1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6#include "sched.h"
7
8#include <linux/slab.h>
9#include <linux/irq_work.h>
10
11int sched_rr_timeslice = RR_TIMESLICE;
12
13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15struct rt_bandwidth def_rt_bandwidth;
16
17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18{
19	struct rt_bandwidth *rt_b =
20		container_of(timer, struct rt_bandwidth, rt_period_timer);
21	ktime_t now;
22	int overrun;
23	int idle = 0;
24
25	for (;;) {
26		now = hrtimer_cb_get_time(timer);
27		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
28
29		if (!overrun)
30			break;
31
32		idle = do_sched_rt_period_timer(rt_b, overrun);
33	}
34
35	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
36}
37
38void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
39{
40	rt_b->rt_period = ns_to_ktime(period);
41	rt_b->rt_runtime = runtime;
42
43	raw_spin_lock_init(&rt_b->rt_runtime_lock);
44
45	hrtimer_init(&rt_b->rt_period_timer,
46			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
47	rt_b->rt_period_timer.function = sched_rt_period_timer;
48}
49
50static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
51{
52	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
53		return;
54
55	if (hrtimer_active(&rt_b->rt_period_timer))
56		return;
57
58	raw_spin_lock(&rt_b->rt_runtime_lock);
59	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
60	raw_spin_unlock(&rt_b->rt_runtime_lock);
61}
62
63#ifdef CONFIG_SMP
64static void push_irq_work_func(struct irq_work *work);
65#endif
66
67void init_rt_rq(struct rt_rq *rt_rq)
68{
69	struct rt_prio_array *array;
70	int i;
71
72	array = &rt_rq->active;
73	for (i = 0; i < MAX_RT_PRIO; i++) {
74		INIT_LIST_HEAD(array->queue + i);
75		__clear_bit(i, array->bitmap);
76	}
77	/* delimiter for bitsearch: */
78	__set_bit(MAX_RT_PRIO, array->bitmap);
79
80#if defined CONFIG_SMP
81	rt_rq->highest_prio.curr = MAX_RT_PRIO;
82	rt_rq->highest_prio.next = MAX_RT_PRIO;
83	rt_rq->rt_nr_migratory = 0;
84	rt_rq->overloaded = 0;
85	plist_head_init(&rt_rq->pushable_tasks);
86
87#ifdef HAVE_RT_PUSH_IPI
88	rt_rq->push_flags = 0;
89	rt_rq->push_cpu = nr_cpu_ids;
90	raw_spin_lock_init(&rt_rq->push_lock);
91	init_irq_work(&rt_rq->push_work, push_irq_work_func);
92#endif
93#endif /* CONFIG_SMP */
94	/* We start is dequeued state, because no RT tasks are queued */
95	rt_rq->rt_queued = 0;
96
97	rt_rq->rt_time = 0;
98	rt_rq->rt_throttled = 0;
99	rt_rq->rt_runtime = 0;
100	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
101}
102
103#ifdef CONFIG_RT_GROUP_SCHED
104static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
105{
106	hrtimer_cancel(&rt_b->rt_period_timer);
107}
108
109#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
110
111static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
112{
113#ifdef CONFIG_SCHED_DEBUG
114	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
115#endif
116	return container_of(rt_se, struct task_struct, rt);
117}
118
119static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
120{
121	return rt_rq->rq;
122}
123
124static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
125{
126	return rt_se->rt_rq;
127}
128
129static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
130{
131	struct rt_rq *rt_rq = rt_se->rt_rq;
132
133	return rt_rq->rq;
134}
135
136void free_rt_sched_group(struct task_group *tg)
137{
138	int i;
139
140	if (tg->rt_se)
141		destroy_rt_bandwidth(&tg->rt_bandwidth);
142
143	for_each_possible_cpu(i) {
144		if (tg->rt_rq)
145			kfree(tg->rt_rq[i]);
146		if (tg->rt_se)
147			kfree(tg->rt_se[i]);
148	}
149
150	kfree(tg->rt_rq);
151	kfree(tg->rt_se);
152}
153
154void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
155		struct sched_rt_entity *rt_se, int cpu,
156		struct sched_rt_entity *parent)
157{
158	struct rq *rq = cpu_rq(cpu);
159
160	rt_rq->highest_prio.curr = MAX_RT_PRIO;
161	rt_rq->rt_nr_boosted = 0;
162	rt_rq->rq = rq;
163	rt_rq->tg = tg;
164
165	tg->rt_rq[cpu] = rt_rq;
166	tg->rt_se[cpu] = rt_se;
167
168	if (!rt_se)
169		return;
170
171	if (!parent)
172		rt_se->rt_rq = &rq->rt;
173	else
174		rt_se->rt_rq = parent->my_q;
175
176	rt_se->my_q = rt_rq;
177	rt_se->parent = parent;
178	INIT_LIST_HEAD(&rt_se->run_list);
179}
180
181int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
182{
183	struct rt_rq *rt_rq;
184	struct sched_rt_entity *rt_se;
185	int i;
186
187	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
188	if (!tg->rt_rq)
189		goto err;
190	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
191	if (!tg->rt_se)
192		goto err;
193
194	init_rt_bandwidth(&tg->rt_bandwidth,
195			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
196
197	for_each_possible_cpu(i) {
198		rt_rq = kzalloc_node(sizeof(struct rt_rq),
199				     GFP_KERNEL, cpu_to_node(i));
200		if (!rt_rq)
201			goto err;
202
203		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
204				     GFP_KERNEL, cpu_to_node(i));
205		if (!rt_se)
206			goto err_free_rq;
207
208		init_rt_rq(rt_rq);
209		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
210		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
211	}
212
213	return 1;
214
215err_free_rq:
216	kfree(rt_rq);
217err:
218	return 0;
219}
220
221#else /* CONFIG_RT_GROUP_SCHED */
222
223#define rt_entity_is_task(rt_se) (1)
224
225static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
226{
227	return container_of(rt_se, struct task_struct, rt);
228}
229
230static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
231{
232	return container_of(rt_rq, struct rq, rt);
233}
234
235static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
236{
237	struct task_struct *p = rt_task_of(rt_se);
238
239	return task_rq(p);
240}
241
242static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
243{
244	struct rq *rq = rq_of_rt_se(rt_se);
245
246	return &rq->rt;
247}
248
249void free_rt_sched_group(struct task_group *tg) { }
250
251int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
252{
253	return 1;
254}
255#endif /* CONFIG_RT_GROUP_SCHED */
256
257#ifdef CONFIG_SMP
258
259static int pull_rt_task(struct rq *this_rq);
260
261static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
262{
263	/* Try to pull RT tasks here if we lower this rq's prio */
264	return rq->rt.highest_prio.curr > prev->prio;
265}
266
267static inline int rt_overloaded(struct rq *rq)
268{
269	return atomic_read(&rq->rd->rto_count);
270}
271
272static inline void rt_set_overload(struct rq *rq)
273{
274	if (!rq->online)
275		return;
276
277	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
278	/*
279	 * Make sure the mask is visible before we set
280	 * the overload count. That is checked to determine
281	 * if we should look at the mask. It would be a shame
282	 * if we looked at the mask, but the mask was not
283	 * updated yet.
284	 *
285	 * Matched by the barrier in pull_rt_task().
286	 */
287	smp_wmb();
288	atomic_inc(&rq->rd->rto_count);
289}
290
291static inline void rt_clear_overload(struct rq *rq)
292{
293	if (!rq->online)
294		return;
295
296	/* the order here really doesn't matter */
297	atomic_dec(&rq->rd->rto_count);
298	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
299}
300
301static void update_rt_migration(struct rt_rq *rt_rq)
302{
303	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
304		if (!rt_rq->overloaded) {
305			rt_set_overload(rq_of_rt_rq(rt_rq));
306			rt_rq->overloaded = 1;
307		}
308	} else if (rt_rq->overloaded) {
309		rt_clear_overload(rq_of_rt_rq(rt_rq));
310		rt_rq->overloaded = 0;
311	}
312}
313
314static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
315{
316	struct task_struct *p;
317
318	if (!rt_entity_is_task(rt_se))
319		return;
320
321	p = rt_task_of(rt_se);
322	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
323
324	rt_rq->rt_nr_total++;
325	if (p->nr_cpus_allowed > 1)
326		rt_rq->rt_nr_migratory++;
327
328	update_rt_migration(rt_rq);
329}
330
331static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
332{
333	struct task_struct *p;
334
335	if (!rt_entity_is_task(rt_se))
336		return;
337
338	p = rt_task_of(rt_se);
339	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
340
341	rt_rq->rt_nr_total--;
342	if (p->nr_cpus_allowed > 1)
343		rt_rq->rt_nr_migratory--;
344
345	update_rt_migration(rt_rq);
346}
347
348static inline int has_pushable_tasks(struct rq *rq)
349{
350	return !plist_head_empty(&rq->rt.pushable_tasks);
351}
352
353static inline void set_post_schedule(struct rq *rq)
354{
355	/*
356	 * We detect this state here so that we can avoid taking the RQ
357	 * lock again later if there is no need to push
358	 */
359	rq->post_schedule = has_pushable_tasks(rq);
360}
361
362static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
363{
364	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
365	plist_node_init(&p->pushable_tasks, p->prio);
366	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
367
368	/* Update the highest prio pushable task */
369	if (p->prio < rq->rt.highest_prio.next)
370		rq->rt.highest_prio.next = p->prio;
371}
372
373static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
374{
375	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
376
377	/* Update the new highest prio pushable task */
378	if (has_pushable_tasks(rq)) {
379		p = plist_first_entry(&rq->rt.pushable_tasks,
380				      struct task_struct, pushable_tasks);
381		rq->rt.highest_prio.next = p->prio;
382	} else
383		rq->rt.highest_prio.next = MAX_RT_PRIO;
384}
385
386#else
387
388static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
389{
390}
391
392static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
393{
394}
395
396static inline
397void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
398{
399}
400
401static inline
402void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
403{
404}
405
406static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
407{
408	return false;
409}
410
411static inline int pull_rt_task(struct rq *this_rq)
412{
413	return 0;
414}
415
416static inline void set_post_schedule(struct rq *rq)
417{
418}
419#endif /* CONFIG_SMP */
420
421static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
422static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
423
424static inline int on_rt_rq(struct sched_rt_entity *rt_se)
425{
426	return !list_empty(&rt_se->run_list);
427}
428
429#ifdef CONFIG_RT_GROUP_SCHED
430
431static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
432{
433	if (!rt_rq->tg)
434		return RUNTIME_INF;
435
436	return rt_rq->rt_runtime;
437}
438
439static inline u64 sched_rt_period(struct rt_rq *rt_rq)
440{
441	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
442}
443
444typedef struct task_group *rt_rq_iter_t;
445
446static inline struct task_group *next_task_group(struct task_group *tg)
447{
448	do {
449		tg = list_entry_rcu(tg->list.next,
450			typeof(struct task_group), list);
451	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
452
453	if (&tg->list == &task_groups)
454		tg = NULL;
455
456	return tg;
457}
458
459#define for_each_rt_rq(rt_rq, iter, rq)					\
460	for (iter = container_of(&task_groups, typeof(*iter), list);	\
461		(iter = next_task_group(iter)) &&			\
462		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
463
464#define for_each_sched_rt_entity(rt_se) \
465	for (; rt_se; rt_se = rt_se->parent)
466
467static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
468{
469	return rt_se->my_q;
470}
471
472static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
473static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
474
475static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
476{
477	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
478	struct rq *rq = rq_of_rt_rq(rt_rq);
479	struct sched_rt_entity *rt_se;
480
481	int cpu = cpu_of(rq);
482
483	rt_se = rt_rq->tg->rt_se[cpu];
484
485	if (rt_rq->rt_nr_running) {
486		if (!rt_se)
487			enqueue_top_rt_rq(rt_rq);
488		else if (!on_rt_rq(rt_se))
489			enqueue_rt_entity(rt_se, false);
490
491		if (rt_rq->highest_prio.curr < curr->prio)
492			resched_curr(rq);
493	}
494}
495
496static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
497{
498	struct sched_rt_entity *rt_se;
499	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
500
501	rt_se = rt_rq->tg->rt_se[cpu];
502
503	if (!rt_se)
504		dequeue_top_rt_rq(rt_rq);
505	else if (on_rt_rq(rt_se))
506		dequeue_rt_entity(rt_se);
507}
508
509static inline int rt_rq_throttled(struct rt_rq *rt_rq)
510{
511	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
512}
513
514static int rt_se_boosted(struct sched_rt_entity *rt_se)
515{
516	struct rt_rq *rt_rq = group_rt_rq(rt_se);
517	struct task_struct *p;
518
519	if (rt_rq)
520		return !!rt_rq->rt_nr_boosted;
521
522	p = rt_task_of(rt_se);
523	return p->prio != p->normal_prio;
524}
525
526#ifdef CONFIG_SMP
527static inline const struct cpumask *sched_rt_period_mask(void)
528{
529	return this_rq()->rd->span;
530}
531#else
532static inline const struct cpumask *sched_rt_period_mask(void)
533{
534	return cpu_online_mask;
535}
536#endif
537
538static inline
539struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
540{
541	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
542}
543
544static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
545{
546	return &rt_rq->tg->rt_bandwidth;
547}
548
549#else /* !CONFIG_RT_GROUP_SCHED */
550
551static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
552{
553	return rt_rq->rt_runtime;
554}
555
556static inline u64 sched_rt_period(struct rt_rq *rt_rq)
557{
558	return ktime_to_ns(def_rt_bandwidth.rt_period);
559}
560
561typedef struct rt_rq *rt_rq_iter_t;
562
563#define for_each_rt_rq(rt_rq, iter, rq) \
564	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
565
566#define for_each_sched_rt_entity(rt_se) \
567	for (; rt_se; rt_se = NULL)
568
569static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
570{
571	return NULL;
572}
573
574static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
575{
576	struct rq *rq = rq_of_rt_rq(rt_rq);
577
578	if (!rt_rq->rt_nr_running)
579		return;
580
581	enqueue_top_rt_rq(rt_rq);
582	resched_curr(rq);
583}
584
585static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
586{
587	dequeue_top_rt_rq(rt_rq);
588}
589
590static inline int rt_rq_throttled(struct rt_rq *rt_rq)
591{
592	return rt_rq->rt_throttled;
593}
594
595static inline const struct cpumask *sched_rt_period_mask(void)
596{
597	return cpu_online_mask;
598}
599
600static inline
601struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
602{
603	return &cpu_rq(cpu)->rt;
604}
605
606static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
607{
608	return &def_rt_bandwidth;
609}
610
611#endif /* CONFIG_RT_GROUP_SCHED */
612
613bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
614{
615	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
616
617	return (hrtimer_active(&rt_b->rt_period_timer) ||
618		rt_rq->rt_time < rt_b->rt_runtime);
619}
620
621#ifdef CONFIG_SMP
622/*
623 * We ran out of runtime, see if we can borrow some from our neighbours.
624 */
625static int do_balance_runtime(struct rt_rq *rt_rq)
626{
627	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
628	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
629	int i, weight, more = 0;
630	u64 rt_period;
631
632	weight = cpumask_weight(rd->span);
633
634	raw_spin_lock(&rt_b->rt_runtime_lock);
635	rt_period = ktime_to_ns(rt_b->rt_period);
636	for_each_cpu(i, rd->span) {
637		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
638		s64 diff;
639
640		if (iter == rt_rq)
641			continue;
642
643		raw_spin_lock(&iter->rt_runtime_lock);
644		/*
645		 * Either all rqs have inf runtime and there's nothing to steal
646		 * or __disable_runtime() below sets a specific rq to inf to
647		 * indicate its been disabled and disalow stealing.
648		 */
649		if (iter->rt_runtime == RUNTIME_INF)
650			goto next;
651
652		/*
653		 * From runqueues with spare time, take 1/n part of their
654		 * spare time, but no more than our period.
655		 */
656		diff = iter->rt_runtime - iter->rt_time;
657		if (diff > 0) {
658			diff = div_u64((u64)diff, weight);
659			if (rt_rq->rt_runtime + diff > rt_period)
660				diff = rt_period - rt_rq->rt_runtime;
661			iter->rt_runtime -= diff;
662			rt_rq->rt_runtime += diff;
663			more = 1;
664			if (rt_rq->rt_runtime == rt_period) {
665				raw_spin_unlock(&iter->rt_runtime_lock);
666				break;
667			}
668		}
669next:
670		raw_spin_unlock(&iter->rt_runtime_lock);
671	}
672	raw_spin_unlock(&rt_b->rt_runtime_lock);
673
674	return more;
675}
676
677/*
678 * Ensure this RQ takes back all the runtime it lend to its neighbours.
679 */
680static void __disable_runtime(struct rq *rq)
681{
682	struct root_domain *rd = rq->rd;
683	rt_rq_iter_t iter;
684	struct rt_rq *rt_rq;
685
686	if (unlikely(!scheduler_running))
687		return;
688
689	for_each_rt_rq(rt_rq, iter, rq) {
690		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
691		s64 want;
692		int i;
693
694		raw_spin_lock(&rt_b->rt_runtime_lock);
695		raw_spin_lock(&rt_rq->rt_runtime_lock);
696		/*
697		 * Either we're all inf and nobody needs to borrow, or we're
698		 * already disabled and thus have nothing to do, or we have
699		 * exactly the right amount of runtime to take out.
700		 */
701		if (rt_rq->rt_runtime == RUNTIME_INF ||
702				rt_rq->rt_runtime == rt_b->rt_runtime)
703			goto balanced;
704		raw_spin_unlock(&rt_rq->rt_runtime_lock);
705
706		/*
707		 * Calculate the difference between what we started out with
708		 * and what we current have, that's the amount of runtime
709		 * we lend and now have to reclaim.
710		 */
711		want = rt_b->rt_runtime - rt_rq->rt_runtime;
712
713		/*
714		 * Greedy reclaim, take back as much as we can.
715		 */
716		for_each_cpu(i, rd->span) {
717			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
718			s64 diff;
719
720			/*
721			 * Can't reclaim from ourselves or disabled runqueues.
722			 */
723			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
724				continue;
725
726			raw_spin_lock(&iter->rt_runtime_lock);
727			if (want > 0) {
728				diff = min_t(s64, iter->rt_runtime, want);
729				iter->rt_runtime -= diff;
730				want -= diff;
731			} else {
732				iter->rt_runtime -= want;
733				want -= want;
734			}
735			raw_spin_unlock(&iter->rt_runtime_lock);
736
737			if (!want)
738				break;
739		}
740
741		raw_spin_lock(&rt_rq->rt_runtime_lock);
742		/*
743		 * We cannot be left wanting - that would mean some runtime
744		 * leaked out of the system.
745		 */
746		BUG_ON(want);
747balanced:
748		/*
749		 * Disable all the borrow logic by pretending we have inf
750		 * runtime - in which case borrowing doesn't make sense.
751		 */
752		rt_rq->rt_runtime = RUNTIME_INF;
753		rt_rq->rt_throttled = 0;
754		raw_spin_unlock(&rt_rq->rt_runtime_lock);
755		raw_spin_unlock(&rt_b->rt_runtime_lock);
756
757		/* Make rt_rq available for pick_next_task() */
758		sched_rt_rq_enqueue(rt_rq);
759	}
760}
761
762static void __enable_runtime(struct rq *rq)
763{
764	rt_rq_iter_t iter;
765	struct rt_rq *rt_rq;
766
767	if (unlikely(!scheduler_running))
768		return;
769
770	/*
771	 * Reset each runqueue's bandwidth settings
772	 */
773	for_each_rt_rq(rt_rq, iter, rq) {
774		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
775
776		raw_spin_lock(&rt_b->rt_runtime_lock);
777		raw_spin_lock(&rt_rq->rt_runtime_lock);
778		rt_rq->rt_runtime = rt_b->rt_runtime;
779		rt_rq->rt_time = 0;
780		rt_rq->rt_throttled = 0;
781		raw_spin_unlock(&rt_rq->rt_runtime_lock);
782		raw_spin_unlock(&rt_b->rt_runtime_lock);
783	}
784}
785
786static int balance_runtime(struct rt_rq *rt_rq)
787{
788	int more = 0;
789
790	if (!sched_feat(RT_RUNTIME_SHARE))
791		return more;
792
793	if (rt_rq->rt_time > rt_rq->rt_runtime) {
794		raw_spin_unlock(&rt_rq->rt_runtime_lock);
795		more = do_balance_runtime(rt_rq);
796		raw_spin_lock(&rt_rq->rt_runtime_lock);
797	}
798
799	return more;
800}
801#else /* !CONFIG_SMP */
802static inline int balance_runtime(struct rt_rq *rt_rq)
803{
804	return 0;
805}
806#endif /* CONFIG_SMP */
807
808static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
809{
810	int i, idle = 1, throttled = 0;
811	const struct cpumask *span;
812
813	span = sched_rt_period_mask();
814#ifdef CONFIG_RT_GROUP_SCHED
815	/*
816	 * FIXME: isolated CPUs should really leave the root task group,
817	 * whether they are isolcpus or were isolated via cpusets, lest
818	 * the timer run on a CPU which does not service all runqueues,
819	 * potentially leaving other CPUs indefinitely throttled.  If
820	 * isolation is really required, the user will turn the throttle
821	 * off to kill the perturbations it causes anyway.  Meanwhile,
822	 * this maintains functionality for boot and/or troubleshooting.
823	 */
824	if (rt_b == &root_task_group.rt_bandwidth)
825		span = cpu_online_mask;
826#endif
827	for_each_cpu(i, span) {
828		int enqueue = 0;
829		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
830		struct rq *rq = rq_of_rt_rq(rt_rq);
831
832		raw_spin_lock(&rq->lock);
833		if (rt_rq->rt_time) {
834			u64 runtime;
835
836			raw_spin_lock(&rt_rq->rt_runtime_lock);
837			if (rt_rq->rt_throttled)
838				balance_runtime(rt_rq);
839			runtime = rt_rq->rt_runtime;
840			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
841			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
842				rt_rq->rt_throttled = 0;
843				enqueue = 1;
844
845				/*
846				 * When we're idle and a woken (rt) task is
847				 * throttled check_preempt_curr() will set
848				 * skip_update and the time between the wakeup
849				 * and this unthrottle will get accounted as
850				 * 'runtime'.
851				 */
852				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
853					rq_clock_skip_update(rq, false);
854			}
855			if (rt_rq->rt_time || rt_rq->rt_nr_running)
856				idle = 0;
857			raw_spin_unlock(&rt_rq->rt_runtime_lock);
858		} else if (rt_rq->rt_nr_running) {
859			idle = 0;
860			if (!rt_rq_throttled(rt_rq))
861				enqueue = 1;
862		}
863		if (rt_rq->rt_throttled)
864			throttled = 1;
865
866		if (enqueue)
867			sched_rt_rq_enqueue(rt_rq);
868		raw_spin_unlock(&rq->lock);
869	}
870
871	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
872		return 1;
873
874	return idle;
875}
876
877static inline int rt_se_prio(struct sched_rt_entity *rt_se)
878{
879#ifdef CONFIG_RT_GROUP_SCHED
880	struct rt_rq *rt_rq = group_rt_rq(rt_se);
881
882	if (rt_rq)
883		return rt_rq->highest_prio.curr;
884#endif
885
886	return rt_task_of(rt_se)->prio;
887}
888
889static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
890{
891	u64 runtime = sched_rt_runtime(rt_rq);
892
893	if (rt_rq->rt_throttled)
894		return rt_rq_throttled(rt_rq);
895
896	if (runtime >= sched_rt_period(rt_rq))
897		return 0;
898
899	balance_runtime(rt_rq);
900	runtime = sched_rt_runtime(rt_rq);
901	if (runtime == RUNTIME_INF)
902		return 0;
903
904	if (rt_rq->rt_time > runtime) {
905		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
906
907		/*
908		 * Don't actually throttle groups that have no runtime assigned
909		 * but accrue some time due to boosting.
910		 */
911		if (likely(rt_b->rt_runtime)) {
912			rt_rq->rt_throttled = 1;
913			printk_deferred_once("sched: RT throttling activated\n");
914		} else {
915			/*
916			 * In case we did anyway, make it go away,
917			 * replenishment is a joke, since it will replenish us
918			 * with exactly 0 ns.
919			 */
920			rt_rq->rt_time = 0;
921		}
922
923		if (rt_rq_throttled(rt_rq)) {
924			sched_rt_rq_dequeue(rt_rq);
925			return 1;
926		}
927	}
928
929	return 0;
930}
931
932/*
933 * Update the current task's runtime statistics. Skip current tasks that
934 * are not in our scheduling class.
935 */
936static void update_curr_rt(struct rq *rq)
937{
938	struct task_struct *curr = rq->curr;
939	struct sched_rt_entity *rt_se = &curr->rt;
940	u64 delta_exec;
941
942	if (curr->sched_class != &rt_sched_class)
943		return;
944
945	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
946	if (unlikely((s64)delta_exec <= 0))
947		return;
948
949	schedstat_set(curr->se.statistics.exec_max,
950		      max(curr->se.statistics.exec_max, delta_exec));
951
952	curr->se.sum_exec_runtime += delta_exec;
953	account_group_exec_runtime(curr, delta_exec);
954
955	curr->se.exec_start = rq_clock_task(rq);
956	cpuacct_charge(curr, delta_exec);
957
958	sched_rt_avg_update(rq, delta_exec);
959
960	if (!rt_bandwidth_enabled())
961		return;
962
963	for_each_sched_rt_entity(rt_se) {
964		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
965
966		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
967			raw_spin_lock(&rt_rq->rt_runtime_lock);
968			rt_rq->rt_time += delta_exec;
969			if (sched_rt_runtime_exceeded(rt_rq))
970				resched_curr(rq);
971			raw_spin_unlock(&rt_rq->rt_runtime_lock);
972		}
973	}
974}
975
976static void
977dequeue_top_rt_rq(struct rt_rq *rt_rq)
978{
979	struct rq *rq = rq_of_rt_rq(rt_rq);
980
981	BUG_ON(&rq->rt != rt_rq);
982
983	if (!rt_rq->rt_queued)
984		return;
985
986	BUG_ON(!rq->nr_running);
987
988	sub_nr_running(rq, rt_rq->rt_nr_running);
989	rt_rq->rt_queued = 0;
990}
991
992static void
993enqueue_top_rt_rq(struct rt_rq *rt_rq)
994{
995	struct rq *rq = rq_of_rt_rq(rt_rq);
996
997	BUG_ON(&rq->rt != rt_rq);
998
999	if (rt_rq->rt_queued)
1000		return;
1001	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1002		return;
1003
1004	add_nr_running(rq, rt_rq->rt_nr_running);
1005	rt_rq->rt_queued = 1;
1006}
1007
1008#if defined CONFIG_SMP
1009
1010static void
1011inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1012{
1013	struct rq *rq = rq_of_rt_rq(rt_rq);
1014
1015#ifdef CONFIG_RT_GROUP_SCHED
1016	/*
1017	 * Change rq's cpupri only if rt_rq is the top queue.
1018	 */
1019	if (&rq->rt != rt_rq)
1020		return;
1021#endif
1022	if (rq->online && prio < prev_prio)
1023		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1024}
1025
1026static void
1027dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1028{
1029	struct rq *rq = rq_of_rt_rq(rt_rq);
1030
1031#ifdef CONFIG_RT_GROUP_SCHED
1032	/*
1033	 * Change rq's cpupri only if rt_rq is the top queue.
1034	 */
1035	if (&rq->rt != rt_rq)
1036		return;
1037#endif
1038	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1039		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1040}
1041
1042#else /* CONFIG_SMP */
1043
1044static inline
1045void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1046static inline
1047void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1048
1049#endif /* CONFIG_SMP */
1050
1051#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1052static void
1053inc_rt_prio(struct rt_rq *rt_rq, int prio)
1054{
1055	int prev_prio = rt_rq->highest_prio.curr;
1056
1057	if (prio < prev_prio)
1058		rt_rq->highest_prio.curr = prio;
1059
1060	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1061}
1062
1063static void
1064dec_rt_prio(struct rt_rq *rt_rq, int prio)
1065{
1066	int prev_prio = rt_rq->highest_prio.curr;
1067
1068	if (rt_rq->rt_nr_running) {
1069
1070		WARN_ON(prio < prev_prio);
1071
1072		/*
1073		 * This may have been our highest task, and therefore
1074		 * we may have some recomputation to do
1075		 */
1076		if (prio == prev_prio) {
1077			struct rt_prio_array *array = &rt_rq->active;
1078
1079			rt_rq->highest_prio.curr =
1080				sched_find_first_bit(array->bitmap);
1081		}
1082
1083	} else
1084		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1085
1086	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1087}
1088
1089#else
1090
1091static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1092static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1093
1094#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1095
1096#ifdef CONFIG_RT_GROUP_SCHED
1097
1098static void
1099inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1100{
1101	if (rt_se_boosted(rt_se))
1102		rt_rq->rt_nr_boosted++;
1103
1104	if (rt_rq->tg)
1105		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1106}
1107
1108static void
1109dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1110{
1111	if (rt_se_boosted(rt_se))
1112		rt_rq->rt_nr_boosted--;
1113
1114	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1115}
1116
1117#else /* CONFIG_RT_GROUP_SCHED */
1118
1119static void
1120inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1121{
1122	start_rt_bandwidth(&def_rt_bandwidth);
1123}
1124
1125static inline
1126void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1127
1128#endif /* CONFIG_RT_GROUP_SCHED */
1129
1130static inline
1131unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1132{
1133	struct rt_rq *group_rq = group_rt_rq(rt_se);
1134
1135	if (group_rq)
1136		return group_rq->rt_nr_running;
1137	else
1138		return 1;
1139}
1140
1141static inline
1142void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1143{
1144	int prio = rt_se_prio(rt_se);
1145
1146	WARN_ON(!rt_prio(prio));
1147	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1148
1149	inc_rt_prio(rt_rq, prio);
1150	inc_rt_migration(rt_se, rt_rq);
1151	inc_rt_group(rt_se, rt_rq);
1152}
1153
1154static inline
1155void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1156{
1157	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1158	WARN_ON(!rt_rq->rt_nr_running);
1159	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1160
1161	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1162	dec_rt_migration(rt_se, rt_rq);
1163	dec_rt_group(rt_se, rt_rq);
1164}
1165
1166static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1167{
1168	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1169	struct rt_prio_array *array = &rt_rq->active;
1170	struct rt_rq *group_rq = group_rt_rq(rt_se);
1171	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1172
1173	/*
1174	 * Don't enqueue the group if its throttled, or when empty.
1175	 * The latter is a consequence of the former when a child group
1176	 * get throttled and the current group doesn't have any other
1177	 * active members.
1178	 */
1179	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1180		return;
1181
1182	if (head)
1183		list_add(&rt_se->run_list, queue);
1184	else
1185		list_add_tail(&rt_se->run_list, queue);
1186	__set_bit(rt_se_prio(rt_se), array->bitmap);
1187
1188	inc_rt_tasks(rt_se, rt_rq);
1189}
1190
1191static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1192{
1193	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1194	struct rt_prio_array *array = &rt_rq->active;
1195
1196	list_del_init(&rt_se->run_list);
1197	if (list_empty(array->queue + rt_se_prio(rt_se)))
1198		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1199
1200	dec_rt_tasks(rt_se, rt_rq);
1201}
1202
1203/*
1204 * Because the prio of an upper entry depends on the lower
1205 * entries, we must remove entries top - down.
1206 */
1207static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1208{
1209	struct sched_rt_entity *back = NULL;
1210
1211	for_each_sched_rt_entity(rt_se) {
1212		rt_se->back = back;
1213		back = rt_se;
1214	}
1215
1216	dequeue_top_rt_rq(rt_rq_of_se(back));
1217
1218	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1219		if (on_rt_rq(rt_se))
1220			__dequeue_rt_entity(rt_se);
1221	}
1222}
1223
1224static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1225{
1226	struct rq *rq = rq_of_rt_se(rt_se);
1227
1228	dequeue_rt_stack(rt_se);
1229	for_each_sched_rt_entity(rt_se)
1230		__enqueue_rt_entity(rt_se, head);
1231	enqueue_top_rt_rq(&rq->rt);
1232}
1233
1234static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1235{
1236	struct rq *rq = rq_of_rt_se(rt_se);
1237
1238	dequeue_rt_stack(rt_se);
1239
1240	for_each_sched_rt_entity(rt_se) {
1241		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1242
1243		if (rt_rq && rt_rq->rt_nr_running)
1244			__enqueue_rt_entity(rt_se, false);
1245	}
1246	enqueue_top_rt_rq(&rq->rt);
1247}
1248
1249/*
1250 * Adding/removing a task to/from a priority array:
1251 */
1252static void
1253enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1254{
1255	struct sched_rt_entity *rt_se = &p->rt;
1256
1257	if (flags & ENQUEUE_WAKEUP)
1258		rt_se->timeout = 0;
1259
1260	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1261
1262	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1263		enqueue_pushable_task(rq, p);
1264}
1265
1266static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1267{
1268	struct sched_rt_entity *rt_se = &p->rt;
1269
1270	update_curr_rt(rq);
1271	dequeue_rt_entity(rt_se);
1272
1273	dequeue_pushable_task(rq, p);
1274}
1275
1276/*
1277 * Put task to the head or the end of the run list without the overhead of
1278 * dequeue followed by enqueue.
1279 */
1280static void
1281requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1282{
1283	if (on_rt_rq(rt_se)) {
1284		struct rt_prio_array *array = &rt_rq->active;
1285		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1286
1287		if (head)
1288			list_move(&rt_se->run_list, queue);
1289		else
1290			list_move_tail(&rt_se->run_list, queue);
1291	}
1292}
1293
1294static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1295{
1296	struct sched_rt_entity *rt_se = &p->rt;
1297	struct rt_rq *rt_rq;
1298
1299	for_each_sched_rt_entity(rt_se) {
1300		rt_rq = rt_rq_of_se(rt_se);
1301		requeue_rt_entity(rt_rq, rt_se, head);
1302	}
1303}
1304
1305static void yield_task_rt(struct rq *rq)
1306{
1307	requeue_task_rt(rq, rq->curr, 0);
1308}
1309
1310#ifdef CONFIG_SMP
1311static int find_lowest_rq(struct task_struct *task);
1312
1313static int
1314select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1315{
1316	struct task_struct *curr;
1317	struct rq *rq;
1318
1319	/* For anything but wake ups, just return the task_cpu */
1320	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1321		goto out;
1322
1323	rq = cpu_rq(cpu);
1324
1325	rcu_read_lock();
1326	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1327
1328	/*
1329	 * If the current task on @p's runqueue is an RT task, then
1330	 * try to see if we can wake this RT task up on another
1331	 * runqueue. Otherwise simply start this RT task
1332	 * on its current runqueue.
1333	 *
1334	 * We want to avoid overloading runqueues. If the woken
1335	 * task is a higher priority, then it will stay on this CPU
1336	 * and the lower prio task should be moved to another CPU.
1337	 * Even though this will probably make the lower prio task
1338	 * lose its cache, we do not want to bounce a higher task
1339	 * around just because it gave up its CPU, perhaps for a
1340	 * lock?
1341	 *
1342	 * For equal prio tasks, we just let the scheduler sort it out.
1343	 *
1344	 * Otherwise, just let it ride on the affined RQ and the
1345	 * post-schedule router will push the preempted task away
1346	 *
1347	 * This test is optimistic, if we get it wrong the load-balancer
1348	 * will have to sort it out.
1349	 */
1350	if (curr && unlikely(rt_task(curr)) &&
1351	    (curr->nr_cpus_allowed < 2 ||
1352	     curr->prio <= p->prio)) {
1353		int target = find_lowest_rq(p);
1354
1355		/*
1356		 * Don't bother moving it if the destination CPU is
1357		 * not running a lower priority task.
1358		 */
1359		if (target != -1 &&
1360		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1361			cpu = target;
1362	}
1363	rcu_read_unlock();
1364
1365out:
1366	return cpu;
1367}
1368
1369static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1370{
1371	/*
1372	 * Current can't be migrated, useless to reschedule,
1373	 * let's hope p can move out.
1374	 */
1375	if (rq->curr->nr_cpus_allowed == 1 ||
1376	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1377		return;
1378
1379	/*
1380	 * p is migratable, so let's not schedule it and
1381	 * see if it is pushed or pulled somewhere else.
1382	 */
1383	if (p->nr_cpus_allowed != 1
1384	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1385		return;
1386
1387	/*
1388	 * There appears to be other cpus that can accept
1389	 * current and none to run 'p', so lets reschedule
1390	 * to try and push current away:
1391	 */
1392	requeue_task_rt(rq, p, 1);
1393	resched_curr(rq);
1394}
1395
1396#endif /* CONFIG_SMP */
1397
1398/*
1399 * Preempt the current task with a newly woken task if needed:
1400 */
1401static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1402{
1403	if (p->prio < rq->curr->prio) {
1404		resched_curr(rq);
1405		return;
1406	}
1407
1408#ifdef CONFIG_SMP
1409	/*
1410	 * If:
1411	 *
1412	 * - the newly woken task is of equal priority to the current task
1413	 * - the newly woken task is non-migratable while current is migratable
1414	 * - current will be preempted on the next reschedule
1415	 *
1416	 * we should check to see if current can readily move to a different
1417	 * cpu.  If so, we will reschedule to allow the push logic to try
1418	 * to move current somewhere else, making room for our non-migratable
1419	 * task.
1420	 */
1421	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1422		check_preempt_equal_prio(rq, p);
1423#endif
1424}
1425
1426static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1427						   struct rt_rq *rt_rq)
1428{
1429	struct rt_prio_array *array = &rt_rq->active;
1430	struct sched_rt_entity *next = NULL;
1431	struct list_head *queue;
1432	int idx;
1433
1434	idx = sched_find_first_bit(array->bitmap);
1435	BUG_ON(idx >= MAX_RT_PRIO);
1436
1437	queue = array->queue + idx;
1438	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1439
1440	return next;
1441}
1442
1443static struct task_struct *_pick_next_task_rt(struct rq *rq)
1444{
1445	struct sched_rt_entity *rt_se;
1446	struct task_struct *p;
1447	struct rt_rq *rt_rq  = &rq->rt;
1448
1449	do {
1450		rt_se = pick_next_rt_entity(rq, rt_rq);
1451		BUG_ON(!rt_se);
1452		rt_rq = group_rt_rq(rt_se);
1453	} while (rt_rq);
1454
1455	p = rt_task_of(rt_se);
1456	p->se.exec_start = rq_clock_task(rq);
1457
1458	return p;
1459}
1460
1461static struct task_struct *
1462pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1463{
1464	struct task_struct *p;
1465	struct rt_rq *rt_rq = &rq->rt;
1466
1467	if (need_pull_rt_task(rq, prev)) {
1468		pull_rt_task(rq);
1469		/*
1470		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1471		 * means a dl or stop task can slip in, in which case we need
1472		 * to re-start task selection.
1473		 */
1474		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1475			     rq->dl.dl_nr_running))
1476			return RETRY_TASK;
1477	}
1478
1479	/*
1480	 * We may dequeue prev's rt_rq in put_prev_task().
1481	 * So, we update time before rt_nr_running check.
1482	 */
1483	if (prev->sched_class == &rt_sched_class)
1484		update_curr_rt(rq);
1485
1486	if (!rt_rq->rt_queued)
1487		return NULL;
1488
1489	put_prev_task(rq, prev);
1490
1491	p = _pick_next_task_rt(rq);
1492
1493	/* The running task is never eligible for pushing */
1494	dequeue_pushable_task(rq, p);
1495
1496	set_post_schedule(rq);
1497
1498	return p;
1499}
1500
1501static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1502{
1503	update_curr_rt(rq);
1504
1505	/*
1506	 * The previous task needs to be made eligible for pushing
1507	 * if it is still active
1508	 */
1509	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1510		enqueue_pushable_task(rq, p);
1511}
1512
1513#ifdef CONFIG_SMP
1514
1515/* Only try algorithms three times */
1516#define RT_MAX_TRIES 3
1517
1518static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1519{
1520	if (!task_running(rq, p) &&
1521	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1522		return 1;
1523	return 0;
1524}
1525
1526/*
1527 * Return the highest pushable rq's task, which is suitable to be executed
1528 * on the cpu, NULL otherwise
1529 */
1530static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1531{
1532	struct plist_head *head = &rq->rt.pushable_tasks;
1533	struct task_struct *p;
1534
1535	if (!has_pushable_tasks(rq))
1536		return NULL;
1537
1538	plist_for_each_entry(p, head, pushable_tasks) {
1539		if (pick_rt_task(rq, p, cpu))
1540			return p;
1541	}
1542
1543	return NULL;
1544}
1545
1546static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1547
1548static int find_lowest_rq(struct task_struct *task)
1549{
1550	struct sched_domain *sd;
1551	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1552	int this_cpu = smp_processor_id();
1553	int cpu      = task_cpu(task);
1554
1555	/* Make sure the mask is initialized first */
1556	if (unlikely(!lowest_mask))
1557		return -1;
1558
1559	if (task->nr_cpus_allowed == 1)
1560		return -1; /* No other targets possible */
1561
1562	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1563		return -1; /* No targets found */
1564
1565	/*
1566	 * At this point we have built a mask of cpus representing the
1567	 * lowest priority tasks in the system.  Now we want to elect
1568	 * the best one based on our affinity and topology.
1569	 *
1570	 * We prioritize the last cpu that the task executed on since
1571	 * it is most likely cache-hot in that location.
1572	 */
1573	if (cpumask_test_cpu(cpu, lowest_mask))
1574		return cpu;
1575
1576	/*
1577	 * Otherwise, we consult the sched_domains span maps to figure
1578	 * out which cpu is logically closest to our hot cache data.
1579	 */
1580	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1581		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1582
1583	rcu_read_lock();
1584	for_each_domain(cpu, sd) {
1585		if (sd->flags & SD_WAKE_AFFINE) {
1586			int best_cpu;
1587
1588			/*
1589			 * "this_cpu" is cheaper to preempt than a
1590			 * remote processor.
1591			 */
1592			if (this_cpu != -1 &&
1593			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1594				rcu_read_unlock();
1595				return this_cpu;
1596			}
1597
1598			best_cpu = cpumask_first_and(lowest_mask,
1599						     sched_domain_span(sd));
1600			if (best_cpu < nr_cpu_ids) {
1601				rcu_read_unlock();
1602				return best_cpu;
1603			}
1604		}
1605	}
1606	rcu_read_unlock();
1607
1608	/*
1609	 * And finally, if there were no matches within the domains
1610	 * just give the caller *something* to work with from the compatible
1611	 * locations.
1612	 */
1613	if (this_cpu != -1)
1614		return this_cpu;
1615
1616	cpu = cpumask_any(lowest_mask);
1617	if (cpu < nr_cpu_ids)
1618		return cpu;
1619	return -1;
1620}
1621
1622/* Will lock the rq it finds */
1623static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1624{
1625	struct rq *lowest_rq = NULL;
1626	int tries;
1627	int cpu;
1628
1629	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1630		cpu = find_lowest_rq(task);
1631
1632		if ((cpu == -1) || (cpu == rq->cpu))
1633			break;
1634
1635		lowest_rq = cpu_rq(cpu);
1636
1637		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1638			/*
1639			 * Target rq has tasks of equal or higher priority,
1640			 * retrying does not release any lock and is unlikely
1641			 * to yield a different result.
1642			 */
1643			lowest_rq = NULL;
1644			break;
1645		}
1646
1647		/* if the prio of this runqueue changed, try again */
1648		if (double_lock_balance(rq, lowest_rq)) {
1649			/*
1650			 * We had to unlock the run queue. In
1651			 * the mean time, task could have
1652			 * migrated already or had its affinity changed.
1653			 * Also make sure that it wasn't scheduled on its rq.
1654			 */
1655			if (unlikely(task_rq(task) != rq ||
1656				     !cpumask_test_cpu(lowest_rq->cpu,
1657						       tsk_cpus_allowed(task)) ||
1658				     task_running(rq, task) ||
1659				     !task_on_rq_queued(task))) {
1660
1661				double_unlock_balance(rq, lowest_rq);
1662				lowest_rq = NULL;
1663				break;
1664			}
1665		}
1666
1667		/* If this rq is still suitable use it. */
1668		if (lowest_rq->rt.highest_prio.curr > task->prio)
1669			break;
1670
1671		/* try again */
1672		double_unlock_balance(rq, lowest_rq);
1673		lowest_rq = NULL;
1674	}
1675
1676	return lowest_rq;
1677}
1678
1679static struct task_struct *pick_next_pushable_task(struct rq *rq)
1680{
1681	struct task_struct *p;
1682
1683	if (!has_pushable_tasks(rq))
1684		return NULL;
1685
1686	p = plist_first_entry(&rq->rt.pushable_tasks,
1687			      struct task_struct, pushable_tasks);
1688
1689	BUG_ON(rq->cpu != task_cpu(p));
1690	BUG_ON(task_current(rq, p));
1691	BUG_ON(p->nr_cpus_allowed <= 1);
1692
1693	BUG_ON(!task_on_rq_queued(p));
1694	BUG_ON(!rt_task(p));
1695
1696	return p;
1697}
1698
1699/*
1700 * If the current CPU has more than one RT task, see if the non
1701 * running task can migrate over to a CPU that is running a task
1702 * of lesser priority.
1703 */
1704static int push_rt_task(struct rq *rq)
1705{
1706	struct task_struct *next_task;
1707	struct rq *lowest_rq;
1708	int ret = 0;
1709
1710	if (!rq->rt.overloaded)
1711		return 0;
1712
1713	next_task = pick_next_pushable_task(rq);
1714	if (!next_task)
1715		return 0;
1716
1717retry:
1718	if (unlikely(next_task == rq->curr)) {
1719		WARN_ON(1);
1720		return 0;
1721	}
1722
1723	/*
1724	 * It's possible that the next_task slipped in of
1725	 * higher priority than current. If that's the case
1726	 * just reschedule current.
1727	 */
1728	if (unlikely(next_task->prio < rq->curr->prio)) {
1729		resched_curr(rq);
1730		return 0;
1731	}
1732
1733	/* We might release rq lock */
1734	get_task_struct(next_task);
1735
1736	/* find_lock_lowest_rq locks the rq if found */
1737	lowest_rq = find_lock_lowest_rq(next_task, rq);
1738	if (!lowest_rq) {
1739		struct task_struct *task;
1740		/*
1741		 * find_lock_lowest_rq releases rq->lock
1742		 * so it is possible that next_task has migrated.
1743		 *
1744		 * We need to make sure that the task is still on the same
1745		 * run-queue and is also still the next task eligible for
1746		 * pushing.
1747		 */
1748		task = pick_next_pushable_task(rq);
1749		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1750			/*
1751			 * The task hasn't migrated, and is still the next
1752			 * eligible task, but we failed to find a run-queue
1753			 * to push it to.  Do not retry in this case, since
1754			 * other cpus will pull from us when ready.
1755			 */
1756			goto out;
1757		}
1758
1759		if (!task)
1760			/* No more tasks, just exit */
1761			goto out;
1762
1763		/*
1764		 * Something has shifted, try again.
1765		 */
1766		put_task_struct(next_task);
1767		next_task = task;
1768		goto retry;
1769	}
1770
1771	deactivate_task(rq, next_task, 0);
1772	set_task_cpu(next_task, lowest_rq->cpu);
1773	activate_task(lowest_rq, next_task, 0);
1774	ret = 1;
1775
1776	resched_curr(lowest_rq);
1777
1778	double_unlock_balance(rq, lowest_rq);
1779
1780out:
1781	put_task_struct(next_task);
1782
1783	return ret;
1784}
1785
1786static void push_rt_tasks(struct rq *rq)
1787{
1788	/* push_rt_task will return true if it moved an RT */
1789	while (push_rt_task(rq))
1790		;
1791}
1792
1793#ifdef HAVE_RT_PUSH_IPI
1794/*
1795 * The search for the next cpu always starts at rq->cpu and ends
1796 * when we reach rq->cpu again. It will never return rq->cpu.
1797 * This returns the next cpu to check, or nr_cpu_ids if the loop
1798 * is complete.
1799 *
1800 * rq->rt.push_cpu holds the last cpu returned by this function,
1801 * or if this is the first instance, it must hold rq->cpu.
1802 */
1803static int rto_next_cpu(struct rq *rq)
1804{
1805	int prev_cpu = rq->rt.push_cpu;
1806	int cpu;
1807
1808	cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1809
1810	/*
1811	 * If the previous cpu is less than the rq's CPU, then it already
1812	 * passed the end of the mask, and has started from the beginning.
1813	 * We end if the next CPU is greater or equal to rq's CPU.
1814	 */
1815	if (prev_cpu < rq->cpu) {
1816		if (cpu >= rq->cpu)
1817			return nr_cpu_ids;
1818
1819	} else if (cpu >= nr_cpu_ids) {
1820		/*
1821		 * We passed the end of the mask, start at the beginning.
1822		 * If the result is greater or equal to the rq's CPU, then
1823		 * the loop is finished.
1824		 */
1825		cpu = cpumask_first(rq->rd->rto_mask);
1826		if (cpu >= rq->cpu)
1827			return nr_cpu_ids;
1828	}
1829	rq->rt.push_cpu = cpu;
1830
1831	/* Return cpu to let the caller know if the loop is finished or not */
1832	return cpu;
1833}
1834
1835static int find_next_push_cpu(struct rq *rq)
1836{
1837	struct rq *next_rq;
1838	int cpu;
1839
1840	while (1) {
1841		cpu = rto_next_cpu(rq);
1842		if (cpu >= nr_cpu_ids)
1843			break;
1844		next_rq = cpu_rq(cpu);
1845
1846		/* Make sure the next rq can push to this rq */
1847		if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1848			break;
1849	}
1850
1851	return cpu;
1852}
1853
1854#define RT_PUSH_IPI_EXECUTING		1
1855#define RT_PUSH_IPI_RESTART		2
1856
1857static void tell_cpu_to_push(struct rq *rq)
1858{
1859	int cpu;
1860
1861	if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1862		raw_spin_lock(&rq->rt.push_lock);
1863		/* Make sure it's still executing */
1864		if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1865			/*
1866			 * Tell the IPI to restart the loop as things have
1867			 * changed since it started.
1868			 */
1869			rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1870			raw_spin_unlock(&rq->rt.push_lock);
1871			return;
1872		}
1873		raw_spin_unlock(&rq->rt.push_lock);
1874	}
1875
1876	/* When here, there's no IPI going around */
1877
1878	rq->rt.push_cpu = rq->cpu;
1879	cpu = find_next_push_cpu(rq);
1880	if (cpu >= nr_cpu_ids)
1881		return;
1882
1883	rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1884
1885	irq_work_queue_on(&rq->rt.push_work, cpu);
1886}
1887
1888/* Called from hardirq context */
1889static void try_to_push_tasks(void *arg)
1890{
1891	struct rt_rq *rt_rq = arg;
1892	struct rq *rq, *src_rq;
1893	int this_cpu;
1894	int cpu;
1895
1896	this_cpu = rt_rq->push_cpu;
1897
1898	/* Paranoid check */
1899	BUG_ON(this_cpu != smp_processor_id());
1900
1901	rq = cpu_rq(this_cpu);
1902	src_rq = rq_of_rt_rq(rt_rq);
1903
1904again:
1905	if (has_pushable_tasks(rq)) {
1906		raw_spin_lock(&rq->lock);
1907		push_rt_task(rq);
1908		raw_spin_unlock(&rq->lock);
1909	}
1910
1911	/* Pass the IPI to the next rt overloaded queue */
1912	raw_spin_lock(&rt_rq->push_lock);
1913	/*
1914	 * If the source queue changed since the IPI went out,
1915	 * we need to restart the search from that CPU again.
1916	 */
1917	if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1918		rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1919		rt_rq->push_cpu = src_rq->cpu;
1920	}
1921
1922	cpu = find_next_push_cpu(src_rq);
1923
1924	if (cpu >= nr_cpu_ids)
1925		rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1926	raw_spin_unlock(&rt_rq->push_lock);
1927
1928	if (cpu >= nr_cpu_ids)
1929		return;
1930
1931	/*
1932	 * It is possible that a restart caused this CPU to be
1933	 * chosen again. Don't bother with an IPI, just see if we
1934	 * have more to push.
1935	 */
1936	if (unlikely(cpu == rq->cpu))
1937		goto again;
1938
1939	/* Try the next RT overloaded CPU */
1940	irq_work_queue_on(&rt_rq->push_work, cpu);
1941}
1942
1943static void push_irq_work_func(struct irq_work *work)
1944{
1945	struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1946
1947	try_to_push_tasks(rt_rq);
1948}
1949#endif /* HAVE_RT_PUSH_IPI */
1950
1951static int pull_rt_task(struct rq *this_rq)
1952{
1953	int this_cpu = this_rq->cpu, ret = 0, cpu;
1954	struct task_struct *p;
1955	struct rq *src_rq;
1956
1957	if (likely(!rt_overloaded(this_rq)))
1958		return 0;
1959
1960	/*
1961	 * Match the barrier from rt_set_overloaded; this guarantees that if we
1962	 * see overloaded we must also see the rto_mask bit.
1963	 */
1964	smp_rmb();
1965
1966#ifdef HAVE_RT_PUSH_IPI
1967	if (sched_feat(RT_PUSH_IPI)) {
1968		tell_cpu_to_push(this_rq);
1969		return 0;
1970	}
1971#endif
1972
1973	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1974		if (this_cpu == cpu)
1975			continue;
1976
1977		src_rq = cpu_rq(cpu);
1978
1979		/*
1980		 * Don't bother taking the src_rq->lock if the next highest
1981		 * task is known to be lower-priority than our current task.
1982		 * This may look racy, but if this value is about to go
1983		 * logically higher, the src_rq will push this task away.
1984		 * And if its going logically lower, we do not care
1985		 */
1986		if (src_rq->rt.highest_prio.next >=
1987		    this_rq->rt.highest_prio.curr)
1988			continue;
1989
1990		/*
1991		 * We can potentially drop this_rq's lock in
1992		 * double_lock_balance, and another CPU could
1993		 * alter this_rq
1994		 */
1995		double_lock_balance(this_rq, src_rq);
1996
1997		/*
1998		 * We can pull only a task, which is pushable
1999		 * on its rq, and no others.
2000		 */
2001		p = pick_highest_pushable_task(src_rq, this_cpu);
2002
2003		/*
2004		 * Do we have an RT task that preempts
2005		 * the to-be-scheduled task?
2006		 */
2007		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2008			WARN_ON(p == src_rq->curr);
2009			WARN_ON(!task_on_rq_queued(p));
2010
2011			/*
2012			 * There's a chance that p is higher in priority
2013			 * than what's currently running on its cpu.
2014			 * This is just that p is wakeing up and hasn't
2015			 * had a chance to schedule. We only pull
2016			 * p if it is lower in priority than the
2017			 * current task on the run queue
2018			 */
2019			if (p->prio < src_rq->curr->prio)
2020				goto skip;
2021
2022			ret = 1;
2023
2024			deactivate_task(src_rq, p, 0);
2025			set_task_cpu(p, this_cpu);
2026			activate_task(this_rq, p, 0);
2027			/*
2028			 * We continue with the search, just in
2029			 * case there's an even higher prio task
2030			 * in another runqueue. (low likelihood
2031			 * but possible)
2032			 */
2033		}
2034skip:
2035		double_unlock_balance(this_rq, src_rq);
2036	}
2037
2038	return ret;
2039}
2040
2041static void post_schedule_rt(struct rq *rq)
2042{
2043	push_rt_tasks(rq);
2044}
2045
2046/*
2047 * If we are not running and we are not going to reschedule soon, we should
2048 * try to push tasks away now
2049 */
2050static void task_woken_rt(struct rq *rq, struct task_struct *p)
2051{
2052	if (!task_running(rq, p) &&
2053	    !test_tsk_need_resched(rq->curr) &&
2054	    has_pushable_tasks(rq) &&
2055	    p->nr_cpus_allowed > 1 &&
2056	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2057	    (rq->curr->nr_cpus_allowed < 2 ||
2058	     rq->curr->prio <= p->prio))
2059		push_rt_tasks(rq);
2060}
2061
2062static void set_cpus_allowed_rt(struct task_struct *p,
2063				const struct cpumask *new_mask)
2064{
2065	struct rq *rq;
2066	int weight;
2067
2068	BUG_ON(!rt_task(p));
2069
2070	if (!task_on_rq_queued(p))
2071		return;
2072
2073	weight = cpumask_weight(new_mask);
2074
2075	/*
2076	 * Only update if the process changes its state from whether it
2077	 * can migrate or not.
2078	 */
2079	if ((p->nr_cpus_allowed > 1) == (weight > 1))
2080		return;
2081
2082	rq = task_rq(p);
2083
2084	/*
2085	 * The process used to be able to migrate OR it can now migrate
2086	 */
2087	if (weight <= 1) {
2088		if (!task_current(rq, p))
2089			dequeue_pushable_task(rq, p);
2090		BUG_ON(!rq->rt.rt_nr_migratory);
2091		rq->rt.rt_nr_migratory--;
2092	} else {
2093		if (!task_current(rq, p))
2094			enqueue_pushable_task(rq, p);
2095		rq->rt.rt_nr_migratory++;
2096	}
2097
2098	update_rt_migration(&rq->rt);
2099}
2100
2101/* Assumes rq->lock is held */
2102static void rq_online_rt(struct rq *rq)
2103{
2104	if (rq->rt.overloaded)
2105		rt_set_overload(rq);
2106
2107	__enable_runtime(rq);
2108
2109	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2110}
2111
2112/* Assumes rq->lock is held */
2113static void rq_offline_rt(struct rq *rq)
2114{
2115	if (rq->rt.overloaded)
2116		rt_clear_overload(rq);
2117
2118	__disable_runtime(rq);
2119
2120	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2121}
2122
2123/*
2124 * When switch from the rt queue, we bring ourselves to a position
2125 * that we might want to pull RT tasks from other runqueues.
2126 */
2127static void switched_from_rt(struct rq *rq, struct task_struct *p)
2128{
2129	/*
2130	 * If there are other RT tasks then we will reschedule
2131	 * and the scheduling of the other RT tasks will handle
2132	 * the balancing. But if we are the last RT task
2133	 * we may need to handle the pulling of RT tasks
2134	 * now.
2135	 */
2136	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2137		return;
2138
2139	if (pull_rt_task(rq))
2140		resched_curr(rq);
2141}
2142
2143void __init init_sched_rt_class(void)
2144{
2145	unsigned int i;
2146
2147	for_each_possible_cpu(i) {
2148		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2149					GFP_KERNEL, cpu_to_node(i));
2150	}
2151}
2152#endif /* CONFIG_SMP */
2153
2154/*
2155 * When switching a task to RT, we may overload the runqueue
2156 * with RT tasks. In this case we try to push them off to
2157 * other runqueues.
2158 */
2159static void switched_to_rt(struct rq *rq, struct task_struct *p)
2160{
2161	int check_resched = 1;
2162
2163	/*
2164	 * If we are already running, then there's nothing
2165	 * that needs to be done. But if we are not running
2166	 * we may need to preempt the current running task.
2167	 * If that current running task is also an RT task
2168	 * then see if we can move to another run queue.
2169	 */
2170	if (task_on_rq_queued(p) && rq->curr != p) {
2171#ifdef CONFIG_SMP
2172		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
2173		    /* Don't resched if we changed runqueues */
2174		    push_rt_task(rq) && rq != task_rq(p))
2175			check_resched = 0;
2176#endif /* CONFIG_SMP */
2177		if (check_resched && p->prio < rq->curr->prio)
2178			resched_curr(rq);
2179	}
2180}
2181
2182/*
2183 * Priority of the task has changed. This may cause
2184 * us to initiate a push or pull.
2185 */
2186static void
2187prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2188{
2189	if (!task_on_rq_queued(p))
2190		return;
2191
2192	if (rq->curr == p) {
2193#ifdef CONFIG_SMP
2194		/*
2195		 * If our priority decreases while running, we
2196		 * may need to pull tasks to this runqueue.
2197		 */
2198		if (oldprio < p->prio)
2199			pull_rt_task(rq);
2200		/*
2201		 * If there's a higher priority task waiting to run
2202		 * then reschedule. Note, the above pull_rt_task
2203		 * can release the rq lock and p could migrate.
2204		 * Only reschedule if p is still on the same runqueue.
2205		 */
2206		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2207			resched_curr(rq);
2208#else
2209		/* For UP simply resched on drop of prio */
2210		if (oldprio < p->prio)
2211			resched_curr(rq);
2212#endif /* CONFIG_SMP */
2213	} else {
2214		/*
2215		 * This task is not running, but if it is
2216		 * greater than the current running task
2217		 * then reschedule.
2218		 */
2219		if (p->prio < rq->curr->prio)
2220			resched_curr(rq);
2221	}
2222}
2223
2224static void watchdog(struct rq *rq, struct task_struct *p)
2225{
2226	unsigned long soft, hard;
2227
2228	/* max may change after cur was read, this will be fixed next tick */
2229	soft = task_rlimit(p, RLIMIT_RTTIME);
2230	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2231
2232	if (soft != RLIM_INFINITY) {
2233		unsigned long next;
2234
2235		if (p->rt.watchdog_stamp != jiffies) {
2236			p->rt.timeout++;
2237			p->rt.watchdog_stamp = jiffies;
2238		}
2239
2240		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2241		if (p->rt.timeout > next)
2242			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2243	}
2244}
2245
2246static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2247{
2248	struct sched_rt_entity *rt_se = &p->rt;
2249
2250	update_curr_rt(rq);
2251
2252	watchdog(rq, p);
2253
2254	/*
2255	 * RR tasks need a special form of timeslice management.
2256	 * FIFO tasks have no timeslices.
2257	 */
2258	if (p->policy != SCHED_RR)
2259		return;
2260
2261	if (--p->rt.time_slice)
2262		return;
2263
2264	p->rt.time_slice = sched_rr_timeslice;
2265
2266	/*
2267	 * Requeue to the end of queue if we (and all of our ancestors) are not
2268	 * the only element on the queue
2269	 */
2270	for_each_sched_rt_entity(rt_se) {
2271		if (rt_se->run_list.prev != rt_se->run_list.next) {
2272			requeue_task_rt(rq, p, 0);
2273			resched_curr(rq);
2274			return;
2275		}
2276	}
2277}
2278
2279static void set_curr_task_rt(struct rq *rq)
2280{
2281	struct task_struct *p = rq->curr;
2282
2283	p->se.exec_start = rq_clock_task(rq);
2284
2285	/* The running task is never eligible for pushing */
2286	dequeue_pushable_task(rq, p);
2287}
2288
2289static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2290{
2291	/*
2292	 * Time slice is 0 for SCHED_FIFO tasks
2293	 */
2294	if (task->policy == SCHED_RR)
2295		return sched_rr_timeslice;
2296	else
2297		return 0;
2298}
2299
2300const struct sched_class rt_sched_class = {
2301	.next			= &fair_sched_class,
2302	.enqueue_task		= enqueue_task_rt,
2303	.dequeue_task		= dequeue_task_rt,
2304	.yield_task		= yield_task_rt,
2305
2306	.check_preempt_curr	= check_preempt_curr_rt,
2307
2308	.pick_next_task		= pick_next_task_rt,
2309	.put_prev_task		= put_prev_task_rt,
2310
2311#ifdef CONFIG_SMP
2312	.select_task_rq		= select_task_rq_rt,
2313
2314	.set_cpus_allowed       = set_cpus_allowed_rt,
2315	.rq_online              = rq_online_rt,
2316	.rq_offline             = rq_offline_rt,
2317	.post_schedule		= post_schedule_rt,
2318	.task_woken		= task_woken_rt,
2319	.switched_from		= switched_from_rt,
2320#endif
2321
2322	.set_curr_task          = set_curr_task_rt,
2323	.task_tick		= task_tick_rt,
2324
2325	.get_rr_interval	= get_rr_interval_rt,
2326
2327	.prio_changed		= prio_changed_rt,
2328	.switched_to		= switched_to_rt,
2329
2330	.update_curr		= update_curr_rt,
2331};
2332
2333#ifdef CONFIG_SCHED_DEBUG
2334extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2335
2336void print_rt_stats(struct seq_file *m, int cpu)
2337{
2338	rt_rq_iter_t iter;
2339	struct rt_rq *rt_rq;
2340
2341	rcu_read_lock();
2342	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2343		print_rt_rq(m, cpu, rt_rq);
2344	rcu_read_unlock();
2345}
2346#endif /* CONFIG_SCHED_DEBUG */
2347