1/* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11#include <linux/timekeeper_internal.h> 12#include <linux/module.h> 13#include <linux/interrupt.h> 14#include <linux/percpu.h> 15#include <linux/init.h> 16#include <linux/mm.h> 17#include <linux/sched.h> 18#include <linux/syscore_ops.h> 19#include <linux/clocksource.h> 20#include <linux/jiffies.h> 21#include <linux/time.h> 22#include <linux/tick.h> 23#include <linux/stop_machine.h> 24#include <linux/pvclock_gtod.h> 25#include <linux/compiler.h> 26 27#include "tick-internal.h" 28#include "ntp_internal.h" 29#include "timekeeping_internal.h" 30 31#define TK_CLEAR_NTP (1 << 0) 32#define TK_MIRROR (1 << 1) 33#define TK_CLOCK_WAS_SET (1 << 2) 34 35/* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42} tk_core ____cacheline_aligned; 43 44static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45static struct timekeeper shadow_timekeeper; 46 47/** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59}; 60 61static struct tk_fast tk_fast_mono ____cacheline_aligned; 62static struct tk_fast tk_fast_raw ____cacheline_aligned; 63 64/* flag for if timekeeping is suspended */ 65int __read_mostly timekeeping_suspended; 66 67static inline void tk_normalize_xtime(struct timekeeper *tk) 68{ 69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 71 tk->xtime_sec++; 72 } 73} 74 75static inline struct timespec64 tk_xtime(struct timekeeper *tk) 76{ 77 struct timespec64 ts; 78 79 ts.tv_sec = tk->xtime_sec; 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 81 return ts; 82} 83 84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 85{ 86 tk->xtime_sec = ts->tv_sec; 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 88} 89 90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 91{ 92 tk->xtime_sec += ts->tv_sec; 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 tk_normalize_xtime(tk); 95} 96 97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 98{ 99 struct timespec64 tmp; 100 101 /* 102 * Verify consistency of: offset_real = -wall_to_monotonic 103 * before modifying anything 104 */ 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 106 -tk->wall_to_monotonic.tv_nsec); 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 108 tk->wall_to_monotonic = wtm; 109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 110 tk->offs_real = timespec64_to_ktime(tmp); 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 112} 113 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 115{ 116 tk->offs_boot = ktime_add(tk->offs_boot, delta); 117} 118 119#ifdef CONFIG_DEBUG_TIMEKEEPING 120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 121/* 122 * These simple flag variables are managed 123 * without locks, which is racy, but ok since 124 * we don't really care about being super 125 * precise about how many events were seen, 126 * just that a problem was observed. 127 */ 128static int timekeeping_underflow_seen; 129static int timekeeping_overflow_seen; 130 131/* last_warning is only modified under the timekeeping lock */ 132static long timekeeping_last_warning; 133 134static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 135{ 136 137 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles; 138 const char *name = tk->tkr_mono.clock->name; 139 140 if (offset > max_cycles) { 141 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 142 offset, name, max_cycles); 143 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 144 } else { 145 if (offset > (max_cycles >> 1)) { 146 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n", 147 offset, name, max_cycles >> 1); 148 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 149 } 150 } 151 152 if (timekeeping_underflow_seen) { 153 if (jiffies - timekeeping_last_warning > WARNING_FREQ) { 154 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 155 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 156 printk_deferred(" Your kernel is probably still fine.\n"); 157 timekeeping_last_warning = jiffies; 158 } 159 timekeeping_underflow_seen = 0; 160 } 161 162 if (timekeeping_overflow_seen) { 163 if (jiffies - timekeeping_last_warning > WARNING_FREQ) { 164 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 165 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 166 printk_deferred(" Your kernel is probably still fine.\n"); 167 timekeeping_last_warning = jiffies; 168 } 169 timekeeping_overflow_seen = 0; 170 } 171} 172 173static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 174{ 175 cycle_t now, last, mask, max, delta; 176 unsigned int seq; 177 178 /* 179 * Since we're called holding a seqlock, the data may shift 180 * under us while we're doing the calculation. This can cause 181 * false positives, since we'd note a problem but throw the 182 * results away. So nest another seqlock here to atomically 183 * grab the points we are checking with. 184 */ 185 do { 186 seq = read_seqcount_begin(&tk_core.seq); 187 now = tkr->read(tkr->clock); 188 last = tkr->cycle_last; 189 mask = tkr->mask; 190 max = tkr->clock->max_cycles; 191 } while (read_seqcount_retry(&tk_core.seq, seq)); 192 193 delta = clocksource_delta(now, last, mask); 194 195 /* 196 * Try to catch underflows by checking if we are seeing small 197 * mask-relative negative values. 198 */ 199 if (unlikely((~delta & mask) < (mask >> 3))) { 200 timekeeping_underflow_seen = 1; 201 delta = 0; 202 } 203 204 /* Cap delta value to the max_cycles values to avoid mult overflows */ 205 if (unlikely(delta > max)) { 206 timekeeping_overflow_seen = 1; 207 delta = tkr->clock->max_cycles; 208 } 209 210 return delta; 211} 212#else 213static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 214{ 215} 216static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 217{ 218 cycle_t cycle_now, delta; 219 220 /* read clocksource */ 221 cycle_now = tkr->read(tkr->clock); 222 223 /* calculate the delta since the last update_wall_time */ 224 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 225 226 return delta; 227} 228#endif 229 230/** 231 * tk_setup_internals - Set up internals to use clocksource clock. 232 * 233 * @tk: The target timekeeper to setup. 234 * @clock: Pointer to clocksource. 235 * 236 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 237 * pair and interval request. 238 * 239 * Unless you're the timekeeping code, you should not be using this! 240 */ 241static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 242{ 243 cycle_t interval; 244 u64 tmp, ntpinterval; 245 struct clocksource *old_clock; 246 247 old_clock = tk->tkr_mono.clock; 248 tk->tkr_mono.clock = clock; 249 tk->tkr_mono.read = clock->read; 250 tk->tkr_mono.mask = clock->mask; 251 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 252 253 tk->tkr_raw.clock = clock; 254 tk->tkr_raw.read = clock->read; 255 tk->tkr_raw.mask = clock->mask; 256 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 257 258 /* Do the ns -> cycle conversion first, using original mult */ 259 tmp = NTP_INTERVAL_LENGTH; 260 tmp <<= clock->shift; 261 ntpinterval = tmp; 262 tmp += clock->mult/2; 263 do_div(tmp, clock->mult); 264 if (tmp == 0) 265 tmp = 1; 266 267 interval = (cycle_t) tmp; 268 tk->cycle_interval = interval; 269 270 /* Go back from cycles -> shifted ns */ 271 tk->xtime_interval = (u64) interval * clock->mult; 272 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 273 tk->raw_interval = 274 ((u64) interval * clock->mult) >> clock->shift; 275 276 /* if changing clocks, convert xtime_nsec shift units */ 277 if (old_clock) { 278 int shift_change = clock->shift - old_clock->shift; 279 if (shift_change < 0) 280 tk->tkr_mono.xtime_nsec >>= -shift_change; 281 else 282 tk->tkr_mono.xtime_nsec <<= shift_change; 283 } 284 tk->tkr_raw.xtime_nsec = 0; 285 286 tk->tkr_mono.shift = clock->shift; 287 tk->tkr_raw.shift = clock->shift; 288 289 tk->ntp_error = 0; 290 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 291 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 292 293 /* 294 * The timekeeper keeps its own mult values for the currently 295 * active clocksource. These value will be adjusted via NTP 296 * to counteract clock drifting. 297 */ 298 tk->tkr_mono.mult = clock->mult; 299 tk->tkr_raw.mult = clock->mult; 300 tk->ntp_err_mult = 0; 301} 302 303/* Timekeeper helper functions. */ 304 305#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 306static u32 default_arch_gettimeoffset(void) { return 0; } 307u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 308#else 309static inline u32 arch_gettimeoffset(void) { return 0; } 310#endif 311 312static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) 313{ 314 cycle_t delta; 315 s64 nsec; 316 317 delta = timekeeping_get_delta(tkr); 318 319 nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift; 320 321 /* If arch requires, add in get_arch_timeoffset() */ 322 return nsec + arch_gettimeoffset(); 323} 324 325/** 326 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 327 * @tkr: Timekeeping readout base from which we take the update 328 * 329 * We want to use this from any context including NMI and tracing / 330 * instrumenting the timekeeping code itself. 331 * 332 * So we handle this differently than the other timekeeping accessor 333 * functions which retry when the sequence count has changed. The 334 * update side does: 335 * 336 * smp_wmb(); <- Ensure that the last base[1] update is visible 337 * tkf->seq++; 338 * smp_wmb(); <- Ensure that the seqcount update is visible 339 * update(tkf->base[0], tkr); 340 * smp_wmb(); <- Ensure that the base[0] update is visible 341 * tkf->seq++; 342 * smp_wmb(); <- Ensure that the seqcount update is visible 343 * update(tkf->base[1], tkr); 344 * 345 * The reader side does: 346 * 347 * do { 348 * seq = tkf->seq; 349 * smp_rmb(); 350 * idx = seq & 0x01; 351 * now = now(tkf->base[idx]); 352 * smp_rmb(); 353 * } while (seq != tkf->seq) 354 * 355 * As long as we update base[0] readers are forced off to 356 * base[1]. Once base[0] is updated readers are redirected to base[0] 357 * and the base[1] update takes place. 358 * 359 * So if a NMI hits the update of base[0] then it will use base[1] 360 * which is still consistent. In the worst case this can result is a 361 * slightly wrong timestamp (a few nanoseconds). See 362 * @ktime_get_mono_fast_ns. 363 */ 364static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 365{ 366 struct tk_read_base *base = tkf->base; 367 368 /* Force readers off to base[1] */ 369 raw_write_seqcount_latch(&tkf->seq); 370 371 /* Update base[0] */ 372 memcpy(base, tkr, sizeof(*base)); 373 374 /* Force readers back to base[0] */ 375 raw_write_seqcount_latch(&tkf->seq); 376 377 /* Update base[1] */ 378 memcpy(base + 1, base, sizeof(*base)); 379} 380 381/** 382 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 383 * 384 * This timestamp is not guaranteed to be monotonic across an update. 385 * The timestamp is calculated by: 386 * 387 * now = base_mono + clock_delta * slope 388 * 389 * So if the update lowers the slope, readers who are forced to the 390 * not yet updated second array are still using the old steeper slope. 391 * 392 * tmono 393 * ^ 394 * | o n 395 * | o n 396 * | u 397 * | o 398 * |o 399 * |12345678---> reader order 400 * 401 * o = old slope 402 * u = update 403 * n = new slope 404 * 405 * So reader 6 will observe time going backwards versus reader 5. 406 * 407 * While other CPUs are likely to be able observe that, the only way 408 * for a CPU local observation is when an NMI hits in the middle of 409 * the update. Timestamps taken from that NMI context might be ahead 410 * of the following timestamps. Callers need to be aware of that and 411 * deal with it. 412 */ 413static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 414{ 415 struct tk_read_base *tkr; 416 unsigned int seq; 417 u64 now; 418 419 do { 420 seq = raw_read_seqcount(&tkf->seq); 421 tkr = tkf->base + (seq & 0x01); 422 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr); 423 } while (read_seqcount_retry(&tkf->seq, seq)); 424 425 return now; 426} 427 428u64 ktime_get_mono_fast_ns(void) 429{ 430 return __ktime_get_fast_ns(&tk_fast_mono); 431} 432EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 433 434u64 ktime_get_raw_fast_ns(void) 435{ 436 return __ktime_get_fast_ns(&tk_fast_raw); 437} 438EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 439 440/* Suspend-time cycles value for halted fast timekeeper. */ 441static cycle_t cycles_at_suspend; 442 443static cycle_t dummy_clock_read(struct clocksource *cs) 444{ 445 return cycles_at_suspend; 446} 447 448/** 449 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 450 * @tk: Timekeeper to snapshot. 451 * 452 * It generally is unsafe to access the clocksource after timekeeping has been 453 * suspended, so take a snapshot of the readout base of @tk and use it as the 454 * fast timekeeper's readout base while suspended. It will return the same 455 * number of cycles every time until timekeeping is resumed at which time the 456 * proper readout base for the fast timekeeper will be restored automatically. 457 */ 458static void halt_fast_timekeeper(struct timekeeper *tk) 459{ 460 static struct tk_read_base tkr_dummy; 461 struct tk_read_base *tkr = &tk->tkr_mono; 462 463 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 464 cycles_at_suspend = tkr->read(tkr->clock); 465 tkr_dummy.read = dummy_clock_read; 466 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 467 468 tkr = &tk->tkr_raw; 469 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 470 tkr_dummy.read = dummy_clock_read; 471 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 472} 473 474#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 475 476static inline void update_vsyscall(struct timekeeper *tk) 477{ 478 struct timespec xt, wm; 479 480 xt = timespec64_to_timespec(tk_xtime(tk)); 481 wm = timespec64_to_timespec(tk->wall_to_monotonic); 482 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 483 tk->tkr_mono.cycle_last); 484} 485 486static inline void old_vsyscall_fixup(struct timekeeper *tk) 487{ 488 s64 remainder; 489 490 /* 491 * Store only full nanoseconds into xtime_nsec after rounding 492 * it up and add the remainder to the error difference. 493 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 494 * by truncating the remainder in vsyscalls. However, it causes 495 * additional work to be done in timekeeping_adjust(). Once 496 * the vsyscall implementations are converted to use xtime_nsec 497 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 498 * users are removed, this can be killed. 499 */ 500 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 501 tk->tkr_mono.xtime_nsec -= remainder; 502 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 503 tk->ntp_error += remainder << tk->ntp_error_shift; 504 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 505} 506#else 507#define old_vsyscall_fixup(tk) 508#endif 509 510static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 511 512static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 513{ 514 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 515} 516 517/** 518 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 519 */ 520int pvclock_gtod_register_notifier(struct notifier_block *nb) 521{ 522 struct timekeeper *tk = &tk_core.timekeeper; 523 unsigned long flags; 524 int ret; 525 526 raw_spin_lock_irqsave(&timekeeper_lock, flags); 527 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 528 update_pvclock_gtod(tk, true); 529 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 530 531 return ret; 532} 533EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 534 535/** 536 * pvclock_gtod_unregister_notifier - unregister a pvclock 537 * timedata update listener 538 */ 539int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 540{ 541 unsigned long flags; 542 int ret; 543 544 raw_spin_lock_irqsave(&timekeeper_lock, flags); 545 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 546 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 547 548 return ret; 549} 550EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 551 552/* 553 * Update the ktime_t based scalar nsec members of the timekeeper 554 */ 555static inline void tk_update_ktime_data(struct timekeeper *tk) 556{ 557 u64 seconds; 558 u32 nsec; 559 560 /* 561 * The xtime based monotonic readout is: 562 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 563 * The ktime based monotonic readout is: 564 * nsec = base_mono + now(); 565 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 566 */ 567 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 568 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 569 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 570 571 /* Update the monotonic raw base */ 572 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 573 574 /* 575 * The sum of the nanoseconds portions of xtime and 576 * wall_to_monotonic can be greater/equal one second. Take 577 * this into account before updating tk->ktime_sec. 578 */ 579 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 580 if (nsec >= NSEC_PER_SEC) 581 seconds++; 582 tk->ktime_sec = seconds; 583} 584 585/* must hold timekeeper_lock */ 586static void timekeeping_update(struct timekeeper *tk, unsigned int action) 587{ 588 if (action & TK_CLEAR_NTP) { 589 tk->ntp_error = 0; 590 ntp_clear(); 591 } 592 593 tk_update_ktime_data(tk); 594 595 update_vsyscall(tk); 596 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 597 598 if (action & TK_MIRROR) 599 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 600 sizeof(tk_core.timekeeper)); 601 602 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 603 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 604} 605 606/** 607 * timekeeping_forward_now - update clock to the current time 608 * 609 * Forward the current clock to update its state since the last call to 610 * update_wall_time(). This is useful before significant clock changes, 611 * as it avoids having to deal with this time offset explicitly. 612 */ 613static void timekeeping_forward_now(struct timekeeper *tk) 614{ 615 struct clocksource *clock = tk->tkr_mono.clock; 616 cycle_t cycle_now, delta; 617 s64 nsec; 618 619 cycle_now = tk->tkr_mono.read(clock); 620 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 621 tk->tkr_mono.cycle_last = cycle_now; 622 tk->tkr_raw.cycle_last = cycle_now; 623 624 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 625 626 /* If arch requires, add in get_arch_timeoffset() */ 627 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 628 629 tk_normalize_xtime(tk); 630 631 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 632 timespec64_add_ns(&tk->raw_time, nsec); 633} 634 635/** 636 * __getnstimeofday64 - Returns the time of day in a timespec64. 637 * @ts: pointer to the timespec to be set 638 * 639 * Updates the time of day in the timespec. 640 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 641 */ 642int __getnstimeofday64(struct timespec64 *ts) 643{ 644 struct timekeeper *tk = &tk_core.timekeeper; 645 unsigned long seq; 646 s64 nsecs = 0; 647 648 do { 649 seq = read_seqcount_begin(&tk_core.seq); 650 651 ts->tv_sec = tk->xtime_sec; 652 nsecs = timekeeping_get_ns(&tk->tkr_mono); 653 654 } while (read_seqcount_retry(&tk_core.seq, seq)); 655 656 ts->tv_nsec = 0; 657 timespec64_add_ns(ts, nsecs); 658 659 /* 660 * Do not bail out early, in case there were callers still using 661 * the value, even in the face of the WARN_ON. 662 */ 663 if (unlikely(timekeeping_suspended)) 664 return -EAGAIN; 665 return 0; 666} 667EXPORT_SYMBOL(__getnstimeofday64); 668 669/** 670 * getnstimeofday64 - Returns the time of day in a timespec64. 671 * @ts: pointer to the timespec64 to be set 672 * 673 * Returns the time of day in a timespec64 (WARN if suspended). 674 */ 675void getnstimeofday64(struct timespec64 *ts) 676{ 677 WARN_ON(__getnstimeofday64(ts)); 678} 679EXPORT_SYMBOL(getnstimeofday64); 680 681ktime_t ktime_get(void) 682{ 683 struct timekeeper *tk = &tk_core.timekeeper; 684 unsigned int seq; 685 ktime_t base; 686 s64 nsecs; 687 688 WARN_ON(timekeeping_suspended); 689 690 do { 691 seq = read_seqcount_begin(&tk_core.seq); 692 base = tk->tkr_mono.base; 693 nsecs = timekeeping_get_ns(&tk->tkr_mono); 694 695 } while (read_seqcount_retry(&tk_core.seq, seq)); 696 697 return ktime_add_ns(base, nsecs); 698} 699EXPORT_SYMBOL_GPL(ktime_get); 700 701static ktime_t *offsets[TK_OFFS_MAX] = { 702 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 703 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 704 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 705}; 706 707ktime_t ktime_get_with_offset(enum tk_offsets offs) 708{ 709 struct timekeeper *tk = &tk_core.timekeeper; 710 unsigned int seq; 711 ktime_t base, *offset = offsets[offs]; 712 s64 nsecs; 713 714 WARN_ON(timekeeping_suspended); 715 716 do { 717 seq = read_seqcount_begin(&tk_core.seq); 718 base = ktime_add(tk->tkr_mono.base, *offset); 719 nsecs = timekeeping_get_ns(&tk->tkr_mono); 720 721 } while (read_seqcount_retry(&tk_core.seq, seq)); 722 723 return ktime_add_ns(base, nsecs); 724 725} 726EXPORT_SYMBOL_GPL(ktime_get_with_offset); 727 728/** 729 * ktime_mono_to_any() - convert mononotic time to any other time 730 * @tmono: time to convert. 731 * @offs: which offset to use 732 */ 733ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 734{ 735 ktime_t *offset = offsets[offs]; 736 unsigned long seq; 737 ktime_t tconv; 738 739 do { 740 seq = read_seqcount_begin(&tk_core.seq); 741 tconv = ktime_add(tmono, *offset); 742 } while (read_seqcount_retry(&tk_core.seq, seq)); 743 744 return tconv; 745} 746EXPORT_SYMBOL_GPL(ktime_mono_to_any); 747 748/** 749 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 750 */ 751ktime_t ktime_get_raw(void) 752{ 753 struct timekeeper *tk = &tk_core.timekeeper; 754 unsigned int seq; 755 ktime_t base; 756 s64 nsecs; 757 758 do { 759 seq = read_seqcount_begin(&tk_core.seq); 760 base = tk->tkr_raw.base; 761 nsecs = timekeeping_get_ns(&tk->tkr_raw); 762 763 } while (read_seqcount_retry(&tk_core.seq, seq)); 764 765 return ktime_add_ns(base, nsecs); 766} 767EXPORT_SYMBOL_GPL(ktime_get_raw); 768 769/** 770 * ktime_get_ts64 - get the monotonic clock in timespec64 format 771 * @ts: pointer to timespec variable 772 * 773 * The function calculates the monotonic clock from the realtime 774 * clock and the wall_to_monotonic offset and stores the result 775 * in normalized timespec64 format in the variable pointed to by @ts. 776 */ 777void ktime_get_ts64(struct timespec64 *ts) 778{ 779 struct timekeeper *tk = &tk_core.timekeeper; 780 struct timespec64 tomono; 781 s64 nsec; 782 unsigned int seq; 783 784 WARN_ON(timekeeping_suspended); 785 786 do { 787 seq = read_seqcount_begin(&tk_core.seq); 788 ts->tv_sec = tk->xtime_sec; 789 nsec = timekeeping_get_ns(&tk->tkr_mono); 790 tomono = tk->wall_to_monotonic; 791 792 } while (read_seqcount_retry(&tk_core.seq, seq)); 793 794 ts->tv_sec += tomono.tv_sec; 795 ts->tv_nsec = 0; 796 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 797} 798EXPORT_SYMBOL_GPL(ktime_get_ts64); 799 800/** 801 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 802 * 803 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 804 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 805 * works on both 32 and 64 bit systems. On 32 bit systems the readout 806 * covers ~136 years of uptime which should be enough to prevent 807 * premature wrap arounds. 808 */ 809time64_t ktime_get_seconds(void) 810{ 811 struct timekeeper *tk = &tk_core.timekeeper; 812 813 WARN_ON(timekeeping_suspended); 814 return tk->ktime_sec; 815} 816EXPORT_SYMBOL_GPL(ktime_get_seconds); 817 818/** 819 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 820 * 821 * Returns the wall clock seconds since 1970. This replaces the 822 * get_seconds() interface which is not y2038 safe on 32bit systems. 823 * 824 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 825 * 32bit systems the access must be protected with the sequence 826 * counter to provide "atomic" access to the 64bit tk->xtime_sec 827 * value. 828 */ 829time64_t ktime_get_real_seconds(void) 830{ 831 struct timekeeper *tk = &tk_core.timekeeper; 832 time64_t seconds; 833 unsigned int seq; 834 835 if (IS_ENABLED(CONFIG_64BIT)) 836 return tk->xtime_sec; 837 838 do { 839 seq = read_seqcount_begin(&tk_core.seq); 840 seconds = tk->xtime_sec; 841 842 } while (read_seqcount_retry(&tk_core.seq, seq)); 843 844 return seconds; 845} 846EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 847 848#ifdef CONFIG_NTP_PPS 849 850/** 851 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 852 * @ts_raw: pointer to the timespec to be set to raw monotonic time 853 * @ts_real: pointer to the timespec to be set to the time of day 854 * 855 * This function reads both the time of day and raw monotonic time at the 856 * same time atomically and stores the resulting timestamps in timespec 857 * format. 858 */ 859void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 860{ 861 struct timekeeper *tk = &tk_core.timekeeper; 862 unsigned long seq; 863 s64 nsecs_raw, nsecs_real; 864 865 WARN_ON_ONCE(timekeeping_suspended); 866 867 do { 868 seq = read_seqcount_begin(&tk_core.seq); 869 870 *ts_raw = timespec64_to_timespec(tk->raw_time); 871 ts_real->tv_sec = tk->xtime_sec; 872 ts_real->tv_nsec = 0; 873 874 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw); 875 nsecs_real = timekeeping_get_ns(&tk->tkr_mono); 876 877 } while (read_seqcount_retry(&tk_core.seq, seq)); 878 879 timespec_add_ns(ts_raw, nsecs_raw); 880 timespec_add_ns(ts_real, nsecs_real); 881} 882EXPORT_SYMBOL(getnstime_raw_and_real); 883 884#endif /* CONFIG_NTP_PPS */ 885 886/** 887 * do_gettimeofday - Returns the time of day in a timeval 888 * @tv: pointer to the timeval to be set 889 * 890 * NOTE: Users should be converted to using getnstimeofday() 891 */ 892void do_gettimeofday(struct timeval *tv) 893{ 894 struct timespec64 now; 895 896 getnstimeofday64(&now); 897 tv->tv_sec = now.tv_sec; 898 tv->tv_usec = now.tv_nsec/1000; 899} 900EXPORT_SYMBOL(do_gettimeofday); 901 902/** 903 * do_settimeofday64 - Sets the time of day. 904 * @ts: pointer to the timespec64 variable containing the new time 905 * 906 * Sets the time of day to the new time and update NTP and notify hrtimers 907 */ 908int do_settimeofday64(const struct timespec64 *ts) 909{ 910 struct timekeeper *tk = &tk_core.timekeeper; 911 struct timespec64 ts_delta, xt; 912 unsigned long flags; 913 914 if (!timespec64_valid_strict(ts)) 915 return -EINVAL; 916 917 raw_spin_lock_irqsave(&timekeeper_lock, flags); 918 write_seqcount_begin(&tk_core.seq); 919 920 timekeeping_forward_now(tk); 921 922 xt = tk_xtime(tk); 923 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 924 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 925 926 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 927 928 tk_set_xtime(tk, ts); 929 930 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 931 932 write_seqcount_end(&tk_core.seq); 933 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 934 935 /* signal hrtimers about time change */ 936 clock_was_set(); 937 938 return 0; 939} 940EXPORT_SYMBOL(do_settimeofday64); 941 942/** 943 * timekeeping_inject_offset - Adds or subtracts from the current time. 944 * @tv: pointer to the timespec variable containing the offset 945 * 946 * Adds or subtracts an offset value from the current time. 947 */ 948int timekeeping_inject_offset(struct timespec *ts) 949{ 950 struct timekeeper *tk = &tk_core.timekeeper; 951 unsigned long flags; 952 struct timespec64 ts64, tmp; 953 int ret = 0; 954 955 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 956 return -EINVAL; 957 958 ts64 = timespec_to_timespec64(*ts); 959 960 raw_spin_lock_irqsave(&timekeeper_lock, flags); 961 write_seqcount_begin(&tk_core.seq); 962 963 timekeeping_forward_now(tk); 964 965 /* Make sure the proposed value is valid */ 966 tmp = timespec64_add(tk_xtime(tk), ts64); 967 if (!timespec64_valid_strict(&tmp)) { 968 ret = -EINVAL; 969 goto error; 970 } 971 972 tk_xtime_add(tk, &ts64); 973 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 974 975error: /* even if we error out, we forwarded the time, so call update */ 976 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 977 978 write_seqcount_end(&tk_core.seq); 979 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 980 981 /* signal hrtimers about time change */ 982 clock_was_set(); 983 984 return ret; 985} 986EXPORT_SYMBOL(timekeeping_inject_offset); 987 988 989/** 990 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 991 * 992 */ 993s32 timekeeping_get_tai_offset(void) 994{ 995 struct timekeeper *tk = &tk_core.timekeeper; 996 unsigned int seq; 997 s32 ret; 998 999 do { 1000 seq = read_seqcount_begin(&tk_core.seq); 1001 ret = tk->tai_offset; 1002 } while (read_seqcount_retry(&tk_core.seq, seq)); 1003 1004 return ret; 1005} 1006 1007/** 1008 * __timekeeping_set_tai_offset - Lock free worker function 1009 * 1010 */ 1011static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1012{ 1013 tk->tai_offset = tai_offset; 1014 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1015} 1016 1017/** 1018 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 1019 * 1020 */ 1021void timekeeping_set_tai_offset(s32 tai_offset) 1022{ 1023 struct timekeeper *tk = &tk_core.timekeeper; 1024 unsigned long flags; 1025 1026 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1027 write_seqcount_begin(&tk_core.seq); 1028 __timekeeping_set_tai_offset(tk, tai_offset); 1029 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1030 write_seqcount_end(&tk_core.seq); 1031 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1032 clock_was_set(); 1033} 1034 1035/** 1036 * change_clocksource - Swaps clocksources if a new one is available 1037 * 1038 * Accumulates current time interval and initializes new clocksource 1039 */ 1040static int change_clocksource(void *data) 1041{ 1042 struct timekeeper *tk = &tk_core.timekeeper; 1043 struct clocksource *new, *old; 1044 unsigned long flags; 1045 1046 new = (struct clocksource *) data; 1047 1048 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1049 write_seqcount_begin(&tk_core.seq); 1050 1051 timekeeping_forward_now(tk); 1052 /* 1053 * If the cs is in module, get a module reference. Succeeds 1054 * for built-in code (owner == NULL) as well. 1055 */ 1056 if (try_module_get(new->owner)) { 1057 if (!new->enable || new->enable(new) == 0) { 1058 old = tk->tkr_mono.clock; 1059 tk_setup_internals(tk, new); 1060 if (old->disable) 1061 old->disable(old); 1062 module_put(old->owner); 1063 } else { 1064 module_put(new->owner); 1065 } 1066 } 1067 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1068 1069 write_seqcount_end(&tk_core.seq); 1070 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1071 1072 return 0; 1073} 1074 1075/** 1076 * timekeeping_notify - Install a new clock source 1077 * @clock: pointer to the clock source 1078 * 1079 * This function is called from clocksource.c after a new, better clock 1080 * source has been registered. The caller holds the clocksource_mutex. 1081 */ 1082int timekeeping_notify(struct clocksource *clock) 1083{ 1084 struct timekeeper *tk = &tk_core.timekeeper; 1085 1086 if (tk->tkr_mono.clock == clock) 1087 return 0; 1088 stop_machine(change_clocksource, clock, NULL); 1089 tick_clock_notify(); 1090 return tk->tkr_mono.clock == clock ? 0 : -1; 1091} 1092 1093/** 1094 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1095 * @ts: pointer to the timespec64 to be set 1096 * 1097 * Returns the raw monotonic time (completely un-modified by ntp) 1098 */ 1099void getrawmonotonic64(struct timespec64 *ts) 1100{ 1101 struct timekeeper *tk = &tk_core.timekeeper; 1102 struct timespec64 ts64; 1103 unsigned long seq; 1104 s64 nsecs; 1105 1106 do { 1107 seq = read_seqcount_begin(&tk_core.seq); 1108 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1109 ts64 = tk->raw_time; 1110 1111 } while (read_seqcount_retry(&tk_core.seq, seq)); 1112 1113 timespec64_add_ns(&ts64, nsecs); 1114 *ts = ts64; 1115} 1116EXPORT_SYMBOL(getrawmonotonic64); 1117 1118 1119/** 1120 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1121 */ 1122int timekeeping_valid_for_hres(void) 1123{ 1124 struct timekeeper *tk = &tk_core.timekeeper; 1125 unsigned long seq; 1126 int ret; 1127 1128 do { 1129 seq = read_seqcount_begin(&tk_core.seq); 1130 1131 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1132 1133 } while (read_seqcount_retry(&tk_core.seq, seq)); 1134 1135 return ret; 1136} 1137 1138/** 1139 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1140 */ 1141u64 timekeeping_max_deferment(void) 1142{ 1143 struct timekeeper *tk = &tk_core.timekeeper; 1144 unsigned long seq; 1145 u64 ret; 1146 1147 do { 1148 seq = read_seqcount_begin(&tk_core.seq); 1149 1150 ret = tk->tkr_mono.clock->max_idle_ns; 1151 1152 } while (read_seqcount_retry(&tk_core.seq, seq)); 1153 1154 return ret; 1155} 1156 1157/** 1158 * read_persistent_clock - Return time from the persistent clock. 1159 * 1160 * Weak dummy function for arches that do not yet support it. 1161 * Reads the time from the battery backed persistent clock. 1162 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1163 * 1164 * XXX - Do be sure to remove it once all arches implement it. 1165 */ 1166void __weak read_persistent_clock(struct timespec *ts) 1167{ 1168 ts->tv_sec = 0; 1169 ts->tv_nsec = 0; 1170} 1171 1172void __weak read_persistent_clock64(struct timespec64 *ts64) 1173{ 1174 struct timespec ts; 1175 1176 read_persistent_clock(&ts); 1177 *ts64 = timespec_to_timespec64(ts); 1178} 1179 1180/** 1181 * read_boot_clock - Return time of the system start. 1182 * 1183 * Weak dummy function for arches that do not yet support it. 1184 * Function to read the exact time the system has been started. 1185 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1186 * 1187 * XXX - Do be sure to remove it once all arches implement it. 1188 */ 1189void __weak read_boot_clock(struct timespec *ts) 1190{ 1191 ts->tv_sec = 0; 1192 ts->tv_nsec = 0; 1193} 1194 1195void __weak read_boot_clock64(struct timespec64 *ts64) 1196{ 1197 struct timespec ts; 1198 1199 read_boot_clock(&ts); 1200 *ts64 = timespec_to_timespec64(ts); 1201} 1202 1203/* Flag for if timekeeping_resume() has injected sleeptime */ 1204static bool sleeptime_injected; 1205 1206/* Flag for if there is a persistent clock on this platform */ 1207static bool persistent_clock_exists; 1208 1209/* 1210 * timekeeping_init - Initializes the clocksource and common timekeeping values 1211 */ 1212void __init timekeeping_init(void) 1213{ 1214 struct timekeeper *tk = &tk_core.timekeeper; 1215 struct clocksource *clock; 1216 unsigned long flags; 1217 struct timespec64 now, boot, tmp; 1218 1219 read_persistent_clock64(&now); 1220 if (!timespec64_valid_strict(&now)) { 1221 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1222 " Check your CMOS/BIOS settings.\n"); 1223 now.tv_sec = 0; 1224 now.tv_nsec = 0; 1225 } else if (now.tv_sec || now.tv_nsec) 1226 persistent_clock_exists = true; 1227 1228 read_boot_clock64(&boot); 1229 if (!timespec64_valid_strict(&boot)) { 1230 pr_warn("WARNING: Boot clock returned invalid value!\n" 1231 " Check your CMOS/BIOS settings.\n"); 1232 boot.tv_sec = 0; 1233 boot.tv_nsec = 0; 1234 } 1235 1236 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1237 write_seqcount_begin(&tk_core.seq); 1238 ntp_init(); 1239 1240 clock = clocksource_default_clock(); 1241 if (clock->enable) 1242 clock->enable(clock); 1243 tk_setup_internals(tk, clock); 1244 1245 tk_set_xtime(tk, &now); 1246 tk->raw_time.tv_sec = 0; 1247 tk->raw_time.tv_nsec = 0; 1248 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1249 boot = tk_xtime(tk); 1250 1251 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1252 tk_set_wall_to_mono(tk, tmp); 1253 1254 timekeeping_update(tk, TK_MIRROR); 1255 1256 write_seqcount_end(&tk_core.seq); 1257 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1258} 1259 1260/* time in seconds when suspend began for persistent clock */ 1261static struct timespec64 timekeeping_suspend_time; 1262 1263/** 1264 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1265 * @delta: pointer to a timespec delta value 1266 * 1267 * Takes a timespec offset measuring a suspend interval and properly 1268 * adds the sleep offset to the timekeeping variables. 1269 */ 1270static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1271 struct timespec64 *delta) 1272{ 1273 if (!timespec64_valid_strict(delta)) { 1274 printk_deferred(KERN_WARNING 1275 "__timekeeping_inject_sleeptime: Invalid " 1276 "sleep delta value!\n"); 1277 return; 1278 } 1279 tk_xtime_add(tk, delta); 1280 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1281 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1282 tk_debug_account_sleep_time(delta); 1283} 1284 1285#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1286/** 1287 * We have three kinds of time sources to use for sleep time 1288 * injection, the preference order is: 1289 * 1) non-stop clocksource 1290 * 2) persistent clock (ie: RTC accessible when irqs are off) 1291 * 3) RTC 1292 * 1293 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1294 * If system has neither 1) nor 2), 3) will be used finally. 1295 * 1296 * 1297 * If timekeeping has injected sleeptime via either 1) or 2), 1298 * 3) becomes needless, so in this case we don't need to call 1299 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1300 * means. 1301 */ 1302bool timekeeping_rtc_skipresume(void) 1303{ 1304 return sleeptime_injected; 1305} 1306 1307/** 1308 * 1) can be determined whether to use or not only when doing 1309 * timekeeping_resume() which is invoked after rtc_suspend(), 1310 * so we can't skip rtc_suspend() surely if system has 1). 1311 * 1312 * But if system has 2), 2) will definitely be used, so in this 1313 * case we don't need to call rtc_suspend(), and this is what 1314 * timekeeping_rtc_skipsuspend() means. 1315 */ 1316bool timekeeping_rtc_skipsuspend(void) 1317{ 1318 return persistent_clock_exists; 1319} 1320 1321/** 1322 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1323 * @delta: pointer to a timespec64 delta value 1324 * 1325 * This hook is for architectures that cannot support read_persistent_clock64 1326 * because their RTC/persistent clock is only accessible when irqs are enabled. 1327 * and also don't have an effective nonstop clocksource. 1328 * 1329 * This function should only be called by rtc_resume(), and allows 1330 * a suspend offset to be injected into the timekeeping values. 1331 */ 1332void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1333{ 1334 struct timekeeper *tk = &tk_core.timekeeper; 1335 unsigned long flags; 1336 1337 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1338 write_seqcount_begin(&tk_core.seq); 1339 1340 timekeeping_forward_now(tk); 1341 1342 __timekeeping_inject_sleeptime(tk, delta); 1343 1344 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1345 1346 write_seqcount_end(&tk_core.seq); 1347 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1348 1349 /* signal hrtimers about time change */ 1350 clock_was_set(); 1351} 1352#endif 1353 1354/** 1355 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1356 */ 1357void timekeeping_resume(void) 1358{ 1359 struct timekeeper *tk = &tk_core.timekeeper; 1360 struct clocksource *clock = tk->tkr_mono.clock; 1361 unsigned long flags; 1362 struct timespec64 ts_new, ts_delta; 1363 cycle_t cycle_now, cycle_delta; 1364 1365 sleeptime_injected = false; 1366 read_persistent_clock64(&ts_new); 1367 1368 clockevents_resume(); 1369 clocksource_resume(); 1370 1371 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1372 write_seqcount_begin(&tk_core.seq); 1373 1374 /* 1375 * After system resumes, we need to calculate the suspended time and 1376 * compensate it for the OS time. There are 3 sources that could be 1377 * used: Nonstop clocksource during suspend, persistent clock and rtc 1378 * device. 1379 * 1380 * One specific platform may have 1 or 2 or all of them, and the 1381 * preference will be: 1382 * suspend-nonstop clocksource -> persistent clock -> rtc 1383 * The less preferred source will only be tried if there is no better 1384 * usable source. The rtc part is handled separately in rtc core code. 1385 */ 1386 cycle_now = tk->tkr_mono.read(clock); 1387 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1388 cycle_now > tk->tkr_mono.cycle_last) { 1389 u64 num, max = ULLONG_MAX; 1390 u32 mult = clock->mult; 1391 u32 shift = clock->shift; 1392 s64 nsec = 0; 1393 1394 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1395 tk->tkr_mono.mask); 1396 1397 /* 1398 * "cycle_delta * mutl" may cause 64 bits overflow, if the 1399 * suspended time is too long. In that case we need do the 1400 * 64 bits math carefully 1401 */ 1402 do_div(max, mult); 1403 if (cycle_delta > max) { 1404 num = div64_u64(cycle_delta, max); 1405 nsec = (((u64) max * mult) >> shift) * num; 1406 cycle_delta -= num * max; 1407 } 1408 nsec += ((u64) cycle_delta * mult) >> shift; 1409 1410 ts_delta = ns_to_timespec64(nsec); 1411 sleeptime_injected = true; 1412 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1413 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1414 sleeptime_injected = true; 1415 } 1416 1417 if (sleeptime_injected) 1418 __timekeeping_inject_sleeptime(tk, &ts_delta); 1419 1420 /* Re-base the last cycle value */ 1421 tk->tkr_mono.cycle_last = cycle_now; 1422 tk->tkr_raw.cycle_last = cycle_now; 1423 1424 tk->ntp_error = 0; 1425 timekeeping_suspended = 0; 1426 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1427 write_seqcount_end(&tk_core.seq); 1428 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1429 1430 touch_softlockup_watchdog(); 1431 1432 tick_resume(); 1433 hrtimers_resume(); 1434} 1435 1436int timekeeping_suspend(void) 1437{ 1438 struct timekeeper *tk = &tk_core.timekeeper; 1439 unsigned long flags; 1440 struct timespec64 delta, delta_delta; 1441 static struct timespec64 old_delta; 1442 1443 read_persistent_clock64(&timekeeping_suspend_time); 1444 1445 /* 1446 * On some systems the persistent_clock can not be detected at 1447 * timekeeping_init by its return value, so if we see a valid 1448 * value returned, update the persistent_clock_exists flag. 1449 */ 1450 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1451 persistent_clock_exists = true; 1452 1453 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1454 write_seqcount_begin(&tk_core.seq); 1455 timekeeping_forward_now(tk); 1456 timekeeping_suspended = 1; 1457 1458 if (persistent_clock_exists) { 1459 /* 1460 * To avoid drift caused by repeated suspend/resumes, 1461 * which each can add ~1 second drift error, 1462 * try to compensate so the difference in system time 1463 * and persistent_clock time stays close to constant. 1464 */ 1465 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1466 delta_delta = timespec64_sub(delta, old_delta); 1467 if (abs(delta_delta.tv_sec) >= 2) { 1468 /* 1469 * if delta_delta is too large, assume time correction 1470 * has occurred and set old_delta to the current delta. 1471 */ 1472 old_delta = delta; 1473 } else { 1474 /* Otherwise try to adjust old_system to compensate */ 1475 timekeeping_suspend_time = 1476 timespec64_add(timekeeping_suspend_time, delta_delta); 1477 } 1478 } 1479 1480 timekeeping_update(tk, TK_MIRROR); 1481 halt_fast_timekeeper(tk); 1482 write_seqcount_end(&tk_core.seq); 1483 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1484 1485 tick_suspend(); 1486 clocksource_suspend(); 1487 clockevents_suspend(); 1488 1489 return 0; 1490} 1491 1492/* sysfs resume/suspend bits for timekeeping */ 1493static struct syscore_ops timekeeping_syscore_ops = { 1494 .resume = timekeeping_resume, 1495 .suspend = timekeeping_suspend, 1496}; 1497 1498static int __init timekeeping_init_ops(void) 1499{ 1500 register_syscore_ops(&timekeeping_syscore_ops); 1501 return 0; 1502} 1503device_initcall(timekeeping_init_ops); 1504 1505/* 1506 * Apply a multiplier adjustment to the timekeeper 1507 */ 1508static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1509 s64 offset, 1510 bool negative, 1511 int adj_scale) 1512{ 1513 s64 interval = tk->cycle_interval; 1514 s32 mult_adj = 1; 1515 1516 if (negative) { 1517 mult_adj = -mult_adj; 1518 interval = -interval; 1519 offset = -offset; 1520 } 1521 mult_adj <<= adj_scale; 1522 interval <<= adj_scale; 1523 offset <<= adj_scale; 1524 1525 /* 1526 * So the following can be confusing. 1527 * 1528 * To keep things simple, lets assume mult_adj == 1 for now. 1529 * 1530 * When mult_adj != 1, remember that the interval and offset values 1531 * have been appropriately scaled so the math is the same. 1532 * 1533 * The basic idea here is that we're increasing the multiplier 1534 * by one, this causes the xtime_interval to be incremented by 1535 * one cycle_interval. This is because: 1536 * xtime_interval = cycle_interval * mult 1537 * So if mult is being incremented by one: 1538 * xtime_interval = cycle_interval * (mult + 1) 1539 * Its the same as: 1540 * xtime_interval = (cycle_interval * mult) + cycle_interval 1541 * Which can be shortened to: 1542 * xtime_interval += cycle_interval 1543 * 1544 * So offset stores the non-accumulated cycles. Thus the current 1545 * time (in shifted nanoseconds) is: 1546 * now = (offset * adj) + xtime_nsec 1547 * Now, even though we're adjusting the clock frequency, we have 1548 * to keep time consistent. In other words, we can't jump back 1549 * in time, and we also want to avoid jumping forward in time. 1550 * 1551 * So given the same offset value, we need the time to be the same 1552 * both before and after the freq adjustment. 1553 * now = (offset * adj_1) + xtime_nsec_1 1554 * now = (offset * adj_2) + xtime_nsec_2 1555 * So: 1556 * (offset * adj_1) + xtime_nsec_1 = 1557 * (offset * adj_2) + xtime_nsec_2 1558 * And we know: 1559 * adj_2 = adj_1 + 1 1560 * So: 1561 * (offset * adj_1) + xtime_nsec_1 = 1562 * (offset * (adj_1+1)) + xtime_nsec_2 1563 * (offset * adj_1) + xtime_nsec_1 = 1564 * (offset * adj_1) + offset + xtime_nsec_2 1565 * Canceling the sides: 1566 * xtime_nsec_1 = offset + xtime_nsec_2 1567 * Which gives us: 1568 * xtime_nsec_2 = xtime_nsec_1 - offset 1569 * Which simplfies to: 1570 * xtime_nsec -= offset 1571 * 1572 * XXX - TODO: Doc ntp_error calculation. 1573 */ 1574 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1575 /* NTP adjustment caused clocksource mult overflow */ 1576 WARN_ON_ONCE(1); 1577 return; 1578 } 1579 1580 tk->tkr_mono.mult += mult_adj; 1581 tk->xtime_interval += interval; 1582 tk->tkr_mono.xtime_nsec -= offset; 1583 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1584} 1585 1586/* 1587 * Calculate the multiplier adjustment needed to match the frequency 1588 * specified by NTP 1589 */ 1590static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1591 s64 offset) 1592{ 1593 s64 interval = tk->cycle_interval; 1594 s64 xinterval = tk->xtime_interval; 1595 s64 tick_error; 1596 bool negative; 1597 u32 adj; 1598 1599 /* Remove any current error adj from freq calculation */ 1600 if (tk->ntp_err_mult) 1601 xinterval -= tk->cycle_interval; 1602 1603 tk->ntp_tick = ntp_tick_length(); 1604 1605 /* Calculate current error per tick */ 1606 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1607 tick_error -= (xinterval + tk->xtime_remainder); 1608 1609 /* Don't worry about correcting it if its small */ 1610 if (likely((tick_error >= 0) && (tick_error <= interval))) 1611 return; 1612 1613 /* preserve the direction of correction */ 1614 negative = (tick_error < 0); 1615 1616 /* Sort out the magnitude of the correction */ 1617 tick_error = abs64(tick_error); 1618 for (adj = 0; tick_error > interval; adj++) 1619 tick_error >>= 1; 1620 1621 /* scale the corrections */ 1622 timekeeping_apply_adjustment(tk, offset, negative, adj); 1623} 1624 1625/* 1626 * Adjust the timekeeper's multiplier to the correct frequency 1627 * and also to reduce the accumulated error value. 1628 */ 1629static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1630{ 1631 /* Correct for the current frequency error */ 1632 timekeeping_freqadjust(tk, offset); 1633 1634 /* Next make a small adjustment to fix any cumulative error */ 1635 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1636 tk->ntp_err_mult = 1; 1637 timekeeping_apply_adjustment(tk, offset, 0, 0); 1638 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1639 /* Undo any existing error adjustment */ 1640 timekeeping_apply_adjustment(tk, offset, 1, 0); 1641 tk->ntp_err_mult = 0; 1642 } 1643 1644 if (unlikely(tk->tkr_mono.clock->maxadj && 1645 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1646 > tk->tkr_mono.clock->maxadj))) { 1647 printk_once(KERN_WARNING 1648 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1649 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1650 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1651 } 1652 1653 /* 1654 * It may be possible that when we entered this function, xtime_nsec 1655 * was very small. Further, if we're slightly speeding the clocksource 1656 * in the code above, its possible the required corrective factor to 1657 * xtime_nsec could cause it to underflow. 1658 * 1659 * Now, since we already accumulated the second, cannot simply roll 1660 * the accumulated second back, since the NTP subsystem has been 1661 * notified via second_overflow. So instead we push xtime_nsec forward 1662 * by the amount we underflowed, and add that amount into the error. 1663 * 1664 * We'll correct this error next time through this function, when 1665 * xtime_nsec is not as small. 1666 */ 1667 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1668 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1669 tk->tkr_mono.xtime_nsec = 0; 1670 tk->ntp_error += neg << tk->ntp_error_shift; 1671 } 1672} 1673 1674/** 1675 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1676 * 1677 * Helper function that accumulates a the nsecs greater then a second 1678 * from the xtime_nsec field to the xtime_secs field. 1679 * It also calls into the NTP code to handle leapsecond processing. 1680 * 1681 */ 1682static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1683{ 1684 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1685 unsigned int clock_set = 0; 1686 1687 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1688 int leap; 1689 1690 tk->tkr_mono.xtime_nsec -= nsecps; 1691 tk->xtime_sec++; 1692 1693 /* Figure out if its a leap sec and apply if needed */ 1694 leap = second_overflow(tk->xtime_sec); 1695 if (unlikely(leap)) { 1696 struct timespec64 ts; 1697 1698 tk->xtime_sec += leap; 1699 1700 ts.tv_sec = leap; 1701 ts.tv_nsec = 0; 1702 tk_set_wall_to_mono(tk, 1703 timespec64_sub(tk->wall_to_monotonic, ts)); 1704 1705 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1706 1707 clock_set = TK_CLOCK_WAS_SET; 1708 } 1709 } 1710 return clock_set; 1711} 1712 1713/** 1714 * logarithmic_accumulation - shifted accumulation of cycles 1715 * 1716 * This functions accumulates a shifted interval of cycles into 1717 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1718 * loop. 1719 * 1720 * Returns the unconsumed cycles. 1721 */ 1722static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1723 u32 shift, 1724 unsigned int *clock_set) 1725{ 1726 cycle_t interval = tk->cycle_interval << shift; 1727 u64 raw_nsecs; 1728 1729 /* If the offset is smaller then a shifted interval, do nothing */ 1730 if (offset < interval) 1731 return offset; 1732 1733 /* Accumulate one shifted interval */ 1734 offset -= interval; 1735 tk->tkr_mono.cycle_last += interval; 1736 tk->tkr_raw.cycle_last += interval; 1737 1738 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 1739 *clock_set |= accumulate_nsecs_to_secs(tk); 1740 1741 /* Accumulate raw time */ 1742 raw_nsecs = (u64)tk->raw_interval << shift; 1743 raw_nsecs += tk->raw_time.tv_nsec; 1744 if (raw_nsecs >= NSEC_PER_SEC) { 1745 u64 raw_secs = raw_nsecs; 1746 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1747 tk->raw_time.tv_sec += raw_secs; 1748 } 1749 tk->raw_time.tv_nsec = raw_nsecs; 1750 1751 /* Accumulate error between NTP and clock interval */ 1752 tk->ntp_error += tk->ntp_tick << shift; 1753 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1754 (tk->ntp_error_shift + shift); 1755 1756 return offset; 1757} 1758 1759/** 1760 * update_wall_time - Uses the current clocksource to increment the wall time 1761 * 1762 */ 1763void update_wall_time(void) 1764{ 1765 struct timekeeper *real_tk = &tk_core.timekeeper; 1766 struct timekeeper *tk = &shadow_timekeeper; 1767 cycle_t offset; 1768 int shift = 0, maxshift; 1769 unsigned int clock_set = 0; 1770 unsigned long flags; 1771 1772 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1773 1774 /* Make sure we're fully resumed: */ 1775 if (unlikely(timekeeping_suspended)) 1776 goto out; 1777 1778#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1779 offset = real_tk->cycle_interval; 1780#else 1781 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 1782 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 1783#endif 1784 1785 /* Check if there's really nothing to do */ 1786 if (offset < real_tk->cycle_interval) 1787 goto out; 1788 1789 /* Do some additional sanity checking */ 1790 timekeeping_check_update(real_tk, offset); 1791 1792 /* 1793 * With NO_HZ we may have to accumulate many cycle_intervals 1794 * (think "ticks") worth of time at once. To do this efficiently, 1795 * we calculate the largest doubling multiple of cycle_intervals 1796 * that is smaller than the offset. We then accumulate that 1797 * chunk in one go, and then try to consume the next smaller 1798 * doubled multiple. 1799 */ 1800 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1801 shift = max(0, shift); 1802 /* Bound shift to one less than what overflows tick_length */ 1803 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1804 shift = min(shift, maxshift); 1805 while (offset >= tk->cycle_interval) { 1806 offset = logarithmic_accumulation(tk, offset, shift, 1807 &clock_set); 1808 if (offset < tk->cycle_interval<<shift) 1809 shift--; 1810 } 1811 1812 /* correct the clock when NTP error is too big */ 1813 timekeeping_adjust(tk, offset); 1814 1815 /* 1816 * XXX This can be killed once everyone converts 1817 * to the new update_vsyscall. 1818 */ 1819 old_vsyscall_fixup(tk); 1820 1821 /* 1822 * Finally, make sure that after the rounding 1823 * xtime_nsec isn't larger than NSEC_PER_SEC 1824 */ 1825 clock_set |= accumulate_nsecs_to_secs(tk); 1826 1827 write_seqcount_begin(&tk_core.seq); 1828 /* 1829 * Update the real timekeeper. 1830 * 1831 * We could avoid this memcpy by switching pointers, but that 1832 * requires changes to all other timekeeper usage sites as 1833 * well, i.e. move the timekeeper pointer getter into the 1834 * spinlocked/seqcount protected sections. And we trade this 1835 * memcpy under the tk_core.seq against one before we start 1836 * updating. 1837 */ 1838 memcpy(real_tk, tk, sizeof(*tk)); 1839 timekeeping_update(real_tk, clock_set); 1840 write_seqcount_end(&tk_core.seq); 1841out: 1842 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1843 if (clock_set) 1844 /* Have to call _delayed version, since in irq context*/ 1845 clock_was_set_delayed(); 1846} 1847 1848/** 1849 * getboottime64 - Return the real time of system boot. 1850 * @ts: pointer to the timespec64 to be set 1851 * 1852 * Returns the wall-time of boot in a timespec64. 1853 * 1854 * This is based on the wall_to_monotonic offset and the total suspend 1855 * time. Calls to settimeofday will affect the value returned (which 1856 * basically means that however wrong your real time clock is at boot time, 1857 * you get the right time here). 1858 */ 1859void getboottime64(struct timespec64 *ts) 1860{ 1861 struct timekeeper *tk = &tk_core.timekeeper; 1862 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 1863 1864 *ts = ktime_to_timespec64(t); 1865} 1866EXPORT_SYMBOL_GPL(getboottime64); 1867 1868unsigned long get_seconds(void) 1869{ 1870 struct timekeeper *tk = &tk_core.timekeeper; 1871 1872 return tk->xtime_sec; 1873} 1874EXPORT_SYMBOL(get_seconds); 1875 1876struct timespec __current_kernel_time(void) 1877{ 1878 struct timekeeper *tk = &tk_core.timekeeper; 1879 1880 return timespec64_to_timespec(tk_xtime(tk)); 1881} 1882 1883struct timespec current_kernel_time(void) 1884{ 1885 struct timekeeper *tk = &tk_core.timekeeper; 1886 struct timespec64 now; 1887 unsigned long seq; 1888 1889 do { 1890 seq = read_seqcount_begin(&tk_core.seq); 1891 1892 now = tk_xtime(tk); 1893 } while (read_seqcount_retry(&tk_core.seq, seq)); 1894 1895 return timespec64_to_timespec(now); 1896} 1897EXPORT_SYMBOL(current_kernel_time); 1898 1899struct timespec64 get_monotonic_coarse64(void) 1900{ 1901 struct timekeeper *tk = &tk_core.timekeeper; 1902 struct timespec64 now, mono; 1903 unsigned long seq; 1904 1905 do { 1906 seq = read_seqcount_begin(&tk_core.seq); 1907 1908 now = tk_xtime(tk); 1909 mono = tk->wall_to_monotonic; 1910 } while (read_seqcount_retry(&tk_core.seq, seq)); 1911 1912 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 1913 now.tv_nsec + mono.tv_nsec); 1914 1915 return now; 1916} 1917 1918/* 1919 * Must hold jiffies_lock 1920 */ 1921void do_timer(unsigned long ticks) 1922{ 1923 jiffies_64 += ticks; 1924 calc_global_load(ticks); 1925} 1926 1927/** 1928 * ktime_get_update_offsets_tick - hrtimer helper 1929 * @offs_real: pointer to storage for monotonic -> realtime offset 1930 * @offs_boot: pointer to storage for monotonic -> boottime offset 1931 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1932 * 1933 * Returns monotonic time at last tick and various offsets 1934 */ 1935ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot, 1936 ktime_t *offs_tai) 1937{ 1938 struct timekeeper *tk = &tk_core.timekeeper; 1939 unsigned int seq; 1940 ktime_t base; 1941 u64 nsecs; 1942 1943 do { 1944 seq = read_seqcount_begin(&tk_core.seq); 1945 1946 base = tk->tkr_mono.base; 1947 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 1948 1949 *offs_real = tk->offs_real; 1950 *offs_boot = tk->offs_boot; 1951 *offs_tai = tk->offs_tai; 1952 } while (read_seqcount_retry(&tk_core.seq, seq)); 1953 1954 return ktime_add_ns(base, nsecs); 1955} 1956 1957#ifdef CONFIG_HIGH_RES_TIMERS 1958/** 1959 * ktime_get_update_offsets_now - hrtimer helper 1960 * @offs_real: pointer to storage for monotonic -> realtime offset 1961 * @offs_boot: pointer to storage for monotonic -> boottime offset 1962 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1963 * 1964 * Returns current monotonic time and updates the offsets 1965 * Called from hrtimer_interrupt() or retrigger_next_event() 1966 */ 1967ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot, 1968 ktime_t *offs_tai) 1969{ 1970 struct timekeeper *tk = &tk_core.timekeeper; 1971 unsigned int seq; 1972 ktime_t base; 1973 u64 nsecs; 1974 1975 do { 1976 seq = read_seqcount_begin(&tk_core.seq); 1977 1978 base = tk->tkr_mono.base; 1979 nsecs = timekeeping_get_ns(&tk->tkr_mono); 1980 1981 *offs_real = tk->offs_real; 1982 *offs_boot = tk->offs_boot; 1983 *offs_tai = tk->offs_tai; 1984 } while (read_seqcount_retry(&tk_core.seq, seq)); 1985 1986 return ktime_add_ns(base, nsecs); 1987} 1988#endif 1989 1990/** 1991 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 1992 */ 1993int do_adjtimex(struct timex *txc) 1994{ 1995 struct timekeeper *tk = &tk_core.timekeeper; 1996 unsigned long flags; 1997 struct timespec64 ts; 1998 s32 orig_tai, tai; 1999 int ret; 2000 2001 /* Validate the data before disabling interrupts */ 2002 ret = ntp_validate_timex(txc); 2003 if (ret) 2004 return ret; 2005 2006 if (txc->modes & ADJ_SETOFFSET) { 2007 struct timespec delta; 2008 delta.tv_sec = txc->time.tv_sec; 2009 delta.tv_nsec = txc->time.tv_usec; 2010 if (!(txc->modes & ADJ_NANO)) 2011 delta.tv_nsec *= 1000; 2012 ret = timekeeping_inject_offset(&delta); 2013 if (ret) 2014 return ret; 2015 } 2016 2017 getnstimeofday64(&ts); 2018 2019 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2020 write_seqcount_begin(&tk_core.seq); 2021 2022 orig_tai = tai = tk->tai_offset; 2023 ret = __do_adjtimex(txc, &ts, &tai); 2024 2025 if (tai != orig_tai) { 2026 __timekeeping_set_tai_offset(tk, tai); 2027 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2028 } 2029 write_seqcount_end(&tk_core.seq); 2030 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2031 2032 if (tai != orig_tai) 2033 clock_was_set(); 2034 2035 ntp_notify_cmos_timer(); 2036 2037 return ret; 2038} 2039 2040#ifdef CONFIG_NTP_PPS 2041/** 2042 * hardpps() - Accessor function to NTP __hardpps function 2043 */ 2044void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) 2045{ 2046 unsigned long flags; 2047 2048 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2049 write_seqcount_begin(&tk_core.seq); 2050 2051 __hardpps(phase_ts, raw_ts); 2052 2053 write_seqcount_end(&tk_core.seq); 2054 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2055} 2056EXPORT_SYMBOL(hardpps); 2057#endif 2058 2059/** 2060 * xtime_update() - advances the timekeeping infrastructure 2061 * @ticks: number of ticks, that have elapsed since the last call. 2062 * 2063 * Must be called with interrupts disabled. 2064 */ 2065void xtime_update(unsigned long ticks) 2066{ 2067 write_seqlock(&jiffies_lock); 2068 do_timer(ticks); 2069 write_sequnlock(&jiffies_lock); 2070 update_wall_time(); 2071} 2072