return; 4079 4080 hrtimer_cancel(&cfs_b->period_timer); 4081 hrtimer_cancel(&cfs_b->slack_timer); 4082} 4083 4084static void __maybe_unused update_runtime_enabled(struct rq *rq) 4085{ 4086 struct cfs_rq *cfs_rq; 4087 4088 for_each_leaf_cfs_rq(rq, cfs_rq) { 4089 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 4090 4091 raw_spin_lock(&cfs_b->lock); 4092 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4093 raw_spin_unlock(&cfs_b->lock); 4094 } 4095} 4096 4097static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4098{ 4099 struct cfs_rq *cfs_rq; 4100 4101 for_each_leaf_cfs_rq(rq, cfs_rq) { 4102 if (!cfs_rq->runtime_enabled) 4103 continue; 4104 4105 /* 4106 * clock_task is not advancing so we just need to make sure 4107 * there's some valid quota amount 4108 */ 4109 cfs_rq->runtime_remaining = 1; 4110 /* 4111 * Offline rq is schedulable till cpu is completely disabled 4112 * in take_cpu_down(), so we prevent new cfs throttling here. 4113 */ 4114 cfs_rq->runtime_enabled = 0; 4115 4116 if (cfs_rq_throttled(cfs_rq)) 4117 unthrottle_cfs_rq(cfs_rq); 4118 } 4119} 4120 4121#else /* CONFIG_CFS_BANDWIDTH */ 4122static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4123{ 4124 return rq_clock_task(rq_of(cfs_rq)); 4125} 4126 4127static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4128static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4129static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4130static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4131 4132static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4133{ 4134 return 0; 4135} 4136 4137static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4138{ 4139 return 0; 4140} 4141 4142static inline int throttled_lb_pair(struct task_group *tg, 4143 int src_cpu, int dest_cpu) 4144{ 4145 return 0; 4146} 4147 4148void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4149 4150#ifdef CONFIG_FAIR_GROUP_SCHED 4151static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4152#endif 4153 4154static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4155{ 4156 return NULL; 4157} 4158static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4159static inline void update_runtime_enabled(struct rq *rq) {} 4160static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4161 4162#endif /* CONFIG_CFS_BANDWIDTH */ 4163 4164/************************************************** 4165 * CFS operations on tasks: 4166 */ 4167 4168#ifdef CONFIG_SCHED_HRTICK 4169static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4170{ 4171 struct sched_entity *se = &p->se; 4172 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4173 4174 WARN_ON(task_rq(p) != rq); 4175 4176 if (cfs_rq->nr_running > 1) { 4177 u64 slice = sched_slice(cfs_rq, se); 4178 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4179 s64 delta = slice - ran; 4180 4181 if (delta < 0) { 4182 if (rq->curr == p) 4183 resched_curr(rq); 4184 return; 4185 } 4186 hrtick_start(rq, delta); 4187 } 4188} 4189 4190/* 4191 * called from enqueue/dequeue and updates the hrtick when the 4192 * current task is from our class and nr_running is low enough 4193 * to matter. 4194 */ 4195static void hrtick_update(struct rq *rq) 4196{ 4197 struct task_struct *curr = rq->curr; 4198 4199 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4200 return; 4201 4202 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4203 hrtick_start_fair(rq, curr); 4204} 4205#else /* !CONFIG_SCHED_HRTICK */ 4206static inline void 4207hrtick_start_fair(struct rq *rq, struct task_struct *p) 4208{ 4209} 4210 4211static inline void hrtick_update(struct rq *rq) 4212{ 4213} 4214#endif 4215 4216/* 4217 * The enqueue_task method is called before nr_running is 4218 * increased. Here we update the fair scheduling stats and 4219 * then put the task into the rbtree: 4220 */ 4221static void 4222enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4223{ 4224 struct cfs_rq *cfs_rq; 4225 struct sched_entity *se = &p->se; 4226 4227 for_each_sched_entity(se) { 4228 if (se->on_rq) 4229 break; 4230 cfs_rq = cfs_rq_of(se); 4231 enqueue_entity(cfs_rq, se, flags); 4232 4233 /* 4234 * end evaluation on encountering a throttled cfs_rq 4235 * 4236 * note: in the case of encountering a throttled cfs_rq we will 4237 * post the final h_nr_running increment below. 4238 */ 4239 if (cfs_rq_throttled(cfs_rq)) 4240 break; 4241 cfs_rq->h_nr_running++; 4242 4243 flags = ENQUEUE_WAKEUP; 4244 } 4245 4246 for_each_sched_entity(se) { 4247 cfs_rq = cfs_rq_of(se); 4248 cfs_rq->h_nr_running++; 4249 4250 if (cfs_rq_throttled(cfs_rq)) 4251 break; 4252 4253 update_cfs_shares(cfs_rq); 4254 update_entity_load_avg(se, 1); 4255 } 4256 4257 if (!se) { 4258 update_rq_runnable_avg(rq, rq->nr_running); 4259 add_nr_running(rq, 1); 4260 } 4261 hrtick_update(rq); 4262} 4263 4264static void set_next_buddy(struct sched_entity *se); 4265 4266/* 4267 * The dequeue_task method is called before nr_running is 4268 * decreased. We remove the task from the rbtree and 4269 * update the fair scheduling stats: 4270 */ 4271static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4272{ 4273 struct cfs_rq *cfs_rq; 4274 struct sched_entity *se = &p->se; 4275 int task_sleep = flags & DEQUEUE_SLEEP; 4276 4277 for_each_sched_entity(se) { 4278 cfs_rq = cfs_rq_of(se); 4279 dequeue_entity(cfs_rq, se, flags); 4280 4281 /* 4282 * end evaluation on encountering a throttled cfs_rq 4283 * 4284 * note: in the case of encountering a throttled cfs_rq we will 4285 * post the final h_nr_running decrement below. 4286 */ 4287 if (cfs_rq_throttled(cfs_rq)) 4288 break; 4289 cfs_rq->h_nr_running--; 4290 4291 /* Don't dequeue parent if it has other entities besides us */ 4292 if (cfs_rq->load.weight) { 4293 /* 4294 * Bias pick_next to pick a task from this cfs_rq, as 4295 * p is sleeping when it is within its sched_slice. 4296 */ 4297 if (task_sleep && parent_entity(se)) 4298 set_next_buddy(parent_entity(se)); 4299 4300 /* avoid re-evaluating load for this entity */ 4301 se = parent_entity(se); 4302 break; 4303 } 4304 flags |= DEQUEUE_SLEEP; 4305 } 4306 4307 for_each_sched_entity(se) { 4308 cfs_rq = cfs_rq_of(se); 4309 cfs_rq->h_nr_running--; 4310 4311 if (cfs_rq_throttled(cfs_rq)) 4312 break; 4313 4314 update_cfs_shares(cfs_rq); 4315 update_entity_load_avg(se, 1); 4316 } 4317 4318 if (!se) { 4319 sub_nr_running(rq, 1); 4320 update_rq_runnable_avg(rq, 1); 4321 } 4322 hrtick_update(rq); 4323} 4324 4325#ifdef CONFIG_SMP 4326/* Used instead of source_load when we know the type == 0 */ 4327static unsigned long weighted_cpuload(const int cpu) 4328{ 4329 return cpu_rq(cpu)->cfs.runnable_load_avg; 4330} 4331 4332/* 4333 * Return a low guess at the load of a migration-source cpu weighted 4334 * according to the scheduling class and "nice" value. 4335 * 4336 * We want to under-estimate the load of migration sources, to 4337 * balance conservatively. 4338 */ 4339static unsigned long source_load(int cpu, int type) 4340{ 4341 struct rq *rq = cpu_rq(cpu); 4342 unsigned long total = weighted_cpuload(cpu); 4343 4344 if (type == 0 || !sched_feat(LB_BIAS)) 4345 return total; 4346 4347 return min(rq->cpu_load[type-1], total); 4348} 4349 4350/* 4351 * Return a high guess at the load of a migration-target cpu weighted 4352 * according to the scheduling class and "nice" value. 4353 */ 4354static unsigned long target_load(int cpu, int type) 4355{ 4356 struct rq *rq = cpu_rq(cpu); 4357 unsigned long total = weighted_cpuload(cpu); 4358 4359 if (type == 0 || !sched_feat(LB_BIAS)) 4360 return total; 4361 4362 return max(rq->cpu_load[type-1], total); 4363} 4364 4365static unsigned long capacity_of(int cpu) 4366{ 4367 return cpu_rq(cpu)->cpu_capacity; 4368} 4369 4370static unsigned long capacity_orig_of(int cpu) 4371{ 4372 return cpu_rq(cpu)->cpu_capacity_orig; 4373} 4374 4375static unsigned long cpu_avg_load_per_task(int cpu) 4376{ 4377 struct rq *rq = cpu_rq(cpu); 4378 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running); 4379 unsigned long load_avg = rq->cfs.runnable_load_avg; 4380 4381 if (nr_running) 4382 return load_avg / nr_running; 4383 4384 return 0; 4385} 4386 4387static void record_wakee(struct task_struct *p) 4388{ 4389 /* 4390 * Rough decay (wiping) for cost saving, don't worry 4391 * about the boundary, really active task won't care 4392 * about the loss. 4393 */ 4394 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 4395 current->wakee_flips >>= 1; 4396 current->wakee_flip_decay_ts = jiffies; 4397 } 4398 4399 if (current->last_wakee != p) { 4400 current->last_wakee = p; 4401 current->wakee_flips++; 4402 } 4403} 4404 4405static void task_waking_fair(struct task_struct *p) 4406{ 4407 struct sched_entity *se = &p->se; 4408 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4409 u64 min_vruntime; 4410 4411#ifndef CONFIG_64BIT 4412 u64 min_vruntime_copy; 4413 4414 do { 4415 min_vruntime_copy = cfs_rq->min_vruntime_copy; 4416 smp_rmb(); 4417 min_vruntime = cfs_rq->min_vruntime; 4418 } while (min_vruntime != min_vruntime_copy); 4419#else 4420 min_vruntime = cfs_rq->min_vruntime; 4421#endif 4422 4423 se->vruntime -= min_vruntime; 4424 record_wakee(p); 4425} 4426 4427#ifdef CONFIG_FAIR_GROUP_SCHED 4428/* 4429 * effective_load() calculates the load change as seen from the root_task_group 4430 * 4431 * Adding load to a group doesn't make a group heavier, but can cause movement 4432 * of group shares between cpus. Assuming the shares were perfectly aligned one 4433 * can calculate the shift in shares. 4434 * 4435 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4436 * on this @cpu and results in a total addition (subtraction) of @wg to the 4437 * total group weight. 4438 * 4439 * Given a runqueue weight distribution (rw_i) we can compute a shares 4440 * distribution (s_i) using: 4441 * 4442 * s_i = rw_i / \Sum rw_j (1) 4443 * 4444 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4445 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4446 * shares distribution (s_i): 4447 * 4448 * rw_i = { 2, 4, 1, 0 } 4449 * s_i = { 2/7, 4/7, 1/7, 0 } 4450 * 4451 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4452 * task used to run on and the CPU the waker is running on), we need to 4453 * compute the effect of waking a task on either CPU and, in case of a sync 4454 * wakeup, compute the effect of the current task going to sleep. 4455 * 4456 * So for a change of @wl to the local @cpu with an overall group weight change 4457 * of @wl we can compute the new shares distribution (s'_i) using: 4458 * 4459 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4460 * 4461 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4462 * differences in waking a task to CPU 0. The additional task changes the 4463 * weight and shares distributions like: 4464 * 4465 * rw'_i = { 3, 4, 1, 0 } 4466 * s'_i = { 3/8, 4/8, 1/8, 0 } 4467 * 4468 * We can then compute the difference in effective weight by using: 4469 * 4470 * dw_i = S * (s'_i - s_i) (3) 4471 * 4472 * Where 'S' is the group weight as seen by its parent. 4473 * 4474 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4475 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4476 * 4/7) times the weight of the group. 4477 */ 4478static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4479{ 4480 struct sched_entity *se = tg->se[cpu]; 4481 4482 if (!tg->parent) /* the trivial, non-cgroup case */ 4483 return wl; 4484 4485 for_each_sched_entity(se) { 4486 long w, W; 4487 4488 tg = se->my_q->tg; 4489 4490 /* 4491 * W = @wg + \Sum rw_j 4492 */ 4493 W = wg + calc_tg_weight(tg, se->my_q); 4494 4495 /* 4496 * w = rw_i + @wl 4497 */ 4498 w = se->my_q->load.weight + wl; 4499 4500 /* 4501 * wl = S * s'_i; see (2) 4502 */ 4503 if (W > 0 && w < W) 4504 wl = (w * (long)tg->shares) / W; 4505 else 4506 wl = tg->shares; 4507 4508 /* 4509 * Per the above, wl is the new se->load.weight value; since 4510 * those are clipped to [MIN_SHARES, ...) do so now. See 4511 * calc_cfs_shares(). 4512 */ 4513 if (wl < MIN_SHARES) 4514 wl = MIN_SHARES; 4515 4516 /* 4517 * wl = dw_i = S * (s'_i - s_i); see (3) 4518 */ 4519 wl -= se->load.weight; 4520 4521 /* 4522 * Recursively apply this logic to all parent groups to compute 4523 * the final effective load change on the root group. Since 4524 * only the @tg group gets extra weight, all parent groups can 4525 * only redistribute existing shares. @wl is the shift in shares 4526 * resulting from this level per the above. 4527 */ 4528 wg = 0; 4529 } 4530 4531 return wl; 4532} 4533#else 4534 4535static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4536{ 4537 return wl; 4538} 4539 4540#endif 4541 4542static int wake_wide(struct task_struct *p) 4543{ 4544 int factor = this_cpu_read(sd_llc_size); 4545 4546 /* 4547 * Yeah, it's the switching-frequency, could means many wakee or 4548 * rapidly switch, use factor here will just help to automatically 4549 * adjust the loose-degree, so bigger node will lead to more pull. 4550 */ 4551 if (p->wakee_flips > factor) { 4552 /* 4553 * wakee is somewhat hot, it needs certain amount of cpu 4554 * resource, so if waker is far more hot, prefer to leave 4555 * it alone. 4556 */ 4557 if (current->wakee_flips > (factor * p->wakee_flips)) 4558 return 1; 4559 } 4560 4561 return 0; 4562} 4563 4564static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 4565{ 4566 s64 this_load, load; 4567 s64 this_eff_load, prev_eff_load; 4568 int idx, this_cpu, prev_cpu; 4569 struct task_group *tg; 4570 unsigned long weight; 4571 int balanced; 4572 4573 /* 4574 * If we wake multiple tasks be careful to not bounce 4575 * ourselves around too much. 4576 */ 4577 if (wake_wide(p)) 4578 return 0; 4579 4580 idx = sd->wake_idx; 4581 this_cpu = smp_processor_id(); 4582 prev_cpu = task_cpu(p); 4583 load = source_load(prev_cpu, idx); 4584 this_load = target_load(this_cpu, idx); 4585 4586 /* 4587 * If sync wakeup then subtract the (maximum possible) 4588 * effect of the currently running task from the load 4589 * of the current CPU: 4590 */ 4591 if (sync) { 4592 tg = task_group(current); 4593 weight = current->se.load.weight; 4594 4595 this_load += effective_load(tg, this_cpu, -weight, -weight); 4596 load += effective_load(tg, prev_cpu, 0, -weight); 4597 } 4598 4599 tg = task_group(p); 4600 weight = p->se.load.weight; 4601 4602 /* 4603 * In low-load situations, where prev_cpu is idle and this_cpu is idle 4604 * due to the sync cause above having dropped this_load to 0, we'll 4605 * always have an imbalance, but there's really nothing you can do 4606 * about that, so that's good too. 4607 * 4608 * Otherwise check if either cpus are near enough in load to allow this 4609 * task to be woken on this_cpu. 4610 */ 4611 this_eff_load = 100; 4612 this_eff_load *= capacity_of(prev_cpu); 4613 4614 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 4615 prev_eff_load *= capacity_of(this_cpu); 4616 4617 if (this_load > 0) { 4618 this_eff_load *= this_load + 4619 effective_load(tg, this_cpu, weight, weight); 4620 4621 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 4622 } 4623 4624 balanced = this_eff_load <= prev_eff_load; 4625 4626 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 4627 4628 if (!balanced) 4629 return 0; 4630 4631 schedstat_inc(sd, ttwu_move_affine); 4632 schedstat_inc(p, se.statistics.nr_wakeups_affine); 4633 4634 return 1; 4635} 4636 4637/* 4638 * find_idlest_group finds and returns the least busy CPU group within the 4639 * domain. 4640 */ 4641static struct sched_group * 4642find_idlest_group(struct sched_domain *sd, struct task_struct *p, 4643 int this_cpu, int sd_flag) 4644{ 4645 struct sched_group *idlest = NULL, *group = sd->groups; 4646 unsigned long min_load = ULONG_MAX, this_load = 0; 4647 int load_idx = sd->forkexec_idx; 4648 int imbalance = 100 + (sd->imbalance_pct-100)/2; 4649 4650 if (sd_flag & SD_BALANCE_WAKE) 4651 load_idx = sd->wake_idx; 4652 4653 do { 4654 unsigned long load, avg_load; 4655 int local_group; 4656 int i; 4657 4658 /* Skip over this group if it has no CPUs allowed */ 4659 if (!cpumask_intersects(sched_group_cpus(group), 4660 tsk_cpus_allowed(p))) 4661 continue; 4662 4663 local_group = cpumask_test_cpu(this_cpu, 4664 sched_group_cpus(group)); 4665 4666 /* Tally up the load of all CPUs in the group */ 4667 avg_load = 0; 4668 4669 for_each_cpu(i, sched_group_cpus(group)) { 4670 /* Bias balancing toward cpus of our domain */ 4671 if (local_group) 4672 load = source_load(i, load_idx); 4673 else 4674 load = target_load(i, load_idx); 4675 4676 avg_load += load; 4677 } 4678 4679 /* Adjust by relative CPU capacity of the group */ 4680 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; 4681 4682 if (local_group) { 4683 this_load = avg_load; 4684 } else if (avg_load < min_load) { 4685 min_load = avg_load; 4686 idlest = group; 4687 } 4688 } while (group = group->next, group != sd->groups); 4689 4690 if (!idlest || 100*this_load < imbalance*min_load) 4691 return NULL; 4692 return idlest; 4693} 4694 4695/* 4696 * find_idlest_cpu - find the idlest cpu among the cpus in group. 4697 */ 4698static int 4699find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 4700{ 4701 unsigned long load, min_load = ULONG_MAX; 4702 unsigned int min_exit_latency = UINT_MAX; 4703 u64 latest_idle_timestamp = 0; 4704 int least_loaded_cpu = this_cpu; 4705 int shallowest_idle_cpu = -1; 4706 int i; 4707 4708 /* Traverse only the allowed CPUs */ 4709 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 4710 if (idle_cpu(i)) { 4711 struct rq *rq = cpu_rq(i); 4712 struct cpuidle_state *idle = idle_get_state(rq); 4713 if (idle && idle->exit_latency < min_exit_latency) { 4714 /* 4715 * We give priority to a CPU whose idle state 4716 * has the smallest exit latency irrespective 4717 * of any idle timestamp. 4718 */ 4719 min_exit_latency = idle->exit_latency; 4720 latest_idle_timestamp = rq->idle_stamp; 4721 shallowest_idle_cpu = i; 4722 } else if ((!idle || idle->exit_latency == min_exit_latency) && 4723 rq->idle_stamp > latest_idle_timestamp) { 4724 /* 4725 * If equal or no active idle state, then 4726 * the most recently idled CPU might have 4727 * a warmer cache. 4728 */ 4729 latest_idle_timestamp = rq->idle_stamp; 4730 shallowest_idle_cpu = i; 4731 } 4732 } else if (shallowest_idle_cpu == -1) { 4733 load = weighted_cpuload(i); 4734 if (load < min_load || (load == min_load && i == this_cpu)) { 4735 min_load = load; 4736 least_loaded_cpu = i; 4737 } 4738 } 4739 } 4740 4741 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 4742} 4743 4744/* 4745 * Try and locate an idle CPU in the sched_domain. 4746 */ 4747static int select_idle_sibling(struct task_struct *p, int target) 4748{ 4749 struct sched_domain *sd; 4750 struct sched_group *sg; 4751 int i = task_cpu(p); 4752 4753 if (idle_cpu(target)) 4754 return target; 4755 4756 /* 4757 * If the prevous cpu is cache affine and idle, don't be stupid. 4758 */ 4759 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 4760 return i; 4761 4762 /* 4763 * Otherwise, iterate the domains and find an elegible idle cpu. 4764 */ 4765 sd = rcu_dereference(per_cpu(sd_llc, target)); 4766 for_each_lower_domain(sd) { 4767 sg = sd->groups; 4768 do { 4769 if (!cpumask_intersects(sched_group_cpus(sg), 4770 tsk_cpus_allowed(p))) 4771 goto next; 4772 4773 for_each_cpu(i, sched_group_cpus(sg)) { 4774 if (i == target || !idle_cpu(i)) 4775 goto next; 4776 } 4777 4778 target = cpumask_first_and(sched_group_cpus(sg), 4779 tsk_cpus_allowed(p)); 4780 goto done; 4781next: 4782 sg = sg->next; 4783 } while (sg != sd->groups); 4784 } 4785done: 4786 return target; 4787} 4788/* 4789 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS 4790 * tasks. The unit of the return value must be the one of capacity so we can 4791 * compare the usage with the capacity of the CPU that is available for CFS 4792 * task (ie cpu_capacity). 4793 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a 4794 * CPU. It represents the amount of utilization of a CPU in the range 4795 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full 4796 * capacity of the CPU because it's about the running time on this CPU. 4797 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE 4798 * because of unfortunate rounding in avg_period and running_load_avg or just 4799 * after migrating tasks until the average stabilizes with the new running 4800 * time. So we need to check that the usage stays into the range 4801 * [0..cpu_capacity_orig] and cap if necessary. 4802 * Without capping the usage, a group could be seen as overloaded (CPU0 usage 4803 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity 4804 */ 4805static int get_cpu_usage(int cpu) 4806{ 4807 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg; 4808 unsigned long capacity = capacity_orig_of(cpu); 4809 4810 if (usage >= SCHED_LOAD_SCALE) 4811 return capacity; 4812 4813 return (usage * capacity) >> SCHED_LOAD_SHIFT; 4814} 4815 4816/* 4817 * select_task_rq_fair: Select target runqueue for the waking task in domains 4818 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 4819 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 4820 * 4821 * Balances load by selecting the idlest cpu in the idlest group, or under 4822 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 4823 * 4824 * Returns the target cpu number. 4825 * 4826 * preempt must be disabled. 4827 */ 4828static int 4829select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 4830{ 4831 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 4832 int cpu = smp_processor_id(); 4833 int new_cpu = cpu; 4834 int want_affine = 0; 4835 int sync = wake_flags & WF_SYNC; 4836 4837 if (sd_flag & SD_BALANCE_WAKE) 4838 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); 4839 4840 rcu_read_lock(); 4841 for_each_domain(cpu, tmp) { 4842 if (!(tmp->flags & SD_LOAD_BALANCE)) 4843 continue; 4844 4845 /* 4846 * If both cpu and prev_cpu are part of this domain, 4847 * cpu is a valid SD_WAKE_AFFINE target. 4848 */ 4849 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 4850 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 4851 affine_sd = tmp; 4852 break; 4853 } 4854 4855 if (tmp->flags & sd_flag) 4856 sd = tmp; 4857 } 4858 4859 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 4860 prev_cpu = cpu; 4861 4862 if (sd_flag & SD_BALANCE_WAKE) { 4863 new_cpu = select_idle_sibling(p, prev_cpu); 4864 goto unlock; 4865 } 4866 4867 while (sd) { 4868 struct sched_group *group; 4869 int weight; 4870 4871 if (!(sd->flags & sd_flag)) { 4872 sd = sd->child; 4873 continue; 4874 } 4875 4876 group = find_idlest_group(sd, p, cpu, sd_flag); 4877 if (!group) { 4878 sd = sd->child; 4879 continue; 4880 } 4881 4882 new_cpu = find_idlest_cpu(group, p, cpu); 4883 if (new_cpu == -1 || new_cpu == cpu) { 4884 /* Now try balancing at a lower domain level of cpu */ 4885 sd = sd->child; 4886 continue; 4887 } 4888 4889 /* Now try balancing at a lower domain level of new_cpu */ 4890 cpu = new_cpu; 4891 weight = sd->span_weight; 4892 sd = NULL; 4893 for_each_domain(cpu, tmp) { 4894 if (weight <= tmp->span_weight) 4895 break; 4896 if (tmp->flags & sd_flag) 4897 sd = tmp; 4898 } 4899 /* while loop will break here if sd == NULL */ 4900 } 4901unlock: 4902 rcu_read_unlock(); 4903 4904 return new_cpu; 4905} 4906 4907/* 4908 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 4909 * cfs_rq_of(p) references at time of call are still valid and identify the 4910 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 4911 * other assumptions, including the state of rq->lock, should be made. 4912 */ 4913static void 4914migrate_task_rq_fair(struct task_struct *p, int next_cpu) 4915{ 4916 struct sched_entity *se = &p->se; 4917 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4918 4919 /* 4920 * Load tracking: accumulate removed load so that it can be processed 4921 * when we next update owning cfs_rq under rq->lock. Tasks contribute 4922 * to blocked load iff they have a positive decay-count. It can never 4923 * be negative here since on-rq tasks have decay-count == 0. 4924 */ 4925 if (se->avg.decay_count) { 4926 se->avg.decay_count = -__synchronize_entity_decay(se); 4927 atomic_long_add(se->avg.load_avg_contrib, 4928 &cfs_rq->removed_load); 4929 } 4930 4931 /* We have migrated, no longer consider this task hot */ 4932 se->exec_start = 0; 4933} 4934#endif /* CONFIG_SMP */ 4935 4936static unsigned long 4937wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 4938{ 4939 unsigned long gran = sysctl_sched_wakeup_granularity; 4940 4941 /* 4942 * Since its curr running now, convert the gran from real-time 4943 * to virtual-time in his units. 4944 * 4945 * By using 'se' instead of 'curr' we penalize light tasks, so 4946 * they get preempted easier. That is, if 'se' < 'curr' then 4947 * the resulting gran will be larger, therefore penalizing the 4948 * lighter, if otoh 'se' > 'curr' then the resulting gran will 4949 * be smaller, again penalizing the lighter task. 4950 * 4951 * This is especially important for buddies when the leftmost 4952 * task is higher priority than the buddy. 4953 */ 4954 return calc_delta_fair(gran, se); 4955} 4956 4957/* 4958 * Should 'se' preempt 'curr'. 4959 * 4960 * |s1 4961 * |s2 4962 * |s3 4963 * g 4964 * |<--->|c 4965 * 4966 * w(c, s1) = -1 4967 * w(c, s2) = 0 4968 * w(c, s3) = 1 4969 * 4970 */ 4971static int 4972wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 4973{ 4974 s64 gran, vdiff = curr->vruntime - se->vruntime; 4975 4976 if (vdiff <= 0) 4977 return -1; 4978 4979 gran = wakeup_gran(curr, se); 4980 if (vdiff > gran) 4981 return 1; 4982 4983 return 0; 4984} 4985 4986static void set_last_buddy(struct sched_entity *se) 4987{ 4988 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4989 return; 4990 4991 for_each_sched_entity(se) 4992 cfs_rq_of(se)->last = se; 4993} 4994 4995static void set_next_buddy(struct sched_entity *se) 4996{ 4997 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4998 return; 4999 5000 for_each_sched_entity(se) 5001 cfs_rq_of(se)->next = se; 5002} 5003 5004static void set_skip_buddy(struct sched_entity *se) 5005{ 5006 for_each_sched_entity(se) 5007 cfs_rq_of(se)->skip = se; 5008} 5009 5010/* 5011 * Preempt the current task with a newly woken task if needed: 5012 */ 5013static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 5014{ 5015 struct task_struct *curr = rq->curr; 5016 struct sched_entity *se = &curr->se, *pse = &p->se; 5017 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5018 int scale = cfs_rq->nr_running >= sched_nr_latency; 5019 int next_buddy_marked = 0; 5020 5021 if (unlikely(se == pse)) 5022 return; 5023 5024 /* 5025 * This is possible from callers such as attach_tasks(), in which we 5026 * unconditionally check_prempt_curr() after an enqueue (which may have 5027 * lead to a throttle). This both saves work and prevents false 5028 * next-buddy nomination below. 5029 */ 5030 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 5031 return; 5032 5033 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 5034 set_next_buddy(pse); 5035 next_buddy_marked = 1; 5036 } 5037 5038 /* 5039 * We can come here with TIF_NEED_RESCHED already set from new task 5040 * wake up path. 5041 * 5042 * Note: this also catches the edge-case of curr being in a throttled 5043 * group (e.g. via set_curr_task), since update_curr() (in the 5044 * enqueue of curr) will have resulted in resched being set. This 5045 * prevents us from potentially nominating it as a false LAST_BUDDY 5046 * below. 5047 */ 5048 if (test_tsk_need_resched(curr)) 5049 return; 5050 5051 /* Idle tasks are by definition preempted by non-idle tasks. */ 5052 if (unlikely(curr->policy == SCHED_IDLE) && 5053 likely(p->policy != SCHED_IDLE)) 5054 goto preempt; 5055 5056 /* 5057 * Batch and idle tasks do not preempt non-idle tasks (their preemption 5058 * is driven by the tick): 5059 */ 5060 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 5061 return; 5062 5063 find_matching_se(&se, &pse); 5064 update_curr(cfs_rq_of(se)); 5065 BUG_ON(!pse); 5066 if (wakeup_preempt_entity(se, pse) == 1) { 5067 /* 5068 * Bias pick_next to pick the sched entity that is 5069 * triggering this preemption. 5070 */ 5071 if (!next_buddy_marked) 5072 set_next_buddy(pse); 5073 goto preempt; 5074 } 5075 5076 return; 5077 5078preempt: 5079 resched_curr(rq); 5080 /* 5081 * Only set the backward buddy when the current task is still 5082 * on the rq. This can happen when a wakeup gets interleaved 5083 * with schedule on the ->pre_schedule() or idle_balance() 5084 * point, either of which can * drop the rq lock. 5085 * 5086 * Also, during early boot the idle thread is in the fair class, 5087 * for obvious reasons its a bad idea to schedule back to it. 5088 */ 5089 if (unlikely(!se->on_rq || curr == rq->idle)) 5090 return; 5091 5092 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 5093 set_last_buddy(se); 5094} 5095 5096static struct task_struct * 5097pick_next_task_fair(struct rq *rq, struct task_struct *prev) 5098{ 5099 struct cfs_rq *cfs_rq = &rq->cfs; 5100 struct sched_entity *se; 5101 struct task_struct *p; 5102 int new_tasks; 5103 5104again: 5105#ifdef CONFIG_FAIR_GROUP_SCHED 5106 if (!cfs_rq->nr_running) 5107 goto idle; 5108 5109 if (prev->sched_class != &fair_sched_class) 5110 goto simple; 5111 5112 /* 5113 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 5114 * likely that a next task is from the same cgroup as the current. 5115 * 5116 * Therefore attempt to avoid putting and setting the entire cgroup 5117 * hierarchy, only change the part that actually changes. 5118 */ 5119 5120 do { 5121 struct sched_entity *curr = cfs_rq->curr; 5122 5123 /* 5124 * Since we got here without doing put_prev_entity() we also 5125 * have to consider cfs_rq->curr. If it is still a runnable 5126 * entity, update_curr() will update its vruntime, otherwise 5127 * forget we've ever seen it. 5128 */ 5129 if (curr) { 5130 if (curr->on_rq) 5131 update_curr(cfs_rq); 5132 else 5133 curr = NULL; 5134 5135 /* 5136 * This call to check_cfs_rq_runtime() will do the 5137 * throttle and dequeue its entity in the parent(s). 5138 * Therefore the 'simple' nr_running test will indeed 5139 * be correct. 5140 */ 5141 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 5142 goto simple; 5143 } 5144 5145 se = pick_next_entity(cfs_rq, curr); 5146 cfs_rq = group_cfs_rq(se); 5147 } while (cfs_rq); 5148 5149 p = task_of(se); 5150 5151 /* 5152 * Since we haven't yet done put_prev_entity and if the selected task 5153 * is a different task than we started out with, try and touch the 5154 * least amount of cfs_rqs. 5155 */ 5156 if (prev != p) { 5157 struct sched_entity *pse = &prev->se; 5158 5159 while (!(cfs_rq = is_same_group(se, pse))) { 5160 int se_depth = se->depth; 5161 int pse_depth = pse->depth; 5162 5163 if (se_depth <= pse_depth) { 5164 put_prev_entity(cfs_rq_of(pse), pse); 5165 pse = parent_entity(pse); 5166 } 5167 if (se_depth >= pse_depth) { 5168 set_next_entity(cfs_rq_of(se), se); 5169 se = parent_entity(se); 5170 } 5171 } 5172 5173 put_prev_entity(cfs_rq, pse); 5174 set_next_entity(cfs_rq, se); 5175 } 5176 5177 if (hrtick_enabled(rq)) 5178 hrtick_start_fair(rq, p); 5179 5180 return p; 5181simple: 5182 cfs_rq = &rq->cfs; 5183#endif 5184 5185 if (!cfs_rq->nr_running) 5186 goto idle; 5187 5188 put_prev_task(rq, prev); 5189 5190 do { 5191 se = pick_next_entity(cfs_rq, NULL); 5192 set_next_entity(cfs_rq, se); 5193 cfs_rq = group_cfs_rq(se); 5194 } while (cfs_rq); 5195 5196 p = task_of(se); 5197 5198 if (hrtick_enabled(rq)) 5199 hrtick_start_fair(rq, p); 5200 5201 return p; 5202 5203idle: 5204 new_tasks = idle_balance(rq); 5205 /* 5206 * Because idle_balance() releases (and re-acquires) rq->lock, it is 5207 * possible for any higher priority task to appear. In that case we 5208 * must re-start the pick_next_entity() loop. 5209 */ 5210 if (new_tasks < 0) 5211 return RETRY_TASK; 5212 5213 if (new_tasks > 0) 5214 goto again; 5215 5216 return NULL; 5217} 5218 5219/* 5220 * Account for a descheduled task: 5221 */ 5222static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 5223{ 5224 struct sched_entity *se = &prev->se; 5225 struct cfs_rq *cfs_rq; 5226 5227 for_each_sched_entity(se) { 5228 cfs_rq = cfs_rq_of(se); 5229 put_prev_entity(cfs_rq, se); 5230 } 5231} 5232 5233/* 5234 * sched_yield() is very simple 5235 * 5236 * The magic of dealing with the ->skip buddy is in pick_next_entity. 5237 */ 5238static void yield_task_fair(struct rq *rq) 5239{ 5240 struct task_struct *curr = rq->curr; 5241 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5242 struct sched_entity *se = &curr->se; 5243 5244 /* 5245 * Are we the only task in the tree? 5246 */ 5247 if (unlikely(rq->nr_running == 1)) 5248 return; 5249 5250 clear_buddies(cfs_rq, se); 5251 5252 if (curr->policy != SCHED_BATCH) { 5253 update_rq_clock(rq); 5254 /* 5255 * Update run-time statistics of the 'current'. 5256 */ 5257 update_curr(cfs_rq); 5258 /* 5259 * Tell update_rq_clock() that we've just updated, 5260 * so we don't do microscopic update in schedule() 5261 * and double the fastpath cost. 5262 */ 5263 rq_clock_skip_update(rq, true); 5264 } 5265 5266 set_skip_buddy(se); 5267} 5268 5269static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 5270{ 5271 struct sched_entity *se = &p->se; 5272 5273 /* throttled hierarchies are not runnable */ 5274 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 5275 return false; 5276 5277 /* Tell the scheduler that we'd really like pse to run next. */ 5278 set_next_buddy(se); 5279 5280 yield_task_fair(rq); 5281 5282 return true; 5283} 5284 5285#ifdef CONFIG_SMP 5286/************************************************** 5287 * Fair scheduling class load-balancing methods. 5288 * 5289 * BASICS 5290 * 5291 * The purpose of load-balancing is to achieve the same basic fairness the 5292 * per-cpu scheduler provides, namely provide a proportional amount of compute 5293 * time to each task. This is expressed in the following equation: 5294 * 5295 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 5296 * 5297 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 5298 * W_i,0 is defined as: 5299 * 5300 * W_i,0 = \Sum_j w_i,j (2) 5301 * 5302 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 5303 * is derived from the nice value as per prio_to_weight[]. 5304 * 5305 * The weight average is an exponential decay average of the instantaneous 5306 * weight: 5307 * 5308 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 5309 * 5310 * C_i is the compute capacity of cpu i, typically it is the 5311 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 5312 * can also include other factors [XXX]. 5313 * 5314 * To achieve this balance we define a measure of imbalance which follows 5315 * directly from (1): 5316 * 5317 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 5318 * 5319 * We them move tasks around to minimize the imbalance. In the continuous 5320 * function space it is obvious this converges, in the discrete case we get 5321 * a few fun cases generally called infeasible weight scenarios. 5322 * 5323 * [XXX expand on: 5324 * - infeasible weights; 5325 * - local vs global optima in the discrete case. ] 5326 * 5327 * 5328 * SCHED DOMAINS 5329 * 5330 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 5331 * for all i,j solution, we create a tree of cpus that follows the hardware 5332 * topology where each level pairs two lower groups (or better). This results 5333 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 5334 * tree to only the first of the previous level and we decrease the frequency 5335 * of load-balance at each level inv. proportional to the number of cpus in 5336 * the groups. 5337 * 5338 * This yields: 5339 * 5340 * log_2 n 1 n 5341 * \Sum { --- * --- * 2^i } = O(n) (5) 5342 * i = 0 2^i 2^i 5343 * `- size of each group 5344 * | | `- number of cpus doing load-balance 5345 * | `- freq 5346 * `- sum over all levels 5347 * 5348 * Coupled with a limit on how many tasks we can migrate every balance pass, 5349 * this makes (5) the runtime complexity of the balancer. 5350 * 5351 * An important property here is that each CPU is still (indirectly) connected 5352 * to every other cpu in at most O(log n) steps: 5353 * 5354 * The adjacency matrix of the resulting graph is given by: 5355 * 5356 * log_2 n 5357 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 5358 * k = 0 5359 * 5360 * And you'll find that: 5361 * 5362 * A^(log_2 n)_i,j != 0 for all i,j (7) 5363 * 5364 * Showing there's indeed a path between every cpu in at most O(log n) steps. 5365 * The task movement gives a factor of O(m), giving a convergence complexity 5366 * of: 5367 * 5368 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 5369 * 5370 * 5371 * WORK CONSERVING 5372 * 5373 * In order to avoid CPUs going idle while there's still work to do, new idle 5374 * balancing is more aggressive and has the newly idle cpu iterate up the domain 5375 * tree itself instead of relying on other CPUs to bring it work. 5376 * 5377 * This adds some complexity to both (5) and (8) but it reduces the total idle 5378 * time. 5379 * 5380 * [XXX more?] 5381 * 5382 * 5383 * CGROUPS 5384 * 5385 * Cgroups make a horror show out of (2), instead of a simple sum we get: 5386 * 5387 * s_k,i 5388 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 5389 * S_k 5390 * 5391 * Where 5392 * 5393 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 5394 * 5395 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 5396 * 5397 * The big problem is S_k, its a global sum needed to compute a local (W_i) 5398 * property. 5399 * 5400 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 5401 * rewrite all of this once again.] 5402 */ 5403 5404static unsigned long __read_mostly max_load_balance_interval = HZ/10; 5405 5406enum fbq_type { regular, remote, all }; 5407 5408#define LBF_ALL_PINNED 0x01 5409#define LBF_NEED_BREAK 0x02 5410#define LBF_DST_PINNED 0x04 5411#define LBF_SOME_PINNED 0x08 5412 5413struct lb_env { 5414 struct sched_domain *sd; 5415 5416 struct rq *src_rq; 5417 int src_cpu; 5418 5419 int dst_cpu; 5420 struct rq *dst_rq; 5421 5422 struct cpumask *dst_grpmask; 5423 int new_dst_cpu; 5424 enum cpu_idle_type idle; 5425 long imbalance; 5426 /* The set of CPUs under consideration for load-balancing */ 5427 struct cpumask *cpus; 5428 5429 unsigned int flags; 5430 5431 unsigned int loop; 5432 unsigned int loop_break; 5433 unsigned int loop_max; 5434 5435 enum fbq_type fbq_type; 5436 struct list_head tasks; 5437}; 5438 5439/* 5440 * Is this task likely cache-hot: 5441 */ 5442static int task_hot(struct task_struct *p, struct lb_env *env) 5443{ 5444 s64 delta; 5445 5446 lockdep_assert_held(&env->src_rq->lock); 5447 5448 if (p->sched_class != &fair_sched_class) 5449 return 0; 5450 5451 if (unlikely(p->policy == SCHED_IDLE)) 5452 return 0; 5453 5454 /* 5455 * Buddy candidates are cache hot: 5456 */ 5457 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 5458 (&p->se == cfs_rq_of(&p->se)->next || 5459 &p->se == cfs_rq_of(&p->se)->last)) 5460 return 1; 5461 5462 if (sysctl_sched_migration_cost == -1) 5463 return 1; 5464 if (sysctl_sched_migration_cost == 0) 5465 return 0; 5466 5467 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 5468 5469 return delta < (s64)sysctl_sched_migration_cost; 5470} 5471 5472#ifdef CONFIG_NUMA_BALANCING 5473/* Returns true if the destination node has incurred more faults */ 5474static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) 5475{ 5476 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5477 int src_nid, dst_nid; 5478 5479 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults || 5480 !(env->sd->flags & SD_NUMA)) { 5481 return false; 5482 } 5483 5484 src_nid = cpu_to_node(env->src_cpu); 5485 dst_nid = cpu_to_node(env->dst_cpu); 5486 5487 if (src_nid == dst_nid) 5488 return false; 5489 5490 if (numa_group) { 5491 /* Task is already in the group's interleave set. */ 5492 if (node_isset(src_nid, numa_group->active_nodes)) 5493 return false; 5494 5495 /* Task is moving into the group's interleave set. */ 5496 if (node_isset(dst_nid, numa_group->active_nodes)) 5497 return true; 5498 5499 return group_faults(p, dst_nid) > group_faults(p, src_nid); 5500 } 5501 5502 /* Encourage migration to the preferred node. */ 5503 if (dst_nid == p->numa_preferred_nid) 5504 return true; 5505 5506 return task_faults(p, dst_nid) > task_faults(p, src_nid); 5507} 5508 5509 5510static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 5511{ 5512 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5513 int src_nid, dst_nid; 5514 5515 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) 5516 return false; 5517 5518 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 5519 return false; 5520 5521 src_nid = cpu_to_node(env->src_cpu); 5522 dst_nid = cpu_to_node(env->dst_cpu); 5523 5524 if (src_nid == dst_nid) 5525 return false; 5526 5527 if (numa_group) { 5528 /* Task is moving within/into the group's interleave set. */ 5529 if (node_isset(dst_nid, numa_group->active_nodes)) 5530 return false; 5531 5532 /* Task is moving out of the group's interleave set. */ 5533 if (node_isset(src_nid, numa_group->active_nodes)) 5534 return true; 5535 5536 return group_faults(p, dst_nid) < group_faults(p, src_nid); 5537 } 5538 5539 /* Migrating away from the preferred node is always bad. */ 5540 if (src_nid == p->numa_preferred_nid) 5541 return true; 5542 5543 return task_faults(p, dst_nid) < task_faults(p, src_nid); 5544} 5545 5546#else 5547static inline bool migrate_improves_locality(struct task_struct *p, 5548 struct lb_env *env) 5549{ 5550 return false; 5551} 5552 5553static inline bool migrate_degrades_locality(struct task_struct *p, 5554 struct lb_env *env) 5555{ 5556 return false; 5557} 5558#endif 5559 5560/* 5561 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 5562 */ 5563static 5564int can_migrate_task(struct task_struct *p, struct lb_env *env) 5565{ 5566 int tsk_cache_hot = 0; 5567 5568 lockdep_assert_held(&env->src_rq->lock); 5569 5570 /* 5571 * We do not migrate tasks that are: 5572 * 1) throttled_lb_pair, or 5573 * 2) cannot be migrated to this CPU due to cpus_allowed, or 5574 * 3) running (obviously), or 5575 * 4) are cache-hot on their current CPU. 5576 */ 5577 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 5578 return 0; 5579 5580 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 5581 int cpu; 5582 5583 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 5584 5585 env->flags |= LBF_SOME_PINNED; 5586 5587 /* 5588 * Remember if this task can be migrated to any other cpu in 5589 * our sched_group. We may want to revisit it if we couldn't 5590 * meet load balance goals by pulling other tasks on src_cpu. 5591 * 5592 * Also avoid computing new_dst_cpu if we have already computed 5593 * one in current iteration. 5594 */ 5595 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 5596 return 0; 5597 5598 /* Prevent to re-select dst_cpu via env's cpus */ 5599 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 5600 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 5601 env->flags |= LBF_DST_PINNED; 5602 env->new_dst_cpu = cpu; 5603 break; 5604 } 5605 } 5606 5607 return 0; 5608 } 5609 5610 /* Record that we found atleast one task that could run on dst_cpu */ 5611 env->flags &= ~LBF_ALL_PINNED; 5612 5613 if (task_running(env->src_rq, p)) { 5614 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 5615 return 0; 5616 } 5617 5618 /* 5619 * Aggressive migration if: 5620 * 1) destination numa is preferred 5621 * 2) task is cache cold, or 5622 * 3) too many balance attempts have failed. 5623 */ 5624 tsk_cache_hot = task_hot(p, env); 5625 if (!tsk_cache_hot) 5626 tsk_cache_hot = migrate_degrades_locality(p, env); 5627 5628 if (migrate_improves_locality(p, env) || !tsk_cache_hot || 5629 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 5630 if (tsk_cache_hot) { 5631 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 5632 schedstat_inc(p, se.statistics.nr_forced_migrations); 5633 } 5634 return 1; 5635 } 5636 5637 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 5638 return 0; 5639} 5640 5641/* 5642 * detach_task() -- detach the task for the migration specified in env 5643 */ 5644static void detach_task(struct task_struct *p, struct lb_env *env) 5645{ 5646 lockdep_assert_held(&env->src_rq->lock); 5647 5648 deactivate_task(env->src_rq, p, 0); 5649 p->on_rq = TASK_ON_RQ_MIGRATING; 5650 set_task_cpu(p, env->dst_cpu); 5651} 5652 5653/* 5654 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 5655 * part of active balancing operations within "domain". 5656 * 5657 * Returns a task if successful and NULL otherwise. 5658 */ 5659static struct task_struct *detach_one_task(struct lb_env *env) 5660{ 5661 struct task_struct *p, *n; 5662 5663 lockdep_assert_held(&env->src_rq->lock); 5664 5665 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 5666 if (!can_migrate_task(p, env)) 5667 continue; 5668 5669 detach_task(p, env); 5670 5671 /* 5672 * Right now, this is only the second place where 5673 * lb_gained[env->idle] is updated (other is detach_tasks) 5674 * so we can safely collect stats here rather than 5675 * inside detach_tasks(). 5676 */ 5677 schedstat_inc(env->sd, lb_gained[env->idle]); 5678 return p; 5679 } 5680 return NULL; 5681} 5682 5683static const unsigned int sched_nr_migrate_break = 32; 5684 5685/* 5686 * detach_tasks() -- tries to detach up to imbalance weighted load from 5687 * busiest_rq, as part of a balancing operation within domain "sd". 5688 * 5689 * Returns number of detached tasks if successful and 0 otherwise. 5690 */ 5691static int detach_tasks(struct lb_env *env) 5692{ 5693 struct list_head *tasks = &env->src_rq->cfs_tasks; 5694 struct task_struct *p; 5695 unsigned long load; 5696 int detached = 0; 5697 5698 lockdep_assert_held(&env->src_rq->lock); 5699 5700 if (env->imbalance <= 0) 5701 return 0; 5702 5703 while (!list_empty(tasks)) { 5704 p = list_first_entry(tasks, struct task_struct, se.group_node); 5705 5706 env->loop++; 5707 /* We've more or less seen every task there is, call it quits */ 5708 if (env->loop > env->loop_max) 5709 break; 5710 5711 /* take a breather every nr_migrate tasks */ 5712 if (env->loop > env->loop_break) { 5713 env->loop_break += sched_nr_migrate_break; 5714 env->flags |= LBF_NEED_BREAK; 5715 break; 5716 } 5717 5718 if (!can_migrate_task(p, env)) 5719 goto next; 5720 5721 load = task_h_load(p); 5722 5723 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 5724 goto next; 5725 5726 if ((load / 2) > env->imbalance) 5727 goto next; 5728 5729 detach_task(p, env); 5730 list_add(&p->se.group_node, &env->tasks); 5731 5732 detached++; 5733 env->imbalance -= load; 5734 5735#ifdef CONFIG_PREEMPT 5736 /* 5737 * NEWIDLE balancing is a source of latency, so preemptible 5738 * kernels will stop after the first task is detached to minimize 5739 * the critical section. 5740 */ 5741 if (env->idle == CPU_NEWLY_IDLE) 5742 break; 5743#endif 5744 5745 /* 5746 * We only want to steal up to the prescribed amount of 5747 * weighted load. 5748 */ 5749 if (env->imbalance <= 0) 5750 break; 5751 5752 continue; 5753next: 5754 list_move_tail(&p->se.group_node, tasks); 5755 } 5756 5757 /* 5758 * Right now, this is one of only two places we collect this stat 5759 * so we can safely collect detach_one_task() stats here rather 5760 * than inside detach_one_task(). 5761 */ 5762 schedstat_add(env->sd, lb_gained[env->idle], detached); 5763 5764 return detached; 5765} 5766 5767/* 5768 * attach_task() -- attach the task detached by detach_task() to its new rq. 5769 */ 5770static void attach_task(struct rq *rq, struct task_struct *p) 5771{ 5772 lockdep_assert_held(&rq->lock); 5773 5774 BUG_ON(task_rq(p) != rq); 5775 p->on_rq = TASK_ON_RQ_QUEUED; 5776 activate_task(rq, p, 0); 5777 check_preempt_curr(rq, p, 0); 5778} 5779 5780/* 5781 * attach_one_task() -- attaches the task returned from detach_one_task() to 5782 * its new rq. 5783 */ 5784static void attach_one_task(struct rq *rq, struct task_struct *p) 5785{ 5786 raw_spin_lock(&rq->lock); 5787 attach_task(rq, p); 5788 raw_spin_unlock(&rq->lock); 5789} 5790 5791/* 5792 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 5793 * new rq. 5794 */ 5795static void attach_tasks(struct lb_env *env) 5796{ 5797 struct list_head *tasks = &env->tasks; 5798 struct task_struct *p; 5799 5800 raw_spin_lock(&env->dst_rq->lock); 5801 5802 while (!list_empty(tasks)) { 5803 p = list_first_entry(tasks, struct task_struct, se.group_node); 5804 list_del_init(&p->se.group_node); 5805 5806 attach_task(env->dst_rq, p); 5807 } 5808 5809 raw_spin_unlock(&env->dst_rq->lock); 5810} 5811 5812#ifdef CONFIG_FAIR_GROUP_SCHED 5813/* 5814 * update tg->load_weight by folding this cpu's load_avg 5815 */ 5816static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 5817{ 5818 struct sched_entity *se = tg->se[cpu]; 5819 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 5820 5821 /* throttled entities do not contribute to load */ 5822 if (throttled_hierarchy(cfs_rq)) 5823 return; 5824 5825 update_cfs_rq_blocked_load(cfs_rq, 1); 5826 5827 if (se) { 5828 update_entity_load_avg(se, 1); 5829 /* 5830 * We pivot on our runnable average having decayed to zero for 5831 * list removal. This generally implies that all our children 5832 * have also been removed (modulo rounding error or bandwidth 5833 * control); however, such cases are rare and we can fix these 5834 * at enqueue. 5835 * 5836 * TODO: fix up out-of-order children on enqueue. 5837 */ 5838 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 5839 list_del_leaf_cfs_rq(cfs_rq); 5840 } else { 5841 struct rq *rq = rq_of(cfs_rq); 5842 update_rq_runnable_avg(rq, rq->nr_running); 5843 } 5844} 5845 5846static void update_blocked_averages(int cpu) 5847{ 5848 struct rq *rq = cpu_rq(cpu); 5849 struct cfs_rq *cfs_rq; 5850 unsigned long flags; 5851 5852 raw_spin_lock_irqsave(&rq->lock, flags); 5853 update_rq_clock(rq); 5854 /* 5855 * Iterates the task_group tree in a bottom up fashion, see 5856 * list_add_leaf_cfs_rq() for details. 5857 */ 5858 for_each_leaf_cfs_rq(rq, cfs_rq) { 5859 /* 5860 * Note: We may want to consider periodically releasing 5861 * rq->lock about these updates so that creating many task 5862 * groups does not result in continually extending hold time. 5863 */ 5864 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 5865 } 5866 5867 raw_spin_unlock_irqrestore(&rq->lock, flags); 5868} 5869 5870/* 5871 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 5872 * This needs to be done in a top-down fashion because the load of a child 5873 * group is a fraction of its parents load. 5874 */ 5875static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 5876{ 5877 struct rq *rq = rq_of(cfs_rq); 5878 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5879 unsigned long now = jiffies; 5880 unsigned long load; 5881 5882 if (cfs_rq->last_h_load_update == now) 5883 return; 5884 5885 cfs_rq->h_load_next = NULL; 5886 for_each_sched_entity(se) { 5887 cfs_rq = cfs_rq_of(se); 5888 cfs_rq->h_load_next = se; 5889 if (cfs_rq->last_h_load_update == now) 5890 break; 5891 } 5892 5893 if (!se) { 5894 cfs_rq->h_load = cfs_rq->runnable_load_avg; 5895 cfs_rq->last_h_load_update = now; 5896 } 5897 5898 while ((se = cfs_rq->h_load_next) != NULL) { 5899 load = cfs_rq->h_load; 5900 load = div64_ul(load * se->avg.load_avg_contrib, 5901 cfs_rq->runnable_load_avg + 1); 5902 cfs_rq = group_cfs_rq(se); 5903 cfs_rq->h_load = load; 5904 cfs_rq->last_h_load_update = now; 5905 } 5906} 5907 5908static unsigned long task_h_load(struct task_struct *p) 5909{ 5910 struct cfs_rq *cfs_rq = task_cfs_rq(p); 5911 5912 update_cfs_rq_h_load(cfs_rq); 5913 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, 5914 cfs_rq->runnable_load_avg + 1); 5915} 5916#else 5917static inline void update_blocked_averages(int cpu) 5918{ 5919} 5920 5921static unsigned long task_h_load(struct task_struct *p) 5922{ 5923 return p->se.avg.load_avg_contrib; 5924} 5925#endif 5926 5927/********** Helpers for find_busiest_group ************************/ 5928 5929enum group_type { 5930 group_other = 0, 5931 group_imbalanced, 5932 group_overloaded, 5933}; 5934 5935/* 5936 * sg_lb_stats - stats of a sched_group required for load_balancing 5937 */ 5938struct sg_lb_stats { 5939 unsigned long avg_load; /*Avg load across the CPUs of the group */ 5940 unsigned long group_load; /* Total load over the CPUs of the group */ 5941 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 5942 unsigned long load_per_task; 5943 unsigned long group_capacity; 5944 unsigned long group_usage; /* Total usage of the group */ 5945 unsigned int sum_nr_running; /* Nr tasks running in the group */ 5946 unsigned int idle_cpus; 5947 unsigned int group_weight; 5948 enum group_type group_type; 5949 int group_no_capacity; 5950#ifdef CONFIG_NUMA_BALANCING 5951 unsigned int nr_numa_running; 5952 unsigned int nr_preferred_running; 5953#endif 5954}; 5955 5956/* 5957 * sd_lb_stats - Structure to store the statistics of a sched_domain 5958 * during load balancing. 5959 */ 5960struct sd_lb_stats { 5961 struct sched_group *busiest; /* Busiest group in this sd */ 5962 struct sched_group *local; /* Local group in this sd */ 5963 unsigned long total_load; /* Total load of all groups in sd */ 5964 unsigned long total_capacity; /* Total capacity of all groups in sd */ 5965 unsigned long avg_load; /* Average load across all groups in sd */ 5966 5967 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 5968 struct sg_lb_stats local_stat; /* Statistics of the local group */ 5969}; 5970 5971static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 5972{ 5973 /* 5974 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 5975 * local_stat because update_sg_lb_stats() does a full clear/assignment. 5976 * We must however clear busiest_stat::avg_load because 5977 * update_sd_pick_busiest() reads this before assignment. 5978 */ 5979 *sds = (struct sd_lb_stats){ 5980 .busiest = NULL, 5981 .local = NULL, 5982 .total_load = 0UL, 5983 .total_capacity = 0UL, 5984 .busiest_stat = { 5985 .avg_load = 0UL, 5986 .sum_nr_running = 0, 5987 .group_type = group_other, 5988 }, 5989 }; 5990} 5991 5992/** 5993 * get_sd_load_idx - Obtain the load index for a given sched domain. 5994 * @sd: The sched_domain whose load_idx is to be obtained. 5995 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 5996 * 5997 * Return: The load index. 5998 */ 5999static inline int get_sd_load_idx(struct sched_domain *sd, 6000 enum cpu_idle_type idle) 6001{ 6002 int load_idx; 6003 6004 switch (idle) { 6005 case CPU_NOT_IDLE: 6006 load_idx = sd->busy_idx; 6007 break; 6008 6009 case CPU_NEWLY_IDLE: 6010 load_idx = sd->newidle_idx; 6011 break; 6012 default: 6013 load_idx = sd->idle_idx; 6014 break; 6015 } 6016 6017 return load_idx; 6018} 6019 6020static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu) 6021{ 6022 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) 6023 return sd->smt_gain / sd->span_weight; 6024 6025 return SCHED_CAPACITY_SCALE; 6026} 6027 6028unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) 6029{ 6030 return default_scale_cpu_capacity(sd, cpu); 6031} 6032 6033static unsigned long scale_rt_capacity(int cpu) 6034{ 6035 struct rq *rq = cpu_rq(cpu); 6036 u64 total, used, age_stamp, avg; 6037 s64 delta; 6038 6039 /* 6040 * Since we're reading these variables without serialization make sure 6041 * we read them once before doing sanity checks on them. 6042 */ 6043 age_stamp = ACCESS_ONCE(rq->age_stamp); 6044 avg = ACCESS_ONCE(rq->rt_avg); 6045 delta = __rq_clock_broken(rq) - age_stamp; 6046 6047 if (unlikely(delta < 0)) 6048 delta = 0; 6049 6050 total = sched_avg_period() + delta; 6051 6052 used = div_u64(avg, total); 6053 6054 if (likely(used < SCHED_CAPACITY_SCALE)) 6055 return SCHED_CAPACITY_SCALE - used; 6056 6057 return 1; 6058} 6059 6060static void update_cpu_capacity(struct sched_domain *sd, int cpu) 6061{ 6062 unsigned long capacity = SCHED_CAPACITY_SCALE; 6063 struct sched_group *sdg = sd->groups; 6064 6065 if (sched_feat(ARCH_CAPACITY)) 6066 capacity *= arch_scale_cpu_capacity(sd, cpu); 6067 else 6068 capacity *= default_scale_cpu_capacity(sd, cpu); 6069 6070 capacity >>= SCHED_CAPACITY_SHIFT; 6071 6072 cpu_rq(cpu)->cpu_capacity_orig = capacity; 6073 6074 capacity *= scale_rt_capacity(cpu); 6075 capacity >>= SCHED_CAPACITY_SHIFT; 6076 6077 if (!capacity) 6078 capacity = 1; 6079 6080 cpu_rq(cpu)->cpu_capacity = capacity; 6081 sdg->sgc->capacity = capacity; 6082} 6083 6084void update_group_capacity(struct sched_domain *sd, int cpu) 6085{ 6086 struct sched_domain *child = sd->child; 6087 struct sched_group *group, *sdg = sd->groups; 6088 unsigned long capacity; 6089 unsigned long interval; 6090 6091 interval = msecs_to_jiffies(sd->balance_interval); 6092 interval = clamp(interval, 1UL, max_load_balance_interval); 6093 sdg->sgc->next_update = jiffies + interval; 6094 6095 if (!child) { 6096 update_cpu_capacity(sd, cpu); 6097 return; 6098 } 6099 6100 capacity = 0; 6101 6102 if (child->flags & SD_OVERLAP) { 6103 /* 6104 * SD_OVERLAP domains cannot assume that child groups 6105 * span the current group. 6106 */ 6107 6108 for_each_cpu(cpu, sched_group_cpus(sdg)) { 6109 struct sched_group_capacity *sgc; 6110 struct rq *rq = cpu_rq(cpu); 6111 6112 /* 6113 * build_sched_domains() -> init_sched_groups_capacity() 6114 * gets here before we've attached the domains to the 6115 * runqueues. 6116 * 6117 * Use capacity_of(), which is set irrespective of domains 6118 * in update_cpu_capacity(). 6119 * 6120 * This avoids capacity from being 0 and 6121 * causing divide-by-zero issues on boot. 6122 */ 6123 if (unlikely(!rq->sd)) { 6124 capacity += capacity_of(cpu); 6125 continue; 6126 } 6127 6128 sgc = rq->sd->groups->sgc; 6129 capacity += sgc->capacity; 6130 } 6131 } else { 6132 /* 6133 * !SD_OVERLAP domains can assume that child groups 6134 * span the current group. 6135 */ 6136 6137 group = child->groups; 6138 do { 6139 capacity += group->sgc->capacity; 6140 group = group->next; 6141 } while (group != child->groups); 6142 } 6143 6144 sdg->sgc->capacity = capacity; 6145} 6146 6147/* 6148 * Check whether the capacity of the rq has been noticeably reduced by side 6149 * activity. The imbalance_pct is used for the threshold. 6150 * Return true is the capacity is reduced 6151 */ 6152static inline int 6153check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 6154{ 6155 return ((rq->cpu_capacity * sd->imbalance_pct) < 6156 (rq->cpu_capacity_orig * 100)); 6157} 6158 6159/* 6160 * Group imbalance indicates (and tries to solve) the problem where balancing 6161 * groups is inadequate due to tsk_cpus_allowed() constraints. 6162 * 6163 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 6164 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 6165 * Something like: 6166 * 6167 * { 0 1 2 3 } { 4 5 6 7 } 6168 * * * * * 6169 * 6170 * If we were to balance group-wise we'd place two tasks in the first group and 6171 * two tasks in the second group. Clearly this is undesired as it will overload 6172 * cpu 3 and leave one of the cpus in the second group unused. 6173 * 6174 * The current solution to this issue is detecting the skew in the first group 6175 * by noticing the lower domain failed to reach balance and had difficulty 6176 * moving tasks due to affinity constraints. 6177 * 6178 * When this is so detected; this group becomes a candidate for busiest; see 6179 * update_sd_pick_busiest(). And calculate_imbalance() and 6180 * find_busiest_group() avoid some of the usual balance conditions to allow it 6181 * to create an effective group imbalance. 6182 * 6183 * This is a somewhat tricky proposition since the next run might not find the 6184 * group imbalance and decide the groups need to be balanced again. A most 6185 * subtle and fragile situation. 6186 */ 6187 6188static inline int sg_imbalanced(struct sched_group *group) 6189{ 6190 return group->sgc->imbalance; 6191} 6192 6193/* 6194 * group_has_capacity returns true if the group has spare capacity that could 6195 * be used by some tasks. 6196 * We consider that a group has spare capacity if the * number of task is 6197 * smaller than the number of CPUs or if the usage is lower than the available 6198 * capacity for CFS tasks. 6199 * For the latter, we use a threshold to stabilize the state, to take into 6200 * account the variance of the tasks' load and to return true if the available 6201 * capacity in meaningful for the load balancer. 6202 * As an example, an available capacity of 1% can appear but it doesn't make 6203 * any benefit for the load balance. 6204 */ 6205static inline bool 6206group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 6207{ 6208 if (sgs->sum_nr_running < sgs->group_weight) 6209 return true; 6210 6211 if ((sgs->group_capacity * 100) > 6212 (sgs->group_usage * env->sd->imbalance_pct)) 6213 return true; 6214 6215 return false; 6216} 6217 6218/* 6219 * group_is_overloaded returns true if the group has more tasks than it can 6220 * handle. 6221 * group_is_overloaded is not equals to !group_has_capacity because a group 6222 * with the exact right number of tasks, has no more spare capacity but is not 6223 * overloaded so both group_has_capacity and group_is_overloaded return 6224 * false. 6225 */ 6226static inline bool 6227group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 6228{ 6229 if (sgs->sum_nr_running <= sgs->group_weight) 6230 return false; 6231 6232 if ((sgs->group_capacity * 100) < 6233 (sgs->group_usage * env->sd->imbalance_pct)) 6234 return true; 6235 6236 return false; 6237} 6238 6239static enum group_type group_classify(struct lb_env *env, 6240 struct sched_group *group, 6241 struct sg_lb_stats *sgs) 6242{ 6243 if (sgs->group_no_capacity) 6244 return group_overloaded; 6245 6246 if (sg_imbalanced(group)) 6247 return group_imbalanced; 6248 6249 return group_other; 6250} 6251 6252/** 6253 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 6254 * @env: The load balancing environment. 6255 * @group: sched_group whose statistics are to be updated. 6256 * @load_idx: Load index of sched_domain of this_cpu for load calc. 6257 * @local_group: Does group contain this_cpu. 6258 * @sgs: variable to hold the statistics for this group. 6259 * @overload: Indicate more than one runnable task for any CPU. 6260 */ 6261static inline void update_sg_lb_stats(struct lb_env *env, 6262 struct sched_group *group, int load_idx, 6263 int local_group, struct sg_lb_stats *sgs, 6264 bool *overload) 6265{ 6266 unsigned long load; 6267 int i; 6268 6269 memset(sgs, 0, sizeof(*sgs)); 6270 6271 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6272 struct rq *rq = cpu_rq(i); 6273 6274 /* Bias balancing toward cpus of our domain */ 6275 if (local_group) 6276 load = target_load(i, load_idx); 6277 else 6278 load = source_load(i, load_idx); 6279 6280 sgs->group_load += load; 6281 sgs->group_usage += get_cpu_usage(i); 6282 sgs->sum_nr_running += rq->cfs.h_nr_running; 6283 6284 if (rq->nr_running > 1) 6285 *overload = true; 6286 6287#ifdef CONFIG_NUMA_BALANCING 6288 sgs->nr_numa_running += rq->nr_numa_running; 6289 sgs->nr_preferred_running += rq->nr_preferred_running; 6290#endif 6291 sgs->sum_weighted_load += weighted_cpuload(i); 6292 if (idle_cpu(i)) 6293 sgs->idle_cpus++; 6294 } 6295 6296 /* Adjust by relative CPU capacity of the group */ 6297 sgs->group_capacity = group->sgc->capacity; 6298 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 6299 6300 if (sgs->sum_nr_running) 6301 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 6302 6303 sgs->group_weight = group->group_weight; 6304 6305 sgs->group_no_capacity = group_is_overloaded(env, sgs); 6306 sgs->group_type = group_classify(env, group, sgs); 6307} 6308 6309/** 6310 * update_sd_pick_busiest - return 1 on busiest group 6311 * @env: The load balancing environment. 6312 * @sds: sched_domain statistics 6313 * @sg: sched_group candidate to be checked for being the busiest 6314 * @sgs: sched_group statistics 6315 * 6316 * Determine if @sg is a busier group than the previously selected 6317 * busiest group. 6318 * 6319 * Return: %true if @sg is a busier group than the previously selected 6320 * busiest group. %false otherwise. 6321 */ 6322static bool update_sd_pick_busiest(struct lb_env *env, 6323 struct sd_lb_stats *sds, 6324 struct sched_group *sg, 6325 struct sg_lb_stats *sgs) 6326{ 6327 struct sg_lb_stats *busiest = &sds->busiest_stat; 6328 6329 if (sgs->group_type > busiest->group_type) 6330 return true; 6331 6332 if (sgs->group_type < busiest->group_type) 6333 return false; 6334 6335 if (sgs->avg_load <= busiest->avg_load) 6336 return false; 6337 6338 /* This is the busiest node in its class. */ 6339 if (!(env->sd->flags & SD_ASYM_PACKING)) 6340 return true; 6341 6342 /* 6343 * ASYM_PACKING needs to move all the work to the lowest 6344 * numbered CPUs in the group, therefore mark all groups 6345 * higher than ourself as busy. 6346 */ 6347 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { 6348 if (!sds->busiest) 6349 return true; 6350 6351 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 6352 return true; 6353 } 6354 6355 return false; 6356} 6357 6358#ifdef CONFIG_NUMA_BALANCING 6359static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6360{ 6361 if (sgs->sum_nr_running > sgs->nr_numa_running) 6362 return regular; 6363 if (sgs->sum_nr_running > sgs->nr_preferred_running) 6364 return remote; 6365 return all; 6366} 6367 6368static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6369{ 6370 if (rq->nr_running > rq->nr_numa_running) 6371 return regular; 6372 if (rq->nr_running > rq->nr_preferred_running) 6373 return remote; 6374 return all; 6375} 6376#else 6377static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6378{ 6379 return all; 6380} 6381 6382static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6383{ 6384 return regular; 6385} 6386#endif /* CONFIG_NUMA_BALANCING */ 6387 6388/** 6389 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 6390 * @env: The load balancing environment. 6391 * @sds: variable to hold the statistics for this sched_domain. 6392 */ 6393static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 6394{ 6395 struct sched_domain *child = env->sd->child; 6396 struct sched_group *sg = env->sd->groups; 6397 struct sg_lb_stats tmp_sgs; 6398 int load_idx, prefer_sibling = 0; 6399 bool overload = false; 6400 6401 if (child && child->flags & SD_PREFER_SIBLING) 6402 prefer_sibling = 1; 6403 6404 load_idx = get_sd_load_idx(env->sd, env->idle); 6405 6406 do { 6407 struct sg_lb_stats *sgs = &tmp_sgs; 6408 int local_group; 6409 6410 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 6411 if (local_group) { 6412 sds->local = sg; 6413 sgs = &sds->local_stat; 6414 6415 if (env->idle != CPU_NEWLY_IDLE || 6416 time_after_eq(jiffies, sg->sgc->next_update)) 6417 update_group_capacity(env->sd, env->dst_cpu); 6418 } 6419 6420 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 6421 &overload); 6422 6423 if (local_group) 6424 goto next_group; 6425 6426 /* 6427 * In case the child domain prefers tasks go to siblings 6428 * first, lower the sg capacity so that we'll try 6429 * and move all the excess tasks away. We lower the capacity 6430 * of a group only if the local group has the capacity to fit 6431 * these excess tasks. The extra check prevents the case where 6432 * you always pull from the heaviest group when it is already 6433 * under-utilized (possible with a large weight task outweighs 6434 * the tasks on the system). 6435 */ 6436 if (prefer_sibling && sds->local && 6437 group_has_capacity(env, &sds->local_stat) && 6438 (sgs->sum_nr_running > 1)) { 6439 sgs->group_no_capacity = 1; 6440 sgs->group_type = group_overloaded; 6441 } 6442 6443 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 6444 sds->busiest = sg; 6445 sds->busiest_stat = *sgs; 6446 } 6447 6448next_group: 6449 /* Now, start updating sd_lb_stats */ 6450 sds->total_load += sgs->group_load; 6451 sds->total_capacity += sgs->group_capacity; 6452 6453 sg = sg->next; 6454 } while (sg != env->sd->groups); 6455 6456 if (env->sd->flags & SD_NUMA) 6457 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 6458 6459 if (!env->sd->parent) { 6460 /* update overload indicator if we are at root domain */ 6461 if (env->dst_rq->rd->overload != overload) 6462 env->dst_rq->rd->overload = overload; 6463 } 6464 6465} 6466 6467/** 6468 * check_asym_packing - Check to see if the group is packed into the 6469 * sched doman. 6470 * 6471 * This is primarily intended to used at the sibling level. Some 6472 * cores like POWER7 prefer to use lower numbered SMT threads. In the 6473 * case of POWER7, it can move to lower SMT modes only when higher 6474 * threads are idle. When in lower SMT modes, the threads will 6475 * perform better since they share less core resources. Hence when we 6476 * have idle threads, we want them to be the higher ones. 6477 * 6478 * This packing function is run on idle threads. It checks to see if 6479 * the busiest CPU in this domain (core in the P7 case) has a higher 6480 * CPU number than the packing function is being run on. Here we are 6481 * assuming lower CPU number will be equivalent to lower a SMT thread 6482 * number. 6483 * 6484 * Return: 1 when packing is required and a task should be moved to 6485 * this CPU. The amount of the imbalance is returned in *imbalance. 6486 * 6487 * @env: The load balancing environment. 6488 * @sds: Statistics of the sched_domain which is to be packed 6489 */ 6490static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 6491{ 6492 int busiest_cpu; 6493 6494 if (!(env->sd->flags & SD_ASYM_PACKING)) 6495 return 0; 6496 6497 if (!sds->busiest) 6498 return 0; 6499 6500 busiest_cpu = group_first_cpu(sds->busiest); 6501 if (env->dst_cpu > busiest_cpu) 6502 return 0; 6503 6504 env->imbalance = DIV_ROUND_CLOSEST( 6505 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 6506 SCHED_CAPACITY_SCALE); 6507 6508 return 1; 6509} 6510 6511/** 6512 * fix_small_imbalance - Calculate the minor imbalance that exists 6513 * amongst the groups of a sched_domain, during 6514 * load balancing. 6515 * @env: The load balancing environment. 6516 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 6517 */ 6518static inline 6519void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6520{ 6521 unsigned long tmp, capa_now = 0, capa_move = 0; 6522 unsigned int imbn = 2; 6523 unsigned long scaled_busy_load_per_task; 6524 struct sg_lb_stats *local, *busiest; 6525 6526 local = &sds->local_stat; 6527 busiest = &sds->busiest_stat; 6528 6529 if (!local->sum_nr_running) 6530 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 6531 else if (busiest->load_per_task > local->load_per_task) 6532 imbn = 1; 6533 6534 scaled_busy_load_per_task = 6535 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6536 busiest->group_capacity; 6537 6538 if (busiest->avg_load + scaled_busy_load_per_task >= 6539 local->avg_load + (scaled_busy_load_per_task * imbn)) { 6540 env->imbalance = busiest->load_per_task; 6541 return; 6542 } 6543 6544 /* 6545 * OK, we don't have enough imbalance to justify moving tasks, 6546 * however we may be able to increase total CPU capacity used by 6547 * moving them. 6548 */ 6549 6550 capa_now += busiest->group_capacity * 6551 min(busiest->load_per_task, busiest->avg_load); 6552 capa_now += local->group_capacity * 6553 min(local->load_per_task, local->avg_load); 6554 capa_now /= SCHED_CAPACITY_SCALE; 6555 6556 /* Amount of load we'd subtract */ 6557 if (busiest->avg_load > scaled_busy_load_per_task) { 6558 capa_move += busiest->group_capacity * 6559 min(busiest->load_per_task, 6560 busiest->avg_load - scaled_busy_load_per_task); 6561 } 6562 6563 /* Amount of load we'd add */ 6564 if (busiest->avg_load * busiest->group_capacity < 6565 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 6566 tmp = (busiest->avg_load * busiest->group_capacity) / 6567 local->group_capacity; 6568 } else { 6569 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6570 local->group_capacity; 6571 } 6572 capa_move += local->group_capacity * 6573 min(local->load_per_task, local->avg_load + tmp); 6574 capa_move /= SCHED_CAPACITY_SCALE; 6575 6576 /* Move if we gain throughput */ 6577 if (capa_move > capa_now) 6578 env->imbalance = busiest->load_per_task; 6579} 6580 6581/** 6582 * calculate_imbalance - Calculate the amount of imbalance present within the 6583 * groups of a given sched_domain during load balance. 6584 * @env: load balance environment 6585 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 6586 */ 6587static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6588{ 6589 unsigned long max_pull, load_above_capacity = ~0UL; 6590 struct sg_lb_stats *local, *busiest; 6591 6592 local = &sds->local_stat; 6593 busiest = &sds->busiest_stat; 6594 6595 if (busiest->group_type == group_imbalanced) { 6596 /* 6597 * In the group_imb case we cannot rely on group-wide averages 6598 * to ensure cpu-load equilibrium, look at wider averages. XXX 6599 */ 6600 busiest->load_per_task = 6601 min(busiest->load_per_task, sds->avg_load); 6602 } 6603 6604 /* 6605 * In the presence of smp nice balancing, certain scenarios can have 6606 * max load less than avg load(as we skip the groups at or below 6607 * its cpu_capacity, while calculating max_load..) 6608 */ 6609 if (busiest->avg_load <= sds->avg_load || 6610 local->avg_load >= sds->avg_load) { 6611 env->imbalance = 0; 6612 return fix_small_imbalance(env, sds); 6613 } 6614 6615 /* 6616 * If there aren't any idle cpus, avoid creating some. 6617 */ 6618 if (busiest->group_type == group_overloaded && 6619 local->group_type == group_overloaded) { 6620 load_above_capacity = busiest->sum_nr_running * 6621 SCHED_LOAD_SCALE; 6622 if (load_above_capacity > busiest->group_capacity) 6623 load_above_capacity -= busiest->group_capacity; 6624 else 6625 load_above_capacity = ~0UL; 6626 } 6627 6628 /* 6629 * We're trying to get all the cpus to the average_load, so we don't 6630 * want to push ourselves above the average load, nor do we wish to 6631 * reduce the max loaded cpu below the average load. At the same time, 6632 * we also don't want to reduce the group load below the group capacity 6633 * (so that we can implement power-savings policies etc). Thus we look 6634 * for the minimum possible imbalance. 6635 */ 6636 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 6637 6638 /* How much load to actually move to equalise the imbalance */ 6639 env->imbalance = min( 6640 max_pull * busiest->group_capacity, 6641 (sds->avg_load - local->avg_load) * local->group_capacity 6642 ) / SCHED_CAPACITY_SCALE; 6643 6644 /* 6645 * if *imbalance is less than the average load per runnable task 6646 * there is no guarantee that any tasks will be moved so we'll have 6647 * a think about bumping its value to force at least one task to be 6648 * moved 6649 */ 6650 if (env->imbalance < busiest->load_per_task) 6651 return fix_small_imbalance(env, sds); 6652} 6653 6654/******* find_busiest_group() helpers end here *********************/ 6655 6656/** 6657 * find_busiest_group - Returns the busiest group within the sched_domain 6658 * if there is an imbalance. If there isn't an imbalance, and 6659 * the user has opted for power-savings, it returns a group whose 6660 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 6661 * such a group exists. 6662 * 6663 * Also calculates the amount of weighted load which should be moved 6664 * to restore balance. 6665 * 6666 * @env: The load balancing environment. 6667 * 6668 * Return: - The busiest group if imbalance exists. 6669 * - If no imbalance and user has opted for power-savings balance, 6670 * return the least loaded group whose CPUs can be 6671 * put to idle by rebalancing its tasks onto our group. 6672 */ 6673static struct sched_group *find_busiest_group(struct lb_env *env) 6674{ 6675 struct sg_lb_stats *local, *busiest; 6676 struct sd_lb_stats sds; 6677 6678 init_sd_lb_stats(&sds); 6679 6680 /* 6681 * Compute the various statistics relavent for load balancing at 6682 * this level. 6683 */ 6684 update_sd_lb_stats(env, &sds); 6685 local = &sds.local_stat; 6686 busiest = &sds.busiest_stat; 6687 6688 /* ASYM feature bypasses nice load balance check */ 6689 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 6690 check_asym_packing(env, &sds)) 6691 return sds.busiest; 6692 6693 /* There is no busy sibling group to pull tasks from */ 6694 if (!sds.busiest || busiest->sum_nr_running == 0) 6695 goto out_balanced; 6696 6697 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 6698 / sds.total_capacity; 6699 6700 /* 6701 * If the busiest group is imbalanced the below checks don't 6702 * work because they assume all things are equal, which typically 6703 * isn't true due to cpus_allowed constraints and the like. 6704 */ 6705 if (busiest->group_type == group_imbalanced) 6706 goto force_balance; 6707 6708 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 6709 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 6710 busiest->group_no_capacity) 6711 goto force_balance; 6712 6713 /* 6714 * If the local group is busier than the selected busiest group 6715 * don't try and pull any tasks. 6716 */ 6717 if (local->avg_load >= busiest->avg_load) 6718 goto out_balanced; 6719 6720 /* 6721 * Don't pull any tasks if this group is already above the domain 6722 * average load. 6723 */ 6724 if (local->avg_load >= sds.avg_load) 6725 goto out_balanced; 6726 6727 if (env->idle == CPU_IDLE) { 6728 /* 6729 * This cpu is idle. If the busiest group is not overloaded 6730 * and there is no imbalance between this and busiest group 6731 * wrt idle cpus, it is balanced. The imbalance becomes 6732 * significant if the diff is greater than 1 otherwise we 6733 * might end up to just move the imbalance on another group 6734 */ 6735 if ((busiest->group_type != group_overloaded) && 6736 (local->idle_cpus <= (busiest->idle_cpus + 1))) 6737 goto out_balanced; 6738 } else { 6739 /* 6740 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 6741 * imbalance_pct to be conservative. 6742 */ 6743 if (100 * busiest->avg_load <= 6744 env->sd->imbalance_pct * local->avg_load) 6745 goto out_balanced; 6746 } 6747 6748force_balance: 6749 /* Looks like there is an imbalance. Compute it */ 6750 calculate_imbalance(env, &sds); 6751 return sds.busiest; 6752 6753out_balanced: 6754 env->imbalance = 0; 6755 return NULL; 6756} 6757 6758/* 6759 * find_busiest_queue - find the busiest runqueue among the cpus in group. 6760 */ 6761static struct rq *find_busiest_queue(struct lb_env *env, 6762 struct sched_group *group) 6763{ 6764 struct rq *busiest = NULL, *rq; 6765 unsigned long busiest_load = 0, busiest_capacity = 1; 6766 int i; 6767 6768 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6769 unsigned long capacity, wl; 6770 enum fbq_type rt; 6771 6772 rq = cpu_rq(i); 6773 rt = fbq_classify_rq(rq); 6774 6775 /* 6776 * We classify groups/runqueues into three groups: 6777 * - regular: there are !numa tasks 6778 * - remote: there are numa tasks that run on the 'wrong' node 6779 * - all: there is no distinction 6780 * 6781 * In order to avoid migrating ideally placed numa tasks, 6782 * ignore those when there's better options. 6783 * 6784 * If we ignore the actual busiest queue to migrate another 6785 * task, the next balance pass can still reduce the busiest 6786 * queue by moving tasks around inside the node. 6787 * 6788 * If we cannot move enough load due to this classification 6789 * the next pass will adjust the group classification and 6790 * allow migration of more tasks. 6791 * 6792 * Both cases only affect the total convergence complexity. 6793 */ 6794 if (rt > env->fbq_type) 6795 continue; 6796 6797 capacity = capacity_of(i); 6798 6799 wl = weighted_cpuload(i); 6800 6801 /* 6802 * When comparing with imbalance, use weighted_cpuload() 6803 * which is not scaled with the cpu capacity. 6804 */ 6805 6806 if (rq->nr_running == 1 && wl > env->imbalance && 6807 !check_cpu_capacity(rq, env->sd)) 6808 continue; 6809 6810 /* 6811 * For the load comparisons with the other cpu's, consider 6812 * the weighted_cpuload() scaled with the cpu capacity, so 6813 * that the load can be moved away from the cpu that is 6814 * potentially running at a lower capacity. 6815 * 6816 * Thus we're looking for max(wl_i / capacity_i), crosswise 6817 * multiplication to rid ourselves of the division works out 6818 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 6819 * our previous maximum. 6820 */ 6821 if (wl * busiest_capacity > busiest_load * capacity) { 6822 busiest_load = wl; 6823 busiest_capacity = capacity; 6824 busiest = rq; 6825 } 6826 } 6827 6828 return busiest; 6829} 6830 6831/* 6832 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 6833 * so long as it is large enough. 6834 */ 6835#define MAX_PINNED_INTERVAL 512 6836 6837/* Working cpumask for load_balance and load_balance_newidle. */ 6838DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6839 6840static int need_active_balance(struct lb_env *env) 6841{ 6842 struct sched_domain *sd = env->sd; 6843 6844 if (env->idle == CPU_NEWLY_IDLE) { 6845 6846 /* 6847 * ASYM_PACKING needs to force migrate tasks from busy but 6848 * higher numbered CPUs in order to pack all tasks in the 6849 * lowest numbered CPUs. 6850 */ 6851 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 6852 return 1; 6853 } 6854 6855 /* 6856 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 6857 * It's worth migrating the task if the src_cpu's capacity is reduced 6858 * because of other sched_class or IRQs if more capacity stays 6859 * available on dst_cpu. 6860 */ 6861 if ((env->idle != CPU_NOT_IDLE) && 6862 (env->src_rq->cfs.h_nr_running == 1)) { 6863 if ((check_cpu_capacity(env->src_rq, sd)) && 6864 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 6865 return 1; 6866 } 6867 6868 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 6869} 6870 6871static int active_load_balance_cpu_stop(void *data); 6872 6873static int should_we_balance(struct lb_env *env) 6874{ 6875 struct sched_group *sg = env->sd->groups; 6876 struct cpumask *sg_cpus, *sg_mask; 6877 int cpu, balance_cpu = -1; 6878 6879 /* 6880 * In the newly idle case, we will allow all the cpu's 6881 * to do the newly idle load balance. 6882 */ 6883 if (env->idle == CPU_NEWLY_IDLE) 6884 return 1; 6885 6886 sg_cpus = sched_group_cpus(sg); 6887 sg_mask = sched_group_mask(sg); 6888 /* Try to find first idle cpu */ 6889 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 6890 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 6891 continue; 6892 6893 balance_cpu = cpu; 6894 break; 6895 } 6896 6897 if (balance_cpu == -1) 6898 balance_cpu = group_balance_cpu(sg); 6899 6900 /* 6901 * First idle cpu or the first cpu(busiest) in this sched group 6902 * is eligible for doing load balancing at this and above domains. 6903 */ 6904 return balance_cpu == env->dst_cpu; 6905} 6906 6907/* 6908 * Check this_cpu to ensure it is balanced within domain. Attempt to move 6909 * tasks if there is an imbalance. 6910 */ 6911static int load_balance(int this_cpu, struct rq *this_rq, 6912 struct sched_domain *sd, enum cpu_idle_type idle, 6913 int *continue_balancing) 6914{ 6915 int ld_moved, cur_ld_moved, active_balance = 0; 6916 struct sched_domain *sd_parent = sd->parent; 6917 struct sched_group *group; 6918 struct rq *busiest; 6919 unsigned long flags; 6920 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 6921 6922 struct lb_env env = { 6923 .sd = sd, 6924 .dst_cpu = this_cpu, 6925 .dst_rq = this_rq, 6926 .dst_grpmask = sched_group_cpus(sd->groups), 6927 .idle = idle, 6928 .loop_break = sched_nr_migrate_break, 6929 .cpus = cpus, 6930 .fbq_type = all, 6931 .tasks = LIST_HEAD_INIT(env.tasks), 6932 }; 6933 6934 /* 6935 * For NEWLY_IDLE load_balancing, we don't need to consider 6936 * other cpus in our group 6937 */ 6938 if (idle == CPU_NEWLY_IDLE) 6939 env.dst_grpmask = NULL; 6940 6941 cpumask_copy(cpus, cpu_active_mask); 6942 6943 schedstat_inc(sd, lb_count[idle]); 6944 6945redo: 6946 if (!should_we_balance(&env)) { 6947 *continue_balancing = 0; 6948 goto out_balanced; 6949 } 6950 6951 group = find_busiest_group(&env); 6952 if (!group) { 6953 schedstat_inc(sd, lb_nobusyg[idle]); 6954 goto out_balanced; 6955 } 6956 6957 busiest = find_busiest_queue(&env, group); 6958 if (!busiest) { 6959 schedstat_inc(sd, lb_nobusyq[idle]); 6960 goto out_balanced; 6961 } 6962 6963 BUG_ON(busiest == env.dst_rq); 6964 6965 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 6966 6967 env.src_cpu = busiest->cpu; 6968 env.src_rq = busiest; 6969 6970 ld_moved = 0; 6971 if (busiest->nr_running > 1) { 6972 /* 6973 * Attempt to move tasks. If find_busiest_group has found 6974 * an imbalance but busiest->nr_running <= 1, the group is 6975 * still unbalanced. ld_moved simply stays zero, so it is 6976 * correctly treated as an imbalance. 6977 */ 6978 env.flags |= LBF_ALL_PINNED; 6979 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 6980 6981more_balance: 6982 raw_spin_lock_irqsave(&busiest->lock, flags); 6983 6984 /* 6985 * cur_ld_moved - load moved in current iteration 6986 * ld_moved - cumulative load moved across iterations 6987 */ 6988 cur_ld_moved = detach_tasks(&env); 6989 6990 /* 6991 * We've detached some tasks from busiest_rq. Every 6992 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 6993 * unlock busiest->lock, and we are able to be sure 6994 * that nobody can manipulate the tasks in parallel. 6995 * See task_rq_lock() family for the details. 6996 */ 6997 6998 raw_spin_unlock(&busiest->lock); 6999 7000 if (cur_ld_moved) { 7001 attach_tasks(&env); 7002 ld_moved += cur_ld_moved; 7003 } 7004 7005 local_irq_restore(flags); 7006 7007 if (env.flags & LBF_NEED_BREAK) { 7008 env.flags &= ~LBF_NEED_BREAK; 7009 goto more_balance; 7010 } 7011 7012 /* 7013 * Revisit (affine) tasks on src_cpu that couldn't be moved to 7014 * us and move them to an alternate dst_cpu in our sched_group 7015 * where they can run. The upper limit on how many times we 7016 * iterate on same src_cpu is dependent on number of cpus in our 7017 * sched_group. 7018 * 7019 * This changes load balance semantics a bit on who can move 7020 * load to a given_cpu. In addition to the given_cpu itself 7021 * (or a ilb_cpu acting on its behalf where given_cpu is 7022 * nohz-idle), we now have balance_cpu in a position to move 7023 * load to given_cpu. In rare situations, this may cause 7024 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 7025 * _independently_ and at _same_ time to move some load to 7026 * given_cpu) causing exceess load to be moved to given_cpu. 7027 * This however should not happen so much in practice and 7028 * moreover subsequent load balance cycles should correct the 7029 * excess load moved. 7030 */ 7031 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 7032 7033 /* Prevent to re-select dst_cpu via env's cpus */ 7034 cpumask_clear_cpu(env.dst_cpu, env.cpus); 7035 7036 env.dst_rq = cpu_rq(env.new_dst_cpu); 7037 env.dst_cpu = env.new_dst_cpu; 7038 env.flags &= ~LBF_DST_PINNED; 7039 env.loop = 0; 7040 env.loop_break = sched_nr_migrate_break; 7041 7042 /* 7043 * Go back to "more_balance" rather than "redo" since we 7044 * need to continue with same src_cpu. 7045 */ 7046 goto more_balance; 7047 } 7048 7049 /* 7050 * We failed to reach balance because of affinity. 7051 */ 7052 if (sd_parent) { 7053 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7054 7055 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 7056 *group_imbalance = 1; 7057 } 7058 7059 /* All tasks on this runqueue were pinned by CPU affinity */ 7060 if (unlikely(env.flags & LBF_ALL_PINNED)) { 7061 cpumask_clear_cpu(cpu_of(busiest), cpus); 7062 if (!cpumask_empty(cpus)) { 7063 env.loop = 0; 7064 env.loop_break = sched_nr_migrate_break; 7065 goto redo; 7066 } 7067 goto out_all_pinned; 7068 } 7069 } 7070 7071 if (!ld_moved) { 7072 schedstat_inc(sd, lb_failed[idle]); 7073 /* 7074 * Increment the failure counter only on periodic balance. 7075 * We do not want newidle balance, which can be very 7076 * frequent, pollute the failure counter causing 7077 * excessive cache_hot migrations and active balances. 7078 */ 7079 if (idle != CPU_NEWLY_IDLE) 7080 sd->nr_balance_failed++; 7081 7082 if (need_active_balance(&env)) { 7083 raw_spin_lock_irqsave(&busiest->lock, flags); 7084 7085 /* don't kick the active_load_balance_cpu_stop, 7086 * if the curr task on busiest cpu can't be 7087 * moved to this_cpu 7088 */ 7089 if (!cpumask_test_cpu(this_cpu, 7090 tsk_cpus_allowed(busiest->curr))) { 7091 raw_spin_unlock_irqrestore(&busiest->lock, 7092 flags); 7093 env.flags |= LBF_ALL_PINNED; 7094 goto out_one_pinned; 7095 } 7096 7097 /* 7098 * ->active_balance synchronizes accesses to 7099 * ->active_balance_work. Once set, it's cleared 7100 * only after active load balance is finished. 7101 */ 7102 if (!busiest->active_balance) { 7103 busiest->active_balance = 1; 7104 busiest->push_cpu = this_cpu; 7105 active_balance = 1; 7106 } 7107 raw_spin_unlock_irqrestore(&busiest->lock, flags); 7108 7109 if (active_balance) { 7110 stop_one_cpu_nowait(cpu_of(busiest), 7111 active_load_balance_cpu_stop, busiest, 7112 &busiest->active_balance_work); 7113 } 7114 7115 /* 7116 * We've kicked active balancing, reset the failure 7117 * counter. 7118 */ 7119 sd->nr_balance_failed = sd->cache_nice_tries+1; 7120 } 7121 } else 7122 sd->nr_balance_failed = 0; 7123 7124 if (likely(!active_balance)) { 7125 /* We were unbalanced, so reset the balancing interval */ 7126 sd->balance_interval = sd->min_interval; 7127 } else { 7128 /* 7129 * If we've begun active balancing, start to back off. This 7130 * case may not be covered by the all_pinned logic if there 7131 * is only 1 task on the busy runqueue (because we don't call 7132 * detach_tasks). 7133 */ 7134 if (sd->balance_interval < sd->max_interval) 7135 sd->balance_interval *= 2; 7136 } 7137 7138 goto out; 7139 7140out_balanced: 7141 /* 7142 * We reach balance although we may have faced some affinity 7143 * constraints. Clear the imbalance flag if it was set. 7144 */ 7145 if (sd_parent) { 7146 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7147 7148 if (*group_imbalance) 7149 *group_imbalance = 0; 7150 } 7151 7152out_all_pinned: 7153 /* 7154 * We reach balance because all tasks are pinned at this level so 7155 * we can't migrate them. Let the imbalance flag set so parent level 7156 * can try to migrate them. 7157 */ 7158 schedstat_inc(sd, lb_balanced[idle]); 7159 7160 sd->nr_balance_failed = 0; 7161 7162out_one_pinned: 7163 /* tune up the balancing interval */ 7164 if (((env.flags & LBF_ALL_PINNED) && 7165 sd->balance_interval < MAX_PINNED_INTERVAL) || 7166 (sd->balance_interval < sd->max_interval)) 7167 sd->balance_interval *= 2; 7168 7169 ld_moved = 0; 7170out: 7171 return ld_moved; 7172} 7173 7174static inline unsigned long 7175get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 7176{ 7177 unsigned long interval = sd->balance_interval; 7178 7179 if (cpu_busy) 7180 interval *= sd->busy_factor; 7181 7182 /* scale ms to jiffies */ 7183 interval = msecs_to_jiffies(interval); 7184 interval = clamp(interval, 1UL, max_load_balance_interval); 7185 7186 return interval; 7187} 7188 7189static inline void 7190update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) 7191{ 7192 unsigned long interval, next; 7193 7194 interval = get_sd_balance_interval(sd, cpu_busy); 7195 next = sd->last_balance + interval; 7196 7197 if (time_after(*next_balance, next)) 7198 *next_balance = next; 7199} 7200 7201/* 7202 * idle_balance is called by schedule() if this_cpu is about to become 7203 * idle. Attempts to pull tasks from other CPUs. 7204 */ 7205static int idle_balance(struct rq *this_rq) 7206{ 7207 unsigned long next_balance = jiffies + HZ; 7208 int this_cpu = this_rq->cpu; 7209 struct sched_domain *sd; 7210 int pulled_task = 0; 7211 u64 curr_cost = 0; 7212 7213 idle_enter_fair(this_rq); 7214 7215 /* 7216 * We must set idle_stamp _before_ calling idle_balance(), such that we 7217 * measure the duration of idle_balance() as idle time. 7218 */ 7219 this_rq->idle_stamp = rq_clock(this_rq); 7220 7221 if (this_rq->avg_idle < sysctl_sched_migration_cost || 7222 !this_rq->rd->overload) { 7223 rcu_read_lock(); 7224 sd = rcu_dereference_check_sched_domain(this_rq->sd); 7225 if (sd) 7226 update_next_balance(sd, 0, &next_balance); 7227 rcu_read_unlock(); 7228 7229 goto out; 7230 } 7231 7232 /* 7233 * Drop the rq->lock, but keep IRQ/preempt disabled. 7234 */ 7235 raw_spin_unlock(&this_rq->lock); 7236 7237 update_blocked_averages(this_cpu); 7238 rcu_read_lock(); 7239 for_each_domain(this_cpu, sd) { 7240 int continue_balancing = 1; 7241 u64 t0, domain_cost; 7242 7243 if (!(sd->flags & SD_LOAD_BALANCE)) 7244 continue; 7245 7246 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 7247 update_next_balance(sd, 0, &next_balance); 7248 break; 7249 } 7250 7251 if (sd->flags & SD_BALANCE_NEWIDLE) { 7252 t0 = sched_clock_cpu(this_cpu); 7253 7254 pulled_task = load_balance(this_cpu, this_rq, 7255 sd, CPU_NEWLY_IDLE, 7256 &continue_balancing); 7257 7258 domain_cost = sched_clock_cpu(this_cpu) - t0; 7259 if (domain_cost > sd->max_newidle_lb_cost) 7260 sd->max_newidle_lb_cost = domain_cost; 7261 7262 curr_cost += domain_cost; 7263 } 7264 7265 update_next_balance(sd, 0, &next_balance); 7266 7267 /* 7268 * Stop searching for tasks to pull if there are 7269 * now runnable tasks on this rq. 7270 */ 7271 if (pulled_task || this_rq->nr_running > 0) 7272 break; 7273 } 7274 rcu_read_unlock(); 7275 7276 raw_spin_lock(&this_rq->lock); 7277 7278 if (curr_cost > this_rq->max_idle_balance_cost) 7279 this_rq->max_idle_balance_cost = curr_cost; 7280 7281 /* 7282 * While browsing the domains, we released the rq lock, a task could 7283 * have been enqueued in the meantime. Since we're not going idle, 7284 * pretend we pulled a task. 7285 */ 7286 if (this_rq->cfs.h_nr_running && !pulled_task) 7287 pulled_task = 1; 7288 7289out: 7290 /* Move the next balance forward */ 7291 if (time_after(this_rq->next_balance, next_balance)) 7292 this_rq->next_balance = next_balance; 7293 7294 /* Is there a task of a high priority class? */ 7295 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 7296 pulled_task = -1; 7297 7298 if (pulled_task) { 7299 idle_exit_fair(this_rq); 7300 this_rq->idle_stamp = 0; 7301 } 7302 7303 return pulled_task; 7304} 7305 7306/* 7307 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 7308 * running tasks off the busiest CPU onto idle CPUs. It requires at 7309 * least 1 task to be running on each physical CPU where possible, and 7310 * avoids physical / logical imbalances. 7311 */ 7312static int active_load_balance_cpu_stop(void *data) 7313{ 7314 struct rq *busiest_rq = data; 7315 int busiest_cpu = cpu_of(busiest_rq); 7316 int target_cpu = busiest_rq->push_cpu; 7317 struct rq *target_rq = cpu_rq(target_cpu); 7318 struct sched_domain *sd; 7319 struct task_struct *p = NULL; 7320 7321 raw_spin_lock_irq(&busiest_rq->lock); 7322 7323 /* make sure the requested cpu hasn't gone down in the meantime */ 7324 if (unlikely(busiest_cpu != smp_processor_id() || 7325 !busiest_rq->active_balance)) 7326 goto out_unlock; 7327 7328 /* Is there any task to move? */ 7329 if (busiest_rq->nr_running <= 1) 7330 goto out_unlock; 7331 7332 /* 7333 * This condition is "impossible", if it occurs 7334 * we need to fix it. Originally reported by 7335 * Bjorn Helgaas on a 128-cpu setup. 7336 */ 7337 BUG_ON(busiest_rq == target_rq); 7338 7339 /* Search for an sd spanning us and the target CPU. */ 7340 rcu_read_lock(); 7341 for_each_domain(target_cpu, sd) { 7342 if ((sd->flags & SD_LOAD_BALANCE) && 7343 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 7344 break; 7345 } 7346 7347 if (likely(sd)) { 7348 struct lb_env env = { 7349 .sd = sd, 7350 .dst_cpu = target_cpu, 7351 .dst_rq = target_rq, 7352 .src_cpu = busiest_rq->cpu, 7353 .src_rq = busiest_rq, 7354 .idle = CPU_IDLE, 7355 }; 7356 7357 schedstat_inc(sd, alb_count); 7358 7359 p = detach_one_task(&env); 7360 if (p) 7361 schedstat_inc(sd, alb_pushed); 7362 else 7363 schedstat_inc(sd, alb_failed); 7364 } 7365 rcu_read_unlock(); 7366out_unlock: 7367 busiest_rq->active_balance = 0; 7368 raw_spin_unlock(&busiest_rq->lock); 7369 7370 if (p) 7371 attach_one_task(target_rq, p); 7372 7373 local_irq_enable(); 7374 7375 return 0; 7376} 7377 7378static inline int on_null_domain(struct rq *rq) 7379{ 7380 return unlikely(!rcu_dereference_sched(rq->sd)); 7381} 7382 7383#ifdef CONFIG_NO_HZ_COMMON 7384/* 7385 * idle load balancing details 7386 * - When one of the busy CPUs notice that there may be an idle rebalancing 7387 * needed, they will kick the idle load balancer, which then does idle 7388 * load balancing for all the idle CPUs. 7389 */ 7390static struct { 7391 cpumask_var_t idle_cpus_mask; 7392 atomic_t nr_cpus; 7393 unsigned long next_balance; /* in jiffy units */ 7394} nohz ____cacheline_aligned; 7395 7396static inline int find_new_ilb(void) 7397{ 7398 int ilb = cpumask_first(nohz.idle_cpus_mask); 7399 7400 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 7401 return ilb; 7402 7403 return nr_cpu_ids; 7404} 7405 7406/* 7407 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 7408 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 7409 * CPU (if there is one). 7410 */ 7411static void nohz_balancer_kick(void) 7412{ 7413 int ilb_cpu; 7414 7415 nohz.next_balance++; 7416 7417 ilb_cpu = find_new_ilb(); 7418 7419 if (ilb_cpu >= nr_cpu_ids) 7420 return; 7421 7422 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 7423 return; 7424 /* 7425 * Use smp_send_reschedule() instead of resched_cpu(). 7426 * This way we generate a sched IPI on the target cpu which 7427 * is idle. And the softirq performing nohz idle load balance 7428 * will be run before returning from the IPI. 7429 */ 7430 smp_send_reschedule(ilb_cpu); 7431 return; 7432} 7433 7434static inline void nohz_balance_exit_idle(int cpu) 7435{ 7436 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 7437 /* 7438 * Completely isolated CPUs don't ever set, so we must test. 7439 */ 7440 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 7441 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 7442 atomic_dec(&nohz.nr_cpus); 7443 } 7444 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7445 } 7446} 7447 7448static inline void set_cpu_sd_state_busy(void) 7449{ 7450 struct sched_domain *sd; 7451 int cpu = smp_processor_id(); 7452 7453 rcu_read_lock(); 7454 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7455 7456 if (!sd || !sd->nohz_idle) 7457 goto unlock; 7458 sd->nohz_idle = 0; 7459 7460 atomic_inc(&sd->groups->sgc->nr_busy_cpus); 7461unlock: 7462 rcu_read_unlock(); 7463} 7464 7465void set_cpu_sd_state_idle(void) 7466{ 7467 struct sched_domain *sd; 7468 int cpu = smp_processor_id(); 7469 7470 rcu_read_lock(); 7471 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7472 7473 if (!sd || sd->nohz_idle) 7474 goto unlock; 7475 sd->nohz_idle = 1; 7476 7477 atomic_dec(&sd->groups->sgc->nr_busy_cpus); 7478unlock: 7479 rcu_read_unlock(); 7480} 7481 7482/* 7483 * This routine will record that the cpu is going idle with tick stopped. 7484 * This info will be used in performing idle load balancing in the future. 7485 */ 7486void nohz_balance_enter_idle(int cpu) 7487{ 7488 /* 7489 * If this cpu is going down, then nothing needs to be done. 7490 */ 7491 if (!cpu_active(cpu)) 7492 return; 7493 7494 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 7495 return; 7496 7497 /* 7498 * If we're a completely isolated CPU, we don't play. 7499 */ 7500 if (on_null_domain(cpu_rq(cpu))) 7501 return; 7502 7503 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 7504 atomic_inc(&nohz.nr_cpus); 7505 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7506} 7507 7508static int sched_ilb_notifier(struct notifier_block *nfb, 7509 unsigned long action, void *hcpu) 7510{ 7511 switch (action & ~CPU_TASKS_FROZEN) { 7512 case CPU_DYING: 7513 nohz_balance_exit_idle(smp_processor_id()); 7514 return NOTIFY_OK; 7515 default: 7516 return NOTIFY_DONE; 7517 } 7518} 7519#endif 7520 7521static DEFINE_SPINLOCK(balancing); 7522 7523/* 7524 * Scale the max load_balance interval with the number of CPUs in the system. 7525 * This trades load-balance latency on larger machines for less cross talk. 7526 */ 7527void update_max_interval(void) 7528{ 7529 max_load_balance_interval = HZ*num_online_cpus()/10; 7530} 7531 7532/* 7533 * It checks each scheduling domain to see if it is due to be balanced, 7534 * and initiates a balancing operation if so. 7535 * 7536 * Balancing parameters are set up in init_sched_domains. 7537 */ 7538static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 7539{ 7540 int continue_balancing = 1; 7541 int cpu = rq->cpu; 7542 unsigned long interval; 7543 struct sched_domain *sd; 7544 /* Earliest time when we have to do rebalance again */ 7545 unsigned long next_balance = jiffies + 60*HZ; 7546 int update_next_balance = 0; 7547 int need_serialize, need_decay = 0; 7548 u64 max_cost = 0; 7549 7550 update_blocked_averages(cpu); 7551 7552 rcu_read_lock(); 7553 for_each_domain(cpu, sd) { 7554 /* 7555 * Decay the newidle max times here because this is a regular 7556 * visit to all the domains. Decay ~1% per second. 7557 */ 7558 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 7559 sd->max_newidle_lb_cost = 7560 (sd->max_newidle_lb_cost * 253) / 256; 7561 sd->next_decay_max_lb_cost = jiffies + HZ; 7562 need_decay = 1; 7563 } 7564 max_cost += sd->max_newidle_lb_cost; 7565 7566 if (!(sd->flags & SD_LOAD_BALANCE)) 7567 continue; 7568 7569 /* 7570 * Stop the load balance at this level. There is another 7571 * CPU in our sched group which is doing load balancing more 7572 * actively. 7573 */ 7574 if (!continue_balancing) { 7575 if (need_decay) 7576 continue; 7577 break; 7578 } 7579 7580 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7581 7582 need_serialize = sd->flags & SD_SERIALIZE; 7583 if (need_serialize) { 7584 if (!spin_trylock(&balancing)) 7585 goto out; 7586 } 7587 7588 if (time_after_eq(jiffies, sd->last_balance + interval)) { 7589 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 7590 /* 7591 * The LBF_DST_PINNED logic could have changed 7592 * env->dst_cpu, so we can't know our idle 7593 * state even if we migrated tasks. Update it. 7594 */ 7595 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 7596 } 7597 sd->last_balance = jiffies; 7598 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7599 } 7600 if (need_serialize) 7601 spin_unlock(&balancing); 7602out: 7603 if (time_after(next_balance, sd->last_balance + interval)) { 7604 next_balance = sd->last_balance + interval; 7605 update_next_balance = 1; 7606 } 7607 } 7608 if (need_decay) { 7609 /* 7610 * Ensure the rq-wide value also decays but keep it at a 7611 * reasonable floor to avoid funnies with rq->avg_idle. 7612 */ 7613 rq->max_idle_balance_cost = 7614 max((u64)sysctl_sched_migration_cost, max_cost); 7615 } 7616 rcu_read_unlock(); 7617 7618 /* 7619 * next_balance will be updated only when there is a need. 7620 * When the cpu is attached to null domain for ex, it will not be 7621 * updated. 7622 */ 7623 if (likely(update_next_balance)) 7624 rq->next_balance = next_balance; 7625} 7626 7627#ifdef CONFIG_NO_HZ_COMMON 7628/* 7629 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 7630 * rebalancing for all the cpus for whom scheduler ticks are stopped. 7631 */ 7632static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 7633{ 7634 int this_cpu = this_rq->cpu; 7635 struct rq *rq; 7636 int balance_cpu; 7637 7638 if (idle != CPU_IDLE || 7639 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 7640 goto end; 7641 7642 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 7643 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 7644 continue; 7645 7646 /* 7647 * If this cpu gets work to do, stop the load balancing 7648 * work being done for other cpus. Next load 7649 * balancing owner will pick it up. 7650 */ 7651 if (need_resched()) 7652 break; 7653 7654 rq = cpu_rq(balance_cpu); 7655 7656 /* 7657 * If time for next balance is due, 7658 * do the balance. 7659 */ 7660 if (time_after_eq(jiffies, rq->next_balance)) { 7661 raw_spin_lock_irq(&rq->lock); 7662 update_rq_clock(rq); 7663 update_idle_cpu_load(rq); 7664 raw_spin_unlock_irq(&rq->lock); 7665 rebalance_domains(rq, CPU_IDLE); 7666 } 7667 7668 if (time_after(this_rq->next_balance, rq->next_balance)) 7669 this_rq->next_balance = rq->next_balance; 7670 } 7671 nohz.next_balance = this_rq->next_balance; 7672end: 7673 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 7674} 7675 7676/* 7677 * Current heuristic for kicking the idle load balancer in the presence 7678 * of an idle cpu in the system. 7679 * - This rq has more than one task. 7680 * - This rq has at least one CFS task and the capacity of the CPU is 7681 * significantly reduced because of RT tasks or IRQs. 7682 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 7683 * multiple busy cpu. 7684 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 7685 * domain span are idle. 7686 */ 7687static inline bool nohz_kick_needed(struct rq *rq) 7688{ 7689 unsigned long now = jiffies; 7690 struct sched_domain *sd; 7691 struct sched_group_capacity *sgc; 7692 int nr_busy, cpu = rq->cpu; 7693 bool kick = false; 7694 7695 if (unlikely(rq->idle_balance)) 7696 return false; 7697 7698 /* 7699 * We may be recently in ticked or tickless idle mode. At the first 7700 * busy tick after returning from idle, we will update the busy stats. 7701 */ 7702 set_cpu_sd_state_busy(); 7703 nohz_balance_exit_idle(cpu); 7704 7705 /* 7706 * None are in tickless mode and hence no need for NOHZ idle load 7707 * balancing. 7708 */ 7709 if (likely(!atomic_read(&nohz.nr_cpus))) 7710 return false; 7711 7712 if (time_before(now, nohz.next_balance)) 7713 return false; 7714 7715 if (rq->nr_running >= 2) 7716 return true; 7717 7718 rcu_read_lock(); 7719 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7720 if (sd) { 7721 sgc = sd->groups->sgc; 7722 nr_busy = atomic_read(&sgc->nr_busy_cpus); 7723 7724 if (nr_busy > 1) { 7725 kick = true; 7726 goto unlock; 7727 } 7728 7729 } 7730 7731 sd = rcu_dereference(rq->sd); 7732 if (sd) { 7733 if ((rq->cfs.h_nr_running >= 1) && 7734 check_cpu_capacity(rq, sd)) { 7735 kick = true; 7736 goto unlock; 7737 } 7738 } 7739 7740 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 7741 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 7742 sched_domain_span(sd)) < cpu)) { 7743 kick = true; 7744 goto unlock; 7745 } 7746 7747unlock: 7748 rcu_read_unlock(); 7749 return kick; 7750} 7751#else 7752static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 7753#endif 7754 7755/* 7756 * run_rebalance_domains is triggered when needed from the scheduler tick. 7757 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 7758 */ 7759static void run_rebalance_domains(struct softirq_action *h) 7760{ 7761 struct rq *this_rq = this_rq(); 7762 enum cpu_idle_type idle = this_rq->idle_balance ? 7763 CPU_IDLE : CPU_NOT_IDLE; 7764 7765 /* 7766 * If this cpu has a pending nohz_balance_kick, then do the 7767 * balancing on behalf of the other idle cpus whose ticks are 7768 * stopped. Do nohz_idle_balance *before* rebalance_domains to 7769 * give the idle cpus a chance to load balance. Else we may 7770 * load balance only within the local sched_domain hierarchy 7771 * and abort nohz_idle_balance altogether if we pull some load. 7772 */ 7773 nohz_idle_balance(this_rq, idle); 7774 rebalance_domains(this_rq, idle); 7775} 7776 7777/* 7778 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 7779 */ 7780void trigger_load_balance(struct rq *rq) 7781{ 7782 /* Don't need to rebalance while attached to NULL domain */ 7783 if (unlikely(on_null_domain(rq))) 7784 return; 7785 7786 if (time_after_eq(jiffies, rq->next_balance)) 7787 raise_softirq(SCHED_SOFTIRQ); 7788#ifdef CONFIG_NO_HZ_COMMON 7789 if (nohz_kick_needed(rq)) 7790 nohz_balancer_kick(); 7791#endif 7792} 7793 7794static void rq_online_fair(struct rq *rq) 7795{ 7796 update_sysctl(); 7797 7798 update_runtime_enabled(rq); 7799} 7800 7801static void rq_offline_fair(struct rq *rq) 7802{ 7803 update_sysctl(); 7804 7805 /* Ensure any throttled groups are reachable by pick_next_task */ 7806 unthrottle_offline_cfs_rqs(rq); 7807} 7808 7809#endif /* CONFIG_SMP */ 7810 7811/* 7812 * scheduler tick hitting a task of our scheduling class: 7813 */ 7814static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 7815{ 7816 struct cfs_rq *cfs_rq; 7817 struct sched_entity *se = &curr->se; 7818 7819 for_each_sched_entity(se) { 7820 cfs_rq = cfs_rq_of(se); 7821 entity_tick(cfs_rq, se, queued); 7822 } 7823 7824 if (numabalancing_enabled) 7825 task_tick_numa(rq, curr); 7826 7827 update_rq_runnable_avg(rq, 1); 7828} 7829 7830/* 7831 * called on fork with the child task as argument from the parent's context 7832 * - child not yet on the tasklist 7833 * - preemption disabled 7834 */ 7835static void task_fork_fair(struct task_struct *p) 7836{ 7837 struct cfs_rq *cfs_rq; 7838 struct sched_entity *se = &p->se, *curr; 7839 int this_cpu = smp_processor_id(); 7840 struct rq *rq = this_rq(); 7841 unsigned long flags; 7842 7843 raw_spin_lock_irqsave(&rq->lock, flags); 7844 7845 update_rq_clock(rq); 7846 7847 cfs_rq = task_cfs_rq(current); 7848 curr = cfs_rq->curr; 7849 7850 /* 7851 * Not only the cpu but also the task_group of the parent might have 7852 * been changed after parent->se.parent,cfs_rq were copied to 7853 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 7854 * of child point to valid ones. 7855 */ 7856 rcu_read_lock(); 7857 __set_task_cpu(p, this_cpu); 7858 rcu_read_unlock(); 7859 7860 update_curr(cfs_rq); 7861 7862 if (curr) 7863 se->vruntime = curr->vruntime; 7864 place_entity(cfs_rq, se, 1); 7865 7866 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 7867 /* 7868 * Upon rescheduling, sched_class::put_prev_task() will place 7869 * 'current' within the tree based on its new key value. 7870 */ 7871 swap(curr->vruntime, se->vruntime); 7872 resched_curr(rq); 7873 } 7874 7875 se->vruntime -= cfs_rq->min_vruntime; 7876 7877 raw_spin_unlock_irqrestore(&rq->lock, flags); 7878} 7879 7880/* 7881 * Priority of the task has changed. Check to see if we preempt 7882 * the current task. 7883 */ 7884static void 7885prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 7886{ 7887 if (!task_on_rq_queued(p)) 7888 return; 7889 7890 /* 7891 * Reschedule if we are currently running on this runqueue and 7892 * our priority decreased, or if we are not currently running on 7893 * this runqueue and our priority is higher than the current's 7894 */ 7895 if (rq->curr == p) { 7896 if (p->prio > oldprio) 7897 resched_curr(rq); 7898 } else 7899 check_preempt_curr(rq, p, 0); 7900} 7901 7902static void switched_from_fair(struct rq *rq, struct task_struct *p) 7903{ 7904 struct sched_entity *se = &p->se; 7905 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7906 7907 /* 7908 * Ensure the task's vruntime is normalized, so that when it's 7909 * switched back to the fair class the enqueue_entity(.flags=0) will 7910 * do the right thing. 7911 * 7912 * If it's queued, then the dequeue_entity(.flags=0) will already 7913 * have normalized the vruntime, if it's !queued, then only when 7914 * the task is sleeping will it still have non-normalized vruntime. 7915 */ 7916 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) { 7917 /* 7918 * Fix up our vruntime so that the current sleep doesn't 7919 * cause 'unlimited' sleep bonus. 7920 */ 7921 place_entity(cfs_rq, se, 0); 7922 se->vruntime -= cfs_rq->min_vruntime; 7923 } 7924 7925#ifdef CONFIG_SMP 7926 /* 7927 * Remove our load from contribution when we leave sched_fair 7928 * and ensure we don't carry in an old decay_count if we 7929 * switch back. 7930 */ 7931 if (se->avg.decay_count) { 7932 __synchronize_entity_decay(se); 7933 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 7934 } 7935#endif 7936} 7937 7938/* 7939 * We switched to the sched_fair class. 7940 */ 7941static void switched_to_fair(struct rq *rq, struct task_struct *p) 7942{ 7943#ifdef CONFIG_FAIR_GROUP_SCHED 7944 struct sched_entity *se = &p->se; 7945 /* 7946 * Since the real-depth could have been changed (only FAIR 7947 * class maintain depth value), reset depth properly. 7948 */ 7949 se->depth = se->parent ? se->parent->depth + 1 : 0; 7950#endif 7951 if (!task_on_rq_queued(p)) 7952 return; 7953 7954 /* 7955 * We were most likely switched from sched_rt, so 7956 * kick off the schedule if running, otherwise just see 7957 * if we can still preempt the current task. 7958 */ 7959 if (rq->curr == p) 7960 resched_curr(rq); 7961 else 7962 check_preempt_curr(rq, p, 0); 7963} 7964 7965/* Account for a task changing its policy or group. 7966 * 7967 * This routine is mostly called to set cfs_rq->curr field when a task 7968 * migrates between groups/classes. 7969 */ 7970static void set_curr_task_fair(struct rq *rq) 7971{ 7972 struct sched_entity *se = &rq->curr->se; 7973 7974 for_each_sched_entity(se) { 7975 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7976 7977 set_next_entity(cfs_rq, se); 7978 /* ensure bandwidth has been allocated on our new cfs_rq */ 7979 account_cfs_rq_runtime(cfs_rq, 0); 7980 } 7981} 7982 7983void init_cfs_rq(struct cfs_rq *cfs_rq) 7984{ 7985 cfs_rq->tasks_timeline = RB_ROOT; 7986 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 7987#ifndef CONFIG_64BIT 7988 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 7989#endif 7990#ifdef CONFIG_SMP 7991 atomic64_set(&cfs_rq->decay_counter, 1); 7992 atomic_long_set(&cfs_rq->removed_load, 0); 7993#endif 7994} 7995 7996#ifdef CONFIG_FAIR_GROUP_SCHED 7997static void task_move_group_fair(struct task_struct *p, int queued) 7998{ 7999 struct sched_entity *se = &p->se; 8000 struct cfs_rq *cfs_rq; 8001 8002 /* 8003 * If the task was not on the rq at the time of this cgroup movement 8004 * it must have been asleep, sleeping tasks keep their ->vruntime 8005 * absolute on their old rq until wakeup (needed for the fair sleeper 8006 * bonus in place_entity()). 8007 * 8008 * If it was on the rq, we've just 'preempted' it, which does convert 8009 * ->vruntime to a relative base. 8010 * 8011 * Make sure both cases convert their relative position when migrating 8012 * to another cgroup's rq. This does somewhat interfere with the 8013 * fair sleeper stuff for the first placement, but who cares. 8014 */ 8015 /* 8016 * When !queued, vruntime of the task has usually NOT been normalized. 8017 * But there are some cases where it has already been normalized: 8018 * 8019 * - Moving a forked child which is waiting for being woken up by 8020 * wake_up_new_task(). 8021 * - Moving a task which has been woken up by try_to_wake_up() and 8022 * waiting for actually being woken up by sched_ttwu_pending(). 8023 * 8024 * To prevent boost or penalty in the new cfs_rq caused by delta 8025 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 8026 */ 8027 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING)) 8028 queued = 1; 8029 8030 if (!queued) 8031 se->vruntime -= cfs_rq_of(se)->min_vruntime; 8032 set_task_rq(p, task_cpu(p)); 8033 se->depth = se->parent ? se->parent->depth + 1 : 0; 8034 if (!queued) { 8035 cfs_rq = cfs_rq_of(se); 8036 se->vruntime += cfs_rq->min_vruntime; 8037#ifdef CONFIG_SMP 8038 /* 8039 * migrate_task_rq_fair() will have removed our previous 8040 * contribution, but we must synchronize for ongoing future 8041 * decay. 8042 */ 8043 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 8044 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 8045#endif 8046 } 8047} 8048 8049void free_fair_sched_group(struct task_group *tg) 8050{ 8051 int i; 8052 8053 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8054 8055 for_each_possible_cpu(i) { 8056 if (tg->cfs_rq) 8057 kfree(tg->cfs_rq[i]); 8058 if (tg->se) 8059 kfree(tg->se[i]); 8060 } 8061 8062 kfree(tg->cfs_rq); 8063 kfree(tg->se); 8064} 8065 8066int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8067{ 8068 struct cfs_rq *cfs_rq; 8069 struct sched_entity *se; 8070 int i; 8071 8072 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 8073 if (!tg->cfs_rq) 8074 goto err; 8075 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 8076 if (!tg->se) 8077 goto err; 8078 8079 tg->shares = NICE_0_LOAD; 8080 8081 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8082 8083 for_each_possible_cpu(i) { 8084 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 8085 GFP_KERNEL, cpu_to_node(i)); 8086 if (!cfs_rq) 8087 goto err; 8088 8089 se = kzalloc_node(sizeof(struct sched_entity), 8090 GFP_KERNEL, cpu_to_node(i)); 8091 if (!se) 8092 goto err_free_rq; 8093 8094 init_cfs_rq(cfs_rq); 8095 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 8096 } 8097 8098 return 1; 8099 8100err_free_rq: 8101 kfree(cfs_rq); 8102err: 8103 return 0; 8104} 8105 8106void unregister_fair_sched_group(struct task_group *tg, int cpu) 8107{ 8108 struct rq *rq = cpu_rq(cpu); 8109 unsigned long flags; 8110 8111 /* 8112 * Only empty task groups can be destroyed; so we can speculatively 8113 * check on_list without danger of it being re-added. 8114 */ 8115 if (!tg->cfs_rq[cpu]->on_list) 8116 return; 8117 8118 raw_spin_lock_irqsave(&rq->lock, flags); 8119 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 8120 raw_spin_unlock_irqrestore(&rq->lock, flags); 8121} 8122 8123void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 8124 struct sched_entity *se, int cpu, 8125 struct sched_entity *parent) 8126{ 8127 struct rq *rq = cpu_rq(cpu); 8128 8129 cfs_rq->tg = tg; 8130 cfs_rq->rq = rq; 8131 init_cfs_rq_runtime(cfs_rq); 8132 8133 tg->cfs_rq[cpu] = cfs_rq; 8134 tg->se[cpu] = se; 8135 8136 /* se could be NULL for root_task_group */ 8137 if (!se) 8138 return; 8139 8140 if (!parent) { 8141 se->cfs_rq = &rq->cfs; 8142 se->depth = 0; 8143 } else { 8144 se->cfs_rq = parent->my_q; 8145 se->depth = parent->depth + 1; 8146 } 8147 8148 se->my_q = cfs_rq; 8149 /* guarantee group entities always have weight */ 8150 update_load_set(&se->load, NICE_0_LOAD); 8151 se->parent = parent; 8152} 8153 8154static DEFINE_MUTEX(shares_mutex); 8155 8156int sched_group_set_shares(struct task_group *tg, unsigned long shares) 8157{ 8158 int i; 8159 unsigned long flags; 8160 8161 /* 8162 * We can't change the weight of the root cgroup. 8163 */ 8164 if (!tg->se[0]) 8165 return -EINVAL; 8166 8167 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 8168 8169 mutex_lock(&shares_mutex); 8170 if (tg->shares == shares) 8171 goto done; 8172 8173 tg->shares = shares; 8174 for_each_possible_cpu(i) { 8175 struct rq *rq = cpu_rq(i); 8176 struct sched_entity *se; 8177 8178 se = tg->se[i]; 8179 /* Propagate contribution to hierarchy */ 8180 raw_spin_lock_irqsave(&rq->lock, flags); 8181 8182 /* Possible calls to update_curr() need rq clock */ 8183 update_rq_clock(rq); 8184 for_each_sched_entity(se) 8185 update_cfs_shares(group_cfs_rq(se)); 8186 raw_spin_unlock_irqrestore(&rq->lock, flags); 8187 } 8188 8189done: 8190 mutex_unlock(&shares_mutex); 8191 return 0; 8192} 8193#else /* CONFIG_FAIR_GROUP_SCHED */ 8194 8195void free_fair_sched_group(struct task_group *tg) { } 8196 8197int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8198{ 8199 return 1; 8200} 8201 8202void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 8203 8204#endif /* CONFIG_FAIR_GROUP_SCHED */ 8205 8206 8207static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 8208{ 8209 struct sched_entity *se = &task->se; 8210 unsigned int rr_interval = 0; 8211 8212 /* 8213 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 8214 * idle runqueue: 8215 */ 8216 if (rq->cfs.load.weight) 8217 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 8218 8219 return rr_interval; 8220} 8221 8222/* 8223 * All the scheduling class methods: 8224 */ 8225const struct sched_class fair_sched_class = { 8226 .next = &idle_sched_class, 8227 .enqueue_task = enqueue_task_fair, 8228 .dequeue_task = dequeue_task_fair, 8229 .yield_task = yield_task_fair, 8230 .yield_to_task = yield_to_task_fair, 8231 8232 .check_preempt_curr = check_preempt_wakeup, 8233 8234 .pick_next_task = pick_next_task_fair, 8235 .put_prev_task = put_prev_task_fair, 8236 8237#ifdef CONFIG_SMP 8238 .select_task_rq = select_task_rq_fair, 8239 .migrate_task_rq = migrate_task_rq_fair, 8240 8241 .rq_online = rq_online_fair, 8242 .rq_offline = rq_offline_fair, 8243 8244 .task_waking = task_waking_fair, 8245#endif 8246 8247 .set_curr_task = set_curr_task_fair, 8248 .task_tick = task_tick_fair, 8249 .task_fork = task_fork_fair, 8250 8251 .prio_changed = prio_changed_fair, 8252 .switched_from = switched_from_fair, 8253 .switched_to = switched_to_fair, 8254 8255 .get_rr_interval = get_rr_interval_fair, 8256 8257 .update_curr = update_curr_fair, 8258 8259#ifdef CONFIG_FAIR_GROUP_SCHED 8260 .task_move_group = task_move_group_fair, 8261#endif 8262}; 8263 8264#ifdef CONFIG_SCHED_DEBUG 8265void print_cfs_stats(struct seq_file *m, int cpu) 8266{ 8267 struct cfs_rq *cfs_rq; 8268 8269 rcu_read_lock(); 8270 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 8271 print_cfs_rq(m, cpu, cfs_rq); 8272 rcu_read_unlock(); 8273} 8274#endif 8275 8276__init void init_sched_fair_class(void) 8277{ 8278#ifdef CONFIG_SMP 8279 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 8280 8281#ifdef CONFIG_NO_HZ_COMMON 8282 nohz.next_balance = jiffies; 8283 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 8284 cpu_notifier(sched_ilb_notifier, 0); 8285#endif 8286#endif /* SMP */ 8287 8288} 8289