1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/hugetlb.h>
39#include <linux/pagemap.h>
40#include <linux/smp.h>
41#include <linux/page-flags.h>
42#include <linux/backing-dev.h>
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/limits.h>
46#include <linux/export.h>
47#include <linux/mutex.h>
48#include <linux/rbtree.h>
49#include <linux/slab.h>
50#include <linux/swap.h>
51#include <linux/swapops.h>
52#include <linux/spinlock.h>
53#include <linux/eventfd.h>
54#include <linux/poll.h>
55#include <linux/sort.h>
56#include <linux/fs.h>
57#include <linux/seq_file.h>
58#include <linux/vmpressure.h>
59#include <linux/mm_inline.h>
60#include <linux/swap_cgroup.h>
61#include <linux/cpu.h>
62#include <linux/oom.h>
63#include <linux/lockdep.h>
64#include <linux/file.h>
65#include "internal.h"
66#include <net/sock.h>
67#include <net/ip.h>
68#include <net/tcp_memcontrol.h>
69#include "slab.h"
70
71#include <asm/uaccess.h>
72
73#include <trace/events/vmscan.h>
74
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
77
78#define MEM_CGROUP_RECLAIM_RETRIES	5
79static struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81/* Whether the swap controller is active */
82#ifdef CONFIG_MEMCG_SWAP
83int do_swap_account __read_mostly;
84#else
85#define do_swap_account		0
86#endif
87
88static const char * const mem_cgroup_stat_names[] = {
89	"cache",
90	"rss",
91	"rss_huge",
92	"mapped_file",
93	"writeback",
94	"swap",
95};
96
97static const char * const mem_cgroup_events_names[] = {
98	"pgpgin",
99	"pgpgout",
100	"pgfault",
101	"pgmajfault",
102};
103
104static const char * const mem_cgroup_lru_names[] = {
105	"inactive_anon",
106	"active_anon",
107	"inactive_file",
108	"active_file",
109	"unevictable",
110};
111
112/*
113 * Per memcg event counter is incremented at every pagein/pageout. With THP,
114 * it will be incremated by the number of pages. This counter is used for
115 * for trigger some periodic events. This is straightforward and better
116 * than using jiffies etc. to handle periodic memcg event.
117 */
118enum mem_cgroup_events_target {
119	MEM_CGROUP_TARGET_THRESH,
120	MEM_CGROUP_TARGET_SOFTLIMIT,
121	MEM_CGROUP_TARGET_NUMAINFO,
122	MEM_CGROUP_NTARGETS,
123};
124#define THRESHOLDS_EVENTS_TARGET 128
125#define SOFTLIMIT_EVENTS_TARGET 1024
126#define NUMAINFO_EVENTS_TARGET	1024
127
128struct mem_cgroup_stat_cpu {
129	long count[MEM_CGROUP_STAT_NSTATS];
130	unsigned long events[MEMCG_NR_EVENTS];
131	unsigned long nr_page_events;
132	unsigned long targets[MEM_CGROUP_NTARGETS];
133};
134
135struct reclaim_iter {
136	struct mem_cgroup *position;
137	/* scan generation, increased every round-trip */
138	unsigned int generation;
139};
140
141/*
142 * per-zone information in memory controller.
143 */
144struct mem_cgroup_per_zone {
145	struct lruvec		lruvec;
146	unsigned long		lru_size[NR_LRU_LISTS];
147
148	struct reclaim_iter	iter[DEF_PRIORITY + 1];
149
150	struct rb_node		tree_node;	/* RB tree node */
151	unsigned long		usage_in_excess;/* Set to the value by which */
152						/* the soft limit is exceeded*/
153	bool			on_tree;
154	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
155						/* use container_of	   */
156};
157
158struct mem_cgroup_per_node {
159	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
160};
161
162/*
163 * Cgroups above their limits are maintained in a RB-Tree, independent of
164 * their hierarchy representation
165 */
166
167struct mem_cgroup_tree_per_zone {
168	struct rb_root rb_root;
169	spinlock_t lock;
170};
171
172struct mem_cgroup_tree_per_node {
173	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
174};
175
176struct mem_cgroup_tree {
177	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
178};
179
180static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181
182struct mem_cgroup_threshold {
183	struct eventfd_ctx *eventfd;
184	unsigned long threshold;
185};
186
187/* For threshold */
188struct mem_cgroup_threshold_ary {
189	/* An array index points to threshold just below or equal to usage. */
190	int current_threshold;
191	/* Size of entries[] */
192	unsigned int size;
193	/* Array of thresholds */
194	struct mem_cgroup_threshold entries[0];
195};
196
197struct mem_cgroup_thresholds {
198	/* Primary thresholds array */
199	struct mem_cgroup_threshold_ary *primary;
200	/*
201	 * Spare threshold array.
202	 * This is needed to make mem_cgroup_unregister_event() "never fail".
203	 * It must be able to store at least primary->size - 1 entries.
204	 */
205	struct mem_cgroup_threshold_ary *spare;
206};
207
208/* for OOM */
209struct mem_cgroup_eventfd_list {
210	struct list_head list;
211	struct eventfd_ctx *eventfd;
212};
213
214/*
215 * cgroup_event represents events which userspace want to receive.
216 */
217struct mem_cgroup_event {
218	/*
219	 * memcg which the event belongs to.
220	 */
221	struct mem_cgroup *memcg;
222	/*
223	 * eventfd to signal userspace about the event.
224	 */
225	struct eventfd_ctx *eventfd;
226	/*
227	 * Each of these stored in a list by the cgroup.
228	 */
229	struct list_head list;
230	/*
231	 * register_event() callback will be used to add new userspace
232	 * waiter for changes related to this event.  Use eventfd_signal()
233	 * on eventfd to send notification to userspace.
234	 */
235	int (*register_event)(struct mem_cgroup *memcg,
236			      struct eventfd_ctx *eventfd, const char *args);
237	/*
238	 * unregister_event() callback will be called when userspace closes
239	 * the eventfd or on cgroup removing.  This callback must be set,
240	 * if you want provide notification functionality.
241	 */
242	void (*unregister_event)(struct mem_cgroup *memcg,
243				 struct eventfd_ctx *eventfd);
244	/*
245	 * All fields below needed to unregister event when
246	 * userspace closes eventfd.
247	 */
248	poll_table pt;
249	wait_queue_head_t *wqh;
250	wait_queue_t wait;
251	struct work_struct remove;
252};
253
254static void mem_cgroup_threshold(struct mem_cgroup *memcg);
255static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
256
257/*
258 * The memory controller data structure. The memory controller controls both
259 * page cache and RSS per cgroup. We would eventually like to provide
260 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
261 * to help the administrator determine what knobs to tune.
262 */
263struct mem_cgroup {
264	struct cgroup_subsys_state css;
265
266	/* Accounted resources */
267	struct page_counter memory;
268	struct page_counter memsw;
269	struct page_counter kmem;
270
271	/* Normal memory consumption range */
272	unsigned long low;
273	unsigned long high;
274
275	unsigned long soft_limit;
276
277	/* vmpressure notifications */
278	struct vmpressure vmpressure;
279
280	/* css_online() has been completed */
281	int initialized;
282
283	/*
284	 * Should the accounting and control be hierarchical, per subtree?
285	 */
286	bool use_hierarchy;
287
288	bool		oom_lock;
289	atomic_t	under_oom;
290	atomic_t	oom_wakeups;
291
292	int	swappiness;
293	/* OOM-Killer disable */
294	int		oom_kill_disable;
295
296	/* protect arrays of thresholds */
297	struct mutex thresholds_lock;
298
299	/* thresholds for memory usage. RCU-protected */
300	struct mem_cgroup_thresholds thresholds;
301
302	/* thresholds for mem+swap usage. RCU-protected */
303	struct mem_cgroup_thresholds memsw_thresholds;
304
305	/* For oom notifier event fd */
306	struct list_head oom_notify;
307
308	/*
309	 * Should we move charges of a task when a task is moved into this
310	 * mem_cgroup ? And what type of charges should we move ?
311	 */
312	unsigned long move_charge_at_immigrate;
313	/*
314	 * set > 0 if pages under this cgroup are moving to other cgroup.
315	 */
316	atomic_t		moving_account;
317	/* taken only while moving_account > 0 */
318	spinlock_t		move_lock;
319	struct task_struct	*move_lock_task;
320	unsigned long		move_lock_flags;
321	/*
322	 * percpu counter.
323	 */
324	struct mem_cgroup_stat_cpu __percpu *stat;
325	/*
326	 * used when a cpu is offlined or other synchronizations
327	 * See mem_cgroup_read_stat().
328	 */
329	struct mem_cgroup_stat_cpu nocpu_base;
330	spinlock_t pcp_counter_lock;
331
332#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
333	struct cg_proto tcp_mem;
334#endif
335#if defined(CONFIG_MEMCG_KMEM)
336        /* Index in the kmem_cache->memcg_params.memcg_caches array */
337	int kmemcg_id;
338	bool kmem_acct_activated;
339	bool kmem_acct_active;
340#endif
341
342	int last_scanned_node;
343#if MAX_NUMNODES > 1
344	nodemask_t	scan_nodes;
345	atomic_t	numainfo_events;
346	atomic_t	numainfo_updating;
347#endif
348
349	/* List of events which userspace want to receive */
350	struct list_head event_list;
351	spinlock_t event_list_lock;
352
353	struct mem_cgroup_per_node *nodeinfo[0];
354	/* WARNING: nodeinfo must be the last member here */
355};
356
357#ifdef CONFIG_MEMCG_KMEM
358bool memcg_kmem_is_active(struct mem_cgroup *memcg)
359{
360	return memcg->kmem_acct_active;
361}
362#endif
363
364/* Stuffs for move charges at task migration. */
365/*
366 * Types of charges to be moved.
367 */
368#define MOVE_ANON	0x1U
369#define MOVE_FILE	0x2U
370#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
371
372/* "mc" and its members are protected by cgroup_mutex */
373static struct move_charge_struct {
374	spinlock_t	  lock; /* for from, to */
375	struct mem_cgroup *from;
376	struct mem_cgroup *to;
377	unsigned long flags;
378	unsigned long precharge;
379	unsigned long moved_charge;
380	unsigned long moved_swap;
381	struct task_struct *moving_task;	/* a task moving charges */
382	wait_queue_head_t waitq;		/* a waitq for other context */
383} mc = {
384	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
385	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
386};
387
388/*
389 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
390 * limit reclaim to prevent infinite loops, if they ever occur.
391 */
392#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
393#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
394
395enum charge_type {
396	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
397	MEM_CGROUP_CHARGE_TYPE_ANON,
398	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
399	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
400	NR_CHARGE_TYPE,
401};
402
403/* for encoding cft->private value on file */
404enum res_type {
405	_MEM,
406	_MEMSWAP,
407	_OOM_TYPE,
408	_KMEM,
409};
410
411#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
412#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
413#define MEMFILE_ATTR(val)	((val) & 0xffff)
414/* Used for OOM nofiier */
415#define OOM_CONTROL		(0)
416
417/*
418 * The memcg_create_mutex will be held whenever a new cgroup is created.
419 * As a consequence, any change that needs to protect against new child cgroups
420 * appearing has to hold it as well.
421 */
422static DEFINE_MUTEX(memcg_create_mutex);
423
424struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
425{
426	return s ? container_of(s, struct mem_cgroup, css) : NULL;
427}
428
429/* Some nice accessors for the vmpressure. */
430struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
431{
432	if (!memcg)
433		memcg = root_mem_cgroup;
434	return &memcg->vmpressure;
435}
436
437struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
438{
439	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
440}
441
442static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
443{
444	return (memcg == root_mem_cgroup);
445}
446
447/*
448 * We restrict the id in the range of [1, 65535], so it can fit into
449 * an unsigned short.
450 */
451#define MEM_CGROUP_ID_MAX	USHRT_MAX
452
453static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
454{
455	return memcg->css.id;
456}
457
458/*
459 * A helper function to get mem_cgroup from ID. must be called under
460 * rcu_read_lock().  The caller is responsible for calling
461 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
462 * refcnt from swap can be called against removed memcg.)
463 */
464static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
465{
466	struct cgroup_subsys_state *css;
467
468	css = css_from_id(id, &memory_cgrp_subsys);
469	return mem_cgroup_from_css(css);
470}
471
472/* Writing them here to avoid exposing memcg's inner layout */
473#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
474
475void sock_update_memcg(struct sock *sk)
476{
477	if (mem_cgroup_sockets_enabled) {
478		struct mem_cgroup *memcg;
479		struct cg_proto *cg_proto;
480
481		BUG_ON(!sk->sk_prot->proto_cgroup);
482
483		/* Socket cloning can throw us here with sk_cgrp already
484		 * filled. It won't however, necessarily happen from
485		 * process context. So the test for root memcg given
486		 * the current task's memcg won't help us in this case.
487		 *
488		 * Respecting the original socket's memcg is a better
489		 * decision in this case.
490		 */
491		if (sk->sk_cgrp) {
492			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
493			css_get(&sk->sk_cgrp->memcg->css);
494			return;
495		}
496
497		rcu_read_lock();
498		memcg = mem_cgroup_from_task(current);
499		cg_proto = sk->sk_prot->proto_cgroup(memcg);
500		if (!mem_cgroup_is_root(memcg) &&
501		    memcg_proto_active(cg_proto) &&
502		    css_tryget_online(&memcg->css)) {
503			sk->sk_cgrp = cg_proto;
504		}
505		rcu_read_unlock();
506	}
507}
508EXPORT_SYMBOL(sock_update_memcg);
509
510void sock_release_memcg(struct sock *sk)
511{
512	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
513		struct mem_cgroup *memcg;
514		WARN_ON(!sk->sk_cgrp->memcg);
515		memcg = sk->sk_cgrp->memcg;
516		css_put(&sk->sk_cgrp->memcg->css);
517	}
518}
519
520struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
521{
522	if (!memcg || mem_cgroup_is_root(memcg))
523		return NULL;
524
525	return &memcg->tcp_mem;
526}
527EXPORT_SYMBOL(tcp_proto_cgroup);
528
529#endif
530
531#ifdef CONFIG_MEMCG_KMEM
532/*
533 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
534 * The main reason for not using cgroup id for this:
535 *  this works better in sparse environments, where we have a lot of memcgs,
536 *  but only a few kmem-limited. Or also, if we have, for instance, 200
537 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
538 *  200 entry array for that.
539 *
540 * The current size of the caches array is stored in memcg_nr_cache_ids. It
541 * will double each time we have to increase it.
542 */
543static DEFINE_IDA(memcg_cache_ida);
544int memcg_nr_cache_ids;
545
546/* Protects memcg_nr_cache_ids */
547static DECLARE_RWSEM(memcg_cache_ids_sem);
548
549void memcg_get_cache_ids(void)
550{
551	down_read(&memcg_cache_ids_sem);
552}
553
554void memcg_put_cache_ids(void)
555{
556	up_read(&memcg_cache_ids_sem);
557}
558
559/*
560 * MIN_SIZE is different than 1, because we would like to avoid going through
561 * the alloc/free process all the time. In a small machine, 4 kmem-limited
562 * cgroups is a reasonable guess. In the future, it could be a parameter or
563 * tunable, but that is strictly not necessary.
564 *
565 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
566 * this constant directly from cgroup, but it is understandable that this is
567 * better kept as an internal representation in cgroup.c. In any case, the
568 * cgrp_id space is not getting any smaller, and we don't have to necessarily
569 * increase ours as well if it increases.
570 */
571#define MEMCG_CACHES_MIN_SIZE 4
572#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
573
574/*
575 * A lot of the calls to the cache allocation functions are expected to be
576 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
577 * conditional to this static branch, we'll have to allow modules that does
578 * kmem_cache_alloc and the such to see this symbol as well
579 */
580struct static_key memcg_kmem_enabled_key;
581EXPORT_SYMBOL(memcg_kmem_enabled_key);
582
583#endif /* CONFIG_MEMCG_KMEM */
584
585static struct mem_cgroup_per_zone *
586mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
587{
588	int nid = zone_to_nid(zone);
589	int zid = zone_idx(zone);
590
591	return &memcg->nodeinfo[nid]->zoneinfo[zid];
592}
593
594struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
595{
596	return &memcg->css;
597}
598
599static struct mem_cgroup_per_zone *
600mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
601{
602	int nid = page_to_nid(page);
603	int zid = page_zonenum(page);
604
605	return &memcg->nodeinfo[nid]->zoneinfo[zid];
606}
607
608static struct mem_cgroup_tree_per_zone *
609soft_limit_tree_node_zone(int nid, int zid)
610{
611	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
612}
613
614static struct mem_cgroup_tree_per_zone *
615soft_limit_tree_from_page(struct page *page)
616{
617	int nid = page_to_nid(page);
618	int zid = page_zonenum(page);
619
620	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
621}
622
623static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
624					 struct mem_cgroup_tree_per_zone *mctz,
625					 unsigned long new_usage_in_excess)
626{
627	struct rb_node **p = &mctz->rb_root.rb_node;
628	struct rb_node *parent = NULL;
629	struct mem_cgroup_per_zone *mz_node;
630
631	if (mz->on_tree)
632		return;
633
634	mz->usage_in_excess = new_usage_in_excess;
635	if (!mz->usage_in_excess)
636		return;
637	while (*p) {
638		parent = *p;
639		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
640					tree_node);
641		if (mz->usage_in_excess < mz_node->usage_in_excess)
642			p = &(*p)->rb_left;
643		/*
644		 * We can't avoid mem cgroups that are over their soft
645		 * limit by the same amount
646		 */
647		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
648			p = &(*p)->rb_right;
649	}
650	rb_link_node(&mz->tree_node, parent, p);
651	rb_insert_color(&mz->tree_node, &mctz->rb_root);
652	mz->on_tree = true;
653}
654
655static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
656					 struct mem_cgroup_tree_per_zone *mctz)
657{
658	if (!mz->on_tree)
659		return;
660	rb_erase(&mz->tree_node, &mctz->rb_root);
661	mz->on_tree = false;
662}
663
664static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
665				       struct mem_cgroup_tree_per_zone *mctz)
666{
667	unsigned long flags;
668
669	spin_lock_irqsave(&mctz->lock, flags);
670	__mem_cgroup_remove_exceeded(mz, mctz);
671	spin_unlock_irqrestore(&mctz->lock, flags);
672}
673
674static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
675{
676	unsigned long nr_pages = page_counter_read(&memcg->memory);
677	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
678	unsigned long excess = 0;
679
680	if (nr_pages > soft_limit)
681		excess = nr_pages - soft_limit;
682
683	return excess;
684}
685
686static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
687{
688	unsigned long excess;
689	struct mem_cgroup_per_zone *mz;
690	struct mem_cgroup_tree_per_zone *mctz;
691
692	mctz = soft_limit_tree_from_page(page);
693	/*
694	 * Necessary to update all ancestors when hierarchy is used.
695	 * because their event counter is not touched.
696	 */
697	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698		mz = mem_cgroup_page_zoneinfo(memcg, page);
699		excess = soft_limit_excess(memcg);
700		/*
701		 * We have to update the tree if mz is on RB-tree or
702		 * mem is over its softlimit.
703		 */
704		if (excess || mz->on_tree) {
705			unsigned long flags;
706
707			spin_lock_irqsave(&mctz->lock, flags);
708			/* if on-tree, remove it */
709			if (mz->on_tree)
710				__mem_cgroup_remove_exceeded(mz, mctz);
711			/*
712			 * Insert again. mz->usage_in_excess will be updated.
713			 * If excess is 0, no tree ops.
714			 */
715			__mem_cgroup_insert_exceeded(mz, mctz, excess);
716			spin_unlock_irqrestore(&mctz->lock, flags);
717		}
718	}
719}
720
721static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722{
723	struct mem_cgroup_tree_per_zone *mctz;
724	struct mem_cgroup_per_zone *mz;
725	int nid, zid;
726
727	for_each_node(nid) {
728		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
729			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
730			mctz = soft_limit_tree_node_zone(nid, zid);
731			mem_cgroup_remove_exceeded(mz, mctz);
732		}
733	}
734}
735
736static struct mem_cgroup_per_zone *
737__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
738{
739	struct rb_node *rightmost = NULL;
740	struct mem_cgroup_per_zone *mz;
741
742retry:
743	mz = NULL;
744	rightmost = rb_last(&mctz->rb_root);
745	if (!rightmost)
746		goto done;		/* Nothing to reclaim from */
747
748	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
749	/*
750	 * Remove the node now but someone else can add it back,
751	 * we will to add it back at the end of reclaim to its correct
752	 * position in the tree.
753	 */
754	__mem_cgroup_remove_exceeded(mz, mctz);
755	if (!soft_limit_excess(mz->memcg) ||
756	    !css_tryget_online(&mz->memcg->css))
757		goto retry;
758done:
759	return mz;
760}
761
762static struct mem_cgroup_per_zone *
763mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
764{
765	struct mem_cgroup_per_zone *mz;
766
767	spin_lock_irq(&mctz->lock);
768	mz = __mem_cgroup_largest_soft_limit_node(mctz);
769	spin_unlock_irq(&mctz->lock);
770	return mz;
771}
772
773/*
774 * Implementation Note: reading percpu statistics for memcg.
775 *
776 * Both of vmstat[] and percpu_counter has threshold and do periodic
777 * synchronization to implement "quick" read. There are trade-off between
778 * reading cost and precision of value. Then, we may have a chance to implement
779 * a periodic synchronizion of counter in memcg's counter.
780 *
781 * But this _read() function is used for user interface now. The user accounts
782 * memory usage by memory cgroup and he _always_ requires exact value because
783 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
784 * have to visit all online cpus and make sum. So, for now, unnecessary
785 * synchronization is not implemented. (just implemented for cpu hotplug)
786 *
787 * If there are kernel internal actions which can make use of some not-exact
788 * value, and reading all cpu value can be performance bottleneck in some
789 * common workload, threashold and synchonization as vmstat[] should be
790 * implemented.
791 */
792static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
793				 enum mem_cgroup_stat_index idx)
794{
795	long val = 0;
796	int cpu;
797
798	get_online_cpus();
799	for_each_online_cpu(cpu)
800		val += per_cpu(memcg->stat->count[idx], cpu);
801#ifdef CONFIG_HOTPLUG_CPU
802	spin_lock(&memcg->pcp_counter_lock);
803	val += memcg->nocpu_base.count[idx];
804	spin_unlock(&memcg->pcp_counter_lock);
805#endif
806	put_online_cpus();
807	return val;
808}
809
810static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
811					    enum mem_cgroup_events_index idx)
812{
813	unsigned long val = 0;
814	int cpu;
815
816	get_online_cpus();
817	for_each_online_cpu(cpu)
818		val += per_cpu(memcg->stat->events[idx], cpu);
819#ifdef CONFIG_HOTPLUG_CPU
820	spin_lock(&memcg->pcp_counter_lock);
821	val += memcg->nocpu_base.events[idx];
822	spin_unlock(&memcg->pcp_counter_lock);
823#endif
824	put_online_cpus();
825	return val;
826}
827
828static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
829					 struct page *page,
830					 int nr_pages)
831{
832	/*
833	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
834	 * counted as CACHE even if it's on ANON LRU.
835	 */
836	if (PageAnon(page))
837		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
838				nr_pages);
839	else
840		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
841				nr_pages);
842
843	if (PageTransHuge(page))
844		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
845				nr_pages);
846
847	/* pagein of a big page is an event. So, ignore page size */
848	if (nr_pages > 0)
849		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
850	else {
851		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
852		nr_pages = -nr_pages; /* for event */
853	}
854
855	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
856}
857
858unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
859{
860	struct mem_cgroup_per_zone *mz;
861
862	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
863	return mz->lru_size[lru];
864}
865
866static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
867						  int nid,
868						  unsigned int lru_mask)
869{
870	unsigned long nr = 0;
871	int zid;
872
873	VM_BUG_ON((unsigned)nid >= nr_node_ids);
874
875	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
876		struct mem_cgroup_per_zone *mz;
877		enum lru_list lru;
878
879		for_each_lru(lru) {
880			if (!(BIT(lru) & lru_mask))
881				continue;
882			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
883			nr += mz->lru_size[lru];
884		}
885	}
886	return nr;
887}
888
889static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
890			unsigned int lru_mask)
891{
892	unsigned long nr = 0;
893	int nid;
894
895	for_each_node_state(nid, N_MEMORY)
896		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
897	return nr;
898}
899
900static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
901				       enum mem_cgroup_events_target target)
902{
903	unsigned long val, next;
904
905	val = __this_cpu_read(memcg->stat->nr_page_events);
906	next = __this_cpu_read(memcg->stat->targets[target]);
907	/* from time_after() in jiffies.h */
908	if ((long)next - (long)val < 0) {
909		switch (target) {
910		case MEM_CGROUP_TARGET_THRESH:
911			next = val + THRESHOLDS_EVENTS_TARGET;
912			break;
913		case MEM_CGROUP_TARGET_SOFTLIMIT:
914			next = val + SOFTLIMIT_EVENTS_TARGET;
915			break;
916		case MEM_CGROUP_TARGET_NUMAINFO:
917			next = val + NUMAINFO_EVENTS_TARGET;
918			break;
919		default:
920			break;
921		}
922		__this_cpu_write(memcg->stat->targets[target], next);
923		return true;
924	}
925	return false;
926}
927
928/*
929 * Check events in order.
930 *
931 */
932static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
933{
934	/* threshold event is triggered in finer grain than soft limit */
935	if (unlikely(mem_cgroup_event_ratelimit(memcg,
936						MEM_CGROUP_TARGET_THRESH))) {
937		bool do_softlimit;
938		bool do_numainfo __maybe_unused;
939
940		do_softlimit = mem_cgroup_event_ratelimit(memcg,
941						MEM_CGROUP_TARGET_SOFTLIMIT);
942#if MAX_NUMNODES > 1
943		do_numainfo = mem_cgroup_event_ratelimit(memcg,
944						MEM_CGROUP_TARGET_NUMAINFO);
945#endif
946		mem_cgroup_threshold(memcg);
947		if (unlikely(do_softlimit))
948			mem_cgroup_update_tree(memcg, page);
949#if MAX_NUMNODES > 1
950		if (unlikely(do_numainfo))
951			atomic_inc(&memcg->numainfo_events);
952#endif
953	}
954}
955
956struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
957{
958	/*
959	 * mm_update_next_owner() may clear mm->owner to NULL
960	 * if it races with swapoff, page migration, etc.
961	 * So this can be called with p == NULL.
962	 */
963	if (unlikely(!p))
964		return NULL;
965
966	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
967}
968
969static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
970{
971	struct mem_cgroup *memcg = NULL;
972
973	rcu_read_lock();
974	do {
975		/*
976		 * Page cache insertions can happen withou an
977		 * actual mm context, e.g. during disk probing
978		 * on boot, loopback IO, acct() writes etc.
979		 */
980		if (unlikely(!mm))
981			memcg = root_mem_cgroup;
982		else {
983			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
984			if (unlikely(!memcg))
985				memcg = root_mem_cgroup;
986		}
987	} while (!css_tryget_online(&memcg->css));
988	rcu_read_unlock();
989	return memcg;
990}
991
992/**
993 * mem_cgroup_iter - iterate over memory cgroup hierarchy
994 * @root: hierarchy root
995 * @prev: previously returned memcg, NULL on first invocation
996 * @reclaim: cookie for shared reclaim walks, NULL for full walks
997 *
998 * Returns references to children of the hierarchy below @root, or
999 * @root itself, or %NULL after a full round-trip.
1000 *
1001 * Caller must pass the return value in @prev on subsequent
1002 * invocations for reference counting, or use mem_cgroup_iter_break()
1003 * to cancel a hierarchy walk before the round-trip is complete.
1004 *
1005 * Reclaimers can specify a zone and a priority level in @reclaim to
1006 * divide up the memcgs in the hierarchy among all concurrent
1007 * reclaimers operating on the same zone and priority.
1008 */
1009struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1010				   struct mem_cgroup *prev,
1011				   struct mem_cgroup_reclaim_cookie *reclaim)
1012{
1013	struct reclaim_iter *uninitialized_var(iter);
1014	struct cgroup_subsys_state *css = NULL;
1015	struct mem_cgroup *memcg = NULL;
1016	struct mem_cgroup *pos = NULL;
1017
1018	if (mem_cgroup_disabled())
1019		return NULL;
1020
1021	if (!root)
1022		root = root_mem_cgroup;
1023
1024	if (prev && !reclaim)
1025		pos = prev;
1026
1027	if (!root->use_hierarchy && root != root_mem_cgroup) {
1028		if (prev)
1029			goto out;
1030		return root;
1031	}
1032
1033	rcu_read_lock();
1034
1035	if (reclaim) {
1036		struct mem_cgroup_per_zone *mz;
1037
1038		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1039		iter = &mz->iter[reclaim->priority];
1040
1041		if (prev && reclaim->generation != iter->generation)
1042			goto out_unlock;
1043
1044		do {
1045			pos = READ_ONCE(iter->position);
1046			/*
1047			 * A racing update may change the position and
1048			 * put the last reference, hence css_tryget(),
1049			 * or retry to see the updated position.
1050			 */
1051		} while (pos && !css_tryget(&pos->css));
1052	}
1053
1054	if (pos)
1055		css = &pos->css;
1056
1057	for (;;) {
1058		css = css_next_descendant_pre(css, &root->css);
1059		if (!css) {
1060			/*
1061			 * Reclaimers share the hierarchy walk, and a
1062			 * new one might jump in right at the end of
1063			 * the hierarchy - make sure they see at least
1064			 * one group and restart from the beginning.
1065			 */
1066			if (!prev)
1067				continue;
1068			break;
1069		}
1070
1071		/*
1072		 * Verify the css and acquire a reference.  The root
1073		 * is provided by the caller, so we know it's alive
1074		 * and kicking, and don't take an extra reference.
1075		 */
1076		memcg = mem_cgroup_from_css(css);
1077
1078		if (css == &root->css)
1079			break;
1080
1081		if (css_tryget(css)) {
1082			/*
1083			 * Make sure the memcg is initialized:
1084			 * mem_cgroup_css_online() orders the the
1085			 * initialization against setting the flag.
1086			 */
1087			if (smp_load_acquire(&memcg->initialized))
1088				break;
1089
1090			css_put(css);
1091		}
1092
1093		memcg = NULL;
1094	}
1095
1096	if (reclaim) {
1097		if (cmpxchg(&iter->position, pos, memcg) == pos) {
1098			if (memcg)
1099				css_get(&memcg->css);
1100			if (pos)
1101				css_put(&pos->css);
1102		}
1103
1104		/*
1105		 * pairs with css_tryget when dereferencing iter->position
1106		 * above.
1107		 */
1108		if (pos)
1109			css_put(&pos->css);
1110
1111		if (!memcg)
1112			iter->generation++;
1113		else if (!prev)
1114			reclaim->generation = iter->generation;
1115	}
1116
1117out_unlock:
1118	rcu_read_unlock();
1119out:
1120	if (prev && prev != root)
1121		css_put(&prev->css);
1122
1123	return memcg;
1124}
1125
1126/**
1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1128 * @root: hierarchy root
1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1130 */
1131void mem_cgroup_iter_break(struct mem_cgroup *root,
1132			   struct mem_cgroup *prev)
1133{
1134	if (!root)
1135		root = root_mem_cgroup;
1136	if (prev && prev != root)
1137		css_put(&prev->css);
1138}
1139
1140/*
1141 * Iteration constructs for visiting all cgroups (under a tree).  If
1142 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1143 * be used for reference counting.
1144 */
1145#define for_each_mem_cgroup_tree(iter, root)		\
1146	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1147	     iter != NULL;				\
1148	     iter = mem_cgroup_iter(root, iter, NULL))
1149
1150#define for_each_mem_cgroup(iter)			\
1151	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1152	     iter != NULL;				\
1153	     iter = mem_cgroup_iter(NULL, iter, NULL))
1154
1155void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1156{
1157	struct mem_cgroup *memcg;
1158
1159	rcu_read_lock();
1160	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1161	if (unlikely(!memcg))
1162		goto out;
1163
1164	switch (idx) {
1165	case PGFAULT:
1166		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1167		break;
1168	case PGMAJFAULT:
1169		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1170		break;
1171	default:
1172		BUG();
1173	}
1174out:
1175	rcu_read_unlock();
1176}
1177EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1178
1179/**
1180 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1181 * @zone: zone of the wanted lruvec
1182 * @memcg: memcg of the wanted lruvec
1183 *
1184 * Returns the lru list vector holding pages for the given @zone and
1185 * @mem.  This can be the global zone lruvec, if the memory controller
1186 * is disabled.
1187 */
1188struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1189				      struct mem_cgroup *memcg)
1190{
1191	struct mem_cgroup_per_zone *mz;
1192	struct lruvec *lruvec;
1193
1194	if (mem_cgroup_disabled()) {
1195		lruvec = &zone->lruvec;
1196		goto out;
1197	}
1198
1199	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1200	lruvec = &mz->lruvec;
1201out:
1202	/*
1203	 * Since a node can be onlined after the mem_cgroup was created,
1204	 * we have to be prepared to initialize lruvec->zone here;
1205	 * and if offlined then reonlined, we need to reinitialize it.
1206	 */
1207	if (unlikely(lruvec->zone != zone))
1208		lruvec->zone = zone;
1209	return lruvec;
1210}
1211
1212/**
1213 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1214 * @page: the page
1215 * @zone: zone of the page
1216 *
1217 * This function is only safe when following the LRU page isolation
1218 * and putback protocol: the LRU lock must be held, and the page must
1219 * either be PageLRU() or the caller must have isolated/allocated it.
1220 */
1221struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1222{
1223	struct mem_cgroup_per_zone *mz;
1224	struct mem_cgroup *memcg;
1225	struct lruvec *lruvec;
1226
1227	if (mem_cgroup_disabled()) {
1228		lruvec = &zone->lruvec;
1229		goto out;
1230	}
1231
1232	memcg = page->mem_cgroup;
1233	/*
1234	 * Swapcache readahead pages are added to the LRU - and
1235	 * possibly migrated - before they are charged.
1236	 */
1237	if (!memcg)
1238		memcg = root_mem_cgroup;
1239
1240	mz = mem_cgroup_page_zoneinfo(memcg, page);
1241	lruvec = &mz->lruvec;
1242out:
1243	/*
1244	 * Since a node can be onlined after the mem_cgroup was created,
1245	 * we have to be prepared to initialize lruvec->zone here;
1246	 * and if offlined then reonlined, we need to reinitialize it.
1247	 */
1248	if (unlikely(lruvec->zone != zone))
1249		lruvec->zone = zone;
1250	return lruvec;
1251}
1252
1253/**
1254 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1255 * @lruvec: mem_cgroup per zone lru vector
1256 * @lru: index of lru list the page is sitting on
1257 * @nr_pages: positive when adding or negative when removing
1258 *
1259 * This function must be called when a page is added to or removed from an
1260 * lru list.
1261 */
1262void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1263				int nr_pages)
1264{
1265	struct mem_cgroup_per_zone *mz;
1266	unsigned long *lru_size;
1267
1268	if (mem_cgroup_disabled())
1269		return;
1270
1271	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1272	lru_size = mz->lru_size + lru;
1273	*lru_size += nr_pages;
1274	VM_BUG_ON((long)(*lru_size) < 0);
1275}
1276
1277bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1278{
1279	if (root == memcg)
1280		return true;
1281	if (!root->use_hierarchy)
1282		return false;
1283	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1284}
1285
1286bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1287{
1288	struct mem_cgroup *task_memcg;
1289	struct task_struct *p;
1290	bool ret;
1291
1292	p = find_lock_task_mm(task);
1293	if (p) {
1294		task_memcg = get_mem_cgroup_from_mm(p->mm);
1295		task_unlock(p);
1296	} else {
1297		/*
1298		 * All threads may have already detached their mm's, but the oom
1299		 * killer still needs to detect if they have already been oom
1300		 * killed to prevent needlessly killing additional tasks.
1301		 */
1302		rcu_read_lock();
1303		task_memcg = mem_cgroup_from_task(task);
1304		css_get(&task_memcg->css);
1305		rcu_read_unlock();
1306	}
1307	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1308	css_put(&task_memcg->css);
1309	return ret;
1310}
1311
1312int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1313{
1314	unsigned long inactive_ratio;
1315	unsigned long inactive;
1316	unsigned long active;
1317	unsigned long gb;
1318
1319	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1320	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1321
1322	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1323	if (gb)
1324		inactive_ratio = int_sqrt(10 * gb);
1325	else
1326		inactive_ratio = 1;
1327
1328	return inactive * inactive_ratio < active;
1329}
1330
1331bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1332{
1333	struct mem_cgroup_per_zone *mz;
1334	struct mem_cgroup *memcg;
1335
1336	if (mem_cgroup_disabled())
1337		return true;
1338
1339	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1340	memcg = mz->memcg;
1341
1342	return !!(memcg->css.flags & CSS_ONLINE);
1343}
1344
1345#define mem_cgroup_from_counter(counter, member)	\
1346	container_of(counter, struct mem_cgroup, member)
1347
1348/**
1349 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1350 * @memcg: the memory cgroup
1351 *
1352 * Returns the maximum amount of memory @mem can be charged with, in
1353 * pages.
1354 */
1355static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1356{
1357	unsigned long margin = 0;
1358	unsigned long count;
1359	unsigned long limit;
1360
1361	count = page_counter_read(&memcg->memory);
1362	limit = READ_ONCE(memcg->memory.limit);
1363	if (count < limit)
1364		margin = limit - count;
1365
1366	if (do_swap_account) {
1367		count = page_counter_read(&memcg->memsw);
1368		limit = READ_ONCE(memcg->memsw.limit);
1369		if (count <= limit)
1370			margin = min(margin, limit - count);
1371	}
1372
1373	return margin;
1374}
1375
1376int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1377{
1378	/* root ? */
1379	if (mem_cgroup_disabled() || !memcg->css.parent)
1380		return vm_swappiness;
1381
1382	return memcg->swappiness;
1383}
1384
1385/*
1386 * A routine for checking "mem" is under move_account() or not.
1387 *
1388 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1389 * moving cgroups. This is for waiting at high-memory pressure
1390 * caused by "move".
1391 */
1392static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1393{
1394	struct mem_cgroup *from;
1395	struct mem_cgroup *to;
1396	bool ret = false;
1397	/*
1398	 * Unlike task_move routines, we access mc.to, mc.from not under
1399	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1400	 */
1401	spin_lock(&mc.lock);
1402	from = mc.from;
1403	to = mc.to;
1404	if (!from)
1405		goto unlock;
1406
1407	ret = mem_cgroup_is_descendant(from, memcg) ||
1408		mem_cgroup_is_descendant(to, memcg);
1409unlock:
1410	spin_unlock(&mc.lock);
1411	return ret;
1412}
1413
1414static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1415{
1416	if (mc.moving_task && current != mc.moving_task) {
1417		if (mem_cgroup_under_move(memcg)) {
1418			DEFINE_WAIT(wait);
1419			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1420			/* moving charge context might have finished. */
1421			if (mc.moving_task)
1422				schedule();
1423			finish_wait(&mc.waitq, &wait);
1424			return true;
1425		}
1426	}
1427	return false;
1428}
1429
1430#define K(x) ((x) << (PAGE_SHIFT-10))
1431/**
1432 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1433 * @memcg: The memory cgroup that went over limit
1434 * @p: Task that is going to be killed
1435 *
1436 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1437 * enabled
1438 */
1439void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1440{
1441	/* oom_info_lock ensures that parallel ooms do not interleave */
1442	static DEFINE_MUTEX(oom_info_lock);
1443	struct mem_cgroup *iter;
1444	unsigned int i;
1445
1446	mutex_lock(&oom_info_lock);
1447	rcu_read_lock();
1448
1449	if (p) {
1450		pr_info("Task in ");
1451		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1452		pr_cont(" killed as a result of limit of ");
1453	} else {
1454		pr_info("Memory limit reached of cgroup ");
1455	}
1456
1457	pr_cont_cgroup_path(memcg->css.cgroup);
1458	pr_cont("\n");
1459
1460	rcu_read_unlock();
1461
1462	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1463		K((u64)page_counter_read(&memcg->memory)),
1464		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1465	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1466		K((u64)page_counter_read(&memcg->memsw)),
1467		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1468	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1469		K((u64)page_counter_read(&memcg->kmem)),
1470		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1471
1472	for_each_mem_cgroup_tree(iter, memcg) {
1473		pr_info("Memory cgroup stats for ");
1474		pr_cont_cgroup_path(iter->css.cgroup);
1475		pr_cont(":");
1476
1477		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1478			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1479				continue;
1480			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1481				K(mem_cgroup_read_stat(iter, i)));
1482		}
1483
1484		for (i = 0; i < NR_LRU_LISTS; i++)
1485			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1486				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1487
1488		pr_cont("\n");
1489	}
1490	mutex_unlock(&oom_info_lock);
1491}
1492
1493/*
1494 * This function returns the number of memcg under hierarchy tree. Returns
1495 * 1(self count) if no children.
1496 */
1497static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1498{
1499	int num = 0;
1500	struct mem_cgroup *iter;
1501
1502	for_each_mem_cgroup_tree(iter, memcg)
1503		num++;
1504	return num;
1505}
1506
1507/*
1508 * Return the memory (and swap, if configured) limit for a memcg.
1509 */
1510static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1511{
1512	unsigned long limit;
1513
1514	limit = memcg->memory.limit;
1515	if (mem_cgroup_swappiness(memcg)) {
1516		unsigned long memsw_limit;
1517
1518		memsw_limit = memcg->memsw.limit;
1519		limit = min(limit + total_swap_pages, memsw_limit);
1520	}
1521	return limit;
1522}
1523
1524static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1525				     int order)
1526{
1527	struct mem_cgroup *iter;
1528	unsigned long chosen_points = 0;
1529	unsigned long totalpages;
1530	unsigned int points = 0;
1531	struct task_struct *chosen = NULL;
1532
1533	/*
1534	 * If current has a pending SIGKILL or is exiting, then automatically
1535	 * select it.  The goal is to allow it to allocate so that it may
1536	 * quickly exit and free its memory.
1537	 */
1538	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1539		mark_tsk_oom_victim(current);
1540		return;
1541	}
1542
1543	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1544	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1545	for_each_mem_cgroup_tree(iter, memcg) {
1546		struct css_task_iter it;
1547		struct task_struct *task;
1548
1549		css_task_iter_start(&iter->css, &it);
1550		while ((task = css_task_iter_next(&it))) {
1551			switch (oom_scan_process_thread(task, totalpages, NULL,
1552							false)) {
1553			case OOM_SCAN_SELECT:
1554				if (chosen)
1555					put_task_struct(chosen);
1556				chosen = task;
1557				chosen_points = ULONG_MAX;
1558				get_task_struct(chosen);
1559				/* fall through */
1560			case OOM_SCAN_CONTINUE:
1561				continue;
1562			case OOM_SCAN_ABORT:
1563				css_task_iter_end(&it);
1564				mem_cgroup_iter_break(memcg, iter);
1565				if (chosen)
1566					put_task_struct(chosen);
1567				return;
1568			case OOM_SCAN_OK:
1569				break;
1570			};
1571			points = oom_badness(task, memcg, NULL, totalpages);
1572			if (!points || points < chosen_points)
1573				continue;
1574			/* Prefer thread group leaders for display purposes */
1575			if (points == chosen_points &&
1576			    thread_group_leader(chosen))
1577				continue;
1578
1579			if (chosen)
1580				put_task_struct(chosen);
1581			chosen = task;
1582			chosen_points = points;
1583			get_task_struct(chosen);
1584		}
1585		css_task_iter_end(&it);
1586	}
1587
1588	if (!chosen)
1589		return;
1590	points = chosen_points * 1000 / totalpages;
1591	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1592			 NULL, "Memory cgroup out of memory");
1593}
1594
1595#if MAX_NUMNODES > 1
1596
1597/**
1598 * test_mem_cgroup_node_reclaimable
1599 * @memcg: the target memcg
1600 * @nid: the node ID to be checked.
1601 * @noswap : specify true here if the user wants flle only information.
1602 *
1603 * This function returns whether the specified memcg contains any
1604 * reclaimable pages on a node. Returns true if there are any reclaimable
1605 * pages in the node.
1606 */
1607static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1608		int nid, bool noswap)
1609{
1610	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1611		return true;
1612	if (noswap || !total_swap_pages)
1613		return false;
1614	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1615		return true;
1616	return false;
1617
1618}
1619
1620/*
1621 * Always updating the nodemask is not very good - even if we have an empty
1622 * list or the wrong list here, we can start from some node and traverse all
1623 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1624 *
1625 */
1626static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1627{
1628	int nid;
1629	/*
1630	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1631	 * pagein/pageout changes since the last update.
1632	 */
1633	if (!atomic_read(&memcg->numainfo_events))
1634		return;
1635	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1636		return;
1637
1638	/* make a nodemask where this memcg uses memory from */
1639	memcg->scan_nodes = node_states[N_MEMORY];
1640
1641	for_each_node_mask(nid, node_states[N_MEMORY]) {
1642
1643		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1644			node_clear(nid, memcg->scan_nodes);
1645	}
1646
1647	atomic_set(&memcg->numainfo_events, 0);
1648	atomic_set(&memcg->numainfo_updating, 0);
1649}
1650
1651/*
1652 * Selecting a node where we start reclaim from. Because what we need is just
1653 * reducing usage counter, start from anywhere is O,K. Considering
1654 * memory reclaim from current node, there are pros. and cons.
1655 *
1656 * Freeing memory from current node means freeing memory from a node which
1657 * we'll use or we've used. So, it may make LRU bad. And if several threads
1658 * hit limits, it will see a contention on a node. But freeing from remote
1659 * node means more costs for memory reclaim because of memory latency.
1660 *
1661 * Now, we use round-robin. Better algorithm is welcomed.
1662 */
1663int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1664{
1665	int node;
1666
1667	mem_cgroup_may_update_nodemask(memcg);
1668	node = memcg->last_scanned_node;
1669
1670	node = next_node(node, memcg->scan_nodes);
1671	if (node == MAX_NUMNODES)
1672		node = first_node(memcg->scan_nodes);
1673	/*
1674	 * We call this when we hit limit, not when pages are added to LRU.
1675	 * No LRU may hold pages because all pages are UNEVICTABLE or
1676	 * memcg is too small and all pages are not on LRU. In that case,
1677	 * we use curret node.
1678	 */
1679	if (unlikely(node == MAX_NUMNODES))
1680		node = numa_node_id();
1681
1682	memcg->last_scanned_node = node;
1683	return node;
1684}
1685#else
1686int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1687{
1688	return 0;
1689}
1690#endif
1691
1692static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1693				   struct zone *zone,
1694				   gfp_t gfp_mask,
1695				   unsigned long *total_scanned)
1696{
1697	struct mem_cgroup *victim = NULL;
1698	int total = 0;
1699	int loop = 0;
1700	unsigned long excess;
1701	unsigned long nr_scanned;
1702	struct mem_cgroup_reclaim_cookie reclaim = {
1703		.zone = zone,
1704		.priority = 0,
1705	};
1706
1707	excess = soft_limit_excess(root_memcg);
1708
1709	while (1) {
1710		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1711		if (!victim) {
1712			loop++;
1713			if (loop >= 2) {
1714				/*
1715				 * If we have not been able to reclaim
1716				 * anything, it might because there are
1717				 * no reclaimable pages under this hierarchy
1718				 */
1719				if (!total)
1720					break;
1721				/*
1722				 * We want to do more targeted reclaim.
1723				 * excess >> 2 is not to excessive so as to
1724				 * reclaim too much, nor too less that we keep
1725				 * coming back to reclaim from this cgroup
1726				 */
1727				if (total >= (excess >> 2) ||
1728					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1729					break;
1730			}
1731			continue;
1732		}
1733		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1734						     zone, &nr_scanned);
1735		*total_scanned += nr_scanned;
1736		if (!soft_limit_excess(root_memcg))
1737			break;
1738	}
1739	mem_cgroup_iter_break(root_memcg, victim);
1740	return total;
1741}
1742
1743#ifdef CONFIG_LOCKDEP
1744static struct lockdep_map memcg_oom_lock_dep_map = {
1745	.name = "memcg_oom_lock",
1746};
1747#endif
1748
1749static DEFINE_SPINLOCK(memcg_oom_lock);
1750
1751/*
1752 * Check OOM-Killer is already running under our hierarchy.
1753 * If someone is running, return false.
1754 */
1755static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1756{
1757	struct mem_cgroup *iter, *failed = NULL;
1758
1759	spin_lock(&memcg_oom_lock);
1760
1761	for_each_mem_cgroup_tree(iter, memcg) {
1762		if (iter->oom_lock) {
1763			/*
1764			 * this subtree of our hierarchy is already locked
1765			 * so we cannot give a lock.
1766			 */
1767			failed = iter;
1768			mem_cgroup_iter_break(memcg, iter);
1769			break;
1770		} else
1771			iter->oom_lock = true;
1772	}
1773
1774	if (failed) {
1775		/*
1776		 * OK, we failed to lock the whole subtree so we have
1777		 * to clean up what we set up to the failing subtree
1778		 */
1779		for_each_mem_cgroup_tree(iter, memcg) {
1780			if (iter == failed) {
1781				mem_cgroup_iter_break(memcg, iter);
1782				break;
1783			}
1784			iter->oom_lock = false;
1785		}
1786	} else
1787		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1788
1789	spin_unlock(&memcg_oom_lock);
1790
1791	return !failed;
1792}
1793
1794static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1795{
1796	struct mem_cgroup *iter;
1797
1798	spin_lock(&memcg_oom_lock);
1799	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1800	for_each_mem_cgroup_tree(iter, memcg)
1801		iter->oom_lock = false;
1802	spin_unlock(&memcg_oom_lock);
1803}
1804
1805static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1806{
1807	struct mem_cgroup *iter;
1808
1809	for_each_mem_cgroup_tree(iter, memcg)
1810		atomic_inc(&iter->under_oom);
1811}
1812
1813static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1814{
1815	struct mem_cgroup *iter;
1816
1817	/*
1818	 * When a new child is created while the hierarchy is under oom,
1819	 * mem_cgroup_oom_lock() may not be called. We have to use
1820	 * atomic_add_unless() here.
1821	 */
1822	for_each_mem_cgroup_tree(iter, memcg)
1823		atomic_add_unless(&iter->under_oom, -1, 0);
1824}
1825
1826static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1827
1828struct oom_wait_info {
1829	struct mem_cgroup *memcg;
1830	wait_queue_t	wait;
1831};
1832
1833static int memcg_oom_wake_function(wait_queue_t *wait,
1834	unsigned mode, int sync, void *arg)
1835{
1836	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1837	struct mem_cgroup *oom_wait_memcg;
1838	struct oom_wait_info *oom_wait_info;
1839
1840	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1841	oom_wait_memcg = oom_wait_info->memcg;
1842
1843	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1844	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1845		return 0;
1846	return autoremove_wake_function(wait, mode, sync, arg);
1847}
1848
1849static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1850{
1851	atomic_inc(&memcg->oom_wakeups);
1852	/* for filtering, pass "memcg" as argument. */
1853	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1854}
1855
1856static void memcg_oom_recover(struct mem_cgroup *memcg)
1857{
1858	if (memcg && atomic_read(&memcg->under_oom))
1859		memcg_wakeup_oom(memcg);
1860}
1861
1862static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1863{
1864	if (!current->memcg_oom.may_oom)
1865		return;
1866	/*
1867	 * We are in the middle of the charge context here, so we
1868	 * don't want to block when potentially sitting on a callstack
1869	 * that holds all kinds of filesystem and mm locks.
1870	 *
1871	 * Also, the caller may handle a failed allocation gracefully
1872	 * (like optional page cache readahead) and so an OOM killer
1873	 * invocation might not even be necessary.
1874	 *
1875	 * That's why we don't do anything here except remember the
1876	 * OOM context and then deal with it at the end of the page
1877	 * fault when the stack is unwound, the locks are released,
1878	 * and when we know whether the fault was overall successful.
1879	 */
1880	css_get(&memcg->css);
1881	current->memcg_oom.memcg = memcg;
1882	current->memcg_oom.gfp_mask = mask;
1883	current->memcg_oom.order = order;
1884}
1885
1886/**
1887 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1888 * @handle: actually kill/wait or just clean up the OOM state
1889 *
1890 * This has to be called at the end of a page fault if the memcg OOM
1891 * handler was enabled.
1892 *
1893 * Memcg supports userspace OOM handling where failed allocations must
1894 * sleep on a waitqueue until the userspace task resolves the
1895 * situation.  Sleeping directly in the charge context with all kinds
1896 * of locks held is not a good idea, instead we remember an OOM state
1897 * in the task and mem_cgroup_oom_synchronize() has to be called at
1898 * the end of the page fault to complete the OOM handling.
1899 *
1900 * Returns %true if an ongoing memcg OOM situation was detected and
1901 * completed, %false otherwise.
1902 */
1903bool mem_cgroup_oom_synchronize(bool handle)
1904{
1905	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1906	struct oom_wait_info owait;
1907	bool locked;
1908
1909	/* OOM is global, do not handle */
1910	if (!memcg)
1911		return false;
1912
1913	if (!handle || oom_killer_disabled)
1914		goto cleanup;
1915
1916	owait.memcg = memcg;
1917	owait.wait.flags = 0;
1918	owait.wait.func = memcg_oom_wake_function;
1919	owait.wait.private = current;
1920	INIT_LIST_HEAD(&owait.wait.task_list);
1921
1922	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1923	mem_cgroup_mark_under_oom(memcg);
1924
1925	locked = mem_cgroup_oom_trylock(memcg);
1926
1927	if (locked)
1928		mem_cgroup_oom_notify(memcg);
1929
1930	if (locked && !memcg->oom_kill_disable) {
1931		mem_cgroup_unmark_under_oom(memcg);
1932		finish_wait(&memcg_oom_waitq, &owait.wait);
1933		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1934					 current->memcg_oom.order);
1935	} else {
1936		schedule();
1937		mem_cgroup_unmark_under_oom(memcg);
1938		finish_wait(&memcg_oom_waitq, &owait.wait);
1939	}
1940
1941	if (locked) {
1942		mem_cgroup_oom_unlock(memcg);
1943		/*
1944		 * There is no guarantee that an OOM-lock contender
1945		 * sees the wakeups triggered by the OOM kill
1946		 * uncharges.  Wake any sleepers explicitely.
1947		 */
1948		memcg_oom_recover(memcg);
1949	}
1950cleanup:
1951	current->memcg_oom.memcg = NULL;
1952	css_put(&memcg->css);
1953	return true;
1954}
1955
1956/**
1957 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1958 * @page: page that is going to change accounted state
1959 *
1960 * This function must mark the beginning of an accounted page state
1961 * change to prevent double accounting when the page is concurrently
1962 * being moved to another memcg:
1963 *
1964 *   memcg = mem_cgroup_begin_page_stat(page);
1965 *   if (TestClearPageState(page))
1966 *     mem_cgroup_update_page_stat(memcg, state, -1);
1967 *   mem_cgroup_end_page_stat(memcg);
1968 */
1969struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1970{
1971	struct mem_cgroup *memcg;
1972	unsigned long flags;
1973
1974	/*
1975	 * The RCU lock is held throughout the transaction.  The fast
1976	 * path can get away without acquiring the memcg->move_lock
1977	 * because page moving starts with an RCU grace period.
1978	 *
1979	 * The RCU lock also protects the memcg from being freed when
1980	 * the page state that is going to change is the only thing
1981	 * preventing the page from being uncharged.
1982	 * E.g. end-writeback clearing PageWriteback(), which allows
1983	 * migration to go ahead and uncharge the page before the
1984	 * account transaction might be complete.
1985	 */
1986	rcu_read_lock();
1987
1988	if (mem_cgroup_disabled())
1989		return NULL;
1990again:
1991	memcg = page->mem_cgroup;
1992	if (unlikely(!memcg))
1993		return NULL;
1994
1995	if (atomic_read(&memcg->moving_account) <= 0)
1996		return memcg;
1997
1998	spin_lock_irqsave(&memcg->move_lock, flags);
1999	if (memcg != page->mem_cgroup) {
2000		spin_unlock_irqrestore(&memcg->move_lock, flags);
2001		goto again;
2002	}
2003
2004	/*
2005	 * When charge migration first begins, we can have locked and
2006	 * unlocked page stat updates happening concurrently.  Track
2007	 * the task who has the lock for mem_cgroup_end_page_stat().
2008	 */
2009	memcg->move_lock_task = current;
2010	memcg->move_lock_flags = flags;
2011
2012	return memcg;
2013}
2014
2015/**
2016 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2017 * @memcg: the memcg that was accounted against
2018 */
2019void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2020{
2021	if (memcg && memcg->move_lock_task == current) {
2022		unsigned long flags = memcg->move_lock_flags;
2023
2024		memcg->move_lock_task = NULL;
2025		memcg->move_lock_flags = 0;
2026
2027		spin_unlock_irqrestore(&memcg->move_lock, flags);
2028	}
2029
2030	rcu_read_unlock();
2031}
2032
2033/**
2034 * mem_cgroup_update_page_stat - update page state statistics
2035 * @memcg: memcg to account against
2036 * @idx: page state item to account
2037 * @val: number of pages (positive or negative)
2038 *
2039 * See mem_cgroup_begin_page_stat() for locking requirements.
2040 */
2041void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2042				 enum mem_cgroup_stat_index idx, int val)
2043{
2044	VM_BUG_ON(!rcu_read_lock_held());
2045
2046	if (memcg)
2047		this_cpu_add(memcg->stat->count[idx], val);
2048}
2049
2050/*
2051 * size of first charge trial. "32" comes from vmscan.c's magic value.
2052 * TODO: maybe necessary to use big numbers in big irons.
2053 */
2054#define CHARGE_BATCH	32U
2055struct memcg_stock_pcp {
2056	struct mem_cgroup *cached; /* this never be root cgroup */
2057	unsigned int nr_pages;
2058	struct work_struct work;
2059	unsigned long flags;
2060#define FLUSHING_CACHED_CHARGE	0
2061};
2062static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2063static DEFINE_MUTEX(percpu_charge_mutex);
2064
2065/**
2066 * consume_stock: Try to consume stocked charge on this cpu.
2067 * @memcg: memcg to consume from.
2068 * @nr_pages: how many pages to charge.
2069 *
2070 * The charges will only happen if @memcg matches the current cpu's memcg
2071 * stock, and at least @nr_pages are available in that stock.  Failure to
2072 * service an allocation will refill the stock.
2073 *
2074 * returns true if successful, false otherwise.
2075 */
2076static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2077{
2078	struct memcg_stock_pcp *stock;
2079	bool ret = false;
2080
2081	if (nr_pages > CHARGE_BATCH)
2082		return ret;
2083
2084	stock = &get_cpu_var(memcg_stock);
2085	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2086		stock->nr_pages -= nr_pages;
2087		ret = true;
2088	}
2089	put_cpu_var(memcg_stock);
2090	return ret;
2091}
2092
2093/*
2094 * Returns stocks cached in percpu and reset cached information.
2095 */
2096static void drain_stock(struct memcg_stock_pcp *stock)
2097{
2098	struct mem_cgroup *old = stock->cached;
2099
2100	if (stock->nr_pages) {
2101		page_counter_uncharge(&old->memory, stock->nr_pages);
2102		if (do_swap_account)
2103			page_counter_uncharge(&old->memsw, stock->nr_pages);
2104		css_put_many(&old->css, stock->nr_pages);
2105		stock->nr_pages = 0;
2106	}
2107	stock->cached = NULL;
2108}
2109
2110/*
2111 * This must be called under preempt disabled or must be called by
2112 * a thread which is pinned to local cpu.
2113 */
2114static void drain_local_stock(struct work_struct *dummy)
2115{
2116	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2117	drain_stock(stock);
2118	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2119}
2120
2121/*
2122 * Cache charges(val) to local per_cpu area.
2123 * This will be consumed by consume_stock() function, later.
2124 */
2125static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2126{
2127	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2128
2129	if (stock->cached != memcg) { /* reset if necessary */
2130		drain_stock(stock);
2131		stock->cached = memcg;
2132	}
2133	stock->nr_pages += nr_pages;
2134	put_cpu_var(memcg_stock);
2135}
2136
2137/*
2138 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2139 * of the hierarchy under it.
2140 */
2141static void drain_all_stock(struct mem_cgroup *root_memcg)
2142{
2143	int cpu, curcpu;
2144
2145	/* If someone's already draining, avoid adding running more workers. */
2146	if (!mutex_trylock(&percpu_charge_mutex))
2147		return;
2148	/* Notify other cpus that system-wide "drain" is running */
2149	get_online_cpus();
2150	curcpu = get_cpu();
2151	for_each_online_cpu(cpu) {
2152		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2153		struct mem_cgroup *memcg;
2154
2155		memcg = stock->cached;
2156		if (!memcg || !stock->nr_pages)
2157			continue;
2158		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2159			continue;
2160		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2161			if (cpu == curcpu)
2162				drain_local_stock(&stock->work);
2163			else
2164				schedule_work_on(cpu, &stock->work);
2165		}
2166	}
2167	put_cpu();
2168	put_online_cpus();
2169	mutex_unlock(&percpu_charge_mutex);
2170}
2171
2172/*
2173 * This function drains percpu counter value from DEAD cpu and
2174 * move it to local cpu. Note that this function can be preempted.
2175 */
2176static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2177{
2178	int i;
2179
2180	spin_lock(&memcg->pcp_counter_lock);
2181	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2182		long x = per_cpu(memcg->stat->count[i], cpu);
2183
2184		per_cpu(memcg->stat->count[i], cpu) = 0;
2185		memcg->nocpu_base.count[i] += x;
2186	}
2187	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2188		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2189
2190		per_cpu(memcg->stat->events[i], cpu) = 0;
2191		memcg->nocpu_base.events[i] += x;
2192	}
2193	spin_unlock(&memcg->pcp_counter_lock);
2194}
2195
2196static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2197					unsigned long action,
2198					void *hcpu)
2199{
2200	int cpu = (unsigned long)hcpu;
2201	struct memcg_stock_pcp *stock;
2202	struct mem_cgroup *iter;
2203
2204	if (action == CPU_ONLINE)
2205		return NOTIFY_OK;
2206
2207	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2208		return NOTIFY_OK;
2209
2210	for_each_mem_cgroup(iter)
2211		mem_cgroup_drain_pcp_counter(iter, cpu);
2212
2213	stock = &per_cpu(memcg_stock, cpu);
2214	drain_stock(stock);
2215	return NOTIFY_OK;
2216}
2217
2218static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2219		      unsigned int nr_pages)
2220{
2221	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2222	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2223	struct mem_cgroup *mem_over_limit;
2224	struct page_counter *counter;
2225	unsigned long nr_reclaimed;
2226	bool may_swap = true;
2227	bool drained = false;
2228	int ret = 0;
2229
2230	if (mem_cgroup_is_root(memcg))
2231		goto done;
2232retry:
2233	if (consume_stock(memcg, nr_pages))
2234		goto done;
2235
2236	if (!do_swap_account ||
2237	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2238		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2239			goto done_restock;
2240		if (do_swap_account)
2241			page_counter_uncharge(&memcg->memsw, batch);
2242		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2243	} else {
2244		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2245		may_swap = false;
2246	}
2247
2248	if (batch > nr_pages) {
2249		batch = nr_pages;
2250		goto retry;
2251	}
2252
2253	/*
2254	 * Unlike in global OOM situations, memcg is not in a physical
2255	 * memory shortage.  Allow dying and OOM-killed tasks to
2256	 * bypass the last charges so that they can exit quickly and
2257	 * free their memory.
2258	 */
2259	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2260		     fatal_signal_pending(current) ||
2261		     current->flags & PF_EXITING))
2262		goto bypass;
2263
2264	if (unlikely(task_in_memcg_oom(current)))
2265		goto nomem;
2266
2267	if (!(gfp_mask & __GFP_WAIT))
2268		goto nomem;
2269
2270	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2271
2272	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2273						    gfp_mask, may_swap);
2274
2275	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2276		goto retry;
2277
2278	if (!drained) {
2279		drain_all_stock(mem_over_limit);
2280		drained = true;
2281		goto retry;
2282	}
2283
2284	if (gfp_mask & __GFP_NORETRY)
2285		goto nomem;
2286	/*
2287	 * Even though the limit is exceeded at this point, reclaim
2288	 * may have been able to free some pages.  Retry the charge
2289	 * before killing the task.
2290	 *
2291	 * Only for regular pages, though: huge pages are rather
2292	 * unlikely to succeed so close to the limit, and we fall back
2293	 * to regular pages anyway in case of failure.
2294	 */
2295	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2296		goto retry;
2297	/*
2298	 * At task move, charge accounts can be doubly counted. So, it's
2299	 * better to wait until the end of task_move if something is going on.
2300	 */
2301	if (mem_cgroup_wait_acct_move(mem_over_limit))
2302		goto retry;
2303
2304	if (nr_retries--)
2305		goto retry;
2306
2307	if (gfp_mask & __GFP_NOFAIL)
2308		goto bypass;
2309
2310	if (fatal_signal_pending(current))
2311		goto bypass;
2312
2313	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2314
2315	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2316nomem:
2317	if (!(gfp_mask & __GFP_NOFAIL))
2318		return -ENOMEM;
2319bypass:
2320	return -EINTR;
2321
2322done_restock:
2323	css_get_many(&memcg->css, batch);
2324	if (batch > nr_pages)
2325		refill_stock(memcg, batch - nr_pages);
2326	if (!(gfp_mask & __GFP_WAIT))
2327		goto done;
2328	/*
2329	 * If the hierarchy is above the normal consumption range,
2330	 * make the charging task trim their excess contribution.
2331	 */
2332	do {
2333		if (page_counter_read(&memcg->memory) <= memcg->high)
2334			continue;
2335		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2336		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2337	} while ((memcg = parent_mem_cgroup(memcg)));
2338done:
2339	return ret;
2340}
2341
2342static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2343{
2344	if (mem_cgroup_is_root(memcg))
2345		return;
2346
2347	page_counter_uncharge(&memcg->memory, nr_pages);
2348	if (do_swap_account)
2349		page_counter_uncharge(&memcg->memsw, nr_pages);
2350
2351	css_put_many(&memcg->css, nr_pages);
2352}
2353
2354/*
2355 * try_get_mem_cgroup_from_page - look up page's memcg association
2356 * @page: the page
2357 *
2358 * Look up, get a css reference, and return the memcg that owns @page.
2359 *
2360 * The page must be locked to prevent racing with swap-in and page
2361 * cache charges.  If coming from an unlocked page table, the caller
2362 * must ensure the page is on the LRU or this can race with charging.
2363 */
2364struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2365{
2366	struct mem_cgroup *memcg;
2367	unsigned short id;
2368	swp_entry_t ent;
2369
2370	VM_BUG_ON_PAGE(!PageLocked(page), page);
2371
2372	memcg = page->mem_cgroup;
2373	if (memcg) {
2374		if (!css_tryget_online(&memcg->css))
2375			memcg = NULL;
2376	} else if (PageSwapCache(page)) {
2377		ent.val = page_private(page);
2378		id = lookup_swap_cgroup_id(ent);
2379		rcu_read_lock();
2380		memcg = mem_cgroup_from_id(id);
2381		if (memcg && !css_tryget_online(&memcg->css))
2382			memcg = NULL;
2383		rcu_read_unlock();
2384	}
2385	return memcg;
2386}
2387
2388static void lock_page_lru(struct page *page, int *isolated)
2389{
2390	struct zone *zone = page_zone(page);
2391
2392	spin_lock_irq(&zone->lru_lock);
2393	if (PageLRU(page)) {
2394		struct lruvec *lruvec;
2395
2396		lruvec = mem_cgroup_page_lruvec(page, zone);
2397		ClearPageLRU(page);
2398		del_page_from_lru_list(page, lruvec, page_lru(page));
2399		*isolated = 1;
2400	} else
2401		*isolated = 0;
2402}
2403
2404static void unlock_page_lru(struct page *page, int isolated)
2405{
2406	struct zone *zone = page_zone(page);
2407
2408	if (isolated) {
2409		struct lruvec *lruvec;
2410
2411		lruvec = mem_cgroup_page_lruvec(page, zone);
2412		VM_BUG_ON_PAGE(PageLRU(page), page);
2413		SetPageLRU(page);
2414		add_page_to_lru_list(page, lruvec, page_lru(page));
2415	}
2416	spin_unlock_irq(&zone->lru_lock);
2417}
2418
2419static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2420			  bool lrucare)
2421{
2422	int isolated;
2423
2424	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2425
2426	/*
2427	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2428	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2429	 */
2430	if (lrucare)
2431		lock_page_lru(page, &isolated);
2432
2433	/*
2434	 * Nobody should be changing or seriously looking at
2435	 * page->mem_cgroup at this point:
2436	 *
2437	 * - the page is uncharged
2438	 *
2439	 * - the page is off-LRU
2440	 *
2441	 * - an anonymous fault has exclusive page access, except for
2442	 *   a locked page table
2443	 *
2444	 * - a page cache insertion, a swapin fault, or a migration
2445	 *   have the page locked
2446	 */
2447	page->mem_cgroup = memcg;
2448
2449	if (lrucare)
2450		unlock_page_lru(page, isolated);
2451}
2452
2453#ifdef CONFIG_MEMCG_KMEM
2454int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2455		      unsigned long nr_pages)
2456{
2457	struct page_counter *counter;
2458	int ret = 0;
2459
2460	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2461	if (ret < 0)
2462		return ret;
2463
2464	ret = try_charge(memcg, gfp, nr_pages);
2465	if (ret == -EINTR)  {
2466		/*
2467		 * try_charge() chose to bypass to root due to OOM kill or
2468		 * fatal signal.  Since our only options are to either fail
2469		 * the allocation or charge it to this cgroup, do it as a
2470		 * temporary condition. But we can't fail. From a kmem/slab
2471		 * perspective, the cache has already been selected, by
2472		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2473		 * our minds.
2474		 *
2475		 * This condition will only trigger if the task entered
2476		 * memcg_charge_kmem in a sane state, but was OOM-killed
2477		 * during try_charge() above. Tasks that were already dying
2478		 * when the allocation triggers should have been already
2479		 * directed to the root cgroup in memcontrol.h
2480		 */
2481		page_counter_charge(&memcg->memory, nr_pages);
2482		if (do_swap_account)
2483			page_counter_charge(&memcg->memsw, nr_pages);
2484		css_get_many(&memcg->css, nr_pages);
2485		ret = 0;
2486	} else if (ret)
2487		page_counter_uncharge(&memcg->kmem, nr_pages);
2488
2489	return ret;
2490}
2491
2492void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2493{
2494	page_counter_uncharge(&memcg->memory, nr_pages);
2495	if (do_swap_account)
2496		page_counter_uncharge(&memcg->memsw, nr_pages);
2497
2498	page_counter_uncharge(&memcg->kmem, nr_pages);
2499
2500	css_put_many(&memcg->css, nr_pages);
2501}
2502
2503/*
2504 * helper for acessing a memcg's index. It will be used as an index in the
2505 * child cache array in kmem_cache, and also to derive its name. This function
2506 * will return -1 when this is not a kmem-limited memcg.
2507 */
2508int memcg_cache_id(struct mem_cgroup *memcg)
2509{
2510	return memcg ? memcg->kmemcg_id : -1;
2511}
2512
2513static int memcg_alloc_cache_id(void)
2514{
2515	int id, size;
2516	int err;
2517
2518	id = ida_simple_get(&memcg_cache_ida,
2519			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2520	if (id < 0)
2521		return id;
2522
2523	if (id < memcg_nr_cache_ids)
2524		return id;
2525
2526	/*
2527	 * There's no space for the new id in memcg_caches arrays,
2528	 * so we have to grow them.
2529	 */
2530	down_write(&memcg_cache_ids_sem);
2531
2532	size = 2 * (id + 1);
2533	if (size < MEMCG_CACHES_MIN_SIZE)
2534		size = MEMCG_CACHES_MIN_SIZE;
2535	else if (size > MEMCG_CACHES_MAX_SIZE)
2536		size = MEMCG_CACHES_MAX_SIZE;
2537
2538	err = memcg_update_all_caches(size);
2539	if (!err)
2540		err = memcg_update_all_list_lrus(size);
2541	if (!err)
2542		memcg_nr_cache_ids = size;
2543
2544	up_write(&memcg_cache_ids_sem);
2545
2546	if (err) {
2547		ida_simple_remove(&memcg_cache_ida, id);
2548		return err;
2549	}
2550	return id;
2551}
2552
2553static void memcg_free_cache_id(int id)
2554{
2555	ida_simple_remove(&memcg_cache_ida, id);
2556}
2557
2558struct memcg_kmem_cache_create_work {
2559	struct mem_cgroup *memcg;
2560	struct kmem_cache *cachep;
2561	struct work_struct work;
2562};
2563
2564static void memcg_kmem_cache_create_func(struct work_struct *w)
2565{
2566	struct memcg_kmem_cache_create_work *cw =
2567		container_of(w, struct memcg_kmem_cache_create_work, work);
2568	struct mem_cgroup *memcg = cw->memcg;
2569	struct kmem_cache *cachep = cw->cachep;
2570
2571	memcg_create_kmem_cache(memcg, cachep);
2572
2573	css_put(&memcg->css);
2574	kfree(cw);
2575}
2576
2577/*
2578 * Enqueue the creation of a per-memcg kmem_cache.
2579 */
2580static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2581					       struct kmem_cache *cachep)
2582{
2583	struct memcg_kmem_cache_create_work *cw;
2584
2585	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2586	if (!cw)
2587		return;
2588
2589	css_get(&memcg->css);
2590
2591	cw->memcg = memcg;
2592	cw->cachep = cachep;
2593	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2594
2595	schedule_work(&cw->work);
2596}
2597
2598static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2599					     struct kmem_cache *cachep)
2600{
2601	/*
2602	 * We need to stop accounting when we kmalloc, because if the
2603	 * corresponding kmalloc cache is not yet created, the first allocation
2604	 * in __memcg_schedule_kmem_cache_create will recurse.
2605	 *
2606	 * However, it is better to enclose the whole function. Depending on
2607	 * the debugging options enabled, INIT_WORK(), for instance, can
2608	 * trigger an allocation. This too, will make us recurse. Because at
2609	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2610	 * the safest choice is to do it like this, wrapping the whole function.
2611	 */
2612	current->memcg_kmem_skip_account = 1;
2613	__memcg_schedule_kmem_cache_create(memcg, cachep);
2614	current->memcg_kmem_skip_account = 0;
2615}
2616
2617/*
2618 * Return the kmem_cache we're supposed to use for a slab allocation.
2619 * We try to use the current memcg's version of the cache.
2620 *
2621 * If the cache does not exist yet, if we are the first user of it,
2622 * we either create it immediately, if possible, or create it asynchronously
2623 * in a workqueue.
2624 * In the latter case, we will let the current allocation go through with
2625 * the original cache.
2626 *
2627 * Can't be called in interrupt context or from kernel threads.
2628 * This function needs to be called with rcu_read_lock() held.
2629 */
2630struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2631{
2632	struct mem_cgroup *memcg;
2633	struct kmem_cache *memcg_cachep;
2634	int kmemcg_id;
2635
2636	VM_BUG_ON(!is_root_cache(cachep));
2637
2638	if (current->memcg_kmem_skip_account)
2639		return cachep;
2640
2641	memcg = get_mem_cgroup_from_mm(current->mm);
2642	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2643	if (kmemcg_id < 0)
2644		goto out;
2645
2646	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2647	if (likely(memcg_cachep))
2648		return memcg_cachep;
2649
2650	/*
2651	 * If we are in a safe context (can wait, and not in interrupt
2652	 * context), we could be be predictable and return right away.
2653	 * This would guarantee that the allocation being performed
2654	 * already belongs in the new cache.
2655	 *
2656	 * However, there are some clashes that can arrive from locking.
2657	 * For instance, because we acquire the slab_mutex while doing
2658	 * memcg_create_kmem_cache, this means no further allocation
2659	 * could happen with the slab_mutex held. So it's better to
2660	 * defer everything.
2661	 */
2662	memcg_schedule_kmem_cache_create(memcg, cachep);
2663out:
2664	css_put(&memcg->css);
2665	return cachep;
2666}
2667
2668void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2669{
2670	if (!is_root_cache(cachep))
2671		css_put(&cachep->memcg_params.memcg->css);
2672}
2673
2674/*
2675 * We need to verify if the allocation against current->mm->owner's memcg is
2676 * possible for the given order. But the page is not allocated yet, so we'll
2677 * need a further commit step to do the final arrangements.
2678 *
2679 * It is possible for the task to switch cgroups in this mean time, so at
2680 * commit time, we can't rely on task conversion any longer.  We'll then use
2681 * the handle argument to return to the caller which cgroup we should commit
2682 * against. We could also return the memcg directly and avoid the pointer
2683 * passing, but a boolean return value gives better semantics considering
2684 * the compiled-out case as well.
2685 *
2686 * Returning true means the allocation is possible.
2687 */
2688bool
2689__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2690{
2691	struct mem_cgroup *memcg;
2692	int ret;
2693
2694	*_memcg = NULL;
2695
2696	memcg = get_mem_cgroup_from_mm(current->mm);
2697
2698	if (!memcg_kmem_is_active(memcg)) {
2699		css_put(&memcg->css);
2700		return true;
2701	}
2702
2703	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2704	if (!ret)
2705		*_memcg = memcg;
2706
2707	css_put(&memcg->css);
2708	return (ret == 0);
2709}
2710
2711void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2712			      int order)
2713{
2714	VM_BUG_ON(mem_cgroup_is_root(memcg));
2715
2716	/* The page allocation failed. Revert */
2717	if (!page) {
2718		memcg_uncharge_kmem(memcg, 1 << order);
2719		return;
2720	}
2721	page->mem_cgroup = memcg;
2722}
2723
2724void __memcg_kmem_uncharge_pages(struct page *page, int order)
2725{
2726	struct mem_cgroup *memcg = page->mem_cgroup;
2727
2728	if (!memcg)
2729		return;
2730
2731	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2732
2733	memcg_uncharge_kmem(memcg, 1 << order);
2734	page->mem_cgroup = NULL;
2735}
2736
2737struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2738{
2739	struct mem_cgroup *memcg = NULL;
2740	struct kmem_cache *cachep;
2741	struct page *page;
2742
2743	page = virt_to_head_page(ptr);
2744	if (PageSlab(page)) {
2745		cachep = page->slab_cache;
2746		if (!is_root_cache(cachep))
2747			memcg = cachep->memcg_params.memcg;
2748	} else
2749		/* page allocated by alloc_kmem_pages */
2750		memcg = page->mem_cgroup;
2751
2752	return memcg;
2753}
2754#endif /* CONFIG_MEMCG_KMEM */
2755
2756#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2757
2758/*
2759 * Because tail pages are not marked as "used", set it. We're under
2760 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2761 * charge/uncharge will be never happen and move_account() is done under
2762 * compound_lock(), so we don't have to take care of races.
2763 */
2764void mem_cgroup_split_huge_fixup(struct page *head)
2765{
2766	int i;
2767
2768	if (mem_cgroup_disabled())
2769		return;
2770
2771	for (i = 1; i < HPAGE_PMD_NR; i++)
2772		head[i].mem_cgroup = head->mem_cgroup;
2773
2774	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2775		       HPAGE_PMD_NR);
2776}
2777#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2778
2779#ifdef CONFIG_MEMCG_SWAP
2780static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2781					 bool charge)
2782{
2783	int val = (charge) ? 1 : -1;
2784	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2785}
2786
2787/**
2788 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2789 * @entry: swap entry to be moved
2790 * @from:  mem_cgroup which the entry is moved from
2791 * @to:  mem_cgroup which the entry is moved to
2792 *
2793 * It succeeds only when the swap_cgroup's record for this entry is the same
2794 * as the mem_cgroup's id of @from.
2795 *
2796 * Returns 0 on success, -EINVAL on failure.
2797 *
2798 * The caller must have charged to @to, IOW, called page_counter_charge() about
2799 * both res and memsw, and called css_get().
2800 */
2801static int mem_cgroup_move_swap_account(swp_entry_t entry,
2802				struct mem_cgroup *from, struct mem_cgroup *to)
2803{
2804	unsigned short old_id, new_id;
2805
2806	old_id = mem_cgroup_id(from);
2807	new_id = mem_cgroup_id(to);
2808
2809	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2810		mem_cgroup_swap_statistics(from, false);
2811		mem_cgroup_swap_statistics(to, true);
2812		return 0;
2813	}
2814	return -EINVAL;
2815}
2816#else
2817static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2818				struct mem_cgroup *from, struct mem_cgroup *to)
2819{
2820	return -EINVAL;
2821}
2822#endif
2823
2824static DEFINE_MUTEX(memcg_limit_mutex);
2825
2826static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2827				   unsigned long limit)
2828{
2829	unsigned long curusage;
2830	unsigned long oldusage;
2831	bool enlarge = false;
2832	int retry_count;
2833	int ret;
2834
2835	/*
2836	 * For keeping hierarchical_reclaim simple, how long we should retry
2837	 * is depends on callers. We set our retry-count to be function
2838	 * of # of children which we should visit in this loop.
2839	 */
2840	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2841		      mem_cgroup_count_children(memcg);
2842
2843	oldusage = page_counter_read(&memcg->memory);
2844
2845	do {
2846		if (signal_pending(current)) {
2847			ret = -EINTR;
2848			break;
2849		}
2850
2851		mutex_lock(&memcg_limit_mutex);
2852		if (limit > memcg->memsw.limit) {
2853			mutex_unlock(&memcg_limit_mutex);
2854			ret = -EINVAL;
2855			break;
2856		}
2857		if (limit > memcg->memory.limit)
2858			enlarge = true;
2859		ret = page_counter_limit(&memcg->memory, limit);
2860		mutex_unlock(&memcg_limit_mutex);
2861
2862		if (!ret)
2863			break;
2864
2865		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2866
2867		curusage = page_counter_read(&memcg->memory);
2868		/* Usage is reduced ? */
2869		if (curusage >= oldusage)
2870			retry_count--;
2871		else
2872			oldusage = curusage;
2873	} while (retry_count);
2874
2875	if (!ret && enlarge)
2876		memcg_oom_recover(memcg);
2877
2878	return ret;
2879}
2880
2881static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2882					 unsigned long limit)
2883{
2884	unsigned long curusage;
2885	unsigned long oldusage;
2886	bool enlarge = false;
2887	int retry_count;
2888	int ret;
2889
2890	/* see mem_cgroup_resize_res_limit */
2891	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2892		      mem_cgroup_count_children(memcg);
2893
2894	oldusage = page_counter_read(&memcg->memsw);
2895
2896	do {
2897		if (signal_pending(current)) {
2898			ret = -EINTR;
2899			break;
2900		}
2901
2902		mutex_lock(&memcg_limit_mutex);
2903		if (limit < memcg->memory.limit) {
2904			mutex_unlock(&memcg_limit_mutex);
2905			ret = -EINVAL;
2906			break;
2907		}
2908		if (limit > memcg->memsw.limit)
2909			enlarge = true;
2910		ret = page_counter_limit(&memcg->memsw, limit);
2911		mutex_unlock(&memcg_limit_mutex);
2912
2913		if (!ret)
2914			break;
2915
2916		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2917
2918		curusage = page_counter_read(&memcg->memsw);
2919		/* Usage is reduced ? */
2920		if (curusage >= oldusage)
2921			retry_count--;
2922		else
2923			oldusage = curusage;
2924	} while (retry_count);
2925
2926	if (!ret && enlarge)
2927		memcg_oom_recover(memcg);
2928
2929	return ret;
2930}
2931
2932unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2933					    gfp_t gfp_mask,
2934					    unsigned long *total_scanned)
2935{
2936	unsigned long nr_reclaimed = 0;
2937	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2938	unsigned long reclaimed;
2939	int loop = 0;
2940	struct mem_cgroup_tree_per_zone *mctz;
2941	unsigned long excess;
2942	unsigned long nr_scanned;
2943
2944	if (order > 0)
2945		return 0;
2946
2947	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2948	/*
2949	 * This loop can run a while, specially if mem_cgroup's continuously
2950	 * keep exceeding their soft limit and putting the system under
2951	 * pressure
2952	 */
2953	do {
2954		if (next_mz)
2955			mz = next_mz;
2956		else
2957			mz = mem_cgroup_largest_soft_limit_node(mctz);
2958		if (!mz)
2959			break;
2960
2961		nr_scanned = 0;
2962		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2963						    gfp_mask, &nr_scanned);
2964		nr_reclaimed += reclaimed;
2965		*total_scanned += nr_scanned;
2966		spin_lock_irq(&mctz->lock);
2967		__mem_cgroup_remove_exceeded(mz, mctz);
2968
2969		/*
2970		 * If we failed to reclaim anything from this memory cgroup
2971		 * it is time to move on to the next cgroup
2972		 */
2973		next_mz = NULL;
2974		if (!reclaimed)
2975			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2976
2977		excess = soft_limit_excess(mz->memcg);
2978		/*
2979		 * One school of thought says that we should not add
2980		 * back the node to the tree if reclaim returns 0.
2981		 * But our reclaim could return 0, simply because due
2982		 * to priority we are exposing a smaller subset of
2983		 * memory to reclaim from. Consider this as a longer
2984		 * term TODO.
2985		 */
2986		/* If excess == 0, no tree ops */
2987		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2988		spin_unlock_irq(&mctz->lock);
2989		css_put(&mz->memcg->css);
2990		loop++;
2991		/*
2992		 * Could not reclaim anything and there are no more
2993		 * mem cgroups to try or we seem to be looping without
2994		 * reclaiming anything.
2995		 */
2996		if (!nr_reclaimed &&
2997			(next_mz == NULL ||
2998			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2999			break;
3000	} while (!nr_reclaimed);
3001	if (next_mz)
3002		css_put(&next_mz->memcg->css);
3003	return nr_reclaimed;
3004}
3005
3006/*
3007 * Test whether @memcg has children, dead or alive.  Note that this
3008 * function doesn't care whether @memcg has use_hierarchy enabled and
3009 * returns %true if there are child csses according to the cgroup
3010 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3011 */
3012static inline bool memcg_has_children(struct mem_cgroup *memcg)
3013{
3014	bool ret;
3015
3016	/*
3017	 * The lock does not prevent addition or deletion of children, but
3018	 * it prevents a new child from being initialized based on this
3019	 * parent in css_online(), so it's enough to decide whether
3020	 * hierarchically inherited attributes can still be changed or not.
3021	 */
3022	lockdep_assert_held(&memcg_create_mutex);
3023
3024	rcu_read_lock();
3025	ret = css_next_child(NULL, &memcg->css);
3026	rcu_read_unlock();
3027	return ret;
3028}
3029
3030/*
3031 * Reclaims as many pages from the given memcg as possible and moves
3032 * the rest to the parent.
3033 *
3034 * Caller is responsible for holding css reference for memcg.
3035 */
3036static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3037{
3038	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3039
3040	/* we call try-to-free pages for make this cgroup empty */
3041	lru_add_drain_all();
3042	/* try to free all pages in this cgroup */
3043	while (nr_retries && page_counter_read(&memcg->memory)) {
3044		int progress;
3045
3046		if (signal_pending(current))
3047			return -EINTR;
3048
3049		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3050							GFP_KERNEL, true);
3051		if (!progress) {
3052			nr_retries--;
3053			/* maybe some writeback is necessary */
3054			congestion_wait(BLK_RW_ASYNC, HZ/10);
3055		}
3056
3057	}
3058
3059	return 0;
3060}
3061
3062static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3063					    char *buf, size_t nbytes,
3064					    loff_t off)
3065{
3066	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3067
3068	if (mem_cgroup_is_root(memcg))
3069		return -EINVAL;
3070	return mem_cgroup_force_empty(memcg) ?: nbytes;
3071}
3072
3073static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3074				     struct cftype *cft)
3075{
3076	return mem_cgroup_from_css(css)->use_hierarchy;
3077}
3078
3079static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3080				      struct cftype *cft, u64 val)
3081{
3082	int retval = 0;
3083	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3084	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3085
3086	mutex_lock(&memcg_create_mutex);
3087
3088	if (memcg->use_hierarchy == val)
3089		goto out;
3090
3091	/*
3092	 * If parent's use_hierarchy is set, we can't make any modifications
3093	 * in the child subtrees. If it is unset, then the change can
3094	 * occur, provided the current cgroup has no children.
3095	 *
3096	 * For the root cgroup, parent_mem is NULL, we allow value to be
3097	 * set if there are no children.
3098	 */
3099	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3100				(val == 1 || val == 0)) {
3101		if (!memcg_has_children(memcg))
3102			memcg->use_hierarchy = val;
3103		else
3104			retval = -EBUSY;
3105	} else
3106		retval = -EINVAL;
3107
3108out:
3109	mutex_unlock(&memcg_create_mutex);
3110
3111	return retval;
3112}
3113
3114static unsigned long tree_stat(struct mem_cgroup *memcg,
3115			       enum mem_cgroup_stat_index idx)
3116{
3117	struct mem_cgroup *iter;
3118	long val = 0;
3119
3120	/* Per-cpu values can be negative, use a signed accumulator */
3121	for_each_mem_cgroup_tree(iter, memcg)
3122		val += mem_cgroup_read_stat(iter, idx);
3123
3124	if (val < 0) /* race ? */
3125		val = 0;
3126	return val;
3127}
3128
3129static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3130{
3131	u64 val;
3132
3133	if (mem_cgroup_is_root(memcg)) {
3134		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3135		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3136		if (swap)
3137			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3138	} else {
3139		if (!swap)
3140			val = page_counter_read(&memcg->memory);
3141		else
3142			val = page_counter_read(&memcg->memsw);
3143	}
3144	return val << PAGE_SHIFT;
3145}
3146
3147enum {
3148	RES_USAGE,
3149	RES_LIMIT,
3150	RES_MAX_USAGE,
3151	RES_FAILCNT,
3152	RES_SOFT_LIMIT,
3153};
3154
3155static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3156			       struct cftype *cft)
3157{
3158	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3159	struct page_counter *counter;
3160
3161	switch (MEMFILE_TYPE(cft->private)) {
3162	case _MEM:
3163		counter = &memcg->memory;
3164		break;
3165	case _MEMSWAP:
3166		counter = &memcg->memsw;
3167		break;
3168	case _KMEM:
3169		counter = &memcg->kmem;
3170		break;
3171	default:
3172		BUG();
3173	}
3174
3175	switch (MEMFILE_ATTR(cft->private)) {
3176	case RES_USAGE:
3177		if (counter == &memcg->memory)
3178			return mem_cgroup_usage(memcg, false);
3179		if (counter == &memcg->memsw)
3180			return mem_cgroup_usage(memcg, true);
3181		return (u64)page_counter_read(counter) * PAGE_SIZE;
3182	case RES_LIMIT:
3183		return (u64)counter->limit * PAGE_SIZE;
3184	case RES_MAX_USAGE:
3185		return (u64)counter->watermark * PAGE_SIZE;
3186	case RES_FAILCNT:
3187		return counter->failcnt;
3188	case RES_SOFT_LIMIT:
3189		return (u64)memcg->soft_limit * PAGE_SIZE;
3190	default:
3191		BUG();
3192	}
3193}
3194
3195#ifdef CONFIG_MEMCG_KMEM
3196static int memcg_activate_kmem(struct mem_cgroup *memcg,
3197			       unsigned long nr_pages)
3198{
3199	int err = 0;
3200	int memcg_id;
3201
3202	BUG_ON(memcg->kmemcg_id >= 0);
3203	BUG_ON(memcg->kmem_acct_activated);
3204	BUG_ON(memcg->kmem_acct_active);
3205
3206	/*
3207	 * For simplicity, we won't allow this to be disabled.  It also can't
3208	 * be changed if the cgroup has children already, or if tasks had
3209	 * already joined.
3210	 *
3211	 * If tasks join before we set the limit, a person looking at
3212	 * kmem.usage_in_bytes will have no way to determine when it took
3213	 * place, which makes the value quite meaningless.
3214	 *
3215	 * After it first became limited, changes in the value of the limit are
3216	 * of course permitted.
3217	 */
3218	mutex_lock(&memcg_create_mutex);
3219	if (cgroup_has_tasks(memcg->css.cgroup) ||
3220	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3221		err = -EBUSY;
3222	mutex_unlock(&memcg_create_mutex);
3223	if (err)
3224		goto out;
3225
3226	memcg_id = memcg_alloc_cache_id();
3227	if (memcg_id < 0) {
3228		err = memcg_id;
3229		goto out;
3230	}
3231
3232	/*
3233	 * We couldn't have accounted to this cgroup, because it hasn't got
3234	 * activated yet, so this should succeed.
3235	 */
3236	err = page_counter_limit(&memcg->kmem, nr_pages);
3237	VM_BUG_ON(err);
3238
3239	static_key_slow_inc(&memcg_kmem_enabled_key);
3240	/*
3241	 * A memory cgroup is considered kmem-active as soon as it gets
3242	 * kmemcg_id. Setting the id after enabling static branching will
3243	 * guarantee no one starts accounting before all call sites are
3244	 * patched.
3245	 */
3246	memcg->kmemcg_id = memcg_id;
3247	memcg->kmem_acct_activated = true;
3248	memcg->kmem_acct_active = true;
3249out:
3250	return err;
3251}
3252
3253static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3254				   unsigned long limit)
3255{
3256	int ret;
3257
3258	mutex_lock(&memcg_limit_mutex);
3259	if (!memcg_kmem_is_active(memcg))
3260		ret = memcg_activate_kmem(memcg, limit);
3261	else
3262		ret = page_counter_limit(&memcg->kmem, limit);
3263	mutex_unlock(&memcg_limit_mutex);
3264	return ret;
3265}
3266
3267static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3268{
3269	int ret = 0;
3270	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3271
3272	if (!parent)
3273		return 0;
3274
3275	mutex_lock(&memcg_limit_mutex);
3276	/*
3277	 * If the parent cgroup is not kmem-active now, it cannot be activated
3278	 * after this point, because it has at least one child already.
3279	 */
3280	if (memcg_kmem_is_active(parent))
3281		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3282	mutex_unlock(&memcg_limit_mutex);
3283	return ret;
3284}
3285#else
3286static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3287				   unsigned long limit)
3288{
3289	return -EINVAL;
3290}
3291#endif /* CONFIG_MEMCG_KMEM */
3292
3293/*
3294 * The user of this function is...
3295 * RES_LIMIT.
3296 */
3297static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3298				char *buf, size_t nbytes, loff_t off)
3299{
3300	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3301	unsigned long nr_pages;
3302	int ret;
3303
3304	buf = strstrip(buf);
3305	ret = page_counter_memparse(buf, "-1", &nr_pages);
3306	if (ret)
3307		return ret;
3308
3309	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3310	case RES_LIMIT:
3311		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3312			ret = -EINVAL;
3313			break;
3314		}
3315		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3316		case _MEM:
3317			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3318			break;
3319		case _MEMSWAP:
3320			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3321			break;
3322		case _KMEM:
3323			ret = memcg_update_kmem_limit(memcg, nr_pages);
3324			break;
3325		}
3326		break;
3327	case RES_SOFT_LIMIT:
3328		memcg->soft_limit = nr_pages;
3329		ret = 0;
3330		break;
3331	}
3332	return ret ?: nbytes;
3333}
3334
3335static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3336				size_t nbytes, loff_t off)
3337{
3338	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3339	struct page_counter *counter;
3340
3341	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3342	case _MEM:
3343		counter = &memcg->memory;
3344		break;
3345	case _MEMSWAP:
3346		counter = &memcg->memsw;
3347		break;
3348	case _KMEM:
3349		counter = &memcg->kmem;
3350		break;
3351	default:
3352		BUG();
3353	}
3354
3355	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3356	case RES_MAX_USAGE:
3357		page_counter_reset_watermark(counter);
3358		break;
3359	case RES_FAILCNT:
3360		counter->failcnt = 0;
3361		break;
3362	default:
3363		BUG();
3364	}
3365
3366	return nbytes;
3367}
3368
3369static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3370					struct cftype *cft)
3371{
3372	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3373}
3374
3375#ifdef CONFIG_MMU
3376static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3377					struct cftype *cft, u64 val)
3378{
3379	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3380
3381	if (val & ~MOVE_MASK)
3382		return -EINVAL;
3383
3384	/*
3385	 * No kind of locking is needed in here, because ->can_attach() will
3386	 * check this value once in the beginning of the process, and then carry
3387	 * on with stale data. This means that changes to this value will only
3388	 * affect task migrations starting after the change.
3389	 */
3390	memcg->move_charge_at_immigrate = val;
3391	return 0;
3392}
3393#else
3394static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3395					struct cftype *cft, u64 val)
3396{
3397	return -ENOSYS;
3398}
3399#endif
3400
3401#ifdef CONFIG_NUMA
3402static int memcg_numa_stat_show(struct seq_file *m, void *v)
3403{
3404	struct numa_stat {
3405		const char *name;
3406		unsigned int lru_mask;
3407	};
3408
3409	static const struct numa_stat stats[] = {
3410		{ "total", LRU_ALL },
3411		{ "file", LRU_ALL_FILE },
3412		{ "anon", LRU_ALL_ANON },
3413		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3414	};
3415	const struct numa_stat *stat;
3416	int nid;
3417	unsigned long nr;
3418	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3419
3420	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3421		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3422		seq_printf(m, "%s=%lu", stat->name, nr);
3423		for_each_node_state(nid, N_MEMORY) {
3424			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3425							  stat->lru_mask);
3426			seq_printf(m, " N%d=%lu", nid, nr);
3427		}
3428		seq_putc(m, '\n');
3429	}
3430
3431	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3432		struct mem_cgroup *iter;
3433
3434		nr = 0;
3435		for_each_mem_cgroup_tree(iter, memcg)
3436			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3437		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3438		for_each_node_state(nid, N_MEMORY) {
3439			nr = 0;
3440			for_each_mem_cgroup_tree(iter, memcg)
3441				nr += mem_cgroup_node_nr_lru_pages(
3442					iter, nid, stat->lru_mask);
3443			seq_printf(m, " N%d=%lu", nid, nr);
3444		}
3445		seq_putc(m, '\n');
3446	}
3447
3448	return 0;
3449}
3450#endif /* CONFIG_NUMA */
3451
3452static int memcg_stat_show(struct seq_file *m, void *v)
3453{
3454	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3455	unsigned long memory, memsw;
3456	struct mem_cgroup *mi;
3457	unsigned int i;
3458
3459	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3460		     MEM_CGROUP_STAT_NSTATS);
3461	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3462		     MEM_CGROUP_EVENTS_NSTATS);
3463	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3464
3465	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3466		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3467			continue;
3468		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3469			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3470	}
3471
3472	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3473		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3474			   mem_cgroup_read_events(memcg, i));
3475
3476	for (i = 0; i < NR_LRU_LISTS; i++)
3477		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3478			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3479
3480	/* Hierarchical information */
3481	memory = memsw = PAGE_COUNTER_MAX;
3482	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3483		memory = min(memory, mi->memory.limit);
3484		memsw = min(memsw, mi->memsw.limit);
3485	}
3486	seq_printf(m, "hierarchical_memory_limit %llu\n",
3487		   (u64)memory * PAGE_SIZE);
3488	if (do_swap_account)
3489		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3490			   (u64)memsw * PAGE_SIZE);
3491
3492	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3493		long long val = 0;
3494
3495		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3496			continue;
3497		for_each_mem_cgroup_tree(mi, memcg)
3498			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3499		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3500	}
3501
3502	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3503		unsigned long long val = 0;
3504
3505		for_each_mem_cgroup_tree(mi, memcg)
3506			val += mem_cgroup_read_events(mi, i);
3507		seq_printf(m, "total_%s %llu\n",
3508			   mem_cgroup_events_names[i], val);
3509	}
3510
3511	for (i = 0; i < NR_LRU_LISTS; i++) {
3512		unsigned long long val = 0;
3513
3514		for_each_mem_cgroup_tree(mi, memcg)
3515			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3516		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3517	}
3518
3519#ifdef CONFIG_DEBUG_VM
3520	{
3521		int nid, zid;
3522		struct mem_cgroup_per_zone *mz;
3523		struct zone_reclaim_stat *rstat;
3524		unsigned long recent_rotated[2] = {0, 0};
3525		unsigned long recent_scanned[2] = {0, 0};
3526
3527		for_each_online_node(nid)
3528			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3529				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3530				rstat = &mz->lruvec.reclaim_stat;
3531
3532				recent_rotated[0] += rstat->recent_rotated[0];
3533				recent_rotated[1] += rstat->recent_rotated[1];
3534				recent_scanned[0] += rstat->recent_scanned[0];
3535				recent_scanned[1] += rstat->recent_scanned[1];
3536			}
3537		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3538		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3539		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3540		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3541	}
3542#endif
3543
3544	return 0;
3545}
3546
3547static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3548				      struct cftype *cft)
3549{
3550	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3551
3552	return mem_cgroup_swappiness(memcg);
3553}
3554
3555static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3556				       struct cftype *cft, u64 val)
3557{
3558	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3559
3560	if (val > 100)
3561		return -EINVAL;
3562
3563	if (css->parent)
3564		memcg->swappiness = val;
3565	else
3566		vm_swappiness = val;
3567
3568	return 0;
3569}
3570
3571static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3572{
3573	struct mem_cgroup_threshold_ary *t;
3574	unsigned long usage;
3575	int i;
3576
3577	rcu_read_lock();
3578	if (!swap)
3579		t = rcu_dereference(memcg->thresholds.primary);
3580	else
3581		t = rcu_dereference(memcg->memsw_thresholds.primary);
3582
3583	if (!t)
3584		goto unlock;
3585
3586	usage = mem_cgroup_usage(memcg, swap);
3587
3588	/*
3589	 * current_threshold points to threshold just below or equal to usage.
3590	 * If it's not true, a threshold was crossed after last
3591	 * call of __mem_cgroup_threshold().
3592	 */
3593	i = t->current_threshold;
3594
3595	/*
3596	 * Iterate backward over array of thresholds starting from
3597	 * current_threshold and check if a threshold is crossed.
3598	 * If none of thresholds below usage is crossed, we read
3599	 * only one element of the array here.
3600	 */
3601	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3602		eventfd_signal(t->entries[i].eventfd, 1);
3603
3604	/* i = current_threshold + 1 */
3605	i++;
3606
3607	/*
3608	 * Iterate forward over array of thresholds starting from
3609	 * current_threshold+1 and check if a threshold is crossed.
3610	 * If none of thresholds above usage is crossed, we read
3611	 * only one element of the array here.
3612	 */
3613	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3614		eventfd_signal(t->entries[i].eventfd, 1);
3615
3616	/* Update current_threshold */
3617	t->current_threshold = i - 1;
3618unlock:
3619	rcu_read_unlock();
3620}
3621
3622static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3623{
3624	while (memcg) {
3625		__mem_cgroup_threshold(memcg, false);
3626		if (do_swap_account)
3627			__mem_cgroup_threshold(memcg, true);
3628
3629		memcg = parent_mem_cgroup(memcg);
3630	}
3631}
3632
3633static int compare_thresholds(const void *a, const void *b)
3634{
3635	const struct mem_cgroup_threshold *_a = a;
3636	const struct mem_cgroup_threshold *_b = b;
3637
3638	if (_a->threshold > _b->threshold)
3639		return 1;
3640
3641	if (_a->threshold < _b->threshold)
3642		return -1;
3643
3644	return 0;
3645}
3646
3647static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3648{
3649	struct mem_cgroup_eventfd_list *ev;
3650
3651	spin_lock(&memcg_oom_lock);
3652
3653	list_for_each_entry(ev, &memcg->oom_notify, list)
3654		eventfd_signal(ev->eventfd, 1);
3655
3656	spin_unlock(&memcg_oom_lock);
3657	return 0;
3658}
3659
3660static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3661{
3662	struct mem_cgroup *iter;
3663
3664	for_each_mem_cgroup_tree(iter, memcg)
3665		mem_cgroup_oom_notify_cb(iter);
3666}
3667
3668static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3669	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3670{
3671	struct mem_cgroup_thresholds *thresholds;
3672	struct mem_cgroup_threshold_ary *new;
3673	unsigned long threshold;
3674	unsigned long usage;
3675	int i, size, ret;
3676
3677	ret = page_counter_memparse(args, "-1", &threshold);
3678	if (ret)
3679		return ret;
3680	threshold <<= PAGE_SHIFT;
3681
3682	mutex_lock(&memcg->thresholds_lock);
3683
3684	if (type == _MEM) {
3685		thresholds = &memcg->thresholds;
3686		usage = mem_cgroup_usage(memcg, false);
3687	} else if (type == _MEMSWAP) {
3688		thresholds = &memcg->memsw_thresholds;
3689		usage = mem_cgroup_usage(memcg, true);
3690	} else
3691		BUG();
3692
3693	/* Check if a threshold crossed before adding a new one */
3694	if (thresholds->primary)
3695		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3696
3697	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3698
3699	/* Allocate memory for new array of thresholds */
3700	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3701			GFP_KERNEL);
3702	if (!new) {
3703		ret = -ENOMEM;
3704		goto unlock;
3705	}
3706	new->size = size;
3707
3708	/* Copy thresholds (if any) to new array */
3709	if (thresholds->primary) {
3710		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3711				sizeof(struct mem_cgroup_threshold));
3712	}
3713
3714	/* Add new threshold */
3715	new->entries[size - 1].eventfd = eventfd;
3716	new->entries[size - 1].threshold = threshold;
3717
3718	/* Sort thresholds. Registering of new threshold isn't time-critical */
3719	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3720			compare_thresholds, NULL);
3721
3722	/* Find current threshold */
3723	new->current_threshold = -1;
3724	for (i = 0; i < size; i++) {
3725		if (new->entries[i].threshold <= usage) {
3726			/*
3727			 * new->current_threshold will not be used until
3728			 * rcu_assign_pointer(), so it's safe to increment
3729			 * it here.
3730			 */
3731			++new->current_threshold;
3732		} else
3733			break;
3734	}
3735
3736	/* Free old spare buffer and save old primary buffer as spare */
3737	kfree(thresholds->spare);
3738	thresholds->spare = thresholds->primary;
3739
3740	rcu_assign_pointer(thresholds->primary, new);
3741
3742	/* To be sure that nobody uses thresholds */
3743	synchronize_rcu();
3744
3745unlock:
3746	mutex_unlock(&memcg->thresholds_lock);
3747
3748	return ret;
3749}
3750
3751static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3752	struct eventfd_ctx *eventfd, const char *args)
3753{
3754	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3755}
3756
3757static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3758	struct eventfd_ctx *eventfd, const char *args)
3759{
3760	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3761}
3762
3763static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3764	struct eventfd_ctx *eventfd, enum res_type type)
3765{
3766	struct mem_cgroup_thresholds *thresholds;
3767	struct mem_cgroup_threshold_ary *new;
3768	unsigned long usage;
3769	int i, j, size;
3770
3771	mutex_lock(&memcg->thresholds_lock);
3772
3773	if (type == _MEM) {
3774		thresholds = &memcg->thresholds;
3775		usage = mem_cgroup_usage(memcg, false);
3776	} else if (type == _MEMSWAP) {
3777		thresholds = &memcg->memsw_thresholds;
3778		usage = mem_cgroup_usage(memcg, true);
3779	} else
3780		BUG();
3781
3782	if (!thresholds->primary)
3783		goto unlock;
3784
3785	/* Check if a threshold crossed before removing */
3786	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3787
3788	/* Calculate new number of threshold */
3789	size = 0;
3790	for (i = 0; i < thresholds->primary->size; i++) {
3791		if (thresholds->primary->entries[i].eventfd != eventfd)
3792			size++;
3793	}
3794
3795	new = thresholds->spare;
3796
3797	/* Set thresholds array to NULL if we don't have thresholds */
3798	if (!size) {
3799		kfree(new);
3800		new = NULL;
3801		goto swap_buffers;
3802	}
3803
3804	new->size = size;
3805
3806	/* Copy thresholds and find current threshold */
3807	new->current_threshold = -1;
3808	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3809		if (thresholds->primary->entries[i].eventfd == eventfd)
3810			continue;
3811
3812		new->entries[j] = thresholds->primary->entries[i];
3813		if (new->entries[j].threshold <= usage) {
3814			/*
3815			 * new->current_threshold will not be used
3816			 * until rcu_assign_pointer(), so it's safe to increment
3817			 * it here.
3818			 */
3819			++new->current_threshold;
3820		}
3821		j++;
3822	}
3823
3824swap_buffers:
3825	/* Swap primary and spare array */
3826	thresholds->spare = thresholds->primary;
3827
3828	rcu_assign_pointer(thresholds->primary, new);
3829
3830	/* To be sure that nobody uses thresholds */
3831	synchronize_rcu();
3832
3833	/* If all events are unregistered, free the spare array */
3834	if (!new) {
3835		kfree(thresholds->spare);
3836		thresholds->spare = NULL;
3837	}
3838unlock:
3839	mutex_unlock(&memcg->thresholds_lock);
3840}
3841
3842static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3843	struct eventfd_ctx *eventfd)
3844{
3845	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3846}
3847
3848static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3849	struct eventfd_ctx *eventfd)
3850{
3851	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3852}
3853
3854static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3855	struct eventfd_ctx *eventfd, const char *args)
3856{
3857	struct mem_cgroup_eventfd_list *event;
3858
3859	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3860	if (!event)
3861		return -ENOMEM;
3862
3863	spin_lock(&memcg_oom_lock);
3864
3865	event->eventfd = eventfd;
3866	list_add(&event->list, &memcg->oom_notify);
3867
3868	/* already in OOM ? */
3869	if (atomic_read(&memcg->under_oom))
3870		eventfd_signal(eventfd, 1);
3871	spin_unlock(&memcg_oom_lock);
3872
3873	return 0;
3874}
3875
3876static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3877	struct eventfd_ctx *eventfd)
3878{
3879	struct mem_cgroup_eventfd_list *ev, *tmp;
3880
3881	spin_lock(&memcg_oom_lock);
3882
3883	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3884		if (ev->eventfd == eventfd) {
3885			list_del(&ev->list);
3886			kfree(ev);
3887		}
3888	}
3889
3890	spin_unlock(&memcg_oom_lock);
3891}
3892
3893static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3894{
3895	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3896
3897	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3898	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3899	return 0;
3900}
3901
3902static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3903	struct cftype *cft, u64 val)
3904{
3905	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3906
3907	/* cannot set to root cgroup and only 0 and 1 are allowed */
3908	if (!css->parent || !((val == 0) || (val == 1)))
3909		return -EINVAL;
3910
3911	memcg->oom_kill_disable = val;
3912	if (!val)
3913		memcg_oom_recover(memcg);
3914
3915	return 0;
3916}
3917
3918#ifdef CONFIG_MEMCG_KMEM
3919static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3920{
3921	int ret;
3922
3923	ret = memcg_propagate_kmem(memcg);
3924	if (ret)
3925		return ret;
3926
3927	return mem_cgroup_sockets_init(memcg, ss);
3928}
3929
3930static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3931{
3932	struct cgroup_subsys_state *css;
3933	struct mem_cgroup *parent, *child;
3934	int kmemcg_id;
3935
3936	if (!memcg->kmem_acct_active)
3937		return;
3938
3939	/*
3940	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3941	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3942	 * guarantees no cache will be created for this cgroup after we are
3943	 * done (see memcg_create_kmem_cache()).
3944	 */
3945	memcg->kmem_acct_active = false;
3946
3947	memcg_deactivate_kmem_caches(memcg);
3948
3949	kmemcg_id = memcg->kmemcg_id;
3950	BUG_ON(kmemcg_id < 0);
3951
3952	parent = parent_mem_cgroup(memcg);
3953	if (!parent)
3954		parent = root_mem_cgroup;
3955
3956	/*
3957	 * Change kmemcg_id of this cgroup and all its descendants to the
3958	 * parent's id, and then move all entries from this cgroup's list_lrus
3959	 * to ones of the parent. After we have finished, all list_lrus
3960	 * corresponding to this cgroup are guaranteed to remain empty. The
3961	 * ordering is imposed by list_lru_node->lock taken by
3962	 * memcg_drain_all_list_lrus().
3963	 */
3964	css_for_each_descendant_pre(css, &memcg->css) {
3965		child = mem_cgroup_from_css(css);
3966		BUG_ON(child->kmemcg_id != kmemcg_id);
3967		child->kmemcg_id = parent->kmemcg_id;
3968		if (!memcg->use_hierarchy)
3969			break;
3970	}
3971	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3972
3973	memcg_free_cache_id(kmemcg_id);
3974}
3975
3976static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3977{
3978	if (memcg->kmem_acct_activated) {
3979		memcg_destroy_kmem_caches(memcg);
3980		static_key_slow_dec(&memcg_kmem_enabled_key);
3981		WARN_ON(page_counter_read(&memcg->kmem));
3982	}
3983	mem_cgroup_sockets_destroy(memcg);
3984}
3985#else
3986static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3987{
3988	return 0;
3989}
3990
3991static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3992{
3993}
3994
3995static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3996{
3997}
3998#endif
3999
4000/*
4001 * DO NOT USE IN NEW FILES.
4002 *
4003 * "cgroup.event_control" implementation.
4004 *
4005 * This is way over-engineered.  It tries to support fully configurable
4006 * events for each user.  Such level of flexibility is completely
4007 * unnecessary especially in the light of the planned unified hierarchy.
4008 *
4009 * Please deprecate this and replace with something simpler if at all
4010 * possible.
4011 */
4012
4013/*
4014 * Unregister event and free resources.
4015 *
4016 * Gets called from workqueue.
4017 */
4018static void memcg_event_remove(struct work_struct *work)
4019{
4020	struct mem_cgroup_event *event =
4021		container_of(work, struct mem_cgroup_event, remove);
4022	struct mem_cgroup *memcg = event->memcg;
4023
4024	remove_wait_queue(event->wqh, &event->wait);
4025
4026	event->unregister_event(memcg, event->eventfd);
4027
4028	/* Notify userspace the event is going away. */
4029	eventfd_signal(event->eventfd, 1);
4030
4031	eventfd_ctx_put(event->eventfd);
4032	kfree(event);
4033	css_put(&memcg->css);
4034}
4035
4036/*
4037 * Gets called on POLLHUP on eventfd when user closes it.
4038 *
4039 * Called with wqh->lock held and interrupts disabled.
4040 */
4041static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4042			    int sync, void *key)
4043{
4044	struct mem_cgroup_event *event =
4045		container_of(wait, struct mem_cgroup_event, wait);
4046	struct mem_cgroup *memcg = event->memcg;
4047	unsigned long flags = (unsigned long)key;
4048
4049	if (flags & POLLHUP) {
4050		/*
4051		 * If the event has been detached at cgroup removal, we
4052		 * can simply return knowing the other side will cleanup
4053		 * for us.
4054		 *
4055		 * We can't race against event freeing since the other
4056		 * side will require wqh->lock via remove_wait_queue(),
4057		 * which we hold.
4058		 */
4059		spin_lock(&memcg->event_list_lock);
4060		if (!list_empty(&event->list)) {
4061			list_del_init(&event->list);
4062			/*
4063			 * We are in atomic context, but cgroup_event_remove()
4064			 * may sleep, so we have to call it in workqueue.
4065			 */
4066			schedule_work(&event->remove);
4067		}
4068		spin_unlock(&memcg->event_list_lock);
4069	}
4070
4071	return 0;
4072}
4073
4074static void memcg_event_ptable_queue_proc(struct file *file,
4075		wait_queue_head_t *wqh, poll_table *pt)
4076{
4077	struct mem_cgroup_event *event =
4078		container_of(pt, struct mem_cgroup_event, pt);
4079
4080	event->wqh = wqh;
4081	add_wait_queue(wqh, &event->wait);
4082}
4083
4084/*
4085 * DO NOT USE IN NEW FILES.
4086 *
4087 * Parse input and register new cgroup event handler.
4088 *
4089 * Input must be in format '<event_fd> <control_fd> <args>'.
4090 * Interpretation of args is defined by control file implementation.
4091 */
4092static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4093					 char *buf, size_t nbytes, loff_t off)
4094{
4095	struct cgroup_subsys_state *css = of_css(of);
4096	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4097	struct mem_cgroup_event *event;
4098	struct cgroup_subsys_state *cfile_css;
4099	unsigned int efd, cfd;
4100	struct fd efile;
4101	struct fd cfile;
4102	const char *name;
4103	char *endp;
4104	int ret;
4105
4106	buf = strstrip(buf);
4107
4108	efd = simple_strtoul(buf, &endp, 10);
4109	if (*endp != ' ')
4110		return -EINVAL;
4111	buf = endp + 1;
4112
4113	cfd = simple_strtoul(buf, &endp, 10);
4114	if ((*endp != ' ') && (*endp != '\0'))
4115		return -EINVAL;
4116	buf = endp + 1;
4117
4118	event = kzalloc(sizeof(*event), GFP_KERNEL);
4119	if (!event)
4120		return -ENOMEM;
4121
4122	event->memcg = memcg;
4123	INIT_LIST_HEAD(&event->list);
4124	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4125	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4126	INIT_WORK(&event->remove, memcg_event_remove);
4127
4128	efile = fdget(efd);
4129	if (!efile.file) {
4130		ret = -EBADF;
4131		goto out_kfree;
4132	}
4133
4134	event->eventfd = eventfd_ctx_fileget(efile.file);
4135	if (IS_ERR(event->eventfd)) {
4136		ret = PTR_ERR(event->eventfd);
4137		goto out_put_efile;
4138	}
4139
4140	cfile = fdget(cfd);
4141	if (!cfile.file) {
4142		ret = -EBADF;
4143		goto out_put_eventfd;
4144	}
4145
4146	/* the process need read permission on control file */
4147	/* AV: shouldn't we check that it's been opened for read instead? */
4148	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4149	if (ret < 0)
4150		goto out_put_cfile;
4151
4152	/*
4153	 * Determine the event callbacks and set them in @event.  This used
4154	 * to be done via struct cftype but cgroup core no longer knows
4155	 * about these events.  The following is crude but the whole thing
4156	 * is for compatibility anyway.
4157	 *
4158	 * DO NOT ADD NEW FILES.
4159	 */
4160	name = cfile.file->f_path.dentry->d_name.name;
4161
4162	if (!strcmp(name, "memory.usage_in_bytes")) {
4163		event->register_event = mem_cgroup_usage_register_event;
4164		event->unregister_event = mem_cgroup_usage_unregister_event;
4165	} else if (!strcmp(name, "memory.oom_control")) {
4166		event->register_event = mem_cgroup_oom_register_event;
4167		event->unregister_event = mem_cgroup_oom_unregister_event;
4168	} else if (!strcmp(name, "memory.pressure_level")) {
4169		event->register_event = vmpressure_register_event;
4170		event->unregister_event = vmpressure_unregister_event;
4171	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4172		event->register_event = memsw_cgroup_usage_register_event;
4173		event->unregister_event = memsw_cgroup_usage_unregister_event;
4174	} else {
4175		ret = -EINVAL;
4176		goto out_put_cfile;
4177	}
4178
4179	/*
4180	 * Verify @cfile should belong to @css.  Also, remaining events are
4181	 * automatically removed on cgroup destruction but the removal is
4182	 * asynchronous, so take an extra ref on @css.
4183	 */
4184	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4185					       &memory_cgrp_subsys);
4186	ret = -EINVAL;
4187	if (IS_ERR(cfile_css))
4188		goto out_put_cfile;
4189	if (cfile_css != css) {
4190		css_put(cfile_css);
4191		goto out_put_cfile;
4192	}
4193
4194	ret = event->register_event(memcg, event->eventfd, buf);
4195	if (ret)
4196		goto out_put_css;
4197
4198	efile.file->f_op->poll(efile.file, &event->pt);
4199
4200	spin_lock(&memcg->event_list_lock);
4201	list_add(&event->list, &memcg->event_list);
4202	spin_unlock(&memcg->event_list_lock);
4203
4204	fdput(cfile);
4205	fdput(efile);
4206
4207	return nbytes;
4208
4209out_put_css:
4210	css_put(css);
4211out_put_cfile:
4212	fdput(cfile);
4213out_put_eventfd:
4214	eventfd_ctx_put(event->eventfd);
4215out_put_efile:
4216	fdput(efile);
4217out_kfree:
4218	kfree(event);
4219
4220	return ret;
4221}
4222
4223static struct cftype mem_cgroup_legacy_files[] = {
4224	{
4225		.name = "usage_in_bytes",
4226		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4227		.read_u64 = mem_cgroup_read_u64,
4228	},
4229	{
4230		.name = "max_usage_in_bytes",
4231		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4232		.write = mem_cgroup_reset,
4233		.read_u64 = mem_cgroup_read_u64,
4234	},
4235	{
4236		.name = "limit_in_bytes",
4237		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4238		.write = mem_cgroup_write,
4239		.read_u64 = mem_cgroup_read_u64,
4240	},
4241	{
4242		.name = "soft_limit_in_bytes",
4243		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4244		.write = mem_cgroup_write,
4245		.read_u64 = mem_cgroup_read_u64,
4246	},
4247	{
4248		.name = "failcnt",
4249		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4250		.write = mem_cgroup_reset,
4251		.read_u64 = mem_cgroup_read_u64,
4252	},
4253	{
4254		.name = "stat",
4255		.seq_show = memcg_stat_show,
4256	},
4257	{
4258		.name = "force_empty",
4259		.write = mem_cgroup_force_empty_write,
4260	},
4261	{
4262		.name = "use_hierarchy",
4263		.write_u64 = mem_cgroup_hierarchy_write,
4264		.read_u64 = mem_cgroup_hierarchy_read,
4265	},
4266	{
4267		.name = "cgroup.event_control",		/* XXX: for compat */
4268		.write = memcg_write_event_control,
4269		.flags = CFTYPE_NO_PREFIX,
4270		.mode = S_IWUGO,
4271	},
4272	{
4273		.name = "swappiness",
4274		.read_u64 = mem_cgroup_swappiness_read,
4275		.write_u64 = mem_cgroup_swappiness_write,
4276	},
4277	{
4278		.name = "move_charge_at_immigrate",
4279		.read_u64 = mem_cgroup_move_charge_read,
4280		.write_u64 = mem_cgroup_move_charge_write,
4281	},
4282	{
4283		.name = "oom_control",
4284		.seq_show = mem_cgroup_oom_control_read,
4285		.write_u64 = mem_cgroup_oom_control_write,
4286		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4287	},
4288	{
4289		.name = "pressure_level",
4290	},
4291#ifdef CONFIG_NUMA
4292	{
4293		.name = "numa_stat",
4294		.seq_show = memcg_numa_stat_show,
4295	},
4296#endif
4297#ifdef CONFIG_MEMCG_KMEM
4298	{
4299		.name = "kmem.limit_in_bytes",
4300		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4301		.write = mem_cgroup_write,
4302		.read_u64 = mem_cgroup_read_u64,
4303	},
4304	{
4305		.name = "kmem.usage_in_bytes",
4306		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4307		.read_u64 = mem_cgroup_read_u64,
4308	},
4309	{
4310		.name = "kmem.failcnt",
4311		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4312		.write = mem_cgroup_reset,
4313		.read_u64 = mem_cgroup_read_u64,
4314	},
4315	{
4316		.name = "kmem.max_usage_in_bytes",
4317		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4318		.write = mem_cgroup_reset,
4319		.read_u64 = mem_cgroup_read_u64,
4320	},
4321#ifdef CONFIG_SLABINFO
4322	{
4323		.name = "kmem.slabinfo",
4324		.seq_start = slab_start,
4325		.seq_next = slab_next,
4326		.seq_stop = slab_stop,
4327		.seq_show = memcg_slab_show,
4328	},
4329#endif
4330#endif
4331	{ },	/* terminate */
4332};
4333
4334static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4335{
4336	struct mem_cgroup_per_node *pn;
4337	struct mem_cgroup_per_zone *mz;
4338	int zone, tmp = node;
4339	/*
4340	 * This routine is called against possible nodes.
4341	 * But it's BUG to call kmalloc() against offline node.
4342	 *
4343	 * TODO: this routine can waste much memory for nodes which will
4344	 *       never be onlined. It's better to use memory hotplug callback
4345	 *       function.
4346	 */
4347	if (!node_state(node, N_NORMAL_MEMORY))
4348		tmp = -1;
4349	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4350	if (!pn)
4351		return 1;
4352
4353	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4354		mz = &pn->zoneinfo[zone];
4355		lruvec_init(&mz->lruvec);
4356		mz->usage_in_excess = 0;
4357		mz->on_tree = false;
4358		mz->memcg = memcg;
4359	}
4360	memcg->nodeinfo[node] = pn;
4361	return 0;
4362}
4363
4364static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4365{
4366	kfree(memcg->nodeinfo[node]);
4367}
4368
4369static struct mem_cgroup *mem_cgroup_alloc(void)
4370{
4371	struct mem_cgroup *memcg;
4372	size_t size;
4373
4374	size = sizeof(struct mem_cgroup);
4375	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4376
4377	memcg = kzalloc(size, GFP_KERNEL);
4378	if (!memcg)
4379		return NULL;
4380
4381	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4382	if (!memcg->stat)
4383		goto out_free;
4384	spin_lock_init(&memcg->pcp_counter_lock);
4385	return memcg;
4386
4387out_free:
4388	kfree(memcg);
4389	return NULL;
4390}
4391
4392/*
4393 * At destroying mem_cgroup, references from swap_cgroup can remain.
4394 * (scanning all at force_empty is too costly...)
4395 *
4396 * Instead of clearing all references at force_empty, we remember
4397 * the number of reference from swap_cgroup and free mem_cgroup when
4398 * it goes down to 0.
4399 *
4400 * Removal of cgroup itself succeeds regardless of refs from swap.
4401 */
4402
4403static void __mem_cgroup_free(struct mem_cgroup *memcg)
4404{
4405	int node;
4406
4407	mem_cgroup_remove_from_trees(memcg);
4408
4409	for_each_node(node)
4410		free_mem_cgroup_per_zone_info(memcg, node);
4411
4412	free_percpu(memcg->stat);
4413	kfree(memcg);
4414}
4415
4416/*
4417 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4418 */
4419struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4420{
4421	if (!memcg->memory.parent)
4422		return NULL;
4423	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4424}
4425EXPORT_SYMBOL(parent_mem_cgroup);
4426
4427static struct cgroup_subsys_state * __ref
4428mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4429{
4430	struct mem_cgroup *memcg;
4431	long error = -ENOMEM;
4432	int node;
4433
4434	memcg = mem_cgroup_alloc();
4435	if (!memcg)
4436		return ERR_PTR(error);
4437
4438	for_each_node(node)
4439		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4440			goto free_out;
4441
4442	/* root ? */
4443	if (parent_css == NULL) {
4444		root_mem_cgroup = memcg;
4445		page_counter_init(&memcg->memory, NULL);
4446		memcg->high = PAGE_COUNTER_MAX;
4447		memcg->soft_limit = PAGE_COUNTER_MAX;
4448		page_counter_init(&memcg->memsw, NULL);
4449		page_counter_init(&memcg->kmem, NULL);
4450	}
4451
4452	memcg->last_scanned_node = MAX_NUMNODES;
4453	INIT_LIST_HEAD(&memcg->oom_notify);
4454	memcg->move_charge_at_immigrate = 0;
4455	mutex_init(&memcg->thresholds_lock);
4456	spin_lock_init(&memcg->move_lock);
4457	vmpressure_init(&memcg->vmpressure);
4458	INIT_LIST_HEAD(&memcg->event_list);
4459	spin_lock_init(&memcg->event_list_lock);
4460#ifdef CONFIG_MEMCG_KMEM
4461	memcg->kmemcg_id = -1;
4462#endif
4463
4464	return &memcg->css;
4465
4466free_out:
4467	__mem_cgroup_free(memcg);
4468	return ERR_PTR(error);
4469}
4470
4471static int
4472mem_cgroup_css_online(struct cgroup_subsys_state *css)
4473{
4474	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4475	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4476	int ret;
4477
4478	if (css->id > MEM_CGROUP_ID_MAX)
4479		return -ENOSPC;
4480
4481	if (!parent)
4482		return 0;
4483
4484	mutex_lock(&memcg_create_mutex);
4485
4486	memcg->use_hierarchy = parent->use_hierarchy;
4487	memcg->oom_kill_disable = parent->oom_kill_disable;
4488	memcg->swappiness = mem_cgroup_swappiness(parent);
4489
4490	if (parent->use_hierarchy) {
4491		page_counter_init(&memcg->memory, &parent->memory);
4492		memcg->high = PAGE_COUNTER_MAX;
4493		memcg->soft_limit = PAGE_COUNTER_MAX;
4494		page_counter_init(&memcg->memsw, &parent->memsw);
4495		page_counter_init(&memcg->kmem, &parent->kmem);
4496
4497		/*
4498		 * No need to take a reference to the parent because cgroup
4499		 * core guarantees its existence.
4500		 */
4501	} else {
4502		page_counter_init(&memcg->memory, NULL);
4503		memcg->high = PAGE_COUNTER_MAX;
4504		memcg->soft_limit = PAGE_COUNTER_MAX;
4505		page_counter_init(&memcg->memsw, NULL);
4506		page_counter_init(&memcg->kmem, NULL);
4507		/*
4508		 * Deeper hierachy with use_hierarchy == false doesn't make
4509		 * much sense so let cgroup subsystem know about this
4510		 * unfortunate state in our controller.
4511		 */
4512		if (parent != root_mem_cgroup)
4513			memory_cgrp_subsys.broken_hierarchy = true;
4514	}
4515	mutex_unlock(&memcg_create_mutex);
4516
4517	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4518	if (ret)
4519		return ret;
4520
4521	/*
4522	 * Make sure the memcg is initialized: mem_cgroup_iter()
4523	 * orders reading memcg->initialized against its callers
4524	 * reading the memcg members.
4525	 */
4526	smp_store_release(&memcg->initialized, 1);
4527
4528	return 0;
4529}
4530
4531static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4532{
4533	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4534	struct mem_cgroup_event *event, *tmp;
4535
4536	/*
4537	 * Unregister events and notify userspace.
4538	 * Notify userspace about cgroup removing only after rmdir of cgroup
4539	 * directory to avoid race between userspace and kernelspace.
4540	 */
4541	spin_lock(&memcg->event_list_lock);
4542	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4543		list_del_init(&event->list);
4544		schedule_work(&event->remove);
4545	}
4546	spin_unlock(&memcg->event_list_lock);
4547
4548	vmpressure_cleanup(&memcg->vmpressure);
4549
4550	memcg_deactivate_kmem(memcg);
4551}
4552
4553static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4554{
4555	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4556
4557	memcg_destroy_kmem(memcg);
4558	__mem_cgroup_free(memcg);
4559}
4560
4561/**
4562 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4563 * @css: the target css
4564 *
4565 * Reset the states of the mem_cgroup associated with @css.  This is
4566 * invoked when the userland requests disabling on the default hierarchy
4567 * but the memcg is pinned through dependency.  The memcg should stop
4568 * applying policies and should revert to the vanilla state as it may be
4569 * made visible again.
4570 *
4571 * The current implementation only resets the essential configurations.
4572 * This needs to be expanded to cover all the visible parts.
4573 */
4574static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4575{
4576	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4577
4578	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4579	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4580	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4581	memcg->low = 0;
4582	memcg->high = PAGE_COUNTER_MAX;
4583	memcg->soft_limit = PAGE_COUNTER_MAX;
4584}
4585
4586#ifdef CONFIG_MMU
4587/* Handlers for move charge at task migration. */
4588static int mem_cgroup_do_precharge(unsigned long count)
4589{
4590	int ret;
4591
4592	/* Try a single bulk charge without reclaim first */
4593	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4594	if (!ret) {
4595		mc.precharge += count;
4596		return ret;
4597	}
4598	if (ret == -EINTR) {
4599		cancel_charge(root_mem_cgroup, count);
4600		return ret;
4601	}
4602
4603	/* Try charges one by one with reclaim */
4604	while (count--) {
4605		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4606		/*
4607		 * In case of failure, any residual charges against
4608		 * mc.to will be dropped by mem_cgroup_clear_mc()
4609		 * later on.  However, cancel any charges that are
4610		 * bypassed to root right away or they'll be lost.
4611		 */
4612		if (ret == -EINTR)
4613			cancel_charge(root_mem_cgroup, 1);
4614		if (ret)
4615			return ret;
4616		mc.precharge++;
4617		cond_resched();
4618	}
4619	return 0;
4620}
4621
4622/**
4623 * get_mctgt_type - get target type of moving charge
4624 * @vma: the vma the pte to be checked belongs
4625 * @addr: the address corresponding to the pte to be checked
4626 * @ptent: the pte to be checked
4627 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4628 *
4629 * Returns
4630 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4631 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4632 *     move charge. if @target is not NULL, the page is stored in target->page
4633 *     with extra refcnt got(Callers should handle it).
4634 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4635 *     target for charge migration. if @target is not NULL, the entry is stored
4636 *     in target->ent.
4637 *
4638 * Called with pte lock held.
4639 */
4640union mc_target {
4641	struct page	*page;
4642	swp_entry_t	ent;
4643};
4644
4645enum mc_target_type {
4646	MC_TARGET_NONE = 0,
4647	MC_TARGET_PAGE,
4648	MC_TARGET_SWAP,
4649};
4650
4651static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4652						unsigned long addr, pte_t ptent)
4653{
4654	struct page *page = vm_normal_page(vma, addr, ptent);
4655
4656	if (!page || !page_mapped(page))
4657		return NULL;
4658	if (PageAnon(page)) {
4659		if (!(mc.flags & MOVE_ANON))
4660			return NULL;
4661	} else {
4662		if (!(mc.flags & MOVE_FILE))
4663			return NULL;
4664	}
4665	if (!get_page_unless_zero(page))
4666		return NULL;
4667
4668	return page;
4669}
4670
4671#ifdef CONFIG_SWAP
4672static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4673			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4674{
4675	struct page *page = NULL;
4676	swp_entry_t ent = pte_to_swp_entry(ptent);
4677
4678	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4679		return NULL;
4680	/*
4681	 * Because lookup_swap_cache() updates some statistics counter,
4682	 * we call find_get_page() with swapper_space directly.
4683	 */
4684	page = find_get_page(swap_address_space(ent), ent.val);
4685	if (do_swap_account)
4686		entry->val = ent.val;
4687
4688	return page;
4689}
4690#else
4691static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4692			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4693{
4694	return NULL;
4695}
4696#endif
4697
4698static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4699			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4700{
4701	struct page *page = NULL;
4702	struct address_space *mapping;
4703	pgoff_t pgoff;
4704
4705	if (!vma->vm_file) /* anonymous vma */
4706		return NULL;
4707	if (!(mc.flags & MOVE_FILE))
4708		return NULL;
4709
4710	mapping = vma->vm_file->f_mapping;
4711	pgoff = linear_page_index(vma, addr);
4712
4713	/* page is moved even if it's not RSS of this task(page-faulted). */
4714#ifdef CONFIG_SWAP
4715	/* shmem/tmpfs may report page out on swap: account for that too. */
4716	if (shmem_mapping(mapping)) {
4717		page = find_get_entry(mapping, pgoff);
4718		if (radix_tree_exceptional_entry(page)) {
4719			swp_entry_t swp = radix_to_swp_entry(page);
4720			if (do_swap_account)
4721				*entry = swp;
4722			page = find_get_page(swap_address_space(swp), swp.val);
4723		}
4724	} else
4725		page = find_get_page(mapping, pgoff);
4726#else
4727	page = find_get_page(mapping, pgoff);
4728#endif
4729	return page;
4730}
4731
4732/**
4733 * mem_cgroup_move_account - move account of the page
4734 * @page: the page
4735 * @nr_pages: number of regular pages (>1 for huge pages)
4736 * @from: mem_cgroup which the page is moved from.
4737 * @to:	mem_cgroup which the page is moved to. @from != @to.
4738 *
4739 * The caller must confirm following.
4740 * - page is not on LRU (isolate_page() is useful.)
4741 * - compound_lock is held when nr_pages > 1
4742 *
4743 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4744 * from old cgroup.
4745 */
4746static int mem_cgroup_move_account(struct page *page,
4747				   unsigned int nr_pages,
4748				   struct mem_cgroup *from,
4749				   struct mem_cgroup *to)
4750{
4751	unsigned long flags;
4752	int ret;
4753
4754	VM_BUG_ON(from == to);
4755	VM_BUG_ON_PAGE(PageLRU(page), page);
4756	/*
4757	 * The page is isolated from LRU. So, collapse function
4758	 * will not handle this page. But page splitting can happen.
4759	 * Do this check under compound_page_lock(). The caller should
4760	 * hold it.
4761	 */
4762	ret = -EBUSY;
4763	if (nr_pages > 1 && !PageTransHuge(page))
4764		goto out;
4765
4766	/*
4767	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4768	 * of its source page while we change it: page migration takes
4769	 * both pages off the LRU, but page cache replacement doesn't.
4770	 */
4771	if (!trylock_page(page))
4772		goto out;
4773
4774	ret = -EINVAL;
4775	if (page->mem_cgroup != from)
4776		goto out_unlock;
4777
4778	spin_lock_irqsave(&from->move_lock, flags);
4779
4780	if (!PageAnon(page) && page_mapped(page)) {
4781		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4782			       nr_pages);
4783		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4784			       nr_pages);
4785	}
4786
4787	if (PageWriteback(page)) {
4788		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4789			       nr_pages);
4790		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4791			       nr_pages);
4792	}
4793
4794	/*
4795	 * It is safe to change page->mem_cgroup here because the page
4796	 * is referenced, charged, and isolated - we can't race with
4797	 * uncharging, charging, migration, or LRU putback.
4798	 */
4799
4800	/* caller should have done css_get */
4801	page->mem_cgroup = to;
4802	spin_unlock_irqrestore(&from->move_lock, flags);
4803
4804	ret = 0;
4805
4806	local_irq_disable();
4807	mem_cgroup_charge_statistics(to, page, nr_pages);
4808	memcg_check_events(to, page);
4809	mem_cgroup_charge_statistics(from, page, -nr_pages);
4810	memcg_check_events(from, page);
4811	local_irq_enable();
4812out_unlock:
4813	unlock_page(page);
4814out:
4815	return ret;
4816}
4817
4818static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4819		unsigned long addr, pte_t ptent, union mc_target *target)
4820{
4821	struct page *page = NULL;
4822	enum mc_target_type ret = MC_TARGET_NONE;
4823	swp_entry_t ent = { .val = 0 };
4824
4825	if (pte_present(ptent))
4826		page = mc_handle_present_pte(vma, addr, ptent);
4827	else if (is_swap_pte(ptent))
4828		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4829	else if (pte_none(ptent))
4830		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4831
4832	if (!page && !ent.val)
4833		return ret;
4834	if (page) {
4835		/*
4836		 * Do only loose check w/o serialization.
4837		 * mem_cgroup_move_account() checks the page is valid or
4838		 * not under LRU exclusion.
4839		 */
4840		if (page->mem_cgroup == mc.from) {
4841			ret = MC_TARGET_PAGE;
4842			if (target)
4843				target->page = page;
4844		}
4845		if (!ret || !target)
4846			put_page(page);
4847	}
4848	/* There is a swap entry and a page doesn't exist or isn't charged */
4849	if (ent.val && !ret &&
4850	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4851		ret = MC_TARGET_SWAP;
4852		if (target)
4853			target->ent = ent;
4854	}
4855	return ret;
4856}
4857
4858#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4859/*
4860 * We don't consider swapping or file mapped pages because THP does not
4861 * support them for now.
4862 * Caller should make sure that pmd_trans_huge(pmd) is true.
4863 */
4864static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4865		unsigned long addr, pmd_t pmd, union mc_target *target)
4866{
4867	struct page *page = NULL;
4868	enum mc_target_type ret = MC_TARGET_NONE;
4869
4870	page = pmd_page(pmd);
4871	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4872	if (!(mc.flags & MOVE_ANON))
4873		return ret;
4874	if (page->mem_cgroup == mc.from) {
4875		ret = MC_TARGET_PAGE;
4876		if (target) {
4877			get_page(page);
4878			target->page = page;
4879		}
4880	}
4881	return ret;
4882}
4883#else
4884static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4885		unsigned long addr, pmd_t pmd, union mc_target *target)
4886{
4887	return MC_TARGET_NONE;
4888}
4889#endif
4890
4891static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4892					unsigned long addr, unsigned long end,
4893					struct mm_walk *walk)
4894{
4895	struct vm_area_struct *vma = walk->vma;
4896	pte_t *pte;
4897	spinlock_t *ptl;
4898
4899	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4900		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4901			mc.precharge += HPAGE_PMD_NR;
4902		spin_unlock(ptl);
4903		return 0;
4904	}
4905
4906	if (pmd_trans_unstable(pmd))
4907		return 0;
4908	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4909	for (; addr != end; pte++, addr += PAGE_SIZE)
4910		if (get_mctgt_type(vma, addr, *pte, NULL))
4911			mc.precharge++;	/* increment precharge temporarily */
4912	pte_unmap_unlock(pte - 1, ptl);
4913	cond_resched();
4914
4915	return 0;
4916}
4917
4918static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4919{
4920	unsigned long precharge;
4921
4922	struct mm_walk mem_cgroup_count_precharge_walk = {
4923		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4924		.mm = mm,
4925	};
4926	down_read(&mm->mmap_sem);
4927	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4928	up_read(&mm->mmap_sem);
4929
4930	precharge = mc.precharge;
4931	mc.precharge = 0;
4932
4933	return precharge;
4934}
4935
4936static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4937{
4938	unsigned long precharge = mem_cgroup_count_precharge(mm);
4939
4940	VM_BUG_ON(mc.moving_task);
4941	mc.moving_task = current;
4942	return mem_cgroup_do_precharge(precharge);
4943}
4944
4945/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4946static void __mem_cgroup_clear_mc(void)
4947{
4948	struct mem_cgroup *from = mc.from;
4949	struct mem_cgroup *to = mc.to;
4950
4951	/* we must uncharge all the leftover precharges from mc.to */
4952	if (mc.precharge) {
4953		cancel_charge(mc.to, mc.precharge);
4954		mc.precharge = 0;
4955	}
4956	/*
4957	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4958	 * we must uncharge here.
4959	 */
4960	if (mc.moved_charge) {
4961		cancel_charge(mc.from, mc.moved_charge);
4962		mc.moved_charge = 0;
4963	}
4964	/* we must fixup refcnts and charges */
4965	if (mc.moved_swap) {
4966		/* uncharge swap account from the old cgroup */
4967		if (!mem_cgroup_is_root(mc.from))
4968			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4969
4970		/*
4971		 * we charged both to->memory and to->memsw, so we
4972		 * should uncharge to->memory.
4973		 */
4974		if (!mem_cgroup_is_root(mc.to))
4975			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4976
4977		css_put_many(&mc.from->css, mc.moved_swap);
4978
4979		/* we've already done css_get(mc.to) */
4980		mc.moved_swap = 0;
4981	}
4982	memcg_oom_recover(from);
4983	memcg_oom_recover(to);
4984	wake_up_all(&mc.waitq);
4985}
4986
4987static void mem_cgroup_clear_mc(void)
4988{
4989	/*
4990	 * we must clear moving_task before waking up waiters at the end of
4991	 * task migration.
4992	 */
4993	mc.moving_task = NULL;
4994	__mem_cgroup_clear_mc();
4995	spin_lock(&mc.lock);
4996	mc.from = NULL;
4997	mc.to = NULL;
4998	spin_unlock(&mc.lock);
4999}
5000
5001static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5002				 struct cgroup_taskset *tset)
5003{
5004	struct task_struct *p = cgroup_taskset_first(tset);
5005	int ret = 0;
5006	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5007	unsigned long move_flags;
5008
5009	/*
5010	 * We are now commited to this value whatever it is. Changes in this
5011	 * tunable will only affect upcoming migrations, not the current one.
5012	 * So we need to save it, and keep it going.
5013	 */
5014	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5015	if (move_flags) {
5016		struct mm_struct *mm;
5017		struct mem_cgroup *from = mem_cgroup_from_task(p);
5018
5019		VM_BUG_ON(from == memcg);
5020
5021		mm = get_task_mm(p);
5022		if (!mm)
5023			return 0;
5024		/* We move charges only when we move a owner of the mm */
5025		if (mm->owner == p) {
5026			VM_BUG_ON(mc.from);
5027			VM_BUG_ON(mc.to);
5028			VM_BUG_ON(mc.precharge);
5029			VM_BUG_ON(mc.moved_charge);
5030			VM_BUG_ON(mc.moved_swap);
5031
5032			spin_lock(&mc.lock);
5033			mc.from = from;
5034			mc.to = memcg;
5035			mc.flags = move_flags;
5036			spin_unlock(&mc.lock);
5037			/* We set mc.moving_task later */
5038
5039			ret = mem_cgroup_precharge_mc(mm);
5040			if (ret)
5041				mem_cgroup_clear_mc();
5042		}
5043		mmput(mm);
5044	}
5045	return ret;
5046}
5047
5048static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5049				     struct cgroup_taskset *tset)
5050{
5051	if (mc.to)
5052		mem_cgroup_clear_mc();
5053}
5054
5055static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5056				unsigned long addr, unsigned long end,
5057				struct mm_walk *walk)
5058{
5059	int ret = 0;
5060	struct vm_area_struct *vma = walk->vma;
5061	pte_t *pte;
5062	spinlock_t *ptl;
5063	enum mc_target_type target_type;
5064	union mc_target target;
5065	struct page *page;
5066
5067	/*
5068	 * We don't take compound_lock() here but no race with splitting thp
5069	 * happens because:
5070	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5071	 *    under splitting, which means there's no concurrent thp split,
5072	 *  - if another thread runs into split_huge_page() just after we
5073	 *    entered this if-block, the thread must wait for page table lock
5074	 *    to be unlocked in __split_huge_page_splitting(), where the main
5075	 *    part of thp split is not executed yet.
5076	 */
5077	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5078		if (mc.precharge < HPAGE_PMD_NR) {
5079			spin_unlock(ptl);
5080			return 0;
5081		}
5082		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5083		if (target_type == MC_TARGET_PAGE) {
5084			page = target.page;
5085			if (!isolate_lru_page(page)) {
5086				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5087							     mc.from, mc.to)) {
5088					mc.precharge -= HPAGE_PMD_NR;
5089					mc.moved_charge += HPAGE_PMD_NR;
5090				}
5091				putback_lru_page(page);
5092			}
5093			put_page(page);
5094		}
5095		spin_unlock(ptl);
5096		return 0;
5097	}
5098
5099	if (pmd_trans_unstable(pmd))
5100		return 0;
5101retry:
5102	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5103	for (; addr != end; addr += PAGE_SIZE) {
5104		pte_t ptent = *(pte++);
5105		swp_entry_t ent;
5106
5107		if (!mc.precharge)
5108			break;
5109
5110		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5111		case MC_TARGET_PAGE:
5112			page = target.page;
5113			if (isolate_lru_page(page))
5114				goto put;
5115			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5116				mc.precharge--;
5117				/* we uncharge from mc.from later. */
5118				mc.moved_charge++;
5119			}
5120			putback_lru_page(page);
5121put:			/* get_mctgt_type() gets the page */
5122			put_page(page);
5123			break;
5124		case MC_TARGET_SWAP:
5125			ent = target.ent;
5126			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5127				mc.precharge--;
5128				/* we fixup refcnts and charges later. */
5129				mc.moved_swap++;
5130			}
5131			break;
5132		default:
5133			break;
5134		}
5135	}
5136	pte_unmap_unlock(pte - 1, ptl);
5137	cond_resched();
5138
5139	if (addr != end) {
5140		/*
5141		 * We have consumed all precharges we got in can_attach().
5142		 * We try charge one by one, but don't do any additional
5143		 * charges to mc.to if we have failed in charge once in attach()
5144		 * phase.
5145		 */
5146		ret = mem_cgroup_do_precharge(1);
5147		if (!ret)
5148			goto retry;
5149	}
5150
5151	return ret;
5152}
5153
5154static void mem_cgroup_move_charge(struct mm_struct *mm)
5155{
5156	struct mm_walk mem_cgroup_move_charge_walk = {
5157		.pmd_entry = mem_cgroup_move_charge_pte_range,
5158		.mm = mm,
5159	};
5160
5161	lru_add_drain_all();
5162	/*
5163	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5164	 * move_lock while we're moving its pages to another memcg.
5165	 * Then wait for already started RCU-only updates to finish.
5166	 */
5167	atomic_inc(&mc.from->moving_account);
5168	synchronize_rcu();
5169retry:
5170	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5171		/*
5172		 * Someone who are holding the mmap_sem might be waiting in
5173		 * waitq. So we cancel all extra charges, wake up all waiters,
5174		 * and retry. Because we cancel precharges, we might not be able
5175		 * to move enough charges, but moving charge is a best-effort
5176		 * feature anyway, so it wouldn't be a big problem.
5177		 */
5178		__mem_cgroup_clear_mc();
5179		cond_resched();
5180		goto retry;
5181	}
5182	/*
5183	 * When we have consumed all precharges and failed in doing
5184	 * additional charge, the page walk just aborts.
5185	 */
5186	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5187	up_read(&mm->mmap_sem);
5188	atomic_dec(&mc.from->moving_account);
5189}
5190
5191static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5192				 struct cgroup_taskset *tset)
5193{
5194	struct task_struct *p = cgroup_taskset_first(tset);
5195	struct mm_struct *mm = get_task_mm(p);
5196
5197	if (mm) {
5198		if (mc.to)
5199			mem_cgroup_move_charge(mm);
5200		mmput(mm);
5201	}
5202	if (mc.to)
5203		mem_cgroup_clear_mc();
5204}
5205#else	/* !CONFIG_MMU */
5206static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5207				 struct cgroup_taskset *tset)
5208{
5209	return 0;
5210}
5211static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5212				     struct cgroup_taskset *tset)
5213{
5214}
5215static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5216				 struct cgroup_taskset *tset)
5217{
5218}
5219#endif
5220
5221/*
5222 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5223 * to verify whether we're attached to the default hierarchy on each mount
5224 * attempt.
5225 */
5226static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5227{
5228	/*
5229	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5230	 * guarantees that @root doesn't have any children, so turning it
5231	 * on for the root memcg is enough.
5232	 */
5233	if (cgroup_on_dfl(root_css->cgroup))
5234		root_mem_cgroup->use_hierarchy = true;
5235	else
5236		root_mem_cgroup->use_hierarchy = false;
5237}
5238
5239static u64 memory_current_read(struct cgroup_subsys_state *css,
5240			       struct cftype *cft)
5241{
5242	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5243}
5244
5245static int memory_low_show(struct seq_file *m, void *v)
5246{
5247	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5248	unsigned long low = READ_ONCE(memcg->low);
5249
5250	if (low == PAGE_COUNTER_MAX)
5251		seq_puts(m, "max\n");
5252	else
5253		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5254
5255	return 0;
5256}
5257
5258static ssize_t memory_low_write(struct kernfs_open_file *of,
5259				char *buf, size_t nbytes, loff_t off)
5260{
5261	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5262	unsigned long low;
5263	int err;
5264
5265	buf = strstrip(buf);
5266	err = page_counter_memparse(buf, "max", &low);
5267	if (err)
5268		return err;
5269
5270	memcg->low = low;
5271
5272	return nbytes;
5273}
5274
5275static int memory_high_show(struct seq_file *m, void *v)
5276{
5277	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5278	unsigned long high = READ_ONCE(memcg->high);
5279
5280	if (high == PAGE_COUNTER_MAX)
5281		seq_puts(m, "max\n");
5282	else
5283		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5284
5285	return 0;
5286}
5287
5288static ssize_t memory_high_write(struct kernfs_open_file *of,
5289				 char *buf, size_t nbytes, loff_t off)
5290{
5291	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5292	unsigned long nr_pages;
5293	unsigned long high;
5294	int err;
5295
5296	buf = strstrip(buf);
5297	err = page_counter_memparse(buf, "max", &high);
5298	if (err)
5299		return err;
5300
5301	memcg->high = high;
5302
5303	nr_pages = page_counter_read(&memcg->memory);
5304	if (nr_pages > high)
5305		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5306					     GFP_KERNEL, true);
5307
5308	return nbytes;
5309}
5310
5311static int memory_max_show(struct seq_file *m, void *v)
5312{
5313	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5314	unsigned long max = READ_ONCE(memcg->memory.limit);
5315
5316	if (max == PAGE_COUNTER_MAX)
5317		seq_puts(m, "max\n");
5318	else
5319		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5320
5321	return 0;
5322}
5323
5324static ssize_t memory_max_write(struct kernfs_open_file *of,
5325				char *buf, size_t nbytes, loff_t off)
5326{
5327	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5328	unsigned long max;
5329	int err;
5330
5331	buf = strstrip(buf);
5332	err = page_counter_memparse(buf, "max", &max);
5333	if (err)
5334		return err;
5335
5336	err = mem_cgroup_resize_limit(memcg, max);
5337	if (err)
5338		return err;
5339
5340	return nbytes;
5341}
5342
5343static int memory_events_show(struct seq_file *m, void *v)
5344{
5345	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5346
5347	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5348	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5349	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5350	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5351
5352	return 0;
5353}
5354
5355static struct cftype memory_files[] = {
5356	{
5357		.name = "current",
5358		.read_u64 = memory_current_read,
5359	},
5360	{
5361		.name = "low",
5362		.flags = CFTYPE_NOT_ON_ROOT,
5363		.seq_show = memory_low_show,
5364		.write = memory_low_write,
5365	},
5366	{
5367		.name = "high",
5368		.flags = CFTYPE_NOT_ON_ROOT,
5369		.seq_show = memory_high_show,
5370		.write = memory_high_write,
5371	},
5372	{
5373		.name = "max",
5374		.flags = CFTYPE_NOT_ON_ROOT,
5375		.seq_show = memory_max_show,
5376		.write = memory_max_write,
5377	},
5378	{
5379		.name = "events",
5380		.flags = CFTYPE_NOT_ON_ROOT,
5381		.seq_show = memory_events_show,
5382	},
5383	{ }	/* terminate */
5384};
5385
5386struct cgroup_subsys memory_cgrp_subsys = {
5387	.css_alloc = mem_cgroup_css_alloc,
5388	.css_online = mem_cgroup_css_online,
5389	.css_offline = mem_cgroup_css_offline,
5390	.css_free = mem_cgroup_css_free,
5391	.css_reset = mem_cgroup_css_reset,
5392	.can_attach = mem_cgroup_can_attach,
5393	.cancel_attach = mem_cgroup_cancel_attach,
5394	.attach = mem_cgroup_move_task,
5395	.bind = mem_cgroup_bind,
5396	.dfl_cftypes = memory_files,
5397	.legacy_cftypes = mem_cgroup_legacy_files,
5398	.early_init = 0,
5399};
5400
5401/**
5402 * mem_cgroup_events - count memory events against a cgroup
5403 * @memcg: the memory cgroup
5404 * @idx: the event index
5405 * @nr: the number of events to account for
5406 */
5407void mem_cgroup_events(struct mem_cgroup *memcg,
5408		       enum mem_cgroup_events_index idx,
5409		       unsigned int nr)
5410{
5411	this_cpu_add(memcg->stat->events[idx], nr);
5412}
5413
5414/**
5415 * mem_cgroup_low - check if memory consumption is below the normal range
5416 * @root: the highest ancestor to consider
5417 * @memcg: the memory cgroup to check
5418 *
5419 * Returns %true if memory consumption of @memcg, and that of all
5420 * configurable ancestors up to @root, is below the normal range.
5421 */
5422bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5423{
5424	if (mem_cgroup_disabled())
5425		return false;
5426
5427	/*
5428	 * The toplevel group doesn't have a configurable range, so
5429	 * it's never low when looked at directly, and it is not
5430	 * considered an ancestor when assessing the hierarchy.
5431	 */
5432
5433	if (memcg == root_mem_cgroup)
5434		return false;
5435
5436	if (page_counter_read(&memcg->memory) >= memcg->low)
5437		return false;
5438
5439	while (memcg != root) {
5440		memcg = parent_mem_cgroup(memcg);
5441
5442		if (memcg == root_mem_cgroup)
5443			break;
5444
5445		if (page_counter_read(&memcg->memory) >= memcg->low)
5446			return false;
5447	}
5448	return true;
5449}
5450
5451/**
5452 * mem_cgroup_try_charge - try charging a page
5453 * @page: page to charge
5454 * @mm: mm context of the victim
5455 * @gfp_mask: reclaim mode
5456 * @memcgp: charged memcg return
5457 *
5458 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5459 * pages according to @gfp_mask if necessary.
5460 *
5461 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5462 * Otherwise, an error code is returned.
5463 *
5464 * After page->mapping has been set up, the caller must finalize the
5465 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5466 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5467 */
5468int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5469			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
5470{
5471	struct mem_cgroup *memcg = NULL;
5472	unsigned int nr_pages = 1;
5473	int ret = 0;
5474
5475	if (mem_cgroup_disabled())
5476		goto out;
5477
5478	if (PageSwapCache(page)) {
5479		/*
5480		 * Every swap fault against a single page tries to charge the
5481		 * page, bail as early as possible.  shmem_unuse() encounters
5482		 * already charged pages, too.  The USED bit is protected by
5483		 * the page lock, which serializes swap cache removal, which
5484		 * in turn serializes uncharging.
5485		 */
5486		if (page->mem_cgroup)
5487			goto out;
5488	}
5489
5490	if (PageTransHuge(page)) {
5491		nr_pages <<= compound_order(page);
5492		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5493	}
5494
5495	if (do_swap_account && PageSwapCache(page))
5496		memcg = try_get_mem_cgroup_from_page(page);
5497	if (!memcg)
5498		memcg = get_mem_cgroup_from_mm(mm);
5499
5500	ret = try_charge(memcg, gfp_mask, nr_pages);
5501
5502	css_put(&memcg->css);
5503
5504	if (ret == -EINTR) {
5505		memcg = root_mem_cgroup;
5506		ret = 0;
5507	}
5508out:
5509	*memcgp = memcg;
5510	return ret;
5511}
5512
5513/**
5514 * mem_cgroup_commit_charge - commit a page charge
5515 * @page: page to charge
5516 * @memcg: memcg to charge the page to
5517 * @lrucare: page might be on LRU already
5518 *
5519 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5520 * after page->mapping has been set up.  This must happen atomically
5521 * as part of the page instantiation, i.e. under the page table lock
5522 * for anonymous pages, under the page lock for page and swap cache.
5523 *
5524 * In addition, the page must not be on the LRU during the commit, to
5525 * prevent racing with task migration.  If it might be, use @lrucare.
5526 *
5527 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5528 */
5529void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5530			      bool lrucare)
5531{
5532	unsigned int nr_pages = 1;
5533
5534	VM_BUG_ON_PAGE(!page->mapping, page);
5535	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5536
5537	if (mem_cgroup_disabled())
5538		return;
5539	/*
5540	 * Swap faults will attempt to charge the same page multiple
5541	 * times.  But reuse_swap_page() might have removed the page
5542	 * from swapcache already, so we can't check PageSwapCache().
5543	 */
5544	if (!memcg)
5545		return;
5546
5547	commit_charge(page, memcg, lrucare);
5548
5549	if (PageTransHuge(page)) {
5550		nr_pages <<= compound_order(page);
5551		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5552	}
5553
5554	local_irq_disable();
5555	mem_cgroup_charge_statistics(memcg, page, nr_pages);
5556	memcg_check_events(memcg, page);
5557	local_irq_enable();
5558
5559	if (do_swap_account && PageSwapCache(page)) {
5560		swp_entry_t entry = { .val = page_private(page) };
5561		/*
5562		 * The swap entry might not get freed for a long time,
5563		 * let's not wait for it.  The page already received a
5564		 * memory+swap charge, drop the swap entry duplicate.
5565		 */
5566		mem_cgroup_uncharge_swap(entry);
5567	}
5568}
5569
5570/**
5571 * mem_cgroup_cancel_charge - cancel a page charge
5572 * @page: page to charge
5573 * @memcg: memcg to charge the page to
5574 *
5575 * Cancel a charge transaction started by mem_cgroup_try_charge().
5576 */
5577void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5578{
5579	unsigned int nr_pages = 1;
5580
5581	if (mem_cgroup_disabled())
5582		return;
5583	/*
5584	 * Swap faults will attempt to charge the same page multiple
5585	 * times.  But reuse_swap_page() might have removed the page
5586	 * from swapcache already, so we can't check PageSwapCache().
5587	 */
5588	if (!memcg)
5589		return;
5590
5591	if (PageTransHuge(page)) {
5592		nr_pages <<= compound_order(page);
5593		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5594	}
5595
5596	cancel_charge(memcg, nr_pages);
5597}
5598
5599static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5600			   unsigned long nr_anon, unsigned long nr_file,
5601			   unsigned long nr_huge, struct page *dummy_page)
5602{
5603	unsigned long nr_pages = nr_anon + nr_file;
5604	unsigned long flags;
5605
5606	if (!mem_cgroup_is_root(memcg)) {
5607		page_counter_uncharge(&memcg->memory, nr_pages);
5608		if (do_swap_account)
5609			page_counter_uncharge(&memcg->memsw, nr_pages);
5610		memcg_oom_recover(memcg);
5611	}
5612
5613	local_irq_save(flags);
5614	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5615	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5616	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5617	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5618	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5619	memcg_check_events(memcg, dummy_page);
5620	local_irq_restore(flags);
5621
5622	if (!mem_cgroup_is_root(memcg))
5623		css_put_many(&memcg->css, nr_pages);
5624}
5625
5626static void uncharge_list(struct list_head *page_list)
5627{
5628	struct mem_cgroup *memcg = NULL;
5629	unsigned long nr_anon = 0;
5630	unsigned long nr_file = 0;
5631	unsigned long nr_huge = 0;
5632	unsigned long pgpgout = 0;
5633	struct list_head *next;
5634	struct page *page;
5635
5636	next = page_list->next;
5637	do {
5638		unsigned int nr_pages = 1;
5639
5640		page = list_entry(next, struct page, lru);
5641		next = page->lru.next;
5642
5643		VM_BUG_ON_PAGE(PageLRU(page), page);
5644		VM_BUG_ON_PAGE(page_count(page), page);
5645
5646		if (!page->mem_cgroup)
5647			continue;
5648
5649		/*
5650		 * Nobody should be changing or seriously looking at
5651		 * page->mem_cgroup at this point, we have fully
5652		 * exclusive access to the page.
5653		 */
5654
5655		if (memcg != page->mem_cgroup) {
5656			if (memcg) {
5657				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5658					       nr_huge, page);
5659				pgpgout = nr_anon = nr_file = nr_huge = 0;
5660			}
5661			memcg = page->mem_cgroup;
5662		}
5663
5664		if (PageTransHuge(page)) {
5665			nr_pages <<= compound_order(page);
5666			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5667			nr_huge += nr_pages;
5668		}
5669
5670		if (PageAnon(page))
5671			nr_anon += nr_pages;
5672		else
5673			nr_file += nr_pages;
5674
5675		page->mem_cgroup = NULL;
5676
5677		pgpgout++;
5678	} while (next != page_list);
5679
5680	if (memcg)
5681		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5682			       nr_huge, page);
5683}
5684
5685/**
5686 * mem_cgroup_uncharge - uncharge a page
5687 * @page: page to uncharge
5688 *
5689 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5690 * mem_cgroup_commit_charge().
5691 */
5692void mem_cgroup_uncharge(struct page *page)
5693{
5694	if (mem_cgroup_disabled())
5695		return;
5696
5697	/* Don't touch page->lru of any random page, pre-check: */
5698	if (!page->mem_cgroup)
5699		return;
5700
5701	INIT_LIST_HEAD(&page->lru);
5702	uncharge_list(&page->lru);
5703}
5704
5705/**
5706 * mem_cgroup_uncharge_list - uncharge a list of page
5707 * @page_list: list of pages to uncharge
5708 *
5709 * Uncharge a list of pages previously charged with
5710 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5711 */
5712void mem_cgroup_uncharge_list(struct list_head *page_list)
5713{
5714	if (mem_cgroup_disabled())
5715		return;
5716
5717	if (!list_empty(page_list))
5718		uncharge_list(page_list);
5719}
5720
5721/**
5722 * mem_cgroup_migrate - migrate a charge to another page
5723 * @oldpage: currently charged page
5724 * @newpage: page to transfer the charge to
5725 * @lrucare: either or both pages might be on the LRU already
5726 *
5727 * Migrate the charge from @oldpage to @newpage.
5728 *
5729 * Both pages must be locked, @newpage->mapping must be set up.
5730 */
5731void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5732			bool lrucare)
5733{
5734	struct mem_cgroup *memcg;
5735	int isolated;
5736
5737	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5738	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5739	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5740	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5741	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5742	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5743		       newpage);
5744
5745	if (mem_cgroup_disabled())
5746		return;
5747
5748	/* Page cache replacement: new page already charged? */
5749	if (newpage->mem_cgroup)
5750		return;
5751
5752	/*
5753	 * Swapcache readahead pages can get migrated before being
5754	 * charged, and migration from compaction can happen to an
5755	 * uncharged page when the PFN walker finds a page that
5756	 * reclaim just put back on the LRU but has not released yet.
5757	 */
5758	memcg = oldpage->mem_cgroup;
5759	if (!memcg)
5760		return;
5761
5762	if (lrucare)
5763		lock_page_lru(oldpage, &isolated);
5764
5765	oldpage->mem_cgroup = NULL;
5766
5767	if (lrucare)
5768		unlock_page_lru(oldpage, isolated);
5769
5770	commit_charge(newpage, memcg, lrucare);
5771}
5772
5773/*
5774 * subsys_initcall() for memory controller.
5775 *
5776 * Some parts like hotcpu_notifier() have to be initialized from this context
5777 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5778 * everything that doesn't depend on a specific mem_cgroup structure should
5779 * be initialized from here.
5780 */
5781static int __init mem_cgroup_init(void)
5782{
5783	int cpu, node;
5784
5785	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5786
5787	for_each_possible_cpu(cpu)
5788		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5789			  drain_local_stock);
5790
5791	for_each_node(node) {
5792		struct mem_cgroup_tree_per_node *rtpn;
5793		int zone;
5794
5795		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5796				    node_online(node) ? node : NUMA_NO_NODE);
5797
5798		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5799			struct mem_cgroup_tree_per_zone *rtpz;
5800
5801			rtpz = &rtpn->rb_tree_per_zone[zone];
5802			rtpz->rb_root = RB_ROOT;
5803			spin_lock_init(&rtpz->lock);
5804		}
5805		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5806	}
5807
5808	return 0;
5809}
5810subsys_initcall(mem_cgroup_init);
5811
5812#ifdef CONFIG_MEMCG_SWAP
5813/**
5814 * mem_cgroup_swapout - transfer a memsw charge to swap
5815 * @page: page whose memsw charge to transfer
5816 * @entry: swap entry to move the charge to
5817 *
5818 * Transfer the memsw charge of @page to @entry.
5819 */
5820void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5821{
5822	struct mem_cgroup *memcg;
5823	unsigned short oldid;
5824
5825	VM_BUG_ON_PAGE(PageLRU(page), page);
5826	VM_BUG_ON_PAGE(page_count(page), page);
5827
5828	if (!do_swap_account)
5829		return;
5830
5831	memcg = page->mem_cgroup;
5832
5833	/* Readahead page, never charged */
5834	if (!memcg)
5835		return;
5836
5837	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5838	VM_BUG_ON_PAGE(oldid, page);
5839	mem_cgroup_swap_statistics(memcg, true);
5840
5841	page->mem_cgroup = NULL;
5842
5843	if (!mem_cgroup_is_root(memcg))
5844		page_counter_uncharge(&memcg->memory, 1);
5845
5846	/* Caller disabled preemption with mapping->tree_lock */
5847	mem_cgroup_charge_statistics(memcg, page, -1);
5848	memcg_check_events(memcg, page);
5849}
5850
5851/**
5852 * mem_cgroup_uncharge_swap - uncharge a swap entry
5853 * @entry: swap entry to uncharge
5854 *
5855 * Drop the memsw charge associated with @entry.
5856 */
5857void mem_cgroup_uncharge_swap(swp_entry_t entry)
5858{
5859	struct mem_cgroup *memcg;
5860	unsigned short id;
5861
5862	if (!do_swap_account)
5863		return;
5864
5865	id = swap_cgroup_record(entry, 0);
5866	rcu_read_lock();
5867	memcg = mem_cgroup_from_id(id);
5868	if (memcg) {
5869		if (!mem_cgroup_is_root(memcg))
5870			page_counter_uncharge(&memcg->memsw, 1);
5871		mem_cgroup_swap_statistics(memcg, false);
5872		css_put(&memcg->css);
5873	}
5874	rcu_read_unlock();
5875}
5876
5877/* for remember boot option*/
5878#ifdef CONFIG_MEMCG_SWAP_ENABLED
5879static int really_do_swap_account __initdata = 1;
5880#else
5881static int really_do_swap_account __initdata;
5882#endif
5883
5884static int __init enable_swap_account(char *s)
5885{
5886	if (!strcmp(s, "1"))
5887		really_do_swap_account = 1;
5888	else if (!strcmp(s, "0"))
5889		really_do_swap_account = 0;
5890	return 1;
5891}
5892__setup("swapaccount=", enable_swap_account);
5893
5894static struct cftype memsw_cgroup_files[] = {
5895	{
5896		.name = "memsw.usage_in_bytes",
5897		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5898		.read_u64 = mem_cgroup_read_u64,
5899	},
5900	{
5901		.name = "memsw.max_usage_in_bytes",
5902		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5903		.write = mem_cgroup_reset,
5904		.read_u64 = mem_cgroup_read_u64,
5905	},
5906	{
5907		.name = "memsw.limit_in_bytes",
5908		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5909		.write = mem_cgroup_write,
5910		.read_u64 = mem_cgroup_read_u64,
5911	},
5912	{
5913		.name = "memsw.failcnt",
5914		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5915		.write = mem_cgroup_reset,
5916		.read_u64 = mem_cgroup_read_u64,
5917	},
5918	{ },	/* terminate */
5919};
5920
5921static int __init mem_cgroup_swap_init(void)
5922{
5923	if (!mem_cgroup_disabled() && really_do_swap_account) {
5924		do_swap_account = 1;
5925		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5926						  memsw_cgroup_files));
5927	}
5928	return 0;
5929}
5930subsys_initcall(mem_cgroup_swap_init);
5931
5932#endif /* CONFIG_MEMCG_SWAP */
5933