1/*
2 *  linux/kernel/time/timekeeping.c
3 *
4 *  Kernel timekeeping code and accessor functions
5 *
6 *  This code was moved from linux/kernel/timer.c.
7 *  Please see that file for copyright and history logs.
8 *
9 */
10
11#include <linux/timekeeper_internal.h>
12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/syscore_ops.h>
19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
23#include <linux/stop_machine.h>
24#include <linux/pvclock_gtod.h>
25#include <linux/compiler.h>
26
27#include "tick-internal.h"
28#include "ntp_internal.h"
29#include "timekeeping_internal.h"
30
31#define TK_CLEAR_NTP		(1 << 0)
32#define TK_MIRROR		(1 << 1)
33#define TK_CLOCK_WAS_SET	(1 << 2)
34
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40	seqcount_t		seq;
41	struct timekeeper	timekeeper;
42} tk_core ____cacheline_aligned;
43
44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45static struct timekeeper shadow_timekeeper;
46
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq:	Sequence counter for protecting updates. The lowest bit
50 *		is the index for the tk_read_base array
51 * @base:	tk_read_base array. Access is indexed by the lowest bit of
52 *		@seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57	seqcount_t		seq;
58	struct tk_read_base	base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
62static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64/* flag for if timekeeping is suspended */
65int __read_mostly timekeeping_suspended;
66
67static inline void tk_normalize_xtime(struct timekeeper *tk)
68{
69	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71		tk->xtime_sec++;
72	}
73}
74
75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76{
77	struct timespec64 ts;
78
79	ts.tv_sec = tk->xtime_sec;
80	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81	return ts;
82}
83
84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85{
86	tk->xtime_sec = ts->tv_sec;
87	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88}
89
90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91{
92	tk->xtime_sec += ts->tv_sec;
93	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94	tk_normalize_xtime(tk);
95}
96
97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98{
99	struct timespec64 tmp;
100
101	/*
102	 * Verify consistency of: offset_real = -wall_to_monotonic
103	 * before modifying anything
104	 */
105	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106					-tk->wall_to_monotonic.tv_nsec);
107	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108	tk->wall_to_monotonic = wtm;
109	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110	tk->offs_real = timespec64_to_ktime(tmp);
111	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112}
113
114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115{
116	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117}
118
119#ifdef CONFIG_DEBUG_TIMEKEEPING
120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121/*
122 * These simple flag variables are managed
123 * without locks, which is racy, but ok since
124 * we don't really care about being super
125 * precise about how many events were seen,
126 * just that a problem was observed.
127 */
128static int timekeeping_underflow_seen;
129static int timekeeping_overflow_seen;
130
131/* last_warning is only modified under the timekeeping lock */
132static long timekeeping_last_warning;
133
134static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
135{
136
137	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
138	const char *name = tk->tkr_mono.clock->name;
139
140	if (offset > max_cycles) {
141		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
142				offset, name, max_cycles);
143		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
144	} else {
145		if (offset > (max_cycles >> 1)) {
146			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
147					offset, name, max_cycles >> 1);
148			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
149		}
150	}
151
152	if (timekeeping_underflow_seen) {
153		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
154			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
155			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
156			printk_deferred("         Your kernel is probably still fine.\n");
157			timekeeping_last_warning = jiffies;
158		}
159		timekeeping_underflow_seen = 0;
160	}
161
162	if (timekeeping_overflow_seen) {
163		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
164			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
165			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
166			printk_deferred("         Your kernel is probably still fine.\n");
167			timekeeping_last_warning = jiffies;
168		}
169		timekeeping_overflow_seen = 0;
170	}
171}
172
173static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
174{
175	cycle_t now, last, mask, max, delta;
176	unsigned int seq;
177
178	/*
179	 * Since we're called holding a seqlock, the data may shift
180	 * under us while we're doing the calculation. This can cause
181	 * false positives, since we'd note a problem but throw the
182	 * results away. So nest another seqlock here to atomically
183	 * grab the points we are checking with.
184	 */
185	do {
186		seq = read_seqcount_begin(&tk_core.seq);
187		now = tkr->read(tkr->clock);
188		last = tkr->cycle_last;
189		mask = tkr->mask;
190		max = tkr->clock->max_cycles;
191	} while (read_seqcount_retry(&tk_core.seq, seq));
192
193	delta = clocksource_delta(now, last, mask);
194
195	/*
196	 * Try to catch underflows by checking if we are seeing small
197	 * mask-relative negative values.
198	 */
199	if (unlikely((~delta & mask) < (mask >> 3))) {
200		timekeeping_underflow_seen = 1;
201		delta = 0;
202	}
203
204	/* Cap delta value to the max_cycles values to avoid mult overflows */
205	if (unlikely(delta > max)) {
206		timekeeping_overflow_seen = 1;
207		delta = tkr->clock->max_cycles;
208	}
209
210	return delta;
211}
212#else
213static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
214{
215}
216static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
217{
218	cycle_t cycle_now, delta;
219
220	/* read clocksource */
221	cycle_now = tkr->read(tkr->clock);
222
223	/* calculate the delta since the last update_wall_time */
224	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
225
226	return delta;
227}
228#endif
229
230/**
231 * tk_setup_internals - Set up internals to use clocksource clock.
232 *
233 * @tk:		The target timekeeper to setup.
234 * @clock:		Pointer to clocksource.
235 *
236 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
237 * pair and interval request.
238 *
239 * Unless you're the timekeeping code, you should not be using this!
240 */
241static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
242{
243	cycle_t interval;
244	u64 tmp, ntpinterval;
245	struct clocksource *old_clock;
246
247	old_clock = tk->tkr_mono.clock;
248	tk->tkr_mono.clock = clock;
249	tk->tkr_mono.read = clock->read;
250	tk->tkr_mono.mask = clock->mask;
251	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
252
253	tk->tkr_raw.clock = clock;
254	tk->tkr_raw.read = clock->read;
255	tk->tkr_raw.mask = clock->mask;
256	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
257
258	/* Do the ns -> cycle conversion first, using original mult */
259	tmp = NTP_INTERVAL_LENGTH;
260	tmp <<= clock->shift;
261	ntpinterval = tmp;
262	tmp += clock->mult/2;
263	do_div(tmp, clock->mult);
264	if (tmp == 0)
265		tmp = 1;
266
267	interval = (cycle_t) tmp;
268	tk->cycle_interval = interval;
269
270	/* Go back from cycles -> shifted ns */
271	tk->xtime_interval = (u64) interval * clock->mult;
272	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
273	tk->raw_interval =
274		((u64) interval * clock->mult) >> clock->shift;
275
276	 /* if changing clocks, convert xtime_nsec shift units */
277	if (old_clock) {
278		int shift_change = clock->shift - old_clock->shift;
279		if (shift_change < 0)
280			tk->tkr_mono.xtime_nsec >>= -shift_change;
281		else
282			tk->tkr_mono.xtime_nsec <<= shift_change;
283	}
284	tk->tkr_raw.xtime_nsec = 0;
285
286	tk->tkr_mono.shift = clock->shift;
287	tk->tkr_raw.shift = clock->shift;
288
289	tk->ntp_error = 0;
290	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
291	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
292
293	/*
294	 * The timekeeper keeps its own mult values for the currently
295	 * active clocksource. These value will be adjusted via NTP
296	 * to counteract clock drifting.
297	 */
298	tk->tkr_mono.mult = clock->mult;
299	tk->tkr_raw.mult = clock->mult;
300	tk->ntp_err_mult = 0;
301}
302
303/* Timekeeper helper functions. */
304
305#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
306static u32 default_arch_gettimeoffset(void) { return 0; }
307u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
308#else
309static inline u32 arch_gettimeoffset(void) { return 0; }
310#endif
311
312static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
313{
314	cycle_t delta;
315	s64 nsec;
316
317	delta = timekeeping_get_delta(tkr);
318
319	nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift;
320
321	/* If arch requires, add in get_arch_timeoffset() */
322	return nsec + arch_gettimeoffset();
323}
324
325/**
326 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
327 * @tkr: Timekeeping readout base from which we take the update
328 *
329 * We want to use this from any context including NMI and tracing /
330 * instrumenting the timekeeping code itself.
331 *
332 * So we handle this differently than the other timekeeping accessor
333 * functions which retry when the sequence count has changed. The
334 * update side does:
335 *
336 * smp_wmb();	<- Ensure that the last base[1] update is visible
337 * tkf->seq++;
338 * smp_wmb();	<- Ensure that the seqcount update is visible
339 * update(tkf->base[0], tkr);
340 * smp_wmb();	<- Ensure that the base[0] update is visible
341 * tkf->seq++;
342 * smp_wmb();	<- Ensure that the seqcount update is visible
343 * update(tkf->base[1], tkr);
344 *
345 * The reader side does:
346 *
347 * do {
348 *	seq = tkf->seq;
349 *	smp_rmb();
350 *	idx = seq & 0x01;
351 *	now = now(tkf->base[idx]);
352 *	smp_rmb();
353 * } while (seq != tkf->seq)
354 *
355 * As long as we update base[0] readers are forced off to
356 * base[1]. Once base[0] is updated readers are redirected to base[0]
357 * and the base[1] update takes place.
358 *
359 * So if a NMI hits the update of base[0] then it will use base[1]
360 * which is still consistent. In the worst case this can result is a
361 * slightly wrong timestamp (a few nanoseconds). See
362 * @ktime_get_mono_fast_ns.
363 */
364static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
365{
366	struct tk_read_base *base = tkf->base;
367
368	/* Force readers off to base[1] */
369	raw_write_seqcount_latch(&tkf->seq);
370
371	/* Update base[0] */
372	memcpy(base, tkr, sizeof(*base));
373
374	/* Force readers back to base[0] */
375	raw_write_seqcount_latch(&tkf->seq);
376
377	/* Update base[1] */
378	memcpy(base + 1, base, sizeof(*base));
379}
380
381/**
382 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
383 *
384 * This timestamp is not guaranteed to be monotonic across an update.
385 * The timestamp is calculated by:
386 *
387 *	now = base_mono + clock_delta * slope
388 *
389 * So if the update lowers the slope, readers who are forced to the
390 * not yet updated second array are still using the old steeper slope.
391 *
392 * tmono
393 * ^
394 * |    o  n
395 * |   o n
396 * |  u
397 * | o
398 * |o
399 * |12345678---> reader order
400 *
401 * o = old slope
402 * u = update
403 * n = new slope
404 *
405 * So reader 6 will observe time going backwards versus reader 5.
406 *
407 * While other CPUs are likely to be able observe that, the only way
408 * for a CPU local observation is when an NMI hits in the middle of
409 * the update. Timestamps taken from that NMI context might be ahead
410 * of the following timestamps. Callers need to be aware of that and
411 * deal with it.
412 */
413static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
414{
415	struct tk_read_base *tkr;
416	unsigned int seq;
417	u64 now;
418
419	do {
420		seq = raw_read_seqcount(&tkf->seq);
421		tkr = tkf->base + (seq & 0x01);
422		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
423	} while (read_seqcount_retry(&tkf->seq, seq));
424
425	return now;
426}
427
428u64 ktime_get_mono_fast_ns(void)
429{
430	return __ktime_get_fast_ns(&tk_fast_mono);
431}
432EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
433
434u64 ktime_get_raw_fast_ns(void)
435{
436	return __ktime_get_fast_ns(&tk_fast_raw);
437}
438EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
439
440/* Suspend-time cycles value for halted fast timekeeper. */
441static cycle_t cycles_at_suspend;
442
443static cycle_t dummy_clock_read(struct clocksource *cs)
444{
445	return cycles_at_suspend;
446}
447
448/**
449 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
450 * @tk: Timekeeper to snapshot.
451 *
452 * It generally is unsafe to access the clocksource after timekeeping has been
453 * suspended, so take a snapshot of the readout base of @tk and use it as the
454 * fast timekeeper's readout base while suspended.  It will return the same
455 * number of cycles every time until timekeeping is resumed at which time the
456 * proper readout base for the fast timekeeper will be restored automatically.
457 */
458static void halt_fast_timekeeper(struct timekeeper *tk)
459{
460	static struct tk_read_base tkr_dummy;
461	struct tk_read_base *tkr = &tk->tkr_mono;
462
463	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
464	cycles_at_suspend = tkr->read(tkr->clock);
465	tkr_dummy.read = dummy_clock_read;
466	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
467
468	tkr = &tk->tkr_raw;
469	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
470	tkr_dummy.read = dummy_clock_read;
471	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
472}
473
474#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
475
476static inline void update_vsyscall(struct timekeeper *tk)
477{
478	struct timespec xt, wm;
479
480	xt = timespec64_to_timespec(tk_xtime(tk));
481	wm = timespec64_to_timespec(tk->wall_to_monotonic);
482	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
483			    tk->tkr_mono.cycle_last);
484}
485
486static inline void old_vsyscall_fixup(struct timekeeper *tk)
487{
488	s64 remainder;
489
490	/*
491	* Store only full nanoseconds into xtime_nsec after rounding
492	* it up and add the remainder to the error difference.
493	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
494	* by truncating the remainder in vsyscalls. However, it causes
495	* additional work to be done in timekeeping_adjust(). Once
496	* the vsyscall implementations are converted to use xtime_nsec
497	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
498	* users are removed, this can be killed.
499	*/
500	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
501	tk->tkr_mono.xtime_nsec -= remainder;
502	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
503	tk->ntp_error += remainder << tk->ntp_error_shift;
504	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
505}
506#else
507#define old_vsyscall_fixup(tk)
508#endif
509
510static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
511
512static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
513{
514	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
515}
516
517/**
518 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
519 */
520int pvclock_gtod_register_notifier(struct notifier_block *nb)
521{
522	struct timekeeper *tk = &tk_core.timekeeper;
523	unsigned long flags;
524	int ret;
525
526	raw_spin_lock_irqsave(&timekeeper_lock, flags);
527	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
528	update_pvclock_gtod(tk, true);
529	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
530
531	return ret;
532}
533EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
534
535/**
536 * pvclock_gtod_unregister_notifier - unregister a pvclock
537 * timedata update listener
538 */
539int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
540{
541	unsigned long flags;
542	int ret;
543
544	raw_spin_lock_irqsave(&timekeeper_lock, flags);
545	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
546	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
547
548	return ret;
549}
550EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
551
552/*
553 * Update the ktime_t based scalar nsec members of the timekeeper
554 */
555static inline void tk_update_ktime_data(struct timekeeper *tk)
556{
557	u64 seconds;
558	u32 nsec;
559
560	/*
561	 * The xtime based monotonic readout is:
562	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
563	 * The ktime based monotonic readout is:
564	 *	nsec = base_mono + now();
565	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
566	 */
567	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
568	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
569	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
570
571	/* Update the monotonic raw base */
572	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
573
574	/*
575	 * The sum of the nanoseconds portions of xtime and
576	 * wall_to_monotonic can be greater/equal one second. Take
577	 * this into account before updating tk->ktime_sec.
578	 */
579	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
580	if (nsec >= NSEC_PER_SEC)
581		seconds++;
582	tk->ktime_sec = seconds;
583}
584
585/* must hold timekeeper_lock */
586static void timekeeping_update(struct timekeeper *tk, unsigned int action)
587{
588	if (action & TK_CLEAR_NTP) {
589		tk->ntp_error = 0;
590		ntp_clear();
591	}
592
593	tk_update_ktime_data(tk);
594
595	update_vsyscall(tk);
596	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
597
598	if (action & TK_MIRROR)
599		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
600		       sizeof(tk_core.timekeeper));
601
602	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
603	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
604}
605
606/**
607 * timekeeping_forward_now - update clock to the current time
608 *
609 * Forward the current clock to update its state since the last call to
610 * update_wall_time(). This is useful before significant clock changes,
611 * as it avoids having to deal with this time offset explicitly.
612 */
613static void timekeeping_forward_now(struct timekeeper *tk)
614{
615	struct clocksource *clock = tk->tkr_mono.clock;
616	cycle_t cycle_now, delta;
617	s64 nsec;
618
619	cycle_now = tk->tkr_mono.read(clock);
620	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
621	tk->tkr_mono.cycle_last = cycle_now;
622	tk->tkr_raw.cycle_last  = cycle_now;
623
624	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
625
626	/* If arch requires, add in get_arch_timeoffset() */
627	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
628
629	tk_normalize_xtime(tk);
630
631	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
632	timespec64_add_ns(&tk->raw_time, nsec);
633}
634
635/**
636 * __getnstimeofday64 - Returns the time of day in a timespec64.
637 * @ts:		pointer to the timespec to be set
638 *
639 * Updates the time of day in the timespec.
640 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
641 */
642int __getnstimeofday64(struct timespec64 *ts)
643{
644	struct timekeeper *tk = &tk_core.timekeeper;
645	unsigned long seq;
646	s64 nsecs = 0;
647
648	do {
649		seq = read_seqcount_begin(&tk_core.seq);
650
651		ts->tv_sec = tk->xtime_sec;
652		nsecs = timekeeping_get_ns(&tk->tkr_mono);
653
654	} while (read_seqcount_retry(&tk_core.seq, seq));
655
656	ts->tv_nsec = 0;
657	timespec64_add_ns(ts, nsecs);
658
659	/*
660	 * Do not bail out early, in case there were callers still using
661	 * the value, even in the face of the WARN_ON.
662	 */
663	if (unlikely(timekeeping_suspended))
664		return -EAGAIN;
665	return 0;
666}
667EXPORT_SYMBOL(__getnstimeofday64);
668
669/**
670 * getnstimeofday64 - Returns the time of day in a timespec64.
671 * @ts:		pointer to the timespec64 to be set
672 *
673 * Returns the time of day in a timespec64 (WARN if suspended).
674 */
675void getnstimeofday64(struct timespec64 *ts)
676{
677	WARN_ON(__getnstimeofday64(ts));
678}
679EXPORT_SYMBOL(getnstimeofday64);
680
681ktime_t ktime_get(void)
682{
683	struct timekeeper *tk = &tk_core.timekeeper;
684	unsigned int seq;
685	ktime_t base;
686	s64 nsecs;
687
688	WARN_ON(timekeeping_suspended);
689
690	do {
691		seq = read_seqcount_begin(&tk_core.seq);
692		base = tk->tkr_mono.base;
693		nsecs = timekeeping_get_ns(&tk->tkr_mono);
694
695	} while (read_seqcount_retry(&tk_core.seq, seq));
696
697	return ktime_add_ns(base, nsecs);
698}
699EXPORT_SYMBOL_GPL(ktime_get);
700
701static ktime_t *offsets[TK_OFFS_MAX] = {
702	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
703	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
704	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
705};
706
707ktime_t ktime_get_with_offset(enum tk_offsets offs)
708{
709	struct timekeeper *tk = &tk_core.timekeeper;
710	unsigned int seq;
711	ktime_t base, *offset = offsets[offs];
712	s64 nsecs;
713
714	WARN_ON(timekeeping_suspended);
715
716	do {
717		seq = read_seqcount_begin(&tk_core.seq);
718		base = ktime_add(tk->tkr_mono.base, *offset);
719		nsecs = timekeeping_get_ns(&tk->tkr_mono);
720
721	} while (read_seqcount_retry(&tk_core.seq, seq));
722
723	return ktime_add_ns(base, nsecs);
724
725}
726EXPORT_SYMBOL_GPL(ktime_get_with_offset);
727
728/**
729 * ktime_mono_to_any() - convert mononotic time to any other time
730 * @tmono:	time to convert.
731 * @offs:	which offset to use
732 */
733ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
734{
735	ktime_t *offset = offsets[offs];
736	unsigned long seq;
737	ktime_t tconv;
738
739	do {
740		seq = read_seqcount_begin(&tk_core.seq);
741		tconv = ktime_add(tmono, *offset);
742	} while (read_seqcount_retry(&tk_core.seq, seq));
743
744	return tconv;
745}
746EXPORT_SYMBOL_GPL(ktime_mono_to_any);
747
748/**
749 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
750 */
751ktime_t ktime_get_raw(void)
752{
753	struct timekeeper *tk = &tk_core.timekeeper;
754	unsigned int seq;
755	ktime_t base;
756	s64 nsecs;
757
758	do {
759		seq = read_seqcount_begin(&tk_core.seq);
760		base = tk->tkr_raw.base;
761		nsecs = timekeeping_get_ns(&tk->tkr_raw);
762
763	} while (read_seqcount_retry(&tk_core.seq, seq));
764
765	return ktime_add_ns(base, nsecs);
766}
767EXPORT_SYMBOL_GPL(ktime_get_raw);
768
769/**
770 * ktime_get_ts64 - get the monotonic clock in timespec64 format
771 * @ts:		pointer to timespec variable
772 *
773 * The function calculates the monotonic clock from the realtime
774 * clock and the wall_to_monotonic offset and stores the result
775 * in normalized timespec64 format in the variable pointed to by @ts.
776 */
777void ktime_get_ts64(struct timespec64 *ts)
778{
779	struct timekeeper *tk = &tk_core.timekeeper;
780	struct timespec64 tomono;
781	s64 nsec;
782	unsigned int seq;
783
784	WARN_ON(timekeeping_suspended);
785
786	do {
787		seq = read_seqcount_begin(&tk_core.seq);
788		ts->tv_sec = tk->xtime_sec;
789		nsec = timekeeping_get_ns(&tk->tkr_mono);
790		tomono = tk->wall_to_monotonic;
791
792	} while (read_seqcount_retry(&tk_core.seq, seq));
793
794	ts->tv_sec += tomono.tv_sec;
795	ts->tv_nsec = 0;
796	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
797}
798EXPORT_SYMBOL_GPL(ktime_get_ts64);
799
800/**
801 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
802 *
803 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
804 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
805 * works on both 32 and 64 bit systems. On 32 bit systems the readout
806 * covers ~136 years of uptime which should be enough to prevent
807 * premature wrap arounds.
808 */
809time64_t ktime_get_seconds(void)
810{
811	struct timekeeper *tk = &tk_core.timekeeper;
812
813	WARN_ON(timekeeping_suspended);
814	return tk->ktime_sec;
815}
816EXPORT_SYMBOL_GPL(ktime_get_seconds);
817
818/**
819 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
820 *
821 * Returns the wall clock seconds since 1970. This replaces the
822 * get_seconds() interface which is not y2038 safe on 32bit systems.
823 *
824 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
825 * 32bit systems the access must be protected with the sequence
826 * counter to provide "atomic" access to the 64bit tk->xtime_sec
827 * value.
828 */
829time64_t ktime_get_real_seconds(void)
830{
831	struct timekeeper *tk = &tk_core.timekeeper;
832	time64_t seconds;
833	unsigned int seq;
834
835	if (IS_ENABLED(CONFIG_64BIT))
836		return tk->xtime_sec;
837
838	do {
839		seq = read_seqcount_begin(&tk_core.seq);
840		seconds = tk->xtime_sec;
841
842	} while (read_seqcount_retry(&tk_core.seq, seq));
843
844	return seconds;
845}
846EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
847
848#ifdef CONFIG_NTP_PPS
849
850/**
851 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
852 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
853 * @ts_real:	pointer to the timespec to be set to the time of day
854 *
855 * This function reads both the time of day and raw monotonic time at the
856 * same time atomically and stores the resulting timestamps in timespec
857 * format.
858 */
859void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
860{
861	struct timekeeper *tk = &tk_core.timekeeper;
862	unsigned long seq;
863	s64 nsecs_raw, nsecs_real;
864
865	WARN_ON_ONCE(timekeeping_suspended);
866
867	do {
868		seq = read_seqcount_begin(&tk_core.seq);
869
870		*ts_raw = timespec64_to_timespec(tk->raw_time);
871		ts_real->tv_sec = tk->xtime_sec;
872		ts_real->tv_nsec = 0;
873
874		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
875		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
876
877	} while (read_seqcount_retry(&tk_core.seq, seq));
878
879	timespec_add_ns(ts_raw, nsecs_raw);
880	timespec_add_ns(ts_real, nsecs_real);
881}
882EXPORT_SYMBOL(getnstime_raw_and_real);
883
884#endif /* CONFIG_NTP_PPS */
885
886/**
887 * do_gettimeofday - Returns the time of day in a timeval
888 * @tv:		pointer to the timeval to be set
889 *
890 * NOTE: Users should be converted to using getnstimeofday()
891 */
892void do_gettimeofday(struct timeval *tv)
893{
894	struct timespec64 now;
895
896	getnstimeofday64(&now);
897	tv->tv_sec = now.tv_sec;
898	tv->tv_usec = now.tv_nsec/1000;
899}
900EXPORT_SYMBOL(do_gettimeofday);
901
902/**
903 * do_settimeofday64 - Sets the time of day.
904 * @ts:     pointer to the timespec64 variable containing the new time
905 *
906 * Sets the time of day to the new time and update NTP and notify hrtimers
907 */
908int do_settimeofday64(const struct timespec64 *ts)
909{
910	struct timekeeper *tk = &tk_core.timekeeper;
911	struct timespec64 ts_delta, xt;
912	unsigned long flags;
913
914	if (!timespec64_valid_strict(ts))
915		return -EINVAL;
916
917	raw_spin_lock_irqsave(&timekeeper_lock, flags);
918	write_seqcount_begin(&tk_core.seq);
919
920	timekeeping_forward_now(tk);
921
922	xt = tk_xtime(tk);
923	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
924	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
925
926	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
927
928	tk_set_xtime(tk, ts);
929
930	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
931
932	write_seqcount_end(&tk_core.seq);
933	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
934
935	/* signal hrtimers about time change */
936	clock_was_set();
937
938	return 0;
939}
940EXPORT_SYMBOL(do_settimeofday64);
941
942/**
943 * timekeeping_inject_offset - Adds or subtracts from the current time.
944 * @tv:		pointer to the timespec variable containing the offset
945 *
946 * Adds or subtracts an offset value from the current time.
947 */
948int timekeeping_inject_offset(struct timespec *ts)
949{
950	struct timekeeper *tk = &tk_core.timekeeper;
951	unsigned long flags;
952	struct timespec64 ts64, tmp;
953	int ret = 0;
954
955	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
956		return -EINVAL;
957
958	ts64 = timespec_to_timespec64(*ts);
959
960	raw_spin_lock_irqsave(&timekeeper_lock, flags);
961	write_seqcount_begin(&tk_core.seq);
962
963	timekeeping_forward_now(tk);
964
965	/* Make sure the proposed value is valid */
966	tmp = timespec64_add(tk_xtime(tk),  ts64);
967	if (!timespec64_valid_strict(&tmp)) {
968		ret = -EINVAL;
969		goto error;
970	}
971
972	tk_xtime_add(tk, &ts64);
973	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
974
975error: /* even if we error out, we forwarded the time, so call update */
976	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
977
978	write_seqcount_end(&tk_core.seq);
979	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
980
981	/* signal hrtimers about time change */
982	clock_was_set();
983
984	return ret;
985}
986EXPORT_SYMBOL(timekeeping_inject_offset);
987
988
989/**
990 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
991 *
992 */
993s32 timekeeping_get_tai_offset(void)
994{
995	struct timekeeper *tk = &tk_core.timekeeper;
996	unsigned int seq;
997	s32 ret;
998
999	do {
1000		seq = read_seqcount_begin(&tk_core.seq);
1001		ret = tk->tai_offset;
1002	} while (read_seqcount_retry(&tk_core.seq, seq));
1003
1004	return ret;
1005}
1006
1007/**
1008 * __timekeeping_set_tai_offset - Lock free worker function
1009 *
1010 */
1011static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1012{
1013	tk->tai_offset = tai_offset;
1014	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1015}
1016
1017/**
1018 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1019 *
1020 */
1021void timekeeping_set_tai_offset(s32 tai_offset)
1022{
1023	struct timekeeper *tk = &tk_core.timekeeper;
1024	unsigned long flags;
1025
1026	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1027	write_seqcount_begin(&tk_core.seq);
1028	__timekeeping_set_tai_offset(tk, tai_offset);
1029	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1030	write_seqcount_end(&tk_core.seq);
1031	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1032	clock_was_set();
1033}
1034
1035/**
1036 * change_clocksource - Swaps clocksources if a new one is available
1037 *
1038 * Accumulates current time interval and initializes new clocksource
1039 */
1040static int change_clocksource(void *data)
1041{
1042	struct timekeeper *tk = &tk_core.timekeeper;
1043	struct clocksource *new, *old;
1044	unsigned long flags;
1045
1046	new = (struct clocksource *) data;
1047
1048	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1049	write_seqcount_begin(&tk_core.seq);
1050
1051	timekeeping_forward_now(tk);
1052	/*
1053	 * If the cs is in module, get a module reference. Succeeds
1054	 * for built-in code (owner == NULL) as well.
1055	 */
1056	if (try_module_get(new->owner)) {
1057		if (!new->enable || new->enable(new) == 0) {
1058			old = tk->tkr_mono.clock;
1059			tk_setup_internals(tk, new);
1060			if (old->disable)
1061				old->disable(old);
1062			module_put(old->owner);
1063		} else {
1064			module_put(new->owner);
1065		}
1066	}
1067	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1068
1069	write_seqcount_end(&tk_core.seq);
1070	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1071
1072	return 0;
1073}
1074
1075/**
1076 * timekeeping_notify - Install a new clock source
1077 * @clock:		pointer to the clock source
1078 *
1079 * This function is called from clocksource.c after a new, better clock
1080 * source has been registered. The caller holds the clocksource_mutex.
1081 */
1082int timekeeping_notify(struct clocksource *clock)
1083{
1084	struct timekeeper *tk = &tk_core.timekeeper;
1085
1086	if (tk->tkr_mono.clock == clock)
1087		return 0;
1088	stop_machine(change_clocksource, clock, NULL);
1089	tick_clock_notify();
1090	return tk->tkr_mono.clock == clock ? 0 : -1;
1091}
1092
1093/**
1094 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1095 * @ts:		pointer to the timespec64 to be set
1096 *
1097 * Returns the raw monotonic time (completely un-modified by ntp)
1098 */
1099void getrawmonotonic64(struct timespec64 *ts)
1100{
1101	struct timekeeper *tk = &tk_core.timekeeper;
1102	struct timespec64 ts64;
1103	unsigned long seq;
1104	s64 nsecs;
1105
1106	do {
1107		seq = read_seqcount_begin(&tk_core.seq);
1108		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1109		ts64 = tk->raw_time;
1110
1111	} while (read_seqcount_retry(&tk_core.seq, seq));
1112
1113	timespec64_add_ns(&ts64, nsecs);
1114	*ts = ts64;
1115}
1116EXPORT_SYMBOL(getrawmonotonic64);
1117
1118
1119/**
1120 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1121 */
1122int timekeeping_valid_for_hres(void)
1123{
1124	struct timekeeper *tk = &tk_core.timekeeper;
1125	unsigned long seq;
1126	int ret;
1127
1128	do {
1129		seq = read_seqcount_begin(&tk_core.seq);
1130
1131		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1132
1133	} while (read_seqcount_retry(&tk_core.seq, seq));
1134
1135	return ret;
1136}
1137
1138/**
1139 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1140 */
1141u64 timekeeping_max_deferment(void)
1142{
1143	struct timekeeper *tk = &tk_core.timekeeper;
1144	unsigned long seq;
1145	u64 ret;
1146
1147	do {
1148		seq = read_seqcount_begin(&tk_core.seq);
1149
1150		ret = tk->tkr_mono.clock->max_idle_ns;
1151
1152	} while (read_seqcount_retry(&tk_core.seq, seq));
1153
1154	return ret;
1155}
1156
1157/**
1158 * read_persistent_clock -  Return time from the persistent clock.
1159 *
1160 * Weak dummy function for arches that do not yet support it.
1161 * Reads the time from the battery backed persistent clock.
1162 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1163 *
1164 *  XXX - Do be sure to remove it once all arches implement it.
1165 */
1166void __weak read_persistent_clock(struct timespec *ts)
1167{
1168	ts->tv_sec = 0;
1169	ts->tv_nsec = 0;
1170}
1171
1172void __weak read_persistent_clock64(struct timespec64 *ts64)
1173{
1174	struct timespec ts;
1175
1176	read_persistent_clock(&ts);
1177	*ts64 = timespec_to_timespec64(ts);
1178}
1179
1180/**
1181 * read_boot_clock -  Return time of the system start.
1182 *
1183 * Weak dummy function for arches that do not yet support it.
1184 * Function to read the exact time the system has been started.
1185 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1186 *
1187 *  XXX - Do be sure to remove it once all arches implement it.
1188 */
1189void __weak read_boot_clock(struct timespec *ts)
1190{
1191	ts->tv_sec = 0;
1192	ts->tv_nsec = 0;
1193}
1194
1195void __weak read_boot_clock64(struct timespec64 *ts64)
1196{
1197	struct timespec ts;
1198
1199	read_boot_clock(&ts);
1200	*ts64 = timespec_to_timespec64(ts);
1201}
1202
1203/* Flag for if timekeeping_resume() has injected sleeptime */
1204static bool sleeptime_injected;
1205
1206/* Flag for if there is a persistent clock on this platform */
1207static bool persistent_clock_exists;
1208
1209/*
1210 * timekeeping_init - Initializes the clocksource and common timekeeping values
1211 */
1212void __init timekeeping_init(void)
1213{
1214	struct timekeeper *tk = &tk_core.timekeeper;
1215	struct clocksource *clock;
1216	unsigned long flags;
1217	struct timespec64 now, boot, tmp;
1218
1219	read_persistent_clock64(&now);
1220	if (!timespec64_valid_strict(&now)) {
1221		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1222			"         Check your CMOS/BIOS settings.\n");
1223		now.tv_sec = 0;
1224		now.tv_nsec = 0;
1225	} else if (now.tv_sec || now.tv_nsec)
1226		persistent_clock_exists = true;
1227
1228	read_boot_clock64(&boot);
1229	if (!timespec64_valid_strict(&boot)) {
1230		pr_warn("WARNING: Boot clock returned invalid value!\n"
1231			"         Check your CMOS/BIOS settings.\n");
1232		boot.tv_sec = 0;
1233		boot.tv_nsec = 0;
1234	}
1235
1236	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1237	write_seqcount_begin(&tk_core.seq);
1238	ntp_init();
1239
1240	clock = clocksource_default_clock();
1241	if (clock->enable)
1242		clock->enable(clock);
1243	tk_setup_internals(tk, clock);
1244
1245	tk_set_xtime(tk, &now);
1246	tk->raw_time.tv_sec = 0;
1247	tk->raw_time.tv_nsec = 0;
1248	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1249		boot = tk_xtime(tk);
1250
1251	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1252	tk_set_wall_to_mono(tk, tmp);
1253
1254	timekeeping_update(tk, TK_MIRROR);
1255
1256	write_seqcount_end(&tk_core.seq);
1257	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1258}
1259
1260/* time in seconds when suspend began for persistent clock */
1261static struct timespec64 timekeeping_suspend_time;
1262
1263/**
1264 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1265 * @delta: pointer to a timespec delta value
1266 *
1267 * Takes a timespec offset measuring a suspend interval and properly
1268 * adds the sleep offset to the timekeeping variables.
1269 */
1270static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1271					   struct timespec64 *delta)
1272{
1273	if (!timespec64_valid_strict(delta)) {
1274		printk_deferred(KERN_WARNING
1275				"__timekeeping_inject_sleeptime: Invalid "
1276				"sleep delta value!\n");
1277		return;
1278	}
1279	tk_xtime_add(tk, delta);
1280	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1281	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1282	tk_debug_account_sleep_time(delta);
1283}
1284
1285#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1286/**
1287 * We have three kinds of time sources to use for sleep time
1288 * injection, the preference order is:
1289 * 1) non-stop clocksource
1290 * 2) persistent clock (ie: RTC accessible when irqs are off)
1291 * 3) RTC
1292 *
1293 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1294 * If system has neither 1) nor 2), 3) will be used finally.
1295 *
1296 *
1297 * If timekeeping has injected sleeptime via either 1) or 2),
1298 * 3) becomes needless, so in this case we don't need to call
1299 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1300 * means.
1301 */
1302bool timekeeping_rtc_skipresume(void)
1303{
1304	return sleeptime_injected;
1305}
1306
1307/**
1308 * 1) can be determined whether to use or not only when doing
1309 * timekeeping_resume() which is invoked after rtc_suspend(),
1310 * so we can't skip rtc_suspend() surely if system has 1).
1311 *
1312 * But if system has 2), 2) will definitely be used, so in this
1313 * case we don't need to call rtc_suspend(), and this is what
1314 * timekeeping_rtc_skipsuspend() means.
1315 */
1316bool timekeeping_rtc_skipsuspend(void)
1317{
1318	return persistent_clock_exists;
1319}
1320
1321/**
1322 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1323 * @delta: pointer to a timespec64 delta value
1324 *
1325 * This hook is for architectures that cannot support read_persistent_clock64
1326 * because their RTC/persistent clock is only accessible when irqs are enabled.
1327 * and also don't have an effective nonstop clocksource.
1328 *
1329 * This function should only be called by rtc_resume(), and allows
1330 * a suspend offset to be injected into the timekeeping values.
1331 */
1332void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1333{
1334	struct timekeeper *tk = &tk_core.timekeeper;
1335	unsigned long flags;
1336
1337	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1338	write_seqcount_begin(&tk_core.seq);
1339
1340	timekeeping_forward_now(tk);
1341
1342	__timekeeping_inject_sleeptime(tk, delta);
1343
1344	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1345
1346	write_seqcount_end(&tk_core.seq);
1347	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1348
1349	/* signal hrtimers about time change */
1350	clock_was_set();
1351}
1352#endif
1353
1354/**
1355 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1356 */
1357void timekeeping_resume(void)
1358{
1359	struct timekeeper *tk = &tk_core.timekeeper;
1360	struct clocksource *clock = tk->tkr_mono.clock;
1361	unsigned long flags;
1362	struct timespec64 ts_new, ts_delta;
1363	cycle_t cycle_now, cycle_delta;
1364
1365	sleeptime_injected = false;
1366	read_persistent_clock64(&ts_new);
1367
1368	clockevents_resume();
1369	clocksource_resume();
1370
1371	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1372	write_seqcount_begin(&tk_core.seq);
1373
1374	/*
1375	 * After system resumes, we need to calculate the suspended time and
1376	 * compensate it for the OS time. There are 3 sources that could be
1377	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1378	 * device.
1379	 *
1380	 * One specific platform may have 1 or 2 or all of them, and the
1381	 * preference will be:
1382	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1383	 * The less preferred source will only be tried if there is no better
1384	 * usable source. The rtc part is handled separately in rtc core code.
1385	 */
1386	cycle_now = tk->tkr_mono.read(clock);
1387	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1388		cycle_now > tk->tkr_mono.cycle_last) {
1389		u64 num, max = ULLONG_MAX;
1390		u32 mult = clock->mult;
1391		u32 shift = clock->shift;
1392		s64 nsec = 0;
1393
1394		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1395						tk->tkr_mono.mask);
1396
1397		/*
1398		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1399		 * suspended time is too long. In that case we need do the
1400		 * 64 bits math carefully
1401		 */
1402		do_div(max, mult);
1403		if (cycle_delta > max) {
1404			num = div64_u64(cycle_delta, max);
1405			nsec = (((u64) max * mult) >> shift) * num;
1406			cycle_delta -= num * max;
1407		}
1408		nsec += ((u64) cycle_delta * mult) >> shift;
1409
1410		ts_delta = ns_to_timespec64(nsec);
1411		sleeptime_injected = true;
1412	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1413		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1414		sleeptime_injected = true;
1415	}
1416
1417	if (sleeptime_injected)
1418		__timekeeping_inject_sleeptime(tk, &ts_delta);
1419
1420	/* Re-base the last cycle value */
1421	tk->tkr_mono.cycle_last = cycle_now;
1422	tk->tkr_raw.cycle_last  = cycle_now;
1423
1424	tk->ntp_error = 0;
1425	timekeeping_suspended = 0;
1426	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1427	write_seqcount_end(&tk_core.seq);
1428	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1429
1430	touch_softlockup_watchdog();
1431
1432	tick_resume();
1433	hrtimers_resume();
1434}
1435
1436int timekeeping_suspend(void)
1437{
1438	struct timekeeper *tk = &tk_core.timekeeper;
1439	unsigned long flags;
1440	struct timespec64		delta, delta_delta;
1441	static struct timespec64	old_delta;
1442
1443	read_persistent_clock64(&timekeeping_suspend_time);
1444
1445	/*
1446	 * On some systems the persistent_clock can not be detected at
1447	 * timekeeping_init by its return value, so if we see a valid
1448	 * value returned, update the persistent_clock_exists flag.
1449	 */
1450	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1451		persistent_clock_exists = true;
1452
1453	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1454	write_seqcount_begin(&tk_core.seq);
1455	timekeeping_forward_now(tk);
1456	timekeeping_suspended = 1;
1457
1458	if (persistent_clock_exists) {
1459		/*
1460		 * To avoid drift caused by repeated suspend/resumes,
1461		 * which each can add ~1 second drift error,
1462		 * try to compensate so the difference in system time
1463		 * and persistent_clock time stays close to constant.
1464		 */
1465		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1466		delta_delta = timespec64_sub(delta, old_delta);
1467		if (abs(delta_delta.tv_sec) >= 2) {
1468			/*
1469			 * if delta_delta is too large, assume time correction
1470			 * has occurred and set old_delta to the current delta.
1471			 */
1472			old_delta = delta;
1473		} else {
1474			/* Otherwise try to adjust old_system to compensate */
1475			timekeeping_suspend_time =
1476				timespec64_add(timekeeping_suspend_time, delta_delta);
1477		}
1478	}
1479
1480	timekeeping_update(tk, TK_MIRROR);
1481	halt_fast_timekeeper(tk);
1482	write_seqcount_end(&tk_core.seq);
1483	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1484
1485	tick_suspend();
1486	clocksource_suspend();
1487	clockevents_suspend();
1488
1489	return 0;
1490}
1491
1492/* sysfs resume/suspend bits for timekeeping */
1493static struct syscore_ops timekeeping_syscore_ops = {
1494	.resume		= timekeeping_resume,
1495	.suspend	= timekeeping_suspend,
1496};
1497
1498static int __init timekeeping_init_ops(void)
1499{
1500	register_syscore_ops(&timekeeping_syscore_ops);
1501	return 0;
1502}
1503device_initcall(timekeeping_init_ops);
1504
1505/*
1506 * Apply a multiplier adjustment to the timekeeper
1507 */
1508static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1509							 s64 offset,
1510							 bool negative,
1511							 int adj_scale)
1512{
1513	s64 interval = tk->cycle_interval;
1514	s32 mult_adj = 1;
1515
1516	if (negative) {
1517		mult_adj = -mult_adj;
1518		interval = -interval;
1519		offset  = -offset;
1520	}
1521	mult_adj <<= adj_scale;
1522	interval <<= adj_scale;
1523	offset <<= adj_scale;
1524
1525	/*
1526	 * So the following can be confusing.
1527	 *
1528	 * To keep things simple, lets assume mult_adj == 1 for now.
1529	 *
1530	 * When mult_adj != 1, remember that the interval and offset values
1531	 * have been appropriately scaled so the math is the same.
1532	 *
1533	 * The basic idea here is that we're increasing the multiplier
1534	 * by one, this causes the xtime_interval to be incremented by
1535	 * one cycle_interval. This is because:
1536	 *	xtime_interval = cycle_interval * mult
1537	 * So if mult is being incremented by one:
1538	 *	xtime_interval = cycle_interval * (mult + 1)
1539	 * Its the same as:
1540	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1541	 * Which can be shortened to:
1542	 *	xtime_interval += cycle_interval
1543	 *
1544	 * So offset stores the non-accumulated cycles. Thus the current
1545	 * time (in shifted nanoseconds) is:
1546	 *	now = (offset * adj) + xtime_nsec
1547	 * Now, even though we're adjusting the clock frequency, we have
1548	 * to keep time consistent. In other words, we can't jump back
1549	 * in time, and we also want to avoid jumping forward in time.
1550	 *
1551	 * So given the same offset value, we need the time to be the same
1552	 * both before and after the freq adjustment.
1553	 *	now = (offset * adj_1) + xtime_nsec_1
1554	 *	now = (offset * adj_2) + xtime_nsec_2
1555	 * So:
1556	 *	(offset * adj_1) + xtime_nsec_1 =
1557	 *		(offset * adj_2) + xtime_nsec_2
1558	 * And we know:
1559	 *	adj_2 = adj_1 + 1
1560	 * So:
1561	 *	(offset * adj_1) + xtime_nsec_1 =
1562	 *		(offset * (adj_1+1)) + xtime_nsec_2
1563	 *	(offset * adj_1) + xtime_nsec_1 =
1564	 *		(offset * adj_1) + offset + xtime_nsec_2
1565	 * Canceling the sides:
1566	 *	xtime_nsec_1 = offset + xtime_nsec_2
1567	 * Which gives us:
1568	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1569	 * Which simplfies to:
1570	 *	xtime_nsec -= offset
1571	 *
1572	 * XXX - TODO: Doc ntp_error calculation.
1573	 */
1574	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1575		/* NTP adjustment caused clocksource mult overflow */
1576		WARN_ON_ONCE(1);
1577		return;
1578	}
1579
1580	tk->tkr_mono.mult += mult_adj;
1581	tk->xtime_interval += interval;
1582	tk->tkr_mono.xtime_nsec -= offset;
1583	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1584}
1585
1586/*
1587 * Calculate the multiplier adjustment needed to match the frequency
1588 * specified by NTP
1589 */
1590static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1591							s64 offset)
1592{
1593	s64 interval = tk->cycle_interval;
1594	s64 xinterval = tk->xtime_interval;
1595	s64 tick_error;
1596	bool negative;
1597	u32 adj;
1598
1599	/* Remove any current error adj from freq calculation */
1600	if (tk->ntp_err_mult)
1601		xinterval -= tk->cycle_interval;
1602
1603	tk->ntp_tick = ntp_tick_length();
1604
1605	/* Calculate current error per tick */
1606	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1607	tick_error -= (xinterval + tk->xtime_remainder);
1608
1609	/* Don't worry about correcting it if its small */
1610	if (likely((tick_error >= 0) && (tick_error <= interval)))
1611		return;
1612
1613	/* preserve the direction of correction */
1614	negative = (tick_error < 0);
1615
1616	/* Sort out the magnitude of the correction */
1617	tick_error = abs64(tick_error);
1618	for (adj = 0; tick_error > interval; adj++)
1619		tick_error >>= 1;
1620
1621	/* scale the corrections */
1622	timekeeping_apply_adjustment(tk, offset, negative, adj);
1623}
1624
1625/*
1626 * Adjust the timekeeper's multiplier to the correct frequency
1627 * and also to reduce the accumulated error value.
1628 */
1629static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1630{
1631	/* Correct for the current frequency error */
1632	timekeeping_freqadjust(tk, offset);
1633
1634	/* Next make a small adjustment to fix any cumulative error */
1635	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1636		tk->ntp_err_mult = 1;
1637		timekeeping_apply_adjustment(tk, offset, 0, 0);
1638	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1639		/* Undo any existing error adjustment */
1640		timekeeping_apply_adjustment(tk, offset, 1, 0);
1641		tk->ntp_err_mult = 0;
1642	}
1643
1644	if (unlikely(tk->tkr_mono.clock->maxadj &&
1645		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1646			> tk->tkr_mono.clock->maxadj))) {
1647		printk_once(KERN_WARNING
1648			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1649			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1650			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1651	}
1652
1653	/*
1654	 * It may be possible that when we entered this function, xtime_nsec
1655	 * was very small.  Further, if we're slightly speeding the clocksource
1656	 * in the code above, its possible the required corrective factor to
1657	 * xtime_nsec could cause it to underflow.
1658	 *
1659	 * Now, since we already accumulated the second, cannot simply roll
1660	 * the accumulated second back, since the NTP subsystem has been
1661	 * notified via second_overflow. So instead we push xtime_nsec forward
1662	 * by the amount we underflowed, and add that amount into the error.
1663	 *
1664	 * We'll correct this error next time through this function, when
1665	 * xtime_nsec is not as small.
1666	 */
1667	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1668		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1669		tk->tkr_mono.xtime_nsec = 0;
1670		tk->ntp_error += neg << tk->ntp_error_shift;
1671	}
1672}
1673
1674/**
1675 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1676 *
1677 * Helper function that accumulates a the nsecs greater then a second
1678 * from the xtime_nsec field to the xtime_secs field.
1679 * It also calls into the NTP code to handle leapsecond processing.
1680 *
1681 */
1682static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1683{
1684	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1685	unsigned int clock_set = 0;
1686
1687	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1688		int leap;
1689
1690		tk->tkr_mono.xtime_nsec -= nsecps;
1691		tk->xtime_sec++;
1692
1693		/* Figure out if its a leap sec and apply if needed */
1694		leap = second_overflow(tk->xtime_sec);
1695		if (unlikely(leap)) {
1696			struct timespec64 ts;
1697
1698			tk->xtime_sec += leap;
1699
1700			ts.tv_sec = leap;
1701			ts.tv_nsec = 0;
1702			tk_set_wall_to_mono(tk,
1703				timespec64_sub(tk->wall_to_monotonic, ts));
1704
1705			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1706
1707			clock_set = TK_CLOCK_WAS_SET;
1708		}
1709	}
1710	return clock_set;
1711}
1712
1713/**
1714 * logarithmic_accumulation - shifted accumulation of cycles
1715 *
1716 * This functions accumulates a shifted interval of cycles into
1717 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1718 * loop.
1719 *
1720 * Returns the unconsumed cycles.
1721 */
1722static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1723						u32 shift,
1724						unsigned int *clock_set)
1725{
1726	cycle_t interval = tk->cycle_interval << shift;
1727	u64 raw_nsecs;
1728
1729	/* If the offset is smaller then a shifted interval, do nothing */
1730	if (offset < interval)
1731		return offset;
1732
1733	/* Accumulate one shifted interval */
1734	offset -= interval;
1735	tk->tkr_mono.cycle_last += interval;
1736	tk->tkr_raw.cycle_last  += interval;
1737
1738	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1739	*clock_set |= accumulate_nsecs_to_secs(tk);
1740
1741	/* Accumulate raw time */
1742	raw_nsecs = (u64)tk->raw_interval << shift;
1743	raw_nsecs += tk->raw_time.tv_nsec;
1744	if (raw_nsecs >= NSEC_PER_SEC) {
1745		u64 raw_secs = raw_nsecs;
1746		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1747		tk->raw_time.tv_sec += raw_secs;
1748	}
1749	tk->raw_time.tv_nsec = raw_nsecs;
1750
1751	/* Accumulate error between NTP and clock interval */
1752	tk->ntp_error += tk->ntp_tick << shift;
1753	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1754						(tk->ntp_error_shift + shift);
1755
1756	return offset;
1757}
1758
1759/**
1760 * update_wall_time - Uses the current clocksource to increment the wall time
1761 *
1762 */
1763void update_wall_time(void)
1764{
1765	struct timekeeper *real_tk = &tk_core.timekeeper;
1766	struct timekeeper *tk = &shadow_timekeeper;
1767	cycle_t offset;
1768	int shift = 0, maxshift;
1769	unsigned int clock_set = 0;
1770	unsigned long flags;
1771
1772	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1773
1774	/* Make sure we're fully resumed: */
1775	if (unlikely(timekeeping_suspended))
1776		goto out;
1777
1778#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1779	offset = real_tk->cycle_interval;
1780#else
1781	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1782				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1783#endif
1784
1785	/* Check if there's really nothing to do */
1786	if (offset < real_tk->cycle_interval)
1787		goto out;
1788
1789	/* Do some additional sanity checking */
1790	timekeeping_check_update(real_tk, offset);
1791
1792	/*
1793	 * With NO_HZ we may have to accumulate many cycle_intervals
1794	 * (think "ticks") worth of time at once. To do this efficiently,
1795	 * we calculate the largest doubling multiple of cycle_intervals
1796	 * that is smaller than the offset.  We then accumulate that
1797	 * chunk in one go, and then try to consume the next smaller
1798	 * doubled multiple.
1799	 */
1800	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1801	shift = max(0, shift);
1802	/* Bound shift to one less than what overflows tick_length */
1803	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1804	shift = min(shift, maxshift);
1805	while (offset >= tk->cycle_interval) {
1806		offset = logarithmic_accumulation(tk, offset, shift,
1807							&clock_set);
1808		if (offset < tk->cycle_interval<<shift)
1809			shift--;
1810	}
1811
1812	/* correct the clock when NTP error is too big */
1813	timekeeping_adjust(tk, offset);
1814
1815	/*
1816	 * XXX This can be killed once everyone converts
1817	 * to the new update_vsyscall.
1818	 */
1819	old_vsyscall_fixup(tk);
1820
1821	/*
1822	 * Finally, make sure that after the rounding
1823	 * xtime_nsec isn't larger than NSEC_PER_SEC
1824	 */
1825	clock_set |= accumulate_nsecs_to_secs(tk);
1826
1827	write_seqcount_begin(&tk_core.seq);
1828	/*
1829	 * Update the real timekeeper.
1830	 *
1831	 * We could avoid this memcpy by switching pointers, but that
1832	 * requires changes to all other timekeeper usage sites as
1833	 * well, i.e. move the timekeeper pointer getter into the
1834	 * spinlocked/seqcount protected sections. And we trade this
1835	 * memcpy under the tk_core.seq against one before we start
1836	 * updating.
1837	 */
1838	memcpy(real_tk, tk, sizeof(*tk));
1839	timekeeping_update(real_tk, clock_set);
1840	write_seqcount_end(&tk_core.seq);
1841out:
1842	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1843	if (clock_set)
1844		/* Have to call _delayed version, since in irq context*/
1845		clock_was_set_delayed();
1846}
1847
1848/**
1849 * getboottime64 - Return the real time of system boot.
1850 * @ts:		pointer to the timespec64 to be set
1851 *
1852 * Returns the wall-time of boot in a timespec64.
1853 *
1854 * This is based on the wall_to_monotonic offset and the total suspend
1855 * time. Calls to settimeofday will affect the value returned (which
1856 * basically means that however wrong your real time clock is at boot time,
1857 * you get the right time here).
1858 */
1859void getboottime64(struct timespec64 *ts)
1860{
1861	struct timekeeper *tk = &tk_core.timekeeper;
1862	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1863
1864	*ts = ktime_to_timespec64(t);
1865}
1866EXPORT_SYMBOL_GPL(getboottime64);
1867
1868unsigned long get_seconds(void)
1869{
1870	struct timekeeper *tk = &tk_core.timekeeper;
1871
1872	return tk->xtime_sec;
1873}
1874EXPORT_SYMBOL(get_seconds);
1875
1876struct timespec __current_kernel_time(void)
1877{
1878	struct timekeeper *tk = &tk_core.timekeeper;
1879
1880	return timespec64_to_timespec(tk_xtime(tk));
1881}
1882
1883struct timespec current_kernel_time(void)
1884{
1885	struct timekeeper *tk = &tk_core.timekeeper;
1886	struct timespec64 now;
1887	unsigned long seq;
1888
1889	do {
1890		seq = read_seqcount_begin(&tk_core.seq);
1891
1892		now = tk_xtime(tk);
1893	} while (read_seqcount_retry(&tk_core.seq, seq));
1894
1895	return timespec64_to_timespec(now);
1896}
1897EXPORT_SYMBOL(current_kernel_time);
1898
1899struct timespec64 get_monotonic_coarse64(void)
1900{
1901	struct timekeeper *tk = &tk_core.timekeeper;
1902	struct timespec64 now, mono;
1903	unsigned long seq;
1904
1905	do {
1906		seq = read_seqcount_begin(&tk_core.seq);
1907
1908		now = tk_xtime(tk);
1909		mono = tk->wall_to_monotonic;
1910	} while (read_seqcount_retry(&tk_core.seq, seq));
1911
1912	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1913				now.tv_nsec + mono.tv_nsec);
1914
1915	return now;
1916}
1917
1918/*
1919 * Must hold jiffies_lock
1920 */
1921void do_timer(unsigned long ticks)
1922{
1923	jiffies_64 += ticks;
1924	calc_global_load(ticks);
1925}
1926
1927/**
1928 * ktime_get_update_offsets_tick - hrtimer helper
1929 * @offs_real:	pointer to storage for monotonic -> realtime offset
1930 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1931 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1932 *
1933 * Returns monotonic time at last tick and various offsets
1934 */
1935ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1936							ktime_t *offs_tai)
1937{
1938	struct timekeeper *tk = &tk_core.timekeeper;
1939	unsigned int seq;
1940	ktime_t base;
1941	u64 nsecs;
1942
1943	do {
1944		seq = read_seqcount_begin(&tk_core.seq);
1945
1946		base = tk->tkr_mono.base;
1947		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1948
1949		*offs_real = tk->offs_real;
1950		*offs_boot = tk->offs_boot;
1951		*offs_tai = tk->offs_tai;
1952	} while (read_seqcount_retry(&tk_core.seq, seq));
1953
1954	return ktime_add_ns(base, nsecs);
1955}
1956
1957#ifdef CONFIG_HIGH_RES_TIMERS
1958/**
1959 * ktime_get_update_offsets_now - hrtimer helper
1960 * @offs_real:	pointer to storage for monotonic -> realtime offset
1961 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1962 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1963 *
1964 * Returns current monotonic time and updates the offsets
1965 * Called from hrtimer_interrupt() or retrigger_next_event()
1966 */
1967ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1968							ktime_t *offs_tai)
1969{
1970	struct timekeeper *tk = &tk_core.timekeeper;
1971	unsigned int seq;
1972	ktime_t base;
1973	u64 nsecs;
1974
1975	do {
1976		seq = read_seqcount_begin(&tk_core.seq);
1977
1978		base = tk->tkr_mono.base;
1979		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1980
1981		*offs_real = tk->offs_real;
1982		*offs_boot = tk->offs_boot;
1983		*offs_tai = tk->offs_tai;
1984	} while (read_seqcount_retry(&tk_core.seq, seq));
1985
1986	return ktime_add_ns(base, nsecs);
1987}
1988#endif
1989
1990/**
1991 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1992 */
1993int do_adjtimex(struct timex *txc)
1994{
1995	struct timekeeper *tk = &tk_core.timekeeper;
1996	unsigned long flags;
1997	struct timespec64 ts;
1998	s32 orig_tai, tai;
1999	int ret;
2000
2001	/* Validate the data before disabling interrupts */
2002	ret = ntp_validate_timex(txc);
2003	if (ret)
2004		return ret;
2005
2006	if (txc->modes & ADJ_SETOFFSET) {
2007		struct timespec delta;
2008		delta.tv_sec  = txc->time.tv_sec;
2009		delta.tv_nsec = txc->time.tv_usec;
2010		if (!(txc->modes & ADJ_NANO))
2011			delta.tv_nsec *= 1000;
2012		ret = timekeeping_inject_offset(&delta);
2013		if (ret)
2014			return ret;
2015	}
2016
2017	getnstimeofday64(&ts);
2018
2019	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2020	write_seqcount_begin(&tk_core.seq);
2021
2022	orig_tai = tai = tk->tai_offset;
2023	ret = __do_adjtimex(txc, &ts, &tai);
2024
2025	if (tai != orig_tai) {
2026		__timekeeping_set_tai_offset(tk, tai);
2027		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2028	}
2029	write_seqcount_end(&tk_core.seq);
2030	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2031
2032	if (tai != orig_tai)
2033		clock_was_set();
2034
2035	ntp_notify_cmos_timer();
2036
2037	return ret;
2038}
2039
2040#ifdef CONFIG_NTP_PPS
2041/**
2042 * hardpps() - Accessor function to NTP __hardpps function
2043 */
2044void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2045{
2046	unsigned long flags;
2047
2048	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2049	write_seqcount_begin(&tk_core.seq);
2050
2051	__hardpps(phase_ts, raw_ts);
2052
2053	write_seqcount_end(&tk_core.seq);
2054	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2055}
2056EXPORT_SYMBOL(hardpps);
2057#endif
2058
2059/**
2060 * xtime_update() - advances the timekeeping infrastructure
2061 * @ticks:	number of ticks, that have elapsed since the last call.
2062 *
2063 * Must be called with interrupts disabled.
2064 */
2065void xtime_update(unsigned long ticks)
2066{
2067	write_seqlock(&jiffies_lock);
2068	do_timer(ticks);
2069	write_sequnlock(&jiffies_lock);
2070	update_wall_time();
2071}
2072