1/*
2 * linux/kernel/time/clocksource.c
3 *
4 * This file contains the functions which manage clocksource drivers.
5 *
6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 * TODO WishList:
23 *   o Allow clocksource drivers to be unregistered
24 */
25
26#include <linux/device.h>
27#include <linux/clocksource.h>
28#include <linux/init.h>
29#include <linux/module.h>
30#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
31#include <linux/tick.h>
32#include <linux/kthread.h>
33
34#include "tick-internal.h"
35#include "timekeeping_internal.h"
36
37/**
38 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
39 * @mult:	pointer to mult variable
40 * @shift:	pointer to shift variable
41 * @from:	frequency to convert from
42 * @to:		frequency to convert to
43 * @maxsec:	guaranteed runtime conversion range in seconds
44 *
45 * The function evaluates the shift/mult pair for the scaled math
46 * operations of clocksources and clockevents.
47 *
48 * @to and @from are frequency values in HZ. For clock sources @to is
49 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
50 * event @to is the counter frequency and @from is NSEC_PER_SEC.
51 *
52 * The @maxsec conversion range argument controls the time frame in
53 * seconds which must be covered by the runtime conversion with the
54 * calculated mult and shift factors. This guarantees that no 64bit
55 * overflow happens when the input value of the conversion is
56 * multiplied with the calculated mult factor. Larger ranges may
57 * reduce the conversion accuracy by chosing smaller mult and shift
58 * factors.
59 */
60void
61clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
62{
63	u64 tmp;
64	u32 sft, sftacc= 32;
65
66	/*
67	 * Calculate the shift factor which is limiting the conversion
68	 * range:
69	 */
70	tmp = ((u64)maxsec * from) >> 32;
71	while (tmp) {
72		tmp >>=1;
73		sftacc--;
74	}
75
76	/*
77	 * Find the conversion shift/mult pair which has the best
78	 * accuracy and fits the maxsec conversion range:
79	 */
80	for (sft = 32; sft > 0; sft--) {
81		tmp = (u64) to << sft;
82		tmp += from / 2;
83		do_div(tmp, from);
84		if ((tmp >> sftacc) == 0)
85			break;
86	}
87	*mult = tmp;
88	*shift = sft;
89}
90
91/*[Clocksource internal variables]---------
92 * curr_clocksource:
93 *	currently selected clocksource.
94 * clocksource_list:
95 *	linked list with the registered clocksources
96 * clocksource_mutex:
97 *	protects manipulations to curr_clocksource and the clocksource_list
98 * override_name:
99 *	Name of the user-specified clocksource.
100 */
101static struct clocksource *curr_clocksource;
102static LIST_HEAD(clocksource_list);
103static DEFINE_MUTEX(clocksource_mutex);
104static char override_name[CS_NAME_LEN];
105static int finished_booting;
106
107#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
108static void clocksource_watchdog_work(struct work_struct *work);
109static void clocksource_select(void);
110
111static LIST_HEAD(watchdog_list);
112static struct clocksource *watchdog;
113static struct timer_list watchdog_timer;
114static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
115static DEFINE_SPINLOCK(watchdog_lock);
116static int watchdog_running;
117static atomic_t watchdog_reset_pending;
118
119static int clocksource_watchdog_kthread(void *data);
120static void __clocksource_change_rating(struct clocksource *cs, int rating);
121
122/*
123 * Interval: 0.5sec Threshold: 0.0625s
124 */
125#define WATCHDOG_INTERVAL (HZ >> 1)
126#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
127
128static void clocksource_watchdog_work(struct work_struct *work)
129{
130	/*
131	 * If kthread_run fails the next watchdog scan over the
132	 * watchdog_list will find the unstable clock again.
133	 */
134	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
135}
136
137static void __clocksource_unstable(struct clocksource *cs)
138{
139	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
140	cs->flags |= CLOCK_SOURCE_UNSTABLE;
141	if (finished_booting)
142		schedule_work(&watchdog_work);
143}
144
145/**
146 * clocksource_mark_unstable - mark clocksource unstable via watchdog
147 * @cs:		clocksource to be marked unstable
148 *
149 * This function is called instead of clocksource_change_rating from
150 * cpu hotplug code to avoid a deadlock between the clocksource mutex
151 * and the cpu hotplug mutex. It defers the update of the clocksource
152 * to the watchdog thread.
153 */
154void clocksource_mark_unstable(struct clocksource *cs)
155{
156	unsigned long flags;
157
158	spin_lock_irqsave(&watchdog_lock, flags);
159	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
160		if (list_empty(&cs->wd_list))
161			list_add(&cs->wd_list, &watchdog_list);
162		__clocksource_unstable(cs);
163	}
164	spin_unlock_irqrestore(&watchdog_lock, flags);
165}
166
167static void clocksource_watchdog(unsigned long data)
168{
169	struct clocksource *cs;
170	cycle_t csnow, wdnow, cslast, wdlast, delta;
171	int64_t wd_nsec, cs_nsec;
172	int next_cpu, reset_pending;
173
174	spin_lock(&watchdog_lock);
175	if (!watchdog_running)
176		goto out;
177
178	reset_pending = atomic_read(&watchdog_reset_pending);
179
180	list_for_each_entry(cs, &watchdog_list, wd_list) {
181
182		/* Clocksource already marked unstable? */
183		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
184			if (finished_booting)
185				schedule_work(&watchdog_work);
186			continue;
187		}
188
189		local_irq_disable();
190		csnow = cs->read(cs);
191		wdnow = watchdog->read(watchdog);
192		local_irq_enable();
193
194		/* Clocksource initialized ? */
195		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
196		    atomic_read(&watchdog_reset_pending)) {
197			cs->flags |= CLOCK_SOURCE_WATCHDOG;
198			cs->wd_last = wdnow;
199			cs->cs_last = csnow;
200			continue;
201		}
202
203		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
204		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
205					     watchdog->shift);
206
207		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
208		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
209		wdlast = cs->wd_last; /* save these in case we print them */
210		cslast = cs->cs_last;
211		cs->cs_last = csnow;
212		cs->wd_last = wdnow;
213
214		if (atomic_read(&watchdog_reset_pending))
215			continue;
216
217		/* Check the deviation from the watchdog clocksource. */
218		if ((abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD)) {
219			pr_warn("timekeeping watchdog: Marking clocksource '%s' as unstable, because the skew is too large:\n", cs->name);
220			pr_warn("	'%s' wd_now: %llx wd_last: %llx mask: %llx\n",
221				watchdog->name, wdnow, wdlast, watchdog->mask);
222			pr_warn("	'%s' cs_now: %llx cs_last: %llx mask: %llx\n",
223				cs->name, csnow, cslast, cs->mask);
224			__clocksource_unstable(cs);
225			continue;
226		}
227
228		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
229		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
230		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
231			/* Mark it valid for high-res. */
232			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
233
234			/*
235			 * clocksource_done_booting() will sort it if
236			 * finished_booting is not set yet.
237			 */
238			if (!finished_booting)
239				continue;
240
241			/*
242			 * If this is not the current clocksource let
243			 * the watchdog thread reselect it. Due to the
244			 * change to high res this clocksource might
245			 * be preferred now. If it is the current
246			 * clocksource let the tick code know about
247			 * that change.
248			 */
249			if (cs != curr_clocksource) {
250				cs->flags |= CLOCK_SOURCE_RESELECT;
251				schedule_work(&watchdog_work);
252			} else {
253				tick_clock_notify();
254			}
255		}
256	}
257
258	/*
259	 * We only clear the watchdog_reset_pending, when we did a
260	 * full cycle through all clocksources.
261	 */
262	if (reset_pending)
263		atomic_dec(&watchdog_reset_pending);
264
265	/*
266	 * Cycle through CPUs to check if the CPUs stay synchronized
267	 * to each other.
268	 */
269	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
270	if (next_cpu >= nr_cpu_ids)
271		next_cpu = cpumask_first(cpu_online_mask);
272	watchdog_timer.expires += WATCHDOG_INTERVAL;
273	add_timer_on(&watchdog_timer, next_cpu);
274out:
275	spin_unlock(&watchdog_lock);
276}
277
278static inline void clocksource_start_watchdog(void)
279{
280	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
281		return;
282	init_timer(&watchdog_timer);
283	watchdog_timer.function = clocksource_watchdog;
284	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
285	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
286	watchdog_running = 1;
287}
288
289static inline void clocksource_stop_watchdog(void)
290{
291	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
292		return;
293	del_timer(&watchdog_timer);
294	watchdog_running = 0;
295}
296
297static inline void clocksource_reset_watchdog(void)
298{
299	struct clocksource *cs;
300
301	list_for_each_entry(cs, &watchdog_list, wd_list)
302		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
303}
304
305static void clocksource_resume_watchdog(void)
306{
307	atomic_inc(&watchdog_reset_pending);
308}
309
310static void clocksource_enqueue_watchdog(struct clocksource *cs)
311{
312	unsigned long flags;
313
314	spin_lock_irqsave(&watchdog_lock, flags);
315	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
316		/* cs is a clocksource to be watched. */
317		list_add(&cs->wd_list, &watchdog_list);
318		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
319	} else {
320		/* cs is a watchdog. */
321		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
322			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
323		/* Pick the best watchdog. */
324		if (!watchdog || cs->rating > watchdog->rating) {
325			watchdog = cs;
326			/* Reset watchdog cycles */
327			clocksource_reset_watchdog();
328		}
329	}
330	/* Check if the watchdog timer needs to be started. */
331	clocksource_start_watchdog();
332	spin_unlock_irqrestore(&watchdog_lock, flags);
333}
334
335static void clocksource_dequeue_watchdog(struct clocksource *cs)
336{
337	unsigned long flags;
338
339	spin_lock_irqsave(&watchdog_lock, flags);
340	if (cs != watchdog) {
341		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
342			/* cs is a watched clocksource. */
343			list_del_init(&cs->wd_list);
344			/* Check if the watchdog timer needs to be stopped. */
345			clocksource_stop_watchdog();
346		}
347	}
348	spin_unlock_irqrestore(&watchdog_lock, flags);
349}
350
351static int __clocksource_watchdog_kthread(void)
352{
353	struct clocksource *cs, *tmp;
354	unsigned long flags;
355	LIST_HEAD(unstable);
356	int select = 0;
357
358	spin_lock_irqsave(&watchdog_lock, flags);
359	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
360		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
361			list_del_init(&cs->wd_list);
362			list_add(&cs->wd_list, &unstable);
363			select = 1;
364		}
365		if (cs->flags & CLOCK_SOURCE_RESELECT) {
366			cs->flags &= ~CLOCK_SOURCE_RESELECT;
367			select = 1;
368		}
369	}
370	/* Check if the watchdog timer needs to be stopped. */
371	clocksource_stop_watchdog();
372	spin_unlock_irqrestore(&watchdog_lock, flags);
373
374	/* Needs to be done outside of watchdog lock */
375	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
376		list_del_init(&cs->wd_list);
377		__clocksource_change_rating(cs, 0);
378	}
379	return select;
380}
381
382static int clocksource_watchdog_kthread(void *data)
383{
384	mutex_lock(&clocksource_mutex);
385	if (__clocksource_watchdog_kthread())
386		clocksource_select();
387	mutex_unlock(&clocksource_mutex);
388	return 0;
389}
390
391static bool clocksource_is_watchdog(struct clocksource *cs)
392{
393	return cs == watchdog;
394}
395
396#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
397
398static void clocksource_enqueue_watchdog(struct clocksource *cs)
399{
400	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
401		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
402}
403
404static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
405static inline void clocksource_resume_watchdog(void) { }
406static inline int __clocksource_watchdog_kthread(void) { return 0; }
407static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
408void clocksource_mark_unstable(struct clocksource *cs) { }
409
410#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
411
412/**
413 * clocksource_suspend - suspend the clocksource(s)
414 */
415void clocksource_suspend(void)
416{
417	struct clocksource *cs;
418
419	list_for_each_entry_reverse(cs, &clocksource_list, list)
420		if (cs->suspend)
421			cs->suspend(cs);
422}
423
424/**
425 * clocksource_resume - resume the clocksource(s)
426 */
427void clocksource_resume(void)
428{
429	struct clocksource *cs;
430
431	list_for_each_entry(cs, &clocksource_list, list)
432		if (cs->resume)
433			cs->resume(cs);
434
435	clocksource_resume_watchdog();
436}
437
438/**
439 * clocksource_touch_watchdog - Update watchdog
440 *
441 * Update the watchdog after exception contexts such as kgdb so as not
442 * to incorrectly trip the watchdog. This might fail when the kernel
443 * was stopped in code which holds watchdog_lock.
444 */
445void clocksource_touch_watchdog(void)
446{
447	clocksource_resume_watchdog();
448}
449
450/**
451 * clocksource_max_adjustment- Returns max adjustment amount
452 * @cs:         Pointer to clocksource
453 *
454 */
455static u32 clocksource_max_adjustment(struct clocksource *cs)
456{
457	u64 ret;
458	/*
459	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
460	 */
461	ret = (u64)cs->mult * 11;
462	do_div(ret,100);
463	return (u32)ret;
464}
465
466/**
467 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
468 * @mult:	cycle to nanosecond multiplier
469 * @shift:	cycle to nanosecond divisor (power of two)
470 * @maxadj:	maximum adjustment value to mult (~11%)
471 * @mask:	bitmask for two's complement subtraction of non 64 bit counters
472 * @max_cyc:	maximum cycle value before potential overflow (does not include
473 *		any safety margin)
474 *
475 * NOTE: This function includes a safety margin of 50%, in other words, we
476 * return half the number of nanoseconds the hardware counter can technically
477 * cover. This is done so that we can potentially detect problems caused by
478 * delayed timers or bad hardware, which might result in time intervals that
479 * are larger then what the math used can handle without overflows.
480 */
481u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
482{
483	u64 max_nsecs, max_cycles;
484
485	/*
486	 * Calculate the maximum number of cycles that we can pass to the
487	 * cyc2ns() function without overflowing a 64-bit result.
488	 */
489	max_cycles = ULLONG_MAX;
490	do_div(max_cycles, mult+maxadj);
491
492	/*
493	 * The actual maximum number of cycles we can defer the clocksource is
494	 * determined by the minimum of max_cycles and mask.
495	 * Note: Here we subtract the maxadj to make sure we don't sleep for
496	 * too long if there's a large negative adjustment.
497	 */
498	max_cycles = min(max_cycles, mask);
499	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
500
501	/* return the max_cycles value as well if requested */
502	if (max_cyc)
503		*max_cyc = max_cycles;
504
505	/* Return 50% of the actual maximum, so we can detect bad values */
506	max_nsecs >>= 1;
507
508	return max_nsecs;
509}
510
511/**
512 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
513 * @cs:         Pointer to clocksource to be updated
514 *
515 */
516static inline void clocksource_update_max_deferment(struct clocksource *cs)
517{
518	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
519						cs->maxadj, cs->mask,
520						&cs->max_cycles);
521}
522
523#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
524
525static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
526{
527	struct clocksource *cs;
528
529	if (!finished_booting || list_empty(&clocksource_list))
530		return NULL;
531
532	/*
533	 * We pick the clocksource with the highest rating. If oneshot
534	 * mode is active, we pick the highres valid clocksource with
535	 * the best rating.
536	 */
537	list_for_each_entry(cs, &clocksource_list, list) {
538		if (skipcur && cs == curr_clocksource)
539			continue;
540		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
541			continue;
542		return cs;
543	}
544	return NULL;
545}
546
547static void __clocksource_select(bool skipcur)
548{
549	bool oneshot = tick_oneshot_mode_active();
550	struct clocksource *best, *cs;
551
552	/* Find the best suitable clocksource */
553	best = clocksource_find_best(oneshot, skipcur);
554	if (!best)
555		return;
556
557	/* Check for the override clocksource. */
558	list_for_each_entry(cs, &clocksource_list, list) {
559		if (skipcur && cs == curr_clocksource)
560			continue;
561		if (strcmp(cs->name, override_name) != 0)
562			continue;
563		/*
564		 * Check to make sure we don't switch to a non-highres
565		 * capable clocksource if the tick code is in oneshot
566		 * mode (highres or nohz)
567		 */
568		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
569			/* Override clocksource cannot be used. */
570			printk(KERN_WARNING "Override clocksource %s is not "
571			       "HRT compatible. Cannot switch while in "
572			       "HRT/NOHZ mode\n", cs->name);
573			override_name[0] = 0;
574		} else
575			/* Override clocksource can be used. */
576			best = cs;
577		break;
578	}
579
580	if (curr_clocksource != best && !timekeeping_notify(best)) {
581		pr_info("Switched to clocksource %s\n", best->name);
582		curr_clocksource = best;
583	}
584}
585
586/**
587 * clocksource_select - Select the best clocksource available
588 *
589 * Private function. Must hold clocksource_mutex when called.
590 *
591 * Select the clocksource with the best rating, or the clocksource,
592 * which is selected by userspace override.
593 */
594static void clocksource_select(void)
595{
596	return __clocksource_select(false);
597}
598
599static void clocksource_select_fallback(void)
600{
601	return __clocksource_select(true);
602}
603
604#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
605
606static inline void clocksource_select(void) { }
607static inline void clocksource_select_fallback(void) { }
608
609#endif
610
611/*
612 * clocksource_done_booting - Called near the end of core bootup
613 *
614 * Hack to avoid lots of clocksource churn at boot time.
615 * We use fs_initcall because we want this to start before
616 * device_initcall but after subsys_initcall.
617 */
618static int __init clocksource_done_booting(void)
619{
620	mutex_lock(&clocksource_mutex);
621	curr_clocksource = clocksource_default_clock();
622	finished_booting = 1;
623	/*
624	 * Run the watchdog first to eliminate unstable clock sources
625	 */
626	__clocksource_watchdog_kthread();
627	clocksource_select();
628	mutex_unlock(&clocksource_mutex);
629	return 0;
630}
631fs_initcall(clocksource_done_booting);
632
633/*
634 * Enqueue the clocksource sorted by rating
635 */
636static void clocksource_enqueue(struct clocksource *cs)
637{
638	struct list_head *entry = &clocksource_list;
639	struct clocksource *tmp;
640
641	list_for_each_entry(tmp, &clocksource_list, list)
642		/* Keep track of the place, where to insert */
643		if (tmp->rating >= cs->rating)
644			entry = &tmp->list;
645	list_add(&cs->list, entry);
646}
647
648/**
649 * __clocksource_update_freq_scale - Used update clocksource with new freq
650 * @cs:		clocksource to be registered
651 * @scale:	Scale factor multiplied against freq to get clocksource hz
652 * @freq:	clocksource frequency (cycles per second) divided by scale
653 *
654 * This should only be called from the clocksource->enable() method.
655 *
656 * This *SHOULD NOT* be called directly! Please use the
657 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
658 * functions.
659 */
660void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
661{
662	u64 sec;
663
664	/*
665	 * Default clocksources are *special* and self-define their mult/shift.
666	 * But, you're not special, so you should specify a freq value.
667	 */
668	if (freq) {
669		/*
670		 * Calc the maximum number of seconds which we can run before
671		 * wrapping around. For clocksources which have a mask > 32-bit
672		 * we need to limit the max sleep time to have a good
673		 * conversion precision. 10 minutes is still a reasonable
674		 * amount. That results in a shift value of 24 for a
675		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
676		 * ~ 0.06ppm granularity for NTP.
677		 */
678		sec = cs->mask;
679		do_div(sec, freq);
680		do_div(sec, scale);
681		if (!sec)
682			sec = 1;
683		else if (sec > 600 && cs->mask > UINT_MAX)
684			sec = 600;
685
686		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
687				       NSEC_PER_SEC / scale, sec * scale);
688	}
689	/*
690	 * Ensure clocksources that have large 'mult' values don't overflow
691	 * when adjusted.
692	 */
693	cs->maxadj = clocksource_max_adjustment(cs);
694	while (freq && ((cs->mult + cs->maxadj < cs->mult)
695		|| (cs->mult - cs->maxadj > cs->mult))) {
696		cs->mult >>= 1;
697		cs->shift--;
698		cs->maxadj = clocksource_max_adjustment(cs);
699	}
700
701	/*
702	 * Only warn for *special* clocksources that self-define
703	 * their mult/shift values and don't specify a freq.
704	 */
705	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
706		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
707		cs->name);
708
709	clocksource_update_max_deferment(cs);
710
711	pr_info("clocksource %s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
712			cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
713}
714EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
715
716/**
717 * __clocksource_register_scale - Used to install new clocksources
718 * @cs:		clocksource to be registered
719 * @scale:	Scale factor multiplied against freq to get clocksource hz
720 * @freq:	clocksource frequency (cycles per second) divided by scale
721 *
722 * Returns -EBUSY if registration fails, zero otherwise.
723 *
724 * This *SHOULD NOT* be called directly! Please use the
725 * clocksource_register_hz() or clocksource_register_khz helper functions.
726 */
727int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
728{
729
730	/* Initialize mult/shift and max_idle_ns */
731	__clocksource_update_freq_scale(cs, scale, freq);
732
733	/* Add clocksource to the clocksource list */
734	mutex_lock(&clocksource_mutex);
735	clocksource_enqueue(cs);
736	clocksource_enqueue_watchdog(cs);
737	clocksource_select();
738	mutex_unlock(&clocksource_mutex);
739	return 0;
740}
741EXPORT_SYMBOL_GPL(__clocksource_register_scale);
742
743static void __clocksource_change_rating(struct clocksource *cs, int rating)
744{
745	list_del(&cs->list);
746	cs->rating = rating;
747	clocksource_enqueue(cs);
748}
749
750/**
751 * clocksource_change_rating - Change the rating of a registered clocksource
752 * @cs:		clocksource to be changed
753 * @rating:	new rating
754 */
755void clocksource_change_rating(struct clocksource *cs, int rating)
756{
757	mutex_lock(&clocksource_mutex);
758	__clocksource_change_rating(cs, rating);
759	clocksource_select();
760	mutex_unlock(&clocksource_mutex);
761}
762EXPORT_SYMBOL(clocksource_change_rating);
763
764/*
765 * Unbind clocksource @cs. Called with clocksource_mutex held
766 */
767static int clocksource_unbind(struct clocksource *cs)
768{
769	/*
770	 * I really can't convince myself to support this on hardware
771	 * designed by lobotomized monkeys.
772	 */
773	if (clocksource_is_watchdog(cs))
774		return -EBUSY;
775
776	if (cs == curr_clocksource) {
777		/* Select and try to install a replacement clock source */
778		clocksource_select_fallback();
779		if (curr_clocksource == cs)
780			return -EBUSY;
781	}
782	clocksource_dequeue_watchdog(cs);
783	list_del_init(&cs->list);
784	return 0;
785}
786
787/**
788 * clocksource_unregister - remove a registered clocksource
789 * @cs:	clocksource to be unregistered
790 */
791int clocksource_unregister(struct clocksource *cs)
792{
793	int ret = 0;
794
795	mutex_lock(&clocksource_mutex);
796	if (!list_empty(&cs->list))
797		ret = clocksource_unbind(cs);
798	mutex_unlock(&clocksource_mutex);
799	return ret;
800}
801EXPORT_SYMBOL(clocksource_unregister);
802
803#ifdef CONFIG_SYSFS
804/**
805 * sysfs_show_current_clocksources - sysfs interface for current clocksource
806 * @dev:	unused
807 * @attr:	unused
808 * @buf:	char buffer to be filled with clocksource list
809 *
810 * Provides sysfs interface for listing current clocksource.
811 */
812static ssize_t
813sysfs_show_current_clocksources(struct device *dev,
814				struct device_attribute *attr, char *buf)
815{
816	ssize_t count = 0;
817
818	mutex_lock(&clocksource_mutex);
819	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
820	mutex_unlock(&clocksource_mutex);
821
822	return count;
823}
824
825ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
826{
827	size_t ret = cnt;
828
829	/* strings from sysfs write are not 0 terminated! */
830	if (!cnt || cnt >= CS_NAME_LEN)
831		return -EINVAL;
832
833	/* strip of \n: */
834	if (buf[cnt-1] == '\n')
835		cnt--;
836	if (cnt > 0)
837		memcpy(dst, buf, cnt);
838	dst[cnt] = 0;
839	return ret;
840}
841
842/**
843 * sysfs_override_clocksource - interface for manually overriding clocksource
844 * @dev:	unused
845 * @attr:	unused
846 * @buf:	name of override clocksource
847 * @count:	length of buffer
848 *
849 * Takes input from sysfs interface for manually overriding the default
850 * clocksource selection.
851 */
852static ssize_t sysfs_override_clocksource(struct device *dev,
853					  struct device_attribute *attr,
854					  const char *buf, size_t count)
855{
856	ssize_t ret;
857
858	mutex_lock(&clocksource_mutex);
859
860	ret = sysfs_get_uname(buf, override_name, count);
861	if (ret >= 0)
862		clocksource_select();
863
864	mutex_unlock(&clocksource_mutex);
865
866	return ret;
867}
868
869/**
870 * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
871 * @dev:	unused
872 * @attr:	unused
873 * @buf:	unused
874 * @count:	length of buffer
875 *
876 * Takes input from sysfs interface for manually unbinding a clocksource.
877 */
878static ssize_t sysfs_unbind_clocksource(struct device *dev,
879					struct device_attribute *attr,
880					const char *buf, size_t count)
881{
882	struct clocksource *cs;
883	char name[CS_NAME_LEN];
884	ssize_t ret;
885
886	ret = sysfs_get_uname(buf, name, count);
887	if (ret < 0)
888		return ret;
889
890	ret = -ENODEV;
891	mutex_lock(&clocksource_mutex);
892	list_for_each_entry(cs, &clocksource_list, list) {
893		if (strcmp(cs->name, name))
894			continue;
895		ret = clocksource_unbind(cs);
896		break;
897	}
898	mutex_unlock(&clocksource_mutex);
899
900	return ret ? ret : count;
901}
902
903/**
904 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
905 * @dev:	unused
906 * @attr:	unused
907 * @buf:	char buffer to be filled with clocksource list
908 *
909 * Provides sysfs interface for listing registered clocksources
910 */
911static ssize_t
912sysfs_show_available_clocksources(struct device *dev,
913				  struct device_attribute *attr,
914				  char *buf)
915{
916	struct clocksource *src;
917	ssize_t count = 0;
918
919	mutex_lock(&clocksource_mutex);
920	list_for_each_entry(src, &clocksource_list, list) {
921		/*
922		 * Don't show non-HRES clocksource if the tick code is
923		 * in one shot mode (highres=on or nohz=on)
924		 */
925		if (!tick_oneshot_mode_active() ||
926		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
927			count += snprintf(buf + count,
928				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
929				  "%s ", src->name);
930	}
931	mutex_unlock(&clocksource_mutex);
932
933	count += snprintf(buf + count,
934			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
935
936	return count;
937}
938
939/*
940 * Sysfs setup bits:
941 */
942static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
943		   sysfs_override_clocksource);
944
945static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
946
947static DEVICE_ATTR(available_clocksource, 0444,
948		   sysfs_show_available_clocksources, NULL);
949
950static struct bus_type clocksource_subsys = {
951	.name = "clocksource",
952	.dev_name = "clocksource",
953};
954
955static struct device device_clocksource = {
956	.id	= 0,
957	.bus	= &clocksource_subsys,
958};
959
960static int __init init_clocksource_sysfs(void)
961{
962	int error = subsys_system_register(&clocksource_subsys, NULL);
963
964	if (!error)
965		error = device_register(&device_clocksource);
966	if (!error)
967		error = device_create_file(
968				&device_clocksource,
969				&dev_attr_current_clocksource);
970	if (!error)
971		error = device_create_file(&device_clocksource,
972					   &dev_attr_unbind_clocksource);
973	if (!error)
974		error = device_create_file(
975				&device_clocksource,
976				&dev_attr_available_clocksource);
977	return error;
978}
979
980device_initcall(init_clocksource_sysfs);
981#endif /* CONFIG_SYSFS */
982
983/**
984 * boot_override_clocksource - boot clock override
985 * @str:	override name
986 *
987 * Takes a clocksource= boot argument and uses it
988 * as the clocksource override name.
989 */
990static int __init boot_override_clocksource(char* str)
991{
992	mutex_lock(&clocksource_mutex);
993	if (str)
994		strlcpy(override_name, str, sizeof(override_name));
995	mutex_unlock(&clocksource_mutex);
996	return 1;
997}
998
999__setup("clocksource=", boot_override_clocksource);
1000
1001/**
1002 * boot_override_clock - Compatibility layer for deprecated boot option
1003 * @str:	override name
1004 *
1005 * DEPRECATED! Takes a clock= boot argument and uses it
1006 * as the clocksource override name
1007 */
1008static int __init boot_override_clock(char* str)
1009{
1010	if (!strcmp(str, "pmtmr")) {
1011		printk("Warning: clock=pmtmr is deprecated. "
1012			"Use clocksource=acpi_pm.\n");
1013		return boot_override_clocksource("acpi_pm");
1014	}
1015	printk("Warning! clock= boot option is deprecated. "
1016		"Use clocksource=xyz\n");
1017	return boot_override_clocksource(str);
1018}
1019
1020__setup("clock=", boot_override_clock);
1021