1/*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 *	David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
13 *			unnecessary i-cache flushing.
14 * 04/07/.. ak		Better overflow handling. Assorted fixes.
15 * 05/09/10 linville	Add support for syncing ranges, support syncing for
16 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb	Add highmem support
18 */
19
20#include <linux/cache.h>
21#include <linux/dma-mapping.h>
22#include <linux/mm.h>
23#include <linux/export.h>
24#include <linux/spinlock.h>
25#include <linux/string.h>
26#include <linux/swiotlb.h>
27#include <linux/pfn.h>
28#include <linux/types.h>
29#include <linux/ctype.h>
30#include <linux/highmem.h>
31#include <linux/gfp.h>
32
33#include <asm/io.h>
34#include <asm/dma.h>
35#include <asm/scatterlist.h>
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
39#include <linux/iommu-helper.h>
40
41#define CREATE_TRACE_POINTS
42#include <trace/events/swiotlb.h>
43
44#define OFFSET(val,align) ((unsigned long)	\
45	                   ( (val) & ( (align) - 1)))
46
47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
48
49/*
50 * Minimum IO TLB size to bother booting with.  Systems with mainly
51 * 64bit capable cards will only lightly use the swiotlb.  If we can't
52 * allocate a contiguous 1MB, we're probably in trouble anyway.
53 */
54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
55
56int swiotlb_force;
57
58/*
59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
61 * API.
62 */
63static phys_addr_t io_tlb_start, io_tlb_end;
64
65/*
66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
67 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
68 */
69static unsigned long io_tlb_nslabs;
70
71/*
72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
73 */
74static unsigned long io_tlb_overflow = 32*1024;
75
76static phys_addr_t io_tlb_overflow_buffer;
77
78/*
79 * This is a free list describing the number of free entries available from
80 * each index
81 */
82static unsigned int *io_tlb_list;
83static unsigned int io_tlb_index;
84
85/*
86 * We need to save away the original address corresponding to a mapped entry
87 * for the sync operations.
88 */
89#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
90static phys_addr_t *io_tlb_orig_addr;
91
92/*
93 * Protect the above data structures in the map and unmap calls
94 */
95static DEFINE_SPINLOCK(io_tlb_lock);
96
97static int late_alloc;
98
99static int __init
100setup_io_tlb_npages(char *str)
101{
102	if (isdigit(*str)) {
103		io_tlb_nslabs = simple_strtoul(str, &str, 0);
104		/* avoid tail segment of size < IO_TLB_SEGSIZE */
105		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
106	}
107	if (*str == ',')
108		++str;
109	if (!strcmp(str, "force"))
110		swiotlb_force = 1;
111
112	return 0;
113}
114early_param("swiotlb", setup_io_tlb_npages);
115/* make io_tlb_overflow tunable too? */
116
117unsigned long swiotlb_nr_tbl(void)
118{
119	return io_tlb_nslabs;
120}
121EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
122
123/* default to 64MB */
124#define IO_TLB_DEFAULT_SIZE (64UL<<20)
125unsigned long swiotlb_size_or_default(void)
126{
127	unsigned long size;
128
129	size = io_tlb_nslabs << IO_TLB_SHIFT;
130
131	return size ? size : (IO_TLB_DEFAULT_SIZE);
132}
133
134/* Note that this doesn't work with highmem page */
135static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
136				      volatile void *address)
137{
138	return phys_to_dma(hwdev, virt_to_phys(address));
139}
140
141static bool no_iotlb_memory;
142
143void swiotlb_print_info(void)
144{
145	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
146	unsigned char *vstart, *vend;
147
148	if (no_iotlb_memory) {
149		pr_warn("software IO TLB: No low mem\n");
150		return;
151	}
152
153	vstart = phys_to_virt(io_tlb_start);
154	vend = phys_to_virt(io_tlb_end);
155
156	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
157	       (unsigned long long)io_tlb_start,
158	       (unsigned long long)io_tlb_end,
159	       bytes >> 20, vstart, vend - 1);
160}
161
162int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
163{
164	void *v_overflow_buffer;
165	unsigned long i, bytes;
166
167	bytes = nslabs << IO_TLB_SHIFT;
168
169	io_tlb_nslabs = nslabs;
170	io_tlb_start = __pa(tlb);
171	io_tlb_end = io_tlb_start + bytes;
172
173	/*
174	 * Get the overflow emergency buffer
175	 */
176	v_overflow_buffer = memblock_virt_alloc_low_nopanic(
177						PAGE_ALIGN(io_tlb_overflow),
178						PAGE_SIZE);
179	if (!v_overflow_buffer)
180		return -ENOMEM;
181
182	io_tlb_overflow_buffer = __pa(v_overflow_buffer);
183
184	/*
185	 * Allocate and initialize the free list array.  This array is used
186	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
187	 * between io_tlb_start and io_tlb_end.
188	 */
189	io_tlb_list = memblock_virt_alloc(
190				PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
191				PAGE_SIZE);
192	io_tlb_orig_addr = memblock_virt_alloc(
193				PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
194				PAGE_SIZE);
195	for (i = 0; i < io_tlb_nslabs; i++) {
196		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
197		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
198	}
199	io_tlb_index = 0;
200
201	if (verbose)
202		swiotlb_print_info();
203
204	return 0;
205}
206
207/*
208 * Statically reserve bounce buffer space and initialize bounce buffer data
209 * structures for the software IO TLB used to implement the DMA API.
210 */
211void  __init
212swiotlb_init(int verbose)
213{
214	size_t default_size = IO_TLB_DEFAULT_SIZE;
215	unsigned char *vstart;
216	unsigned long bytes;
217
218	if (!io_tlb_nslabs) {
219		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
220		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
221	}
222
223	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
224
225	/* Get IO TLB memory from the low pages */
226	vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
227	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
228		return;
229
230	if (io_tlb_start)
231		memblock_free_early(io_tlb_start,
232				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
233	pr_warn("Cannot allocate SWIOTLB buffer");
234	no_iotlb_memory = true;
235}
236
237/*
238 * Systems with larger DMA zones (those that don't support ISA) can
239 * initialize the swiotlb later using the slab allocator if needed.
240 * This should be just like above, but with some error catching.
241 */
242int
243swiotlb_late_init_with_default_size(size_t default_size)
244{
245	unsigned long bytes, req_nslabs = io_tlb_nslabs;
246	unsigned char *vstart = NULL;
247	unsigned int order;
248	int rc = 0;
249
250	if (!io_tlb_nslabs) {
251		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
252		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
253	}
254
255	/*
256	 * Get IO TLB memory from the low pages
257	 */
258	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
259	io_tlb_nslabs = SLABS_PER_PAGE << order;
260	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
261
262	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
263		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
264						  order);
265		if (vstart)
266			break;
267		order--;
268	}
269
270	if (!vstart) {
271		io_tlb_nslabs = req_nslabs;
272		return -ENOMEM;
273	}
274	if (order != get_order(bytes)) {
275		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
276		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
277		io_tlb_nslabs = SLABS_PER_PAGE << order;
278	}
279	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
280	if (rc)
281		free_pages((unsigned long)vstart, order);
282	return rc;
283}
284
285int
286swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
287{
288	unsigned long i, bytes;
289	unsigned char *v_overflow_buffer;
290
291	bytes = nslabs << IO_TLB_SHIFT;
292
293	io_tlb_nslabs = nslabs;
294	io_tlb_start = virt_to_phys(tlb);
295	io_tlb_end = io_tlb_start + bytes;
296
297	memset(tlb, 0, bytes);
298
299	/*
300	 * Get the overflow emergency buffer
301	 */
302	v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
303						     get_order(io_tlb_overflow));
304	if (!v_overflow_buffer)
305		goto cleanup2;
306
307	io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
308
309	/*
310	 * Allocate and initialize the free list array.  This array is used
311	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
312	 * between io_tlb_start and io_tlb_end.
313	 */
314	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
315	                              get_order(io_tlb_nslabs * sizeof(int)));
316	if (!io_tlb_list)
317		goto cleanup3;
318
319	io_tlb_orig_addr = (phys_addr_t *)
320		__get_free_pages(GFP_KERNEL,
321				 get_order(io_tlb_nslabs *
322					   sizeof(phys_addr_t)));
323	if (!io_tlb_orig_addr)
324		goto cleanup4;
325
326	for (i = 0; i < io_tlb_nslabs; i++) {
327		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
328		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
329	}
330	io_tlb_index = 0;
331
332	swiotlb_print_info();
333
334	late_alloc = 1;
335
336	return 0;
337
338cleanup4:
339	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
340	                                                 sizeof(int)));
341	io_tlb_list = NULL;
342cleanup3:
343	free_pages((unsigned long)v_overflow_buffer,
344		   get_order(io_tlb_overflow));
345	io_tlb_overflow_buffer = 0;
346cleanup2:
347	io_tlb_end = 0;
348	io_tlb_start = 0;
349	io_tlb_nslabs = 0;
350	return -ENOMEM;
351}
352
353void __init swiotlb_free(void)
354{
355	if (!io_tlb_orig_addr)
356		return;
357
358	if (late_alloc) {
359		free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
360			   get_order(io_tlb_overflow));
361		free_pages((unsigned long)io_tlb_orig_addr,
362			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
363		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
364								 sizeof(int)));
365		free_pages((unsigned long)phys_to_virt(io_tlb_start),
366			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
367	} else {
368		memblock_free_late(io_tlb_overflow_buffer,
369				   PAGE_ALIGN(io_tlb_overflow));
370		memblock_free_late(__pa(io_tlb_orig_addr),
371				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
372		memblock_free_late(__pa(io_tlb_list),
373				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
374		memblock_free_late(io_tlb_start,
375				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
376	}
377	io_tlb_nslabs = 0;
378}
379
380int is_swiotlb_buffer(phys_addr_t paddr)
381{
382	return paddr >= io_tlb_start && paddr < io_tlb_end;
383}
384
385/*
386 * Bounce: copy the swiotlb buffer back to the original dma location
387 */
388static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
389			   size_t size, enum dma_data_direction dir)
390{
391	unsigned long pfn = PFN_DOWN(orig_addr);
392	unsigned char *vaddr = phys_to_virt(tlb_addr);
393
394	if (PageHighMem(pfn_to_page(pfn))) {
395		/* The buffer does not have a mapping.  Map it in and copy */
396		unsigned int offset = orig_addr & ~PAGE_MASK;
397		char *buffer;
398		unsigned int sz = 0;
399		unsigned long flags;
400
401		while (size) {
402			sz = min_t(size_t, PAGE_SIZE - offset, size);
403
404			local_irq_save(flags);
405			buffer = kmap_atomic(pfn_to_page(pfn));
406			if (dir == DMA_TO_DEVICE)
407				memcpy(vaddr, buffer + offset, sz);
408			else
409				memcpy(buffer + offset, vaddr, sz);
410			kunmap_atomic(buffer);
411			local_irq_restore(flags);
412
413			size -= sz;
414			pfn++;
415			vaddr += sz;
416			offset = 0;
417		}
418	} else if (dir == DMA_TO_DEVICE) {
419		memcpy(vaddr, phys_to_virt(orig_addr), size);
420	} else {
421		memcpy(phys_to_virt(orig_addr), vaddr, size);
422	}
423}
424
425phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
426				   dma_addr_t tbl_dma_addr,
427				   phys_addr_t orig_addr, size_t size,
428				   enum dma_data_direction dir)
429{
430	unsigned long flags;
431	phys_addr_t tlb_addr;
432	unsigned int nslots, stride, index, wrap;
433	int i;
434	unsigned long mask;
435	unsigned long offset_slots;
436	unsigned long max_slots;
437
438	if (no_iotlb_memory)
439		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
440
441	mask = dma_get_seg_boundary(hwdev);
442
443	tbl_dma_addr &= mask;
444
445	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
446
447	/*
448 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
449 	 */
450	max_slots = mask + 1
451		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
452		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
453
454	/*
455	 * For mappings greater than a page, we limit the stride (and
456	 * hence alignment) to a page size.
457	 */
458	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
459	if (size > PAGE_SIZE)
460		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
461	else
462		stride = 1;
463
464	BUG_ON(!nslots);
465
466	/*
467	 * Find suitable number of IO TLB entries size that will fit this
468	 * request and allocate a buffer from that IO TLB pool.
469	 */
470	spin_lock_irqsave(&io_tlb_lock, flags);
471	index = ALIGN(io_tlb_index, stride);
472	if (index >= io_tlb_nslabs)
473		index = 0;
474	wrap = index;
475
476	do {
477		while (iommu_is_span_boundary(index, nslots, offset_slots,
478					      max_slots)) {
479			index += stride;
480			if (index >= io_tlb_nslabs)
481				index = 0;
482			if (index == wrap)
483				goto not_found;
484		}
485
486		/*
487		 * If we find a slot that indicates we have 'nslots' number of
488		 * contiguous buffers, we allocate the buffers from that slot
489		 * and mark the entries as '0' indicating unavailable.
490		 */
491		if (io_tlb_list[index] >= nslots) {
492			int count = 0;
493
494			for (i = index; i < (int) (index + nslots); i++)
495				io_tlb_list[i] = 0;
496			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
497				io_tlb_list[i] = ++count;
498			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
499
500			/*
501			 * Update the indices to avoid searching in the next
502			 * round.
503			 */
504			io_tlb_index = ((index + nslots) < io_tlb_nslabs
505					? (index + nslots) : 0);
506
507			goto found;
508		}
509		index += stride;
510		if (index >= io_tlb_nslabs)
511			index = 0;
512	} while (index != wrap);
513
514not_found:
515	spin_unlock_irqrestore(&io_tlb_lock, flags);
516	if (printk_ratelimit())
517		dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
518	return SWIOTLB_MAP_ERROR;
519found:
520	spin_unlock_irqrestore(&io_tlb_lock, flags);
521
522	/*
523	 * Save away the mapping from the original address to the DMA address.
524	 * This is needed when we sync the memory.  Then we sync the buffer if
525	 * needed.
526	 */
527	for (i = 0; i < nslots; i++)
528		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
529	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
530		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
531
532	return tlb_addr;
533}
534EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
535
536/*
537 * Allocates bounce buffer and returns its kernel virtual address.
538 */
539
540static phys_addr_t
541map_single(struct device *hwdev, phys_addr_t phys, size_t size,
542	   enum dma_data_direction dir)
543{
544	dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
545
546	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
547}
548
549/*
550 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
551 */
552void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
553			      size_t size, enum dma_data_direction dir)
554{
555	unsigned long flags;
556	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
557	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
558	phys_addr_t orig_addr = io_tlb_orig_addr[index];
559
560	/*
561	 * First, sync the memory before unmapping the entry
562	 */
563	if (orig_addr != INVALID_PHYS_ADDR &&
564	    ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
565		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
566
567	/*
568	 * Return the buffer to the free list by setting the corresponding
569	 * entries to indicate the number of contiguous entries available.
570	 * While returning the entries to the free list, we merge the entries
571	 * with slots below and above the pool being returned.
572	 */
573	spin_lock_irqsave(&io_tlb_lock, flags);
574	{
575		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
576			 io_tlb_list[index + nslots] : 0);
577		/*
578		 * Step 1: return the slots to the free list, merging the
579		 * slots with superceeding slots
580		 */
581		for (i = index + nslots - 1; i >= index; i--) {
582			io_tlb_list[i] = ++count;
583			io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
584		}
585		/*
586		 * Step 2: merge the returned slots with the preceding slots,
587		 * if available (non zero)
588		 */
589		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
590			io_tlb_list[i] = ++count;
591	}
592	spin_unlock_irqrestore(&io_tlb_lock, flags);
593}
594EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
595
596void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
597			     size_t size, enum dma_data_direction dir,
598			     enum dma_sync_target target)
599{
600	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
601	phys_addr_t orig_addr = io_tlb_orig_addr[index];
602
603	if (orig_addr == INVALID_PHYS_ADDR)
604		return;
605	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
606
607	switch (target) {
608	case SYNC_FOR_CPU:
609		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
610			swiotlb_bounce(orig_addr, tlb_addr,
611				       size, DMA_FROM_DEVICE);
612		else
613			BUG_ON(dir != DMA_TO_DEVICE);
614		break;
615	case SYNC_FOR_DEVICE:
616		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
617			swiotlb_bounce(orig_addr, tlb_addr,
618				       size, DMA_TO_DEVICE);
619		else
620			BUG_ON(dir != DMA_FROM_DEVICE);
621		break;
622	default:
623		BUG();
624	}
625}
626EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
627
628void *
629swiotlb_alloc_coherent(struct device *hwdev, size_t size,
630		       dma_addr_t *dma_handle, gfp_t flags)
631{
632	dma_addr_t dev_addr;
633	void *ret;
634	int order = get_order(size);
635	u64 dma_mask = DMA_BIT_MASK(32);
636
637	if (hwdev && hwdev->coherent_dma_mask)
638		dma_mask = hwdev->coherent_dma_mask;
639
640	ret = (void *)__get_free_pages(flags, order);
641	if (ret) {
642		dev_addr = swiotlb_virt_to_bus(hwdev, ret);
643		if (dev_addr + size - 1 > dma_mask) {
644			/*
645			 * The allocated memory isn't reachable by the device.
646			 */
647			free_pages((unsigned long) ret, order);
648			ret = NULL;
649		}
650	}
651	if (!ret) {
652		/*
653		 * We are either out of memory or the device can't DMA to
654		 * GFP_DMA memory; fall back on map_single(), which
655		 * will grab memory from the lowest available address range.
656		 */
657		phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
658		if (paddr == SWIOTLB_MAP_ERROR)
659			return NULL;
660
661		ret = phys_to_virt(paddr);
662		dev_addr = phys_to_dma(hwdev, paddr);
663
664		/* Confirm address can be DMA'd by device */
665		if (dev_addr + size - 1 > dma_mask) {
666			printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
667			       (unsigned long long)dma_mask,
668			       (unsigned long long)dev_addr);
669
670			/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
671			swiotlb_tbl_unmap_single(hwdev, paddr,
672						 size, DMA_TO_DEVICE);
673			return NULL;
674		}
675	}
676
677	*dma_handle = dev_addr;
678	memset(ret, 0, size);
679
680	return ret;
681}
682EXPORT_SYMBOL(swiotlb_alloc_coherent);
683
684void
685swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
686		      dma_addr_t dev_addr)
687{
688	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
689
690	WARN_ON(irqs_disabled());
691	if (!is_swiotlb_buffer(paddr))
692		free_pages((unsigned long)vaddr, get_order(size));
693	else
694		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
695		swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
696}
697EXPORT_SYMBOL(swiotlb_free_coherent);
698
699static void
700swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
701	     int do_panic)
702{
703	/*
704	 * Ran out of IOMMU space for this operation. This is very bad.
705	 * Unfortunately the drivers cannot handle this operation properly.
706	 * unless they check for dma_mapping_error (most don't)
707	 * When the mapping is small enough return a static buffer to limit
708	 * the damage, or panic when the transfer is too big.
709	 */
710	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
711	       "device %s\n", size, dev ? dev_name(dev) : "?");
712
713	if (size <= io_tlb_overflow || !do_panic)
714		return;
715
716	if (dir == DMA_BIDIRECTIONAL)
717		panic("DMA: Random memory could be DMA accessed\n");
718	if (dir == DMA_FROM_DEVICE)
719		panic("DMA: Random memory could be DMA written\n");
720	if (dir == DMA_TO_DEVICE)
721		panic("DMA: Random memory could be DMA read\n");
722}
723
724/*
725 * Map a single buffer of the indicated size for DMA in streaming mode.  The
726 * physical address to use is returned.
727 *
728 * Once the device is given the dma address, the device owns this memory until
729 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
730 */
731dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
732			    unsigned long offset, size_t size,
733			    enum dma_data_direction dir,
734			    struct dma_attrs *attrs)
735{
736	phys_addr_t map, phys = page_to_phys(page) + offset;
737	dma_addr_t dev_addr = phys_to_dma(dev, phys);
738
739	BUG_ON(dir == DMA_NONE);
740	/*
741	 * If the address happens to be in the device's DMA window,
742	 * we can safely return the device addr and not worry about bounce
743	 * buffering it.
744	 */
745	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
746		return dev_addr;
747
748	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
749
750	/* Oh well, have to allocate and map a bounce buffer. */
751	map = map_single(dev, phys, size, dir);
752	if (map == SWIOTLB_MAP_ERROR) {
753		swiotlb_full(dev, size, dir, 1);
754		return phys_to_dma(dev, io_tlb_overflow_buffer);
755	}
756
757	dev_addr = phys_to_dma(dev, map);
758
759	/* Ensure that the address returned is DMA'ble */
760	if (!dma_capable(dev, dev_addr, size)) {
761		swiotlb_tbl_unmap_single(dev, map, size, dir);
762		return phys_to_dma(dev, io_tlb_overflow_buffer);
763	}
764
765	return dev_addr;
766}
767EXPORT_SYMBOL_GPL(swiotlb_map_page);
768
769/*
770 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
771 * match what was provided for in a previous swiotlb_map_page call.  All
772 * other usages are undefined.
773 *
774 * After this call, reads by the cpu to the buffer are guaranteed to see
775 * whatever the device wrote there.
776 */
777static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
778			 size_t size, enum dma_data_direction dir)
779{
780	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
781
782	BUG_ON(dir == DMA_NONE);
783
784	if (is_swiotlb_buffer(paddr)) {
785		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
786		return;
787	}
788
789	if (dir != DMA_FROM_DEVICE)
790		return;
791
792	/*
793	 * phys_to_virt doesn't work with hihgmem page but we could
794	 * call dma_mark_clean() with hihgmem page here. However, we
795	 * are fine since dma_mark_clean() is null on POWERPC. We can
796	 * make dma_mark_clean() take a physical address if necessary.
797	 */
798	dma_mark_clean(phys_to_virt(paddr), size);
799}
800
801void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
802			size_t size, enum dma_data_direction dir,
803			struct dma_attrs *attrs)
804{
805	unmap_single(hwdev, dev_addr, size, dir);
806}
807EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
808
809/*
810 * Make physical memory consistent for a single streaming mode DMA translation
811 * after a transfer.
812 *
813 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
814 * using the cpu, yet do not wish to teardown the dma mapping, you must
815 * call this function before doing so.  At the next point you give the dma
816 * address back to the card, you must first perform a
817 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
818 */
819static void
820swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
821		    size_t size, enum dma_data_direction dir,
822		    enum dma_sync_target target)
823{
824	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
825
826	BUG_ON(dir == DMA_NONE);
827
828	if (is_swiotlb_buffer(paddr)) {
829		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
830		return;
831	}
832
833	if (dir != DMA_FROM_DEVICE)
834		return;
835
836	dma_mark_clean(phys_to_virt(paddr), size);
837}
838
839void
840swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
841			    size_t size, enum dma_data_direction dir)
842{
843	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
844}
845EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
846
847void
848swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
849			       size_t size, enum dma_data_direction dir)
850{
851	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
852}
853EXPORT_SYMBOL(swiotlb_sync_single_for_device);
854
855/*
856 * Map a set of buffers described by scatterlist in streaming mode for DMA.
857 * This is the scatter-gather version of the above swiotlb_map_page
858 * interface.  Here the scatter gather list elements are each tagged with the
859 * appropriate dma address and length.  They are obtained via
860 * sg_dma_{address,length}(SG).
861 *
862 * NOTE: An implementation may be able to use a smaller number of
863 *       DMA address/length pairs than there are SG table elements.
864 *       (for example via virtual mapping capabilities)
865 *       The routine returns the number of addr/length pairs actually
866 *       used, at most nents.
867 *
868 * Device ownership issues as mentioned above for swiotlb_map_page are the
869 * same here.
870 */
871int
872swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
873		     enum dma_data_direction dir, struct dma_attrs *attrs)
874{
875	struct scatterlist *sg;
876	int i;
877
878	BUG_ON(dir == DMA_NONE);
879
880	for_each_sg(sgl, sg, nelems, i) {
881		phys_addr_t paddr = sg_phys(sg);
882		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
883
884		if (swiotlb_force ||
885		    !dma_capable(hwdev, dev_addr, sg->length)) {
886			phys_addr_t map = map_single(hwdev, sg_phys(sg),
887						     sg->length, dir);
888			if (map == SWIOTLB_MAP_ERROR) {
889				/* Don't panic here, we expect map_sg users
890				   to do proper error handling. */
891				swiotlb_full(hwdev, sg->length, dir, 0);
892				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
893						       attrs);
894				sg_dma_len(sgl) = 0;
895				return 0;
896			}
897			sg->dma_address = phys_to_dma(hwdev, map);
898		} else
899			sg->dma_address = dev_addr;
900		sg_dma_len(sg) = sg->length;
901	}
902	return nelems;
903}
904EXPORT_SYMBOL(swiotlb_map_sg_attrs);
905
906int
907swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
908	       enum dma_data_direction dir)
909{
910	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
911}
912EXPORT_SYMBOL(swiotlb_map_sg);
913
914/*
915 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
916 * concerning calls here are the same as for swiotlb_unmap_page() above.
917 */
918void
919swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
920		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
921{
922	struct scatterlist *sg;
923	int i;
924
925	BUG_ON(dir == DMA_NONE);
926
927	for_each_sg(sgl, sg, nelems, i)
928		unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
929
930}
931EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
932
933void
934swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
935		 enum dma_data_direction dir)
936{
937	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
938}
939EXPORT_SYMBOL(swiotlb_unmap_sg);
940
941/*
942 * Make physical memory consistent for a set of streaming mode DMA translations
943 * after a transfer.
944 *
945 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
946 * and usage.
947 */
948static void
949swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
950		int nelems, enum dma_data_direction dir,
951		enum dma_sync_target target)
952{
953	struct scatterlist *sg;
954	int i;
955
956	for_each_sg(sgl, sg, nelems, i)
957		swiotlb_sync_single(hwdev, sg->dma_address,
958				    sg_dma_len(sg), dir, target);
959}
960
961void
962swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
963			int nelems, enum dma_data_direction dir)
964{
965	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
966}
967EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
968
969void
970swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
971			   int nelems, enum dma_data_direction dir)
972{
973	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
974}
975EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
976
977int
978swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
979{
980	return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
981}
982EXPORT_SYMBOL(swiotlb_dma_mapping_error);
983
984/*
985 * Return whether the given device DMA address mask can be supported
986 * properly.  For example, if your device can only drive the low 24-bits
987 * during bus mastering, then you would pass 0x00ffffff as the mask to
988 * this function.
989 */
990int
991swiotlb_dma_supported(struct device *hwdev, u64 mask)
992{
993	return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
994}
995EXPORT_SYMBOL(swiotlb_dma_supported);
996