1/* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34#include <linux/page_counter.h> 35#include <linux/memcontrol.h> 36#include <linux/cgroup.h> 37#include <linux/mm.h> 38#include <linux/hugetlb.h> 39#include <linux/pagemap.h> 40#include <linux/smp.h> 41#include <linux/page-flags.h> 42#include <linux/backing-dev.h> 43#include <linux/bit_spinlock.h> 44#include <linux/rcupdate.h> 45#include <linux/limits.h> 46#include <linux/export.h> 47#include <linux/mutex.h> 48#include <linux/rbtree.h> 49#include <linux/slab.h> 50#include <linux/swap.h> 51#include <linux/swapops.h> 52#include <linux/spinlock.h> 53#include <linux/eventfd.h> 54#include <linux/poll.h> 55#include <linux/sort.h> 56#include <linux/fs.h> 57#include <linux/seq_file.h> 58#include <linux/vmpressure.h> 59#include <linux/mm_inline.h> 60#include <linux/swap_cgroup.h> 61#include <linux/cpu.h> 62#include <linux/oom.h> 63#include <linux/lockdep.h> 64#include <linux/file.h> 65#include "internal.h" 66#include <net/sock.h> 67#include <net/ip.h> 68#include <net/tcp_memcontrol.h> 69#include "slab.h" 70 71#include <asm/uaccess.h> 72 73#include <trace/events/vmscan.h> 74 75struct cgroup_subsys memory_cgrp_subsys __read_mostly; 76EXPORT_SYMBOL(memory_cgrp_subsys); 77 78#define MEM_CGROUP_RECLAIM_RETRIES 5 79static struct mem_cgroup *root_mem_cgroup __read_mostly; 80 81/* Whether the swap controller is active */ 82#ifdef CONFIG_MEMCG_SWAP 83int do_swap_account __read_mostly; 84#else 85#define do_swap_account 0 86#endif 87 88static const char * const mem_cgroup_stat_names[] = { 89 "cache", 90 "rss", 91 "rss_huge", 92 "mapped_file", 93 "writeback", 94 "swap", 95}; 96 97static const char * const mem_cgroup_events_names[] = { 98 "pgpgin", 99 "pgpgout", 100 "pgfault", 101 "pgmajfault", 102}; 103 104static const char * const mem_cgroup_lru_names[] = { 105 "inactive_anon", 106 "active_anon", 107 "inactive_file", 108 "active_file", 109 "unevictable", 110}; 111 112/* 113 * Per memcg event counter is incremented at every pagein/pageout. With THP, 114 * it will be incremated by the number of pages. This counter is used for 115 * for trigger some periodic events. This is straightforward and better 116 * than using jiffies etc. to handle periodic memcg event. 117 */ 118enum mem_cgroup_events_target { 119 MEM_CGROUP_TARGET_THRESH, 120 MEM_CGROUP_TARGET_SOFTLIMIT, 121 MEM_CGROUP_TARGET_NUMAINFO, 122 MEM_CGROUP_NTARGETS, 123}; 124#define THRESHOLDS_EVENTS_TARGET 128 125#define SOFTLIMIT_EVENTS_TARGET 1024 126#define NUMAINFO_EVENTS_TARGET 1024 127 128struct mem_cgroup_stat_cpu { 129 long count[MEM_CGROUP_STAT_NSTATS]; 130 unsigned long events[MEMCG_NR_EVENTS]; 131 unsigned long nr_page_events; 132 unsigned long targets[MEM_CGROUP_NTARGETS]; 133}; 134 135struct reclaim_iter { 136 struct mem_cgroup *position; 137 /* scan generation, increased every round-trip */ 138 unsigned int generation; 139}; 140 141/* 142 * per-zone information in memory controller. 143 */ 144struct mem_cgroup_per_zone { 145 struct lruvec lruvec; 146 unsigned long lru_size[NR_LRU_LISTS]; 147 148 struct reclaim_iter iter[DEF_PRIORITY + 1]; 149 150 struct rb_node tree_node; /* RB tree node */ 151 unsigned long usage_in_excess;/* Set to the value by which */ 152 /* the soft limit is exceeded*/ 153 bool on_tree; 154 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 155 /* use container_of */ 156}; 157 158struct mem_cgroup_per_node { 159 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 160}; 161 162/* 163 * Cgroups above their limits are maintained in a RB-Tree, independent of 164 * their hierarchy representation 165 */ 166 167struct mem_cgroup_tree_per_zone { 168 struct rb_root rb_root; 169 spinlock_t lock; 170}; 171 172struct mem_cgroup_tree_per_node { 173 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 174}; 175 176struct mem_cgroup_tree { 177 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 178}; 179 180static struct mem_cgroup_tree soft_limit_tree __read_mostly; 181 182struct mem_cgroup_threshold { 183 struct eventfd_ctx *eventfd; 184 unsigned long threshold; 185}; 186 187/* For threshold */ 188struct mem_cgroup_threshold_ary { 189 /* An array index points to threshold just below or equal to usage. */ 190 int current_threshold; 191 /* Size of entries[] */ 192 unsigned int size; 193 /* Array of thresholds */ 194 struct mem_cgroup_threshold entries[0]; 195}; 196 197struct mem_cgroup_thresholds { 198 /* Primary thresholds array */ 199 struct mem_cgroup_threshold_ary *primary; 200 /* 201 * Spare threshold array. 202 * This is needed to make mem_cgroup_unregister_event() "never fail". 203 * It must be able to store at least primary->size - 1 entries. 204 */ 205 struct mem_cgroup_threshold_ary *spare; 206}; 207 208/* for OOM */ 209struct mem_cgroup_eventfd_list { 210 struct list_head list; 211 struct eventfd_ctx *eventfd; 212}; 213 214/* 215 * cgroup_event represents events which userspace want to receive. 216 */ 217struct mem_cgroup_event { 218 /* 219 * memcg which the event belongs to. 220 */ 221 struct mem_cgroup *memcg; 222 /* 223 * eventfd to signal userspace about the event. 224 */ 225 struct eventfd_ctx *eventfd; 226 /* 227 * Each of these stored in a list by the cgroup. 228 */ 229 struct list_head list; 230 /* 231 * register_event() callback will be used to add new userspace 232 * waiter for changes related to this event. Use eventfd_signal() 233 * on eventfd to send notification to userspace. 234 */ 235 int (*register_event)(struct mem_cgroup *memcg, 236 struct eventfd_ctx *eventfd, const char *args); 237 /* 238 * unregister_event() callback will be called when userspace closes 239 * the eventfd or on cgroup removing. This callback must be set, 240 * if you want provide notification functionality. 241 */ 242 void (*unregister_event)(struct mem_cgroup *memcg, 243 struct eventfd_ctx *eventfd); 244 /* 245 * All fields below needed to unregister event when 246 * userspace closes eventfd. 247 */ 248 poll_table pt; 249 wait_queue_head_t *wqh; 250 wait_queue_t wait; 251 struct work_struct remove; 252}; 253 254static void mem_cgroup_threshold(struct mem_cgroup *memcg); 255static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 256 257/* 258 * The memory controller data structure. The memory controller controls both 259 * page cache and RSS per cgroup. We would eventually like to provide 260 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 261 * to help the administrator determine what knobs to tune. 262 */ 263struct mem_cgroup { 264 struct cgroup_subsys_state css; 265 266 /* Accounted resources */ 267 struct page_counter memory; 268 struct page_counter memsw; 269 struct page_counter kmem; 270 271 /* Normal memory consumption range */ 272 unsigned long low; 273 unsigned long high; 274 275 unsigned long soft_limit; 276 277 /* vmpressure notifications */ 278 struct vmpressure vmpressure; 279 280 /* css_online() has been completed */ 281 int initialized; 282 283 /* 284 * Should the accounting and control be hierarchical, per subtree? 285 */ 286 bool use_hierarchy; 287 288 bool oom_lock; 289 atomic_t under_oom; 290 atomic_t oom_wakeups; 291 292 int swappiness; 293 /* OOM-Killer disable */ 294 int oom_kill_disable; 295 296 /* protect arrays of thresholds */ 297 struct mutex thresholds_lock; 298 299 /* thresholds for memory usage. RCU-protected */ 300 struct mem_cgroup_thresholds thresholds; 301 302 /* thresholds for mem+swap usage. RCU-protected */ 303 struct mem_cgroup_thresholds memsw_thresholds; 304 305 /* For oom notifier event fd */ 306 struct list_head oom_notify; 307 308 /* 309 * Should we move charges of a task when a task is moved into this 310 * mem_cgroup ? And what type of charges should we move ? 311 */ 312 unsigned long move_charge_at_immigrate; 313 /* 314 * set > 0 if pages under this cgroup are moving to other cgroup. 315 */ 316 atomic_t moving_account; 317 /* taken only while moving_account > 0 */ 318 spinlock_t move_lock; 319 struct task_struct *move_lock_task; 320 unsigned long move_lock_flags; 321 /* 322 * percpu counter. 323 */ 324 struct mem_cgroup_stat_cpu __percpu *stat; 325 /* 326 * used when a cpu is offlined or other synchronizations 327 * See mem_cgroup_read_stat(). 328 */ 329 struct mem_cgroup_stat_cpu nocpu_base; 330 spinlock_t pcp_counter_lock; 331 332#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 333 struct cg_proto tcp_mem; 334#endif 335#if defined(CONFIG_MEMCG_KMEM) 336 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 337 int kmemcg_id; 338 bool kmem_acct_activated; 339 bool kmem_acct_active; 340#endif 341 342 int last_scanned_node; 343#if MAX_NUMNODES > 1 344 nodemask_t scan_nodes; 345 atomic_t numainfo_events; 346 atomic_t numainfo_updating; 347#endif 348 349 /* List of events which userspace want to receive */ 350 struct list_head event_list; 351 spinlock_t event_list_lock; 352 353 struct mem_cgroup_per_node *nodeinfo[0]; 354 /* WARNING: nodeinfo must be the last member here */ 355}; 356 357#ifdef CONFIG_MEMCG_KMEM 358bool memcg_kmem_is_active(struct mem_cgroup *memcg) 359{ 360 return memcg->kmem_acct_active; 361} 362#endif 363 364/* Stuffs for move charges at task migration. */ 365/* 366 * Types of charges to be moved. 367 */ 368#define MOVE_ANON 0x1U 369#define MOVE_FILE 0x2U 370#define MOVE_MASK (MOVE_ANON | MOVE_FILE) 371 372/* "mc" and its members are protected by cgroup_mutex */ 373static struct move_charge_struct { 374 spinlock_t lock; /* for from, to */ 375 struct mem_cgroup *from; 376 struct mem_cgroup *to; 377 unsigned long flags; 378 unsigned long precharge; 379 unsigned long moved_charge; 380 unsigned long moved_swap; 381 struct task_struct *moving_task; /* a task moving charges */ 382 wait_queue_head_t waitq; /* a waitq for other context */ 383} mc = { 384 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 385 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 386}; 387 388/* 389 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 390 * limit reclaim to prevent infinite loops, if they ever occur. 391 */ 392#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 393#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 394 395enum charge_type { 396 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 397 MEM_CGROUP_CHARGE_TYPE_ANON, 398 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 399 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 400 NR_CHARGE_TYPE, 401}; 402 403/* for encoding cft->private value on file */ 404enum res_type { 405 _MEM, 406 _MEMSWAP, 407 _OOM_TYPE, 408 _KMEM, 409}; 410 411#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 412#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 413#define MEMFILE_ATTR(val) ((val) & 0xffff) 414/* Used for OOM nofiier */ 415#define OOM_CONTROL (0) 416 417/* 418 * The memcg_create_mutex will be held whenever a new cgroup is created. 419 * As a consequence, any change that needs to protect against new child cgroups 420 * appearing has to hold it as well. 421 */ 422static DEFINE_MUTEX(memcg_create_mutex); 423 424struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 425{ 426 return s ? container_of(s, struct mem_cgroup, css) : NULL; 427} 428 429/* Some nice accessors for the vmpressure. */ 430struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 431{ 432 if (!memcg) 433 memcg = root_mem_cgroup; 434 return &memcg->vmpressure; 435} 436 437struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 438{ 439 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 440} 441 442static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 443{ 444 return (memcg == root_mem_cgroup); 445} 446 447/* 448 * We restrict the id in the range of [1, 65535], so it can fit into 449 * an unsigned short. 450 */ 451#define MEM_CGROUP_ID_MAX USHRT_MAX 452 453static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 454{ 455 return memcg->css.id; 456} 457 458/* 459 * A helper function to get mem_cgroup from ID. must be called under 460 * rcu_read_lock(). The caller is responsible for calling 461 * css_tryget_online() if the mem_cgroup is used for charging. (dropping 462 * refcnt from swap can be called against removed memcg.) 463 */ 464static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 465{ 466 struct cgroup_subsys_state *css; 467 468 css = css_from_id(id, &memory_cgrp_subsys); 469 return mem_cgroup_from_css(css); 470} 471 472/* Writing them here to avoid exposing memcg's inner layout */ 473#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 474 475void sock_update_memcg(struct sock *sk) 476{ 477 if (mem_cgroup_sockets_enabled) { 478 struct mem_cgroup *memcg; 479 struct cg_proto *cg_proto; 480 481 BUG_ON(!sk->sk_prot->proto_cgroup); 482 483 /* Socket cloning can throw us here with sk_cgrp already 484 * filled. It won't however, necessarily happen from 485 * process context. So the test for root memcg given 486 * the current task's memcg won't help us in this case. 487 * 488 * Respecting the original socket's memcg is a better 489 * decision in this case. 490 */ 491 if (sk->sk_cgrp) { 492 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 493 css_get(&sk->sk_cgrp->memcg->css); 494 return; 495 } 496 497 rcu_read_lock(); 498 memcg = mem_cgroup_from_task(current); 499 cg_proto = sk->sk_prot->proto_cgroup(memcg); 500 if (!mem_cgroup_is_root(memcg) && 501 memcg_proto_active(cg_proto) && 502 css_tryget_online(&memcg->css)) { 503 sk->sk_cgrp = cg_proto; 504 } 505 rcu_read_unlock(); 506 } 507} 508EXPORT_SYMBOL(sock_update_memcg); 509 510void sock_release_memcg(struct sock *sk) 511{ 512 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 513 struct mem_cgroup *memcg; 514 WARN_ON(!sk->sk_cgrp->memcg); 515 memcg = sk->sk_cgrp->memcg; 516 css_put(&sk->sk_cgrp->memcg->css); 517 } 518} 519 520struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 521{ 522 if (!memcg || mem_cgroup_is_root(memcg)) 523 return NULL; 524 525 return &memcg->tcp_mem; 526} 527EXPORT_SYMBOL(tcp_proto_cgroup); 528 529#endif 530 531#ifdef CONFIG_MEMCG_KMEM 532/* 533 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 534 * The main reason for not using cgroup id for this: 535 * this works better in sparse environments, where we have a lot of memcgs, 536 * but only a few kmem-limited. Or also, if we have, for instance, 200 537 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 538 * 200 entry array for that. 539 * 540 * The current size of the caches array is stored in memcg_nr_cache_ids. It 541 * will double each time we have to increase it. 542 */ 543static DEFINE_IDA(memcg_cache_ida); 544int memcg_nr_cache_ids; 545 546/* Protects memcg_nr_cache_ids */ 547static DECLARE_RWSEM(memcg_cache_ids_sem); 548 549void memcg_get_cache_ids(void) 550{ 551 down_read(&memcg_cache_ids_sem); 552} 553 554void memcg_put_cache_ids(void) 555{ 556 up_read(&memcg_cache_ids_sem); 557} 558 559/* 560 * MIN_SIZE is different than 1, because we would like to avoid going through 561 * the alloc/free process all the time. In a small machine, 4 kmem-limited 562 * cgroups is a reasonable guess. In the future, it could be a parameter or 563 * tunable, but that is strictly not necessary. 564 * 565 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 566 * this constant directly from cgroup, but it is understandable that this is 567 * better kept as an internal representation in cgroup.c. In any case, the 568 * cgrp_id space is not getting any smaller, and we don't have to necessarily 569 * increase ours as well if it increases. 570 */ 571#define MEMCG_CACHES_MIN_SIZE 4 572#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 573 574/* 575 * A lot of the calls to the cache allocation functions are expected to be 576 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 577 * conditional to this static branch, we'll have to allow modules that does 578 * kmem_cache_alloc and the such to see this symbol as well 579 */ 580struct static_key memcg_kmem_enabled_key; 581EXPORT_SYMBOL(memcg_kmem_enabled_key); 582 583#endif /* CONFIG_MEMCG_KMEM */ 584 585static struct mem_cgroup_per_zone * 586mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) 587{ 588 int nid = zone_to_nid(zone); 589 int zid = zone_idx(zone); 590 591 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 592} 593 594struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 595{ 596 return &memcg->css; 597} 598 599static struct mem_cgroup_per_zone * 600mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) 601{ 602 int nid = page_to_nid(page); 603 int zid = page_zonenum(page); 604 605 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 606} 607 608static struct mem_cgroup_tree_per_zone * 609soft_limit_tree_node_zone(int nid, int zid) 610{ 611 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 612} 613 614static struct mem_cgroup_tree_per_zone * 615soft_limit_tree_from_page(struct page *page) 616{ 617 int nid = page_to_nid(page); 618 int zid = page_zonenum(page); 619 620 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 621} 622 623static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, 624 struct mem_cgroup_tree_per_zone *mctz, 625 unsigned long new_usage_in_excess) 626{ 627 struct rb_node **p = &mctz->rb_root.rb_node; 628 struct rb_node *parent = NULL; 629 struct mem_cgroup_per_zone *mz_node; 630 631 if (mz->on_tree) 632 return; 633 634 mz->usage_in_excess = new_usage_in_excess; 635 if (!mz->usage_in_excess) 636 return; 637 while (*p) { 638 parent = *p; 639 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 640 tree_node); 641 if (mz->usage_in_excess < mz_node->usage_in_excess) 642 p = &(*p)->rb_left; 643 /* 644 * We can't avoid mem cgroups that are over their soft 645 * limit by the same amount 646 */ 647 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 648 p = &(*p)->rb_right; 649 } 650 rb_link_node(&mz->tree_node, parent, p); 651 rb_insert_color(&mz->tree_node, &mctz->rb_root); 652 mz->on_tree = true; 653} 654 655static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 656 struct mem_cgroup_tree_per_zone *mctz) 657{ 658 if (!mz->on_tree) 659 return; 660 rb_erase(&mz->tree_node, &mctz->rb_root); 661 mz->on_tree = false; 662} 663 664static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 665 struct mem_cgroup_tree_per_zone *mctz) 666{ 667 unsigned long flags; 668 669 spin_lock_irqsave(&mctz->lock, flags); 670 __mem_cgroup_remove_exceeded(mz, mctz); 671 spin_unlock_irqrestore(&mctz->lock, flags); 672} 673 674static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 675{ 676 unsigned long nr_pages = page_counter_read(&memcg->memory); 677 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 678 unsigned long excess = 0; 679 680 if (nr_pages > soft_limit) 681 excess = nr_pages - soft_limit; 682 683 return excess; 684} 685 686static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 687{ 688 unsigned long excess; 689 struct mem_cgroup_per_zone *mz; 690 struct mem_cgroup_tree_per_zone *mctz; 691 692 mctz = soft_limit_tree_from_page(page); 693 /* 694 * Necessary to update all ancestors when hierarchy is used. 695 * because their event counter is not touched. 696 */ 697 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 698 mz = mem_cgroup_page_zoneinfo(memcg, page); 699 excess = soft_limit_excess(memcg); 700 /* 701 * We have to update the tree if mz is on RB-tree or 702 * mem is over its softlimit. 703 */ 704 if (excess || mz->on_tree) { 705 unsigned long flags; 706 707 spin_lock_irqsave(&mctz->lock, flags); 708 /* if on-tree, remove it */ 709 if (mz->on_tree) 710 __mem_cgroup_remove_exceeded(mz, mctz); 711 /* 712 * Insert again. mz->usage_in_excess will be updated. 713 * If excess is 0, no tree ops. 714 */ 715 __mem_cgroup_insert_exceeded(mz, mctz, excess); 716 spin_unlock_irqrestore(&mctz->lock, flags); 717 } 718 } 719} 720 721static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 722{ 723 struct mem_cgroup_tree_per_zone *mctz; 724 struct mem_cgroup_per_zone *mz; 725 int nid, zid; 726 727 for_each_node(nid) { 728 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 729 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 730 mctz = soft_limit_tree_node_zone(nid, zid); 731 mem_cgroup_remove_exceeded(mz, mctz); 732 } 733 } 734} 735 736static struct mem_cgroup_per_zone * 737__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 738{ 739 struct rb_node *rightmost = NULL; 740 struct mem_cgroup_per_zone *mz; 741 742retry: 743 mz = NULL; 744 rightmost = rb_last(&mctz->rb_root); 745 if (!rightmost) 746 goto done; /* Nothing to reclaim from */ 747 748 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 749 /* 750 * Remove the node now but someone else can add it back, 751 * we will to add it back at the end of reclaim to its correct 752 * position in the tree. 753 */ 754 __mem_cgroup_remove_exceeded(mz, mctz); 755 if (!soft_limit_excess(mz->memcg) || 756 !css_tryget_online(&mz->memcg->css)) 757 goto retry; 758done: 759 return mz; 760} 761 762static struct mem_cgroup_per_zone * 763mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 764{ 765 struct mem_cgroup_per_zone *mz; 766 767 spin_lock_irq(&mctz->lock); 768 mz = __mem_cgroup_largest_soft_limit_node(mctz); 769 spin_unlock_irq(&mctz->lock); 770 return mz; 771} 772 773/* 774 * Implementation Note: reading percpu statistics for memcg. 775 * 776 * Both of vmstat[] and percpu_counter has threshold and do periodic 777 * synchronization to implement "quick" read. There are trade-off between 778 * reading cost and precision of value. Then, we may have a chance to implement 779 * a periodic synchronizion of counter in memcg's counter. 780 * 781 * But this _read() function is used for user interface now. The user accounts 782 * memory usage by memory cgroup and he _always_ requires exact value because 783 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 784 * have to visit all online cpus and make sum. So, for now, unnecessary 785 * synchronization is not implemented. (just implemented for cpu hotplug) 786 * 787 * If there are kernel internal actions which can make use of some not-exact 788 * value, and reading all cpu value can be performance bottleneck in some 789 * common workload, threashold and synchonization as vmstat[] should be 790 * implemented. 791 */ 792static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 793 enum mem_cgroup_stat_index idx) 794{ 795 long val = 0; 796 int cpu; 797 798 get_online_cpus(); 799 for_each_online_cpu(cpu) 800 val += per_cpu(memcg->stat->count[idx], cpu); 801#ifdef CONFIG_HOTPLUG_CPU 802 spin_lock(&memcg->pcp_counter_lock); 803 val += memcg->nocpu_base.count[idx]; 804 spin_unlock(&memcg->pcp_counter_lock); 805#endif 806 put_online_cpus(); 807 return val; 808} 809 810static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 811 enum mem_cgroup_events_index idx) 812{ 813 unsigned long val = 0; 814 int cpu; 815 816 get_online_cpus(); 817 for_each_online_cpu(cpu) 818 val += per_cpu(memcg->stat->events[idx], cpu); 819#ifdef CONFIG_HOTPLUG_CPU 820 spin_lock(&memcg->pcp_counter_lock); 821 val += memcg->nocpu_base.events[idx]; 822 spin_unlock(&memcg->pcp_counter_lock); 823#endif 824 put_online_cpus(); 825 return val; 826} 827 828static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 829 struct page *page, 830 int nr_pages) 831{ 832 /* 833 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 834 * counted as CACHE even if it's on ANON LRU. 835 */ 836 if (PageAnon(page)) 837 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 838 nr_pages); 839 else 840 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 841 nr_pages); 842 843 if (PageTransHuge(page)) 844 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 845 nr_pages); 846 847 /* pagein of a big page is an event. So, ignore page size */ 848 if (nr_pages > 0) 849 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 850 else { 851 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 852 nr_pages = -nr_pages; /* for event */ 853 } 854 855 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 856} 857 858unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 859{ 860 struct mem_cgroup_per_zone *mz; 861 862 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 863 return mz->lru_size[lru]; 864} 865 866static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 867 int nid, 868 unsigned int lru_mask) 869{ 870 unsigned long nr = 0; 871 int zid; 872 873 VM_BUG_ON((unsigned)nid >= nr_node_ids); 874 875 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 876 struct mem_cgroup_per_zone *mz; 877 enum lru_list lru; 878 879 for_each_lru(lru) { 880 if (!(BIT(lru) & lru_mask)) 881 continue; 882 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 883 nr += mz->lru_size[lru]; 884 } 885 } 886 return nr; 887} 888 889static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 890 unsigned int lru_mask) 891{ 892 unsigned long nr = 0; 893 int nid; 894 895 for_each_node_state(nid, N_MEMORY) 896 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 897 return nr; 898} 899 900static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 901 enum mem_cgroup_events_target target) 902{ 903 unsigned long val, next; 904 905 val = __this_cpu_read(memcg->stat->nr_page_events); 906 next = __this_cpu_read(memcg->stat->targets[target]); 907 /* from time_after() in jiffies.h */ 908 if ((long)next - (long)val < 0) { 909 switch (target) { 910 case MEM_CGROUP_TARGET_THRESH: 911 next = val + THRESHOLDS_EVENTS_TARGET; 912 break; 913 case MEM_CGROUP_TARGET_SOFTLIMIT: 914 next = val + SOFTLIMIT_EVENTS_TARGET; 915 break; 916 case MEM_CGROUP_TARGET_NUMAINFO: 917 next = val + NUMAINFO_EVENTS_TARGET; 918 break; 919 default: 920 break; 921 } 922 __this_cpu_write(memcg->stat->targets[target], next); 923 return true; 924 } 925 return false; 926} 927 928/* 929 * Check events in order. 930 * 931 */ 932static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 933{ 934 /* threshold event is triggered in finer grain than soft limit */ 935 if (unlikely(mem_cgroup_event_ratelimit(memcg, 936 MEM_CGROUP_TARGET_THRESH))) { 937 bool do_softlimit; 938 bool do_numainfo __maybe_unused; 939 940 do_softlimit = mem_cgroup_event_ratelimit(memcg, 941 MEM_CGROUP_TARGET_SOFTLIMIT); 942#if MAX_NUMNODES > 1 943 do_numainfo = mem_cgroup_event_ratelimit(memcg, 944 MEM_CGROUP_TARGET_NUMAINFO); 945#endif 946 mem_cgroup_threshold(memcg); 947 if (unlikely(do_softlimit)) 948 mem_cgroup_update_tree(memcg, page); 949#if MAX_NUMNODES > 1 950 if (unlikely(do_numainfo)) 951 atomic_inc(&memcg->numainfo_events); 952#endif 953 } 954} 955 956struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 957{ 958 /* 959 * mm_update_next_owner() may clear mm->owner to NULL 960 * if it races with swapoff, page migration, etc. 961 * So this can be called with p == NULL. 962 */ 963 if (unlikely(!p)) 964 return NULL; 965 966 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 967} 968 969static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 970{ 971 struct mem_cgroup *memcg = NULL; 972 973 rcu_read_lock(); 974 do { 975 /* 976 * Page cache insertions can happen withou an 977 * actual mm context, e.g. during disk probing 978 * on boot, loopback IO, acct() writes etc. 979 */ 980 if (unlikely(!mm)) 981 memcg = root_mem_cgroup; 982 else { 983 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 984 if (unlikely(!memcg)) 985 memcg = root_mem_cgroup; 986 } 987 } while (!css_tryget_online(&memcg->css)); 988 rcu_read_unlock(); 989 return memcg; 990} 991 992/** 993 * mem_cgroup_iter - iterate over memory cgroup hierarchy 994 * @root: hierarchy root 995 * @prev: previously returned memcg, NULL on first invocation 996 * @reclaim: cookie for shared reclaim walks, NULL for full walks 997 * 998 * Returns references to children of the hierarchy below @root, or 999 * @root itself, or %NULL after a full round-trip. 1000 * 1001 * Caller must pass the return value in @prev on subsequent 1002 * invocations for reference counting, or use mem_cgroup_iter_break() 1003 * to cancel a hierarchy walk before the round-trip is complete. 1004 * 1005 * Reclaimers can specify a zone and a priority level in @reclaim to 1006 * divide up the memcgs in the hierarchy among all concurrent 1007 * reclaimers operating on the same zone and priority. 1008 */ 1009struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1010 struct mem_cgroup *prev, 1011 struct mem_cgroup_reclaim_cookie *reclaim) 1012{ 1013 struct reclaim_iter *uninitialized_var(iter); 1014 struct cgroup_subsys_state *css = NULL; 1015 struct mem_cgroup *memcg = NULL; 1016 struct mem_cgroup *pos = NULL; 1017 1018 if (mem_cgroup_disabled()) 1019 return NULL; 1020 1021 if (!root) 1022 root = root_mem_cgroup; 1023 1024 if (prev && !reclaim) 1025 pos = prev; 1026 1027 if (!root->use_hierarchy && root != root_mem_cgroup) { 1028 if (prev) 1029 goto out; 1030 return root; 1031 } 1032 1033 rcu_read_lock(); 1034 1035 if (reclaim) { 1036 struct mem_cgroup_per_zone *mz; 1037 1038 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); 1039 iter = &mz->iter[reclaim->priority]; 1040 1041 if (prev && reclaim->generation != iter->generation) 1042 goto out_unlock; 1043 1044 do { 1045 pos = READ_ONCE(iter->position); 1046 /* 1047 * A racing update may change the position and 1048 * put the last reference, hence css_tryget(), 1049 * or retry to see the updated position. 1050 */ 1051 } while (pos && !css_tryget(&pos->css)); 1052 } 1053 1054 if (pos) 1055 css = &pos->css; 1056 1057 for (;;) { 1058 css = css_next_descendant_pre(css, &root->css); 1059 if (!css) { 1060 /* 1061 * Reclaimers share the hierarchy walk, and a 1062 * new one might jump in right at the end of 1063 * the hierarchy - make sure they see at least 1064 * one group and restart from the beginning. 1065 */ 1066 if (!prev) 1067 continue; 1068 break; 1069 } 1070 1071 /* 1072 * Verify the css and acquire a reference. The root 1073 * is provided by the caller, so we know it's alive 1074 * and kicking, and don't take an extra reference. 1075 */ 1076 memcg = mem_cgroup_from_css(css); 1077 1078 if (css == &root->css) 1079 break; 1080 1081 if (css_tryget(css)) { 1082 /* 1083 * Make sure the memcg is initialized: 1084 * mem_cgroup_css_online() orders the the 1085 * initialization against setting the flag. 1086 */ 1087 if (smp_load_acquire(&memcg->initialized)) 1088 break; 1089 1090 css_put(css); 1091 } 1092 1093 memcg = NULL; 1094 } 1095 1096 if (reclaim) { 1097 if (cmpxchg(&iter->position, pos, memcg) == pos) { 1098 if (memcg) 1099 css_get(&memcg->css); 1100 if (pos) 1101 css_put(&pos->css); 1102 } 1103 1104 /* 1105 * pairs with css_tryget when dereferencing iter->position 1106 * above. 1107 */ 1108 if (pos) 1109 css_put(&pos->css); 1110 1111 if (!memcg) 1112 iter->generation++; 1113 else if (!prev) 1114 reclaim->generation = iter->generation; 1115 } 1116 1117out_unlock: 1118 rcu_read_unlock(); 1119out: 1120 if (prev && prev != root) 1121 css_put(&prev->css); 1122 1123 return memcg; 1124} 1125 1126/** 1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1128 * @root: hierarchy root 1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1130 */ 1131void mem_cgroup_iter_break(struct mem_cgroup *root, 1132 struct mem_cgroup *prev) 1133{ 1134 if (!root) 1135 root = root_mem_cgroup; 1136 if (prev && prev != root) 1137 css_put(&prev->css); 1138} 1139 1140/* 1141 * Iteration constructs for visiting all cgroups (under a tree). If 1142 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1143 * be used for reference counting. 1144 */ 1145#define for_each_mem_cgroup_tree(iter, root) \ 1146 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1147 iter != NULL; \ 1148 iter = mem_cgroup_iter(root, iter, NULL)) 1149 1150#define for_each_mem_cgroup(iter) \ 1151 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1152 iter != NULL; \ 1153 iter = mem_cgroup_iter(NULL, iter, NULL)) 1154 1155void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1156{ 1157 struct mem_cgroup *memcg; 1158 1159 rcu_read_lock(); 1160 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1161 if (unlikely(!memcg)) 1162 goto out; 1163 1164 switch (idx) { 1165 case PGFAULT: 1166 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1167 break; 1168 case PGMAJFAULT: 1169 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1170 break; 1171 default: 1172 BUG(); 1173 } 1174out: 1175 rcu_read_unlock(); 1176} 1177EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1178 1179/** 1180 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1181 * @zone: zone of the wanted lruvec 1182 * @memcg: memcg of the wanted lruvec 1183 * 1184 * Returns the lru list vector holding pages for the given @zone and 1185 * @mem. This can be the global zone lruvec, if the memory controller 1186 * is disabled. 1187 */ 1188struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1189 struct mem_cgroup *memcg) 1190{ 1191 struct mem_cgroup_per_zone *mz; 1192 struct lruvec *lruvec; 1193 1194 if (mem_cgroup_disabled()) { 1195 lruvec = &zone->lruvec; 1196 goto out; 1197 } 1198 1199 mz = mem_cgroup_zone_zoneinfo(memcg, zone); 1200 lruvec = &mz->lruvec; 1201out: 1202 /* 1203 * Since a node can be onlined after the mem_cgroup was created, 1204 * we have to be prepared to initialize lruvec->zone here; 1205 * and if offlined then reonlined, we need to reinitialize it. 1206 */ 1207 if (unlikely(lruvec->zone != zone)) 1208 lruvec->zone = zone; 1209 return lruvec; 1210} 1211 1212/** 1213 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1214 * @page: the page 1215 * @zone: zone of the page 1216 * 1217 * This function is only safe when following the LRU page isolation 1218 * and putback protocol: the LRU lock must be held, and the page must 1219 * either be PageLRU() or the caller must have isolated/allocated it. 1220 */ 1221struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1222{ 1223 struct mem_cgroup_per_zone *mz; 1224 struct mem_cgroup *memcg; 1225 struct lruvec *lruvec; 1226 1227 if (mem_cgroup_disabled()) { 1228 lruvec = &zone->lruvec; 1229 goto out; 1230 } 1231 1232 memcg = page->mem_cgroup; 1233 /* 1234 * Swapcache readahead pages are added to the LRU - and 1235 * possibly migrated - before they are charged. 1236 */ 1237 if (!memcg) 1238 memcg = root_mem_cgroup; 1239 1240 mz = mem_cgroup_page_zoneinfo(memcg, page); 1241 lruvec = &mz->lruvec; 1242out: 1243 /* 1244 * Since a node can be onlined after the mem_cgroup was created, 1245 * we have to be prepared to initialize lruvec->zone here; 1246 * and if offlined then reonlined, we need to reinitialize it. 1247 */ 1248 if (unlikely(lruvec->zone != zone)) 1249 lruvec->zone = zone; 1250 return lruvec; 1251} 1252 1253/** 1254 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1255 * @lruvec: mem_cgroup per zone lru vector 1256 * @lru: index of lru list the page is sitting on 1257 * @nr_pages: positive when adding or negative when removing 1258 * 1259 * This function must be called when a page is added to or removed from an 1260 * lru list. 1261 */ 1262void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1263 int nr_pages) 1264{ 1265 struct mem_cgroup_per_zone *mz; 1266 unsigned long *lru_size; 1267 1268 if (mem_cgroup_disabled()) 1269 return; 1270 1271 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1272 lru_size = mz->lru_size + lru; 1273 *lru_size += nr_pages; 1274 VM_BUG_ON((long)(*lru_size) < 0); 1275} 1276 1277bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root) 1278{ 1279 if (root == memcg) 1280 return true; 1281 if (!root->use_hierarchy) 1282 return false; 1283 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 1284} 1285 1286bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1287{ 1288 struct mem_cgroup *task_memcg; 1289 struct task_struct *p; 1290 bool ret; 1291 1292 p = find_lock_task_mm(task); 1293 if (p) { 1294 task_memcg = get_mem_cgroup_from_mm(p->mm); 1295 task_unlock(p); 1296 } else { 1297 /* 1298 * All threads may have already detached their mm's, but the oom 1299 * killer still needs to detect if they have already been oom 1300 * killed to prevent needlessly killing additional tasks. 1301 */ 1302 rcu_read_lock(); 1303 task_memcg = mem_cgroup_from_task(task); 1304 css_get(&task_memcg->css); 1305 rcu_read_unlock(); 1306 } 1307 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1308 css_put(&task_memcg->css); 1309 return ret; 1310} 1311 1312int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1313{ 1314 unsigned long inactive_ratio; 1315 unsigned long inactive; 1316 unsigned long active; 1317 unsigned long gb; 1318 1319 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1320 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1321 1322 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1323 if (gb) 1324 inactive_ratio = int_sqrt(10 * gb); 1325 else 1326 inactive_ratio = 1; 1327 1328 return inactive * inactive_ratio < active; 1329} 1330 1331bool mem_cgroup_lruvec_online(struct lruvec *lruvec) 1332{ 1333 struct mem_cgroup_per_zone *mz; 1334 struct mem_cgroup *memcg; 1335 1336 if (mem_cgroup_disabled()) 1337 return true; 1338 1339 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1340 memcg = mz->memcg; 1341 1342 return !!(memcg->css.flags & CSS_ONLINE); 1343} 1344 1345#define mem_cgroup_from_counter(counter, member) \ 1346 container_of(counter, struct mem_cgroup, member) 1347 1348/** 1349 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1350 * @memcg: the memory cgroup 1351 * 1352 * Returns the maximum amount of memory @mem can be charged with, in 1353 * pages. 1354 */ 1355static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1356{ 1357 unsigned long margin = 0; 1358 unsigned long count; 1359 unsigned long limit; 1360 1361 count = page_counter_read(&memcg->memory); 1362 limit = READ_ONCE(memcg->memory.limit); 1363 if (count < limit) 1364 margin = limit - count; 1365 1366 if (do_swap_account) { 1367 count = page_counter_read(&memcg->memsw); 1368 limit = READ_ONCE(memcg->memsw.limit); 1369 if (count <= limit) 1370 margin = min(margin, limit - count); 1371 } 1372 1373 return margin; 1374} 1375 1376int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1377{ 1378 /* root ? */ 1379 if (mem_cgroup_disabled() || !memcg->css.parent) 1380 return vm_swappiness; 1381 1382 return memcg->swappiness; 1383} 1384 1385/* 1386 * A routine for checking "mem" is under move_account() or not. 1387 * 1388 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1389 * moving cgroups. This is for waiting at high-memory pressure 1390 * caused by "move". 1391 */ 1392static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1393{ 1394 struct mem_cgroup *from; 1395 struct mem_cgroup *to; 1396 bool ret = false; 1397 /* 1398 * Unlike task_move routines, we access mc.to, mc.from not under 1399 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1400 */ 1401 spin_lock(&mc.lock); 1402 from = mc.from; 1403 to = mc.to; 1404 if (!from) 1405 goto unlock; 1406 1407 ret = mem_cgroup_is_descendant(from, memcg) || 1408 mem_cgroup_is_descendant(to, memcg); 1409unlock: 1410 spin_unlock(&mc.lock); 1411 return ret; 1412} 1413 1414static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1415{ 1416 if (mc.moving_task && current != mc.moving_task) { 1417 if (mem_cgroup_under_move(memcg)) { 1418 DEFINE_WAIT(wait); 1419 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1420 /* moving charge context might have finished. */ 1421 if (mc.moving_task) 1422 schedule(); 1423 finish_wait(&mc.waitq, &wait); 1424 return true; 1425 } 1426 } 1427 return false; 1428} 1429 1430#define K(x) ((x) << (PAGE_SHIFT-10)) 1431/** 1432 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1433 * @memcg: The memory cgroup that went over limit 1434 * @p: Task that is going to be killed 1435 * 1436 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1437 * enabled 1438 */ 1439void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1440{ 1441 /* oom_info_lock ensures that parallel ooms do not interleave */ 1442 static DEFINE_MUTEX(oom_info_lock); 1443 struct mem_cgroup *iter; 1444 unsigned int i; 1445 1446 mutex_lock(&oom_info_lock); 1447 rcu_read_lock(); 1448 1449 if (p) { 1450 pr_info("Task in "); 1451 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1452 pr_cont(" killed as a result of limit of "); 1453 } else { 1454 pr_info("Memory limit reached of cgroup "); 1455 } 1456 1457 pr_cont_cgroup_path(memcg->css.cgroup); 1458 pr_cont("\n"); 1459 1460 rcu_read_unlock(); 1461 1462 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1463 K((u64)page_counter_read(&memcg->memory)), 1464 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1465 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1466 K((u64)page_counter_read(&memcg->memsw)), 1467 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1468 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1469 K((u64)page_counter_read(&memcg->kmem)), 1470 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1471 1472 for_each_mem_cgroup_tree(iter, memcg) { 1473 pr_info("Memory cgroup stats for "); 1474 pr_cont_cgroup_path(iter->css.cgroup); 1475 pr_cont(":"); 1476 1477 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1478 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1479 continue; 1480 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1481 K(mem_cgroup_read_stat(iter, i))); 1482 } 1483 1484 for (i = 0; i < NR_LRU_LISTS; i++) 1485 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1486 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1487 1488 pr_cont("\n"); 1489 } 1490 mutex_unlock(&oom_info_lock); 1491} 1492 1493/* 1494 * This function returns the number of memcg under hierarchy tree. Returns 1495 * 1(self count) if no children. 1496 */ 1497static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1498{ 1499 int num = 0; 1500 struct mem_cgroup *iter; 1501 1502 for_each_mem_cgroup_tree(iter, memcg) 1503 num++; 1504 return num; 1505} 1506 1507/* 1508 * Return the memory (and swap, if configured) limit for a memcg. 1509 */ 1510static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1511{ 1512 unsigned long limit; 1513 1514 limit = memcg->memory.limit; 1515 if (mem_cgroup_swappiness(memcg)) { 1516 unsigned long memsw_limit; 1517 1518 memsw_limit = memcg->memsw.limit; 1519 limit = min(limit + total_swap_pages, memsw_limit); 1520 } 1521 return limit; 1522} 1523 1524static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1525 int order) 1526{ 1527 struct mem_cgroup *iter; 1528 unsigned long chosen_points = 0; 1529 unsigned long totalpages; 1530 unsigned int points = 0; 1531 struct task_struct *chosen = NULL; 1532 1533 /* 1534 * If current has a pending SIGKILL or is exiting, then automatically 1535 * select it. The goal is to allow it to allocate so that it may 1536 * quickly exit and free its memory. 1537 */ 1538 if (fatal_signal_pending(current) || task_will_free_mem(current)) { 1539 mark_tsk_oom_victim(current); 1540 return; 1541 } 1542 1543 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg); 1544 totalpages = mem_cgroup_get_limit(memcg) ? : 1; 1545 for_each_mem_cgroup_tree(iter, memcg) { 1546 struct css_task_iter it; 1547 struct task_struct *task; 1548 1549 css_task_iter_start(&iter->css, &it); 1550 while ((task = css_task_iter_next(&it))) { 1551 switch (oom_scan_process_thread(task, totalpages, NULL, 1552 false)) { 1553 case OOM_SCAN_SELECT: 1554 if (chosen) 1555 put_task_struct(chosen); 1556 chosen = task; 1557 chosen_points = ULONG_MAX; 1558 get_task_struct(chosen); 1559 /* fall through */ 1560 case OOM_SCAN_CONTINUE: 1561 continue; 1562 case OOM_SCAN_ABORT: 1563 css_task_iter_end(&it); 1564 mem_cgroup_iter_break(memcg, iter); 1565 if (chosen) 1566 put_task_struct(chosen); 1567 return; 1568 case OOM_SCAN_OK: 1569 break; 1570 }; 1571 points = oom_badness(task, memcg, NULL, totalpages); 1572 if (!points || points < chosen_points) 1573 continue; 1574 /* Prefer thread group leaders for display purposes */ 1575 if (points == chosen_points && 1576 thread_group_leader(chosen)) 1577 continue; 1578 1579 if (chosen) 1580 put_task_struct(chosen); 1581 chosen = task; 1582 chosen_points = points; 1583 get_task_struct(chosen); 1584 } 1585 css_task_iter_end(&it); 1586 } 1587 1588 if (!chosen) 1589 return; 1590 points = chosen_points * 1000 / totalpages; 1591 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1592 NULL, "Memory cgroup out of memory"); 1593} 1594 1595#if MAX_NUMNODES > 1 1596 1597/** 1598 * test_mem_cgroup_node_reclaimable 1599 * @memcg: the target memcg 1600 * @nid: the node ID to be checked. 1601 * @noswap : specify true here if the user wants flle only information. 1602 * 1603 * This function returns whether the specified memcg contains any 1604 * reclaimable pages on a node. Returns true if there are any reclaimable 1605 * pages in the node. 1606 */ 1607static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1608 int nid, bool noswap) 1609{ 1610 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1611 return true; 1612 if (noswap || !total_swap_pages) 1613 return false; 1614 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1615 return true; 1616 return false; 1617 1618} 1619 1620/* 1621 * Always updating the nodemask is not very good - even if we have an empty 1622 * list or the wrong list here, we can start from some node and traverse all 1623 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1624 * 1625 */ 1626static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1627{ 1628 int nid; 1629 /* 1630 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1631 * pagein/pageout changes since the last update. 1632 */ 1633 if (!atomic_read(&memcg->numainfo_events)) 1634 return; 1635 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1636 return; 1637 1638 /* make a nodemask where this memcg uses memory from */ 1639 memcg->scan_nodes = node_states[N_MEMORY]; 1640 1641 for_each_node_mask(nid, node_states[N_MEMORY]) { 1642 1643 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1644 node_clear(nid, memcg->scan_nodes); 1645 } 1646 1647 atomic_set(&memcg->numainfo_events, 0); 1648 atomic_set(&memcg->numainfo_updating, 0); 1649} 1650 1651/* 1652 * Selecting a node where we start reclaim from. Because what we need is just 1653 * reducing usage counter, start from anywhere is O,K. Considering 1654 * memory reclaim from current node, there are pros. and cons. 1655 * 1656 * Freeing memory from current node means freeing memory from a node which 1657 * we'll use or we've used. So, it may make LRU bad. And if several threads 1658 * hit limits, it will see a contention on a node. But freeing from remote 1659 * node means more costs for memory reclaim because of memory latency. 1660 * 1661 * Now, we use round-robin. Better algorithm is welcomed. 1662 */ 1663int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1664{ 1665 int node; 1666 1667 mem_cgroup_may_update_nodemask(memcg); 1668 node = memcg->last_scanned_node; 1669 1670 node = next_node(node, memcg->scan_nodes); 1671 if (node == MAX_NUMNODES) 1672 node = first_node(memcg->scan_nodes); 1673 /* 1674 * We call this when we hit limit, not when pages are added to LRU. 1675 * No LRU may hold pages because all pages are UNEVICTABLE or 1676 * memcg is too small and all pages are not on LRU. In that case, 1677 * we use curret node. 1678 */ 1679 if (unlikely(node == MAX_NUMNODES)) 1680 node = numa_node_id(); 1681 1682 memcg->last_scanned_node = node; 1683 return node; 1684} 1685#else 1686int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1687{ 1688 return 0; 1689} 1690#endif 1691 1692static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1693 struct zone *zone, 1694 gfp_t gfp_mask, 1695 unsigned long *total_scanned) 1696{ 1697 struct mem_cgroup *victim = NULL; 1698 int total = 0; 1699 int loop = 0; 1700 unsigned long excess; 1701 unsigned long nr_scanned; 1702 struct mem_cgroup_reclaim_cookie reclaim = { 1703 .zone = zone, 1704 .priority = 0, 1705 }; 1706 1707 excess = soft_limit_excess(root_memcg); 1708 1709 while (1) { 1710 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1711 if (!victim) { 1712 loop++; 1713 if (loop >= 2) { 1714 /* 1715 * If we have not been able to reclaim 1716 * anything, it might because there are 1717 * no reclaimable pages under this hierarchy 1718 */ 1719 if (!total) 1720 break; 1721 /* 1722 * We want to do more targeted reclaim. 1723 * excess >> 2 is not to excessive so as to 1724 * reclaim too much, nor too less that we keep 1725 * coming back to reclaim from this cgroup 1726 */ 1727 if (total >= (excess >> 2) || 1728 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1729 break; 1730 } 1731 continue; 1732 } 1733 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1734 zone, &nr_scanned); 1735 *total_scanned += nr_scanned; 1736 if (!soft_limit_excess(root_memcg)) 1737 break; 1738 } 1739 mem_cgroup_iter_break(root_memcg, victim); 1740 return total; 1741} 1742 1743#ifdef CONFIG_LOCKDEP 1744static struct lockdep_map memcg_oom_lock_dep_map = { 1745 .name = "memcg_oom_lock", 1746}; 1747#endif 1748 1749static DEFINE_SPINLOCK(memcg_oom_lock); 1750 1751/* 1752 * Check OOM-Killer is already running under our hierarchy. 1753 * If someone is running, return false. 1754 */ 1755static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1756{ 1757 struct mem_cgroup *iter, *failed = NULL; 1758 1759 spin_lock(&memcg_oom_lock); 1760 1761 for_each_mem_cgroup_tree(iter, memcg) { 1762 if (iter->oom_lock) { 1763 /* 1764 * this subtree of our hierarchy is already locked 1765 * so we cannot give a lock. 1766 */ 1767 failed = iter; 1768 mem_cgroup_iter_break(memcg, iter); 1769 break; 1770 } else 1771 iter->oom_lock = true; 1772 } 1773 1774 if (failed) { 1775 /* 1776 * OK, we failed to lock the whole subtree so we have 1777 * to clean up what we set up to the failing subtree 1778 */ 1779 for_each_mem_cgroup_tree(iter, memcg) { 1780 if (iter == failed) { 1781 mem_cgroup_iter_break(memcg, iter); 1782 break; 1783 } 1784 iter->oom_lock = false; 1785 } 1786 } else 1787 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1788 1789 spin_unlock(&memcg_oom_lock); 1790 1791 return !failed; 1792} 1793 1794static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1795{ 1796 struct mem_cgroup *iter; 1797 1798 spin_lock(&memcg_oom_lock); 1799 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1800 for_each_mem_cgroup_tree(iter, memcg) 1801 iter->oom_lock = false; 1802 spin_unlock(&memcg_oom_lock); 1803} 1804 1805static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1806{ 1807 struct mem_cgroup *iter; 1808 1809 for_each_mem_cgroup_tree(iter, memcg) 1810 atomic_inc(&iter->under_oom); 1811} 1812 1813static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1814{ 1815 struct mem_cgroup *iter; 1816 1817 /* 1818 * When a new child is created while the hierarchy is under oom, 1819 * mem_cgroup_oom_lock() may not be called. We have to use 1820 * atomic_add_unless() here. 1821 */ 1822 for_each_mem_cgroup_tree(iter, memcg) 1823 atomic_add_unless(&iter->under_oom, -1, 0); 1824} 1825 1826static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1827 1828struct oom_wait_info { 1829 struct mem_cgroup *memcg; 1830 wait_queue_t wait; 1831}; 1832 1833static int memcg_oom_wake_function(wait_queue_t *wait, 1834 unsigned mode, int sync, void *arg) 1835{ 1836 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1837 struct mem_cgroup *oom_wait_memcg; 1838 struct oom_wait_info *oom_wait_info; 1839 1840 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1841 oom_wait_memcg = oom_wait_info->memcg; 1842 1843 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1844 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1845 return 0; 1846 return autoremove_wake_function(wait, mode, sync, arg); 1847} 1848 1849static void memcg_wakeup_oom(struct mem_cgroup *memcg) 1850{ 1851 atomic_inc(&memcg->oom_wakeups); 1852 /* for filtering, pass "memcg" as argument. */ 1853 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1854} 1855 1856static void memcg_oom_recover(struct mem_cgroup *memcg) 1857{ 1858 if (memcg && atomic_read(&memcg->under_oom)) 1859 memcg_wakeup_oom(memcg); 1860} 1861 1862static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1863{ 1864 if (!current->memcg_oom.may_oom) 1865 return; 1866 /* 1867 * We are in the middle of the charge context here, so we 1868 * don't want to block when potentially sitting on a callstack 1869 * that holds all kinds of filesystem and mm locks. 1870 * 1871 * Also, the caller may handle a failed allocation gracefully 1872 * (like optional page cache readahead) and so an OOM killer 1873 * invocation might not even be necessary. 1874 * 1875 * That's why we don't do anything here except remember the 1876 * OOM context and then deal with it at the end of the page 1877 * fault when the stack is unwound, the locks are released, 1878 * and when we know whether the fault was overall successful. 1879 */ 1880 css_get(&memcg->css); 1881 current->memcg_oom.memcg = memcg; 1882 current->memcg_oom.gfp_mask = mask; 1883 current->memcg_oom.order = order; 1884} 1885 1886/** 1887 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1888 * @handle: actually kill/wait or just clean up the OOM state 1889 * 1890 * This has to be called at the end of a page fault if the memcg OOM 1891 * handler was enabled. 1892 * 1893 * Memcg supports userspace OOM handling where failed allocations must 1894 * sleep on a waitqueue until the userspace task resolves the 1895 * situation. Sleeping directly in the charge context with all kinds 1896 * of locks held is not a good idea, instead we remember an OOM state 1897 * in the task and mem_cgroup_oom_synchronize() has to be called at 1898 * the end of the page fault to complete the OOM handling. 1899 * 1900 * Returns %true if an ongoing memcg OOM situation was detected and 1901 * completed, %false otherwise. 1902 */ 1903bool mem_cgroup_oom_synchronize(bool handle) 1904{ 1905 struct mem_cgroup *memcg = current->memcg_oom.memcg; 1906 struct oom_wait_info owait; 1907 bool locked; 1908 1909 /* OOM is global, do not handle */ 1910 if (!memcg) 1911 return false; 1912 1913 if (!handle || oom_killer_disabled) 1914 goto cleanup; 1915 1916 owait.memcg = memcg; 1917 owait.wait.flags = 0; 1918 owait.wait.func = memcg_oom_wake_function; 1919 owait.wait.private = current; 1920 INIT_LIST_HEAD(&owait.wait.task_list); 1921 1922 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1923 mem_cgroup_mark_under_oom(memcg); 1924 1925 locked = mem_cgroup_oom_trylock(memcg); 1926 1927 if (locked) 1928 mem_cgroup_oom_notify(memcg); 1929 1930 if (locked && !memcg->oom_kill_disable) { 1931 mem_cgroup_unmark_under_oom(memcg); 1932 finish_wait(&memcg_oom_waitq, &owait.wait); 1933 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, 1934 current->memcg_oom.order); 1935 } else { 1936 schedule(); 1937 mem_cgroup_unmark_under_oom(memcg); 1938 finish_wait(&memcg_oom_waitq, &owait.wait); 1939 } 1940 1941 if (locked) { 1942 mem_cgroup_oom_unlock(memcg); 1943 /* 1944 * There is no guarantee that an OOM-lock contender 1945 * sees the wakeups triggered by the OOM kill 1946 * uncharges. Wake any sleepers explicitely. 1947 */ 1948 memcg_oom_recover(memcg); 1949 } 1950cleanup: 1951 current->memcg_oom.memcg = NULL; 1952 css_put(&memcg->css); 1953 return true; 1954} 1955 1956/** 1957 * mem_cgroup_begin_page_stat - begin a page state statistics transaction 1958 * @page: page that is going to change accounted state 1959 * 1960 * This function must mark the beginning of an accounted page state 1961 * change to prevent double accounting when the page is concurrently 1962 * being moved to another memcg: 1963 * 1964 * memcg = mem_cgroup_begin_page_stat(page); 1965 * if (TestClearPageState(page)) 1966 * mem_cgroup_update_page_stat(memcg, state, -1); 1967 * mem_cgroup_end_page_stat(memcg); 1968 */ 1969struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page) 1970{ 1971 struct mem_cgroup *memcg; 1972 unsigned long flags; 1973 1974 /* 1975 * The RCU lock is held throughout the transaction. The fast 1976 * path can get away without acquiring the memcg->move_lock 1977 * because page moving starts with an RCU grace period. 1978 * 1979 * The RCU lock also protects the memcg from being freed when 1980 * the page state that is going to change is the only thing 1981 * preventing the page from being uncharged. 1982 * E.g. end-writeback clearing PageWriteback(), which allows 1983 * migration to go ahead and uncharge the page before the 1984 * account transaction might be complete. 1985 */ 1986 rcu_read_lock(); 1987 1988 if (mem_cgroup_disabled()) 1989 return NULL; 1990again: 1991 memcg = page->mem_cgroup; 1992 if (unlikely(!memcg)) 1993 return NULL; 1994 1995 if (atomic_read(&memcg->moving_account) <= 0) 1996 return memcg; 1997 1998 spin_lock_irqsave(&memcg->move_lock, flags); 1999 if (memcg != page->mem_cgroup) { 2000 spin_unlock_irqrestore(&memcg->move_lock, flags); 2001 goto again; 2002 } 2003 2004 /* 2005 * When charge migration first begins, we can have locked and 2006 * unlocked page stat updates happening concurrently. Track 2007 * the task who has the lock for mem_cgroup_end_page_stat(). 2008 */ 2009 memcg->move_lock_task = current; 2010 memcg->move_lock_flags = flags; 2011 2012 return memcg; 2013} 2014 2015/** 2016 * mem_cgroup_end_page_stat - finish a page state statistics transaction 2017 * @memcg: the memcg that was accounted against 2018 */ 2019void mem_cgroup_end_page_stat(struct mem_cgroup *memcg) 2020{ 2021 if (memcg && memcg->move_lock_task == current) { 2022 unsigned long flags = memcg->move_lock_flags; 2023 2024 memcg->move_lock_task = NULL; 2025 memcg->move_lock_flags = 0; 2026 2027 spin_unlock_irqrestore(&memcg->move_lock, flags); 2028 } 2029 2030 rcu_read_unlock(); 2031} 2032 2033/** 2034 * mem_cgroup_update_page_stat - update page state statistics 2035 * @memcg: memcg to account against 2036 * @idx: page state item to account 2037 * @val: number of pages (positive or negative) 2038 * 2039 * See mem_cgroup_begin_page_stat() for locking requirements. 2040 */ 2041void mem_cgroup_update_page_stat(struct mem_cgroup *memcg, 2042 enum mem_cgroup_stat_index idx, int val) 2043{ 2044 VM_BUG_ON(!rcu_read_lock_held()); 2045 2046 if (memcg) 2047 this_cpu_add(memcg->stat->count[idx], val); 2048} 2049 2050/* 2051 * size of first charge trial. "32" comes from vmscan.c's magic value. 2052 * TODO: maybe necessary to use big numbers in big irons. 2053 */ 2054#define CHARGE_BATCH 32U 2055struct memcg_stock_pcp { 2056 struct mem_cgroup *cached; /* this never be root cgroup */ 2057 unsigned int nr_pages; 2058 struct work_struct work; 2059 unsigned long flags; 2060#define FLUSHING_CACHED_CHARGE 0 2061}; 2062static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2063static DEFINE_MUTEX(percpu_charge_mutex); 2064 2065/** 2066 * consume_stock: Try to consume stocked charge on this cpu. 2067 * @memcg: memcg to consume from. 2068 * @nr_pages: how many pages to charge. 2069 * 2070 * The charges will only happen if @memcg matches the current cpu's memcg 2071 * stock, and at least @nr_pages are available in that stock. Failure to 2072 * service an allocation will refill the stock. 2073 * 2074 * returns true if successful, false otherwise. 2075 */ 2076static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2077{ 2078 struct memcg_stock_pcp *stock; 2079 bool ret = false; 2080 2081 if (nr_pages > CHARGE_BATCH) 2082 return ret; 2083 2084 stock = &get_cpu_var(memcg_stock); 2085 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2086 stock->nr_pages -= nr_pages; 2087 ret = true; 2088 } 2089 put_cpu_var(memcg_stock); 2090 return ret; 2091} 2092 2093/* 2094 * Returns stocks cached in percpu and reset cached information. 2095 */ 2096static void drain_stock(struct memcg_stock_pcp *stock) 2097{ 2098 struct mem_cgroup *old = stock->cached; 2099 2100 if (stock->nr_pages) { 2101 page_counter_uncharge(&old->memory, stock->nr_pages); 2102 if (do_swap_account) 2103 page_counter_uncharge(&old->memsw, stock->nr_pages); 2104 css_put_many(&old->css, stock->nr_pages); 2105 stock->nr_pages = 0; 2106 } 2107 stock->cached = NULL; 2108} 2109 2110/* 2111 * This must be called under preempt disabled or must be called by 2112 * a thread which is pinned to local cpu. 2113 */ 2114static void drain_local_stock(struct work_struct *dummy) 2115{ 2116 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); 2117 drain_stock(stock); 2118 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2119} 2120 2121/* 2122 * Cache charges(val) to local per_cpu area. 2123 * This will be consumed by consume_stock() function, later. 2124 */ 2125static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2126{ 2127 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2128 2129 if (stock->cached != memcg) { /* reset if necessary */ 2130 drain_stock(stock); 2131 stock->cached = memcg; 2132 } 2133 stock->nr_pages += nr_pages; 2134 put_cpu_var(memcg_stock); 2135} 2136 2137/* 2138 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2139 * of the hierarchy under it. 2140 */ 2141static void drain_all_stock(struct mem_cgroup *root_memcg) 2142{ 2143 int cpu, curcpu; 2144 2145 /* If someone's already draining, avoid adding running more workers. */ 2146 if (!mutex_trylock(&percpu_charge_mutex)) 2147 return; 2148 /* Notify other cpus that system-wide "drain" is running */ 2149 get_online_cpus(); 2150 curcpu = get_cpu(); 2151 for_each_online_cpu(cpu) { 2152 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2153 struct mem_cgroup *memcg; 2154 2155 memcg = stock->cached; 2156 if (!memcg || !stock->nr_pages) 2157 continue; 2158 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 2159 continue; 2160 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2161 if (cpu == curcpu) 2162 drain_local_stock(&stock->work); 2163 else 2164 schedule_work_on(cpu, &stock->work); 2165 } 2166 } 2167 put_cpu(); 2168 put_online_cpus(); 2169 mutex_unlock(&percpu_charge_mutex); 2170} 2171 2172/* 2173 * This function drains percpu counter value from DEAD cpu and 2174 * move it to local cpu. Note that this function can be preempted. 2175 */ 2176static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2177{ 2178 int i; 2179 2180 spin_lock(&memcg->pcp_counter_lock); 2181 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2182 long x = per_cpu(memcg->stat->count[i], cpu); 2183 2184 per_cpu(memcg->stat->count[i], cpu) = 0; 2185 memcg->nocpu_base.count[i] += x; 2186 } 2187 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2188 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2189 2190 per_cpu(memcg->stat->events[i], cpu) = 0; 2191 memcg->nocpu_base.events[i] += x; 2192 } 2193 spin_unlock(&memcg->pcp_counter_lock); 2194} 2195 2196static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 2197 unsigned long action, 2198 void *hcpu) 2199{ 2200 int cpu = (unsigned long)hcpu; 2201 struct memcg_stock_pcp *stock; 2202 struct mem_cgroup *iter; 2203 2204 if (action == CPU_ONLINE) 2205 return NOTIFY_OK; 2206 2207 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2208 return NOTIFY_OK; 2209 2210 for_each_mem_cgroup(iter) 2211 mem_cgroup_drain_pcp_counter(iter, cpu); 2212 2213 stock = &per_cpu(memcg_stock, cpu); 2214 drain_stock(stock); 2215 return NOTIFY_OK; 2216} 2217 2218static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2219 unsigned int nr_pages) 2220{ 2221 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2222 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2223 struct mem_cgroup *mem_over_limit; 2224 struct page_counter *counter; 2225 unsigned long nr_reclaimed; 2226 bool may_swap = true; 2227 bool drained = false; 2228 int ret = 0; 2229 2230 if (mem_cgroup_is_root(memcg)) 2231 goto done; 2232retry: 2233 if (consume_stock(memcg, nr_pages)) 2234 goto done; 2235 2236 if (!do_swap_account || 2237 !page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2238 if (!page_counter_try_charge(&memcg->memory, batch, &counter)) 2239 goto done_restock; 2240 if (do_swap_account) 2241 page_counter_uncharge(&memcg->memsw, batch); 2242 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2243 } else { 2244 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2245 may_swap = false; 2246 } 2247 2248 if (batch > nr_pages) { 2249 batch = nr_pages; 2250 goto retry; 2251 } 2252 2253 /* 2254 * Unlike in global OOM situations, memcg is not in a physical 2255 * memory shortage. Allow dying and OOM-killed tasks to 2256 * bypass the last charges so that they can exit quickly and 2257 * free their memory. 2258 */ 2259 if (unlikely(test_thread_flag(TIF_MEMDIE) || 2260 fatal_signal_pending(current) || 2261 current->flags & PF_EXITING)) 2262 goto bypass; 2263 2264 if (unlikely(task_in_memcg_oom(current))) 2265 goto nomem; 2266 2267 if (!(gfp_mask & __GFP_WAIT)) 2268 goto nomem; 2269 2270 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 2271 2272 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2273 gfp_mask, may_swap); 2274 2275 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2276 goto retry; 2277 2278 if (!drained) { 2279 drain_all_stock(mem_over_limit); 2280 drained = true; 2281 goto retry; 2282 } 2283 2284 if (gfp_mask & __GFP_NORETRY) 2285 goto nomem; 2286 /* 2287 * Even though the limit is exceeded at this point, reclaim 2288 * may have been able to free some pages. Retry the charge 2289 * before killing the task. 2290 * 2291 * Only for regular pages, though: huge pages are rather 2292 * unlikely to succeed so close to the limit, and we fall back 2293 * to regular pages anyway in case of failure. 2294 */ 2295 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2296 goto retry; 2297 /* 2298 * At task move, charge accounts can be doubly counted. So, it's 2299 * better to wait until the end of task_move if something is going on. 2300 */ 2301 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2302 goto retry; 2303 2304 if (nr_retries--) 2305 goto retry; 2306 2307 if (gfp_mask & __GFP_NOFAIL) 2308 goto bypass; 2309 2310 if (fatal_signal_pending(current)) 2311 goto bypass; 2312 2313 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 2314 2315 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages)); 2316nomem: 2317 if (!(gfp_mask & __GFP_NOFAIL)) 2318 return -ENOMEM; 2319bypass: 2320 return -EINTR; 2321 2322done_restock: 2323 css_get_many(&memcg->css, batch); 2324 if (batch > nr_pages) 2325 refill_stock(memcg, batch - nr_pages); 2326 if (!(gfp_mask & __GFP_WAIT)) 2327 goto done; 2328 /* 2329 * If the hierarchy is above the normal consumption range, 2330 * make the charging task trim their excess contribution. 2331 */ 2332 do { 2333 if (page_counter_read(&memcg->memory) <= memcg->high) 2334 continue; 2335 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 2336 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2337 } while ((memcg = parent_mem_cgroup(memcg))); 2338done: 2339 return ret; 2340} 2341 2342static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2343{ 2344 if (mem_cgroup_is_root(memcg)) 2345 return; 2346 2347 page_counter_uncharge(&memcg->memory, nr_pages); 2348 if (do_swap_account) 2349 page_counter_uncharge(&memcg->memsw, nr_pages); 2350 2351 css_put_many(&memcg->css, nr_pages); 2352} 2353 2354/* 2355 * try_get_mem_cgroup_from_page - look up page's memcg association 2356 * @page: the page 2357 * 2358 * Look up, get a css reference, and return the memcg that owns @page. 2359 * 2360 * The page must be locked to prevent racing with swap-in and page 2361 * cache charges. If coming from an unlocked page table, the caller 2362 * must ensure the page is on the LRU or this can race with charging. 2363 */ 2364struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2365{ 2366 struct mem_cgroup *memcg; 2367 unsigned short id; 2368 swp_entry_t ent; 2369 2370 VM_BUG_ON_PAGE(!PageLocked(page), page); 2371 2372 memcg = page->mem_cgroup; 2373 if (memcg) { 2374 if (!css_tryget_online(&memcg->css)) 2375 memcg = NULL; 2376 } else if (PageSwapCache(page)) { 2377 ent.val = page_private(page); 2378 id = lookup_swap_cgroup_id(ent); 2379 rcu_read_lock(); 2380 memcg = mem_cgroup_from_id(id); 2381 if (memcg && !css_tryget_online(&memcg->css)) 2382 memcg = NULL; 2383 rcu_read_unlock(); 2384 } 2385 return memcg; 2386} 2387 2388static void lock_page_lru(struct page *page, int *isolated) 2389{ 2390 struct zone *zone = page_zone(page); 2391 2392 spin_lock_irq(&zone->lru_lock); 2393 if (PageLRU(page)) { 2394 struct lruvec *lruvec; 2395 2396 lruvec = mem_cgroup_page_lruvec(page, zone); 2397 ClearPageLRU(page); 2398 del_page_from_lru_list(page, lruvec, page_lru(page)); 2399 *isolated = 1; 2400 } else 2401 *isolated = 0; 2402} 2403 2404static void unlock_page_lru(struct page *page, int isolated) 2405{ 2406 struct zone *zone = page_zone(page); 2407 2408 if (isolated) { 2409 struct lruvec *lruvec; 2410 2411 lruvec = mem_cgroup_page_lruvec(page, zone); 2412 VM_BUG_ON_PAGE(PageLRU(page), page); 2413 SetPageLRU(page); 2414 add_page_to_lru_list(page, lruvec, page_lru(page)); 2415 } 2416 spin_unlock_irq(&zone->lru_lock); 2417} 2418 2419static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2420 bool lrucare) 2421{ 2422 int isolated; 2423 2424 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2425 2426 /* 2427 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2428 * may already be on some other mem_cgroup's LRU. Take care of it. 2429 */ 2430 if (lrucare) 2431 lock_page_lru(page, &isolated); 2432 2433 /* 2434 * Nobody should be changing or seriously looking at 2435 * page->mem_cgroup at this point: 2436 * 2437 * - the page is uncharged 2438 * 2439 * - the page is off-LRU 2440 * 2441 * - an anonymous fault has exclusive page access, except for 2442 * a locked page table 2443 * 2444 * - a page cache insertion, a swapin fault, or a migration 2445 * have the page locked 2446 */ 2447 page->mem_cgroup = memcg; 2448 2449 if (lrucare) 2450 unlock_page_lru(page, isolated); 2451} 2452 2453#ifdef CONFIG_MEMCG_KMEM 2454int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, 2455 unsigned long nr_pages) 2456{ 2457 struct page_counter *counter; 2458 int ret = 0; 2459 2460 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter); 2461 if (ret < 0) 2462 return ret; 2463 2464 ret = try_charge(memcg, gfp, nr_pages); 2465 if (ret == -EINTR) { 2466 /* 2467 * try_charge() chose to bypass to root due to OOM kill or 2468 * fatal signal. Since our only options are to either fail 2469 * the allocation or charge it to this cgroup, do it as a 2470 * temporary condition. But we can't fail. From a kmem/slab 2471 * perspective, the cache has already been selected, by 2472 * mem_cgroup_kmem_get_cache(), so it is too late to change 2473 * our minds. 2474 * 2475 * This condition will only trigger if the task entered 2476 * memcg_charge_kmem in a sane state, but was OOM-killed 2477 * during try_charge() above. Tasks that were already dying 2478 * when the allocation triggers should have been already 2479 * directed to the root cgroup in memcontrol.h 2480 */ 2481 page_counter_charge(&memcg->memory, nr_pages); 2482 if (do_swap_account) 2483 page_counter_charge(&memcg->memsw, nr_pages); 2484 css_get_many(&memcg->css, nr_pages); 2485 ret = 0; 2486 } else if (ret) 2487 page_counter_uncharge(&memcg->kmem, nr_pages); 2488 2489 return ret; 2490} 2491 2492void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages) 2493{ 2494 page_counter_uncharge(&memcg->memory, nr_pages); 2495 if (do_swap_account) 2496 page_counter_uncharge(&memcg->memsw, nr_pages); 2497 2498 page_counter_uncharge(&memcg->kmem, nr_pages); 2499 2500 css_put_many(&memcg->css, nr_pages); 2501} 2502 2503/* 2504 * helper for acessing a memcg's index. It will be used as an index in the 2505 * child cache array in kmem_cache, and also to derive its name. This function 2506 * will return -1 when this is not a kmem-limited memcg. 2507 */ 2508int memcg_cache_id(struct mem_cgroup *memcg) 2509{ 2510 return memcg ? memcg->kmemcg_id : -1; 2511} 2512 2513static int memcg_alloc_cache_id(void) 2514{ 2515 int id, size; 2516 int err; 2517 2518 id = ida_simple_get(&memcg_cache_ida, 2519 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2520 if (id < 0) 2521 return id; 2522 2523 if (id < memcg_nr_cache_ids) 2524 return id; 2525 2526 /* 2527 * There's no space for the new id in memcg_caches arrays, 2528 * so we have to grow them. 2529 */ 2530 down_write(&memcg_cache_ids_sem); 2531 2532 size = 2 * (id + 1); 2533 if (size < MEMCG_CACHES_MIN_SIZE) 2534 size = MEMCG_CACHES_MIN_SIZE; 2535 else if (size > MEMCG_CACHES_MAX_SIZE) 2536 size = MEMCG_CACHES_MAX_SIZE; 2537 2538 err = memcg_update_all_caches(size); 2539 if (!err) 2540 err = memcg_update_all_list_lrus(size); 2541 if (!err) 2542 memcg_nr_cache_ids = size; 2543 2544 up_write(&memcg_cache_ids_sem); 2545 2546 if (err) { 2547 ida_simple_remove(&memcg_cache_ida, id); 2548 return err; 2549 } 2550 return id; 2551} 2552 2553static void memcg_free_cache_id(int id) 2554{ 2555 ida_simple_remove(&memcg_cache_ida, id); 2556} 2557 2558struct memcg_kmem_cache_create_work { 2559 struct mem_cgroup *memcg; 2560 struct kmem_cache *cachep; 2561 struct work_struct work; 2562}; 2563 2564static void memcg_kmem_cache_create_func(struct work_struct *w) 2565{ 2566 struct memcg_kmem_cache_create_work *cw = 2567 container_of(w, struct memcg_kmem_cache_create_work, work); 2568 struct mem_cgroup *memcg = cw->memcg; 2569 struct kmem_cache *cachep = cw->cachep; 2570 2571 memcg_create_kmem_cache(memcg, cachep); 2572 2573 css_put(&memcg->css); 2574 kfree(cw); 2575} 2576 2577/* 2578 * Enqueue the creation of a per-memcg kmem_cache. 2579 */ 2580static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2581 struct kmem_cache *cachep) 2582{ 2583 struct memcg_kmem_cache_create_work *cw; 2584 2585 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2586 if (!cw) 2587 return; 2588 2589 css_get(&memcg->css); 2590 2591 cw->memcg = memcg; 2592 cw->cachep = cachep; 2593 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2594 2595 schedule_work(&cw->work); 2596} 2597 2598static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2599 struct kmem_cache *cachep) 2600{ 2601 /* 2602 * We need to stop accounting when we kmalloc, because if the 2603 * corresponding kmalloc cache is not yet created, the first allocation 2604 * in __memcg_schedule_kmem_cache_create will recurse. 2605 * 2606 * However, it is better to enclose the whole function. Depending on 2607 * the debugging options enabled, INIT_WORK(), for instance, can 2608 * trigger an allocation. This too, will make us recurse. Because at 2609 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2610 * the safest choice is to do it like this, wrapping the whole function. 2611 */ 2612 current->memcg_kmem_skip_account = 1; 2613 __memcg_schedule_kmem_cache_create(memcg, cachep); 2614 current->memcg_kmem_skip_account = 0; 2615} 2616 2617/* 2618 * Return the kmem_cache we're supposed to use for a slab allocation. 2619 * We try to use the current memcg's version of the cache. 2620 * 2621 * If the cache does not exist yet, if we are the first user of it, 2622 * we either create it immediately, if possible, or create it asynchronously 2623 * in a workqueue. 2624 * In the latter case, we will let the current allocation go through with 2625 * the original cache. 2626 * 2627 * Can't be called in interrupt context or from kernel threads. 2628 * This function needs to be called with rcu_read_lock() held. 2629 */ 2630struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep) 2631{ 2632 struct mem_cgroup *memcg; 2633 struct kmem_cache *memcg_cachep; 2634 int kmemcg_id; 2635 2636 VM_BUG_ON(!is_root_cache(cachep)); 2637 2638 if (current->memcg_kmem_skip_account) 2639 return cachep; 2640 2641 memcg = get_mem_cgroup_from_mm(current->mm); 2642 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2643 if (kmemcg_id < 0) 2644 goto out; 2645 2646 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2647 if (likely(memcg_cachep)) 2648 return memcg_cachep; 2649 2650 /* 2651 * If we are in a safe context (can wait, and not in interrupt 2652 * context), we could be be predictable and return right away. 2653 * This would guarantee that the allocation being performed 2654 * already belongs in the new cache. 2655 * 2656 * However, there are some clashes that can arrive from locking. 2657 * For instance, because we acquire the slab_mutex while doing 2658 * memcg_create_kmem_cache, this means no further allocation 2659 * could happen with the slab_mutex held. So it's better to 2660 * defer everything. 2661 */ 2662 memcg_schedule_kmem_cache_create(memcg, cachep); 2663out: 2664 css_put(&memcg->css); 2665 return cachep; 2666} 2667 2668void __memcg_kmem_put_cache(struct kmem_cache *cachep) 2669{ 2670 if (!is_root_cache(cachep)) 2671 css_put(&cachep->memcg_params.memcg->css); 2672} 2673 2674/* 2675 * We need to verify if the allocation against current->mm->owner's memcg is 2676 * possible for the given order. But the page is not allocated yet, so we'll 2677 * need a further commit step to do the final arrangements. 2678 * 2679 * It is possible for the task to switch cgroups in this mean time, so at 2680 * commit time, we can't rely on task conversion any longer. We'll then use 2681 * the handle argument to return to the caller which cgroup we should commit 2682 * against. We could also return the memcg directly and avoid the pointer 2683 * passing, but a boolean return value gives better semantics considering 2684 * the compiled-out case as well. 2685 * 2686 * Returning true means the allocation is possible. 2687 */ 2688bool 2689__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 2690{ 2691 struct mem_cgroup *memcg; 2692 int ret; 2693 2694 *_memcg = NULL; 2695 2696 memcg = get_mem_cgroup_from_mm(current->mm); 2697 2698 if (!memcg_kmem_is_active(memcg)) { 2699 css_put(&memcg->css); 2700 return true; 2701 } 2702 2703 ret = memcg_charge_kmem(memcg, gfp, 1 << order); 2704 if (!ret) 2705 *_memcg = memcg; 2706 2707 css_put(&memcg->css); 2708 return (ret == 0); 2709} 2710 2711void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 2712 int order) 2713{ 2714 VM_BUG_ON(mem_cgroup_is_root(memcg)); 2715 2716 /* The page allocation failed. Revert */ 2717 if (!page) { 2718 memcg_uncharge_kmem(memcg, 1 << order); 2719 return; 2720 } 2721 page->mem_cgroup = memcg; 2722} 2723 2724void __memcg_kmem_uncharge_pages(struct page *page, int order) 2725{ 2726 struct mem_cgroup *memcg = page->mem_cgroup; 2727 2728 if (!memcg) 2729 return; 2730 2731 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2732 2733 memcg_uncharge_kmem(memcg, 1 << order); 2734 page->mem_cgroup = NULL; 2735} 2736 2737struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr) 2738{ 2739 struct mem_cgroup *memcg = NULL; 2740 struct kmem_cache *cachep; 2741 struct page *page; 2742 2743 page = virt_to_head_page(ptr); 2744 if (PageSlab(page)) { 2745 cachep = page->slab_cache; 2746 if (!is_root_cache(cachep)) 2747 memcg = cachep->memcg_params.memcg; 2748 } else 2749 /* page allocated by alloc_kmem_pages */ 2750 memcg = page->mem_cgroup; 2751 2752 return memcg; 2753} 2754#endif /* CONFIG_MEMCG_KMEM */ 2755 2756#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2757 2758/* 2759 * Because tail pages are not marked as "used", set it. We're under 2760 * zone->lru_lock, 'splitting on pmd' and compound_lock. 2761 * charge/uncharge will be never happen and move_account() is done under 2762 * compound_lock(), so we don't have to take care of races. 2763 */ 2764void mem_cgroup_split_huge_fixup(struct page *head) 2765{ 2766 int i; 2767 2768 if (mem_cgroup_disabled()) 2769 return; 2770 2771 for (i = 1; i < HPAGE_PMD_NR; i++) 2772 head[i].mem_cgroup = head->mem_cgroup; 2773 2774 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2775 HPAGE_PMD_NR); 2776} 2777#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2778 2779#ifdef CONFIG_MEMCG_SWAP 2780static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2781 bool charge) 2782{ 2783 int val = (charge) ? 1 : -1; 2784 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2785} 2786 2787/** 2788 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2789 * @entry: swap entry to be moved 2790 * @from: mem_cgroup which the entry is moved from 2791 * @to: mem_cgroup which the entry is moved to 2792 * 2793 * It succeeds only when the swap_cgroup's record for this entry is the same 2794 * as the mem_cgroup's id of @from. 2795 * 2796 * Returns 0 on success, -EINVAL on failure. 2797 * 2798 * The caller must have charged to @to, IOW, called page_counter_charge() about 2799 * both res and memsw, and called css_get(). 2800 */ 2801static int mem_cgroup_move_swap_account(swp_entry_t entry, 2802 struct mem_cgroup *from, struct mem_cgroup *to) 2803{ 2804 unsigned short old_id, new_id; 2805 2806 old_id = mem_cgroup_id(from); 2807 new_id = mem_cgroup_id(to); 2808 2809 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2810 mem_cgroup_swap_statistics(from, false); 2811 mem_cgroup_swap_statistics(to, true); 2812 return 0; 2813 } 2814 return -EINVAL; 2815} 2816#else 2817static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2818 struct mem_cgroup *from, struct mem_cgroup *to) 2819{ 2820 return -EINVAL; 2821} 2822#endif 2823 2824static DEFINE_MUTEX(memcg_limit_mutex); 2825 2826static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2827 unsigned long limit) 2828{ 2829 unsigned long curusage; 2830 unsigned long oldusage; 2831 bool enlarge = false; 2832 int retry_count; 2833 int ret; 2834 2835 /* 2836 * For keeping hierarchical_reclaim simple, how long we should retry 2837 * is depends on callers. We set our retry-count to be function 2838 * of # of children which we should visit in this loop. 2839 */ 2840 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2841 mem_cgroup_count_children(memcg); 2842 2843 oldusage = page_counter_read(&memcg->memory); 2844 2845 do { 2846 if (signal_pending(current)) { 2847 ret = -EINTR; 2848 break; 2849 } 2850 2851 mutex_lock(&memcg_limit_mutex); 2852 if (limit > memcg->memsw.limit) { 2853 mutex_unlock(&memcg_limit_mutex); 2854 ret = -EINVAL; 2855 break; 2856 } 2857 if (limit > memcg->memory.limit) 2858 enlarge = true; 2859 ret = page_counter_limit(&memcg->memory, limit); 2860 mutex_unlock(&memcg_limit_mutex); 2861 2862 if (!ret) 2863 break; 2864 2865 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2866 2867 curusage = page_counter_read(&memcg->memory); 2868 /* Usage is reduced ? */ 2869 if (curusage >= oldusage) 2870 retry_count--; 2871 else 2872 oldusage = curusage; 2873 } while (retry_count); 2874 2875 if (!ret && enlarge) 2876 memcg_oom_recover(memcg); 2877 2878 return ret; 2879} 2880 2881static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2882 unsigned long limit) 2883{ 2884 unsigned long curusage; 2885 unsigned long oldusage; 2886 bool enlarge = false; 2887 int retry_count; 2888 int ret; 2889 2890 /* see mem_cgroup_resize_res_limit */ 2891 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2892 mem_cgroup_count_children(memcg); 2893 2894 oldusage = page_counter_read(&memcg->memsw); 2895 2896 do { 2897 if (signal_pending(current)) { 2898 ret = -EINTR; 2899 break; 2900 } 2901 2902 mutex_lock(&memcg_limit_mutex); 2903 if (limit < memcg->memory.limit) { 2904 mutex_unlock(&memcg_limit_mutex); 2905 ret = -EINVAL; 2906 break; 2907 } 2908 if (limit > memcg->memsw.limit) 2909 enlarge = true; 2910 ret = page_counter_limit(&memcg->memsw, limit); 2911 mutex_unlock(&memcg_limit_mutex); 2912 2913 if (!ret) 2914 break; 2915 2916 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2917 2918 curusage = page_counter_read(&memcg->memsw); 2919 /* Usage is reduced ? */ 2920 if (curusage >= oldusage) 2921 retry_count--; 2922 else 2923 oldusage = curusage; 2924 } while (retry_count); 2925 2926 if (!ret && enlarge) 2927 memcg_oom_recover(memcg); 2928 2929 return ret; 2930} 2931 2932unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 2933 gfp_t gfp_mask, 2934 unsigned long *total_scanned) 2935{ 2936 unsigned long nr_reclaimed = 0; 2937 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 2938 unsigned long reclaimed; 2939 int loop = 0; 2940 struct mem_cgroup_tree_per_zone *mctz; 2941 unsigned long excess; 2942 unsigned long nr_scanned; 2943 2944 if (order > 0) 2945 return 0; 2946 2947 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 2948 /* 2949 * This loop can run a while, specially if mem_cgroup's continuously 2950 * keep exceeding their soft limit and putting the system under 2951 * pressure 2952 */ 2953 do { 2954 if (next_mz) 2955 mz = next_mz; 2956 else 2957 mz = mem_cgroup_largest_soft_limit_node(mctz); 2958 if (!mz) 2959 break; 2960 2961 nr_scanned = 0; 2962 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 2963 gfp_mask, &nr_scanned); 2964 nr_reclaimed += reclaimed; 2965 *total_scanned += nr_scanned; 2966 spin_lock_irq(&mctz->lock); 2967 __mem_cgroup_remove_exceeded(mz, mctz); 2968 2969 /* 2970 * If we failed to reclaim anything from this memory cgroup 2971 * it is time to move on to the next cgroup 2972 */ 2973 next_mz = NULL; 2974 if (!reclaimed) 2975 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2976 2977 excess = soft_limit_excess(mz->memcg); 2978 /* 2979 * One school of thought says that we should not add 2980 * back the node to the tree if reclaim returns 0. 2981 * But our reclaim could return 0, simply because due 2982 * to priority we are exposing a smaller subset of 2983 * memory to reclaim from. Consider this as a longer 2984 * term TODO. 2985 */ 2986 /* If excess == 0, no tree ops */ 2987 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2988 spin_unlock_irq(&mctz->lock); 2989 css_put(&mz->memcg->css); 2990 loop++; 2991 /* 2992 * Could not reclaim anything and there are no more 2993 * mem cgroups to try or we seem to be looping without 2994 * reclaiming anything. 2995 */ 2996 if (!nr_reclaimed && 2997 (next_mz == NULL || 2998 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2999 break; 3000 } while (!nr_reclaimed); 3001 if (next_mz) 3002 css_put(&next_mz->memcg->css); 3003 return nr_reclaimed; 3004} 3005 3006/* 3007 * Test whether @memcg has children, dead or alive. Note that this 3008 * function doesn't care whether @memcg has use_hierarchy enabled and 3009 * returns %true if there are child csses according to the cgroup 3010 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3011 */ 3012static inline bool memcg_has_children(struct mem_cgroup *memcg) 3013{ 3014 bool ret; 3015 3016 /* 3017 * The lock does not prevent addition or deletion of children, but 3018 * it prevents a new child from being initialized based on this 3019 * parent in css_online(), so it's enough to decide whether 3020 * hierarchically inherited attributes can still be changed or not. 3021 */ 3022 lockdep_assert_held(&memcg_create_mutex); 3023 3024 rcu_read_lock(); 3025 ret = css_next_child(NULL, &memcg->css); 3026 rcu_read_unlock(); 3027 return ret; 3028} 3029 3030/* 3031 * Reclaims as many pages from the given memcg as possible and moves 3032 * the rest to the parent. 3033 * 3034 * Caller is responsible for holding css reference for memcg. 3035 */ 3036static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3037{ 3038 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3039 3040 /* we call try-to-free pages for make this cgroup empty */ 3041 lru_add_drain_all(); 3042 /* try to free all pages in this cgroup */ 3043 while (nr_retries && page_counter_read(&memcg->memory)) { 3044 int progress; 3045 3046 if (signal_pending(current)) 3047 return -EINTR; 3048 3049 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3050 GFP_KERNEL, true); 3051 if (!progress) { 3052 nr_retries--; 3053 /* maybe some writeback is necessary */ 3054 congestion_wait(BLK_RW_ASYNC, HZ/10); 3055 } 3056 3057 } 3058 3059 return 0; 3060} 3061 3062static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3063 char *buf, size_t nbytes, 3064 loff_t off) 3065{ 3066 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3067 3068 if (mem_cgroup_is_root(memcg)) 3069 return -EINVAL; 3070 return mem_cgroup_force_empty(memcg) ?: nbytes; 3071} 3072 3073static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3074 struct cftype *cft) 3075{ 3076 return mem_cgroup_from_css(css)->use_hierarchy; 3077} 3078 3079static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3080 struct cftype *cft, u64 val) 3081{ 3082 int retval = 0; 3083 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3084 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3085 3086 mutex_lock(&memcg_create_mutex); 3087 3088 if (memcg->use_hierarchy == val) 3089 goto out; 3090 3091 /* 3092 * If parent's use_hierarchy is set, we can't make any modifications 3093 * in the child subtrees. If it is unset, then the change can 3094 * occur, provided the current cgroup has no children. 3095 * 3096 * For the root cgroup, parent_mem is NULL, we allow value to be 3097 * set if there are no children. 3098 */ 3099 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3100 (val == 1 || val == 0)) { 3101 if (!memcg_has_children(memcg)) 3102 memcg->use_hierarchy = val; 3103 else 3104 retval = -EBUSY; 3105 } else 3106 retval = -EINVAL; 3107 3108out: 3109 mutex_unlock(&memcg_create_mutex); 3110 3111 return retval; 3112} 3113 3114static unsigned long tree_stat(struct mem_cgroup *memcg, 3115 enum mem_cgroup_stat_index idx) 3116{ 3117 struct mem_cgroup *iter; 3118 long val = 0; 3119 3120 /* Per-cpu values can be negative, use a signed accumulator */ 3121 for_each_mem_cgroup_tree(iter, memcg) 3122 val += mem_cgroup_read_stat(iter, idx); 3123 3124 if (val < 0) /* race ? */ 3125 val = 0; 3126 return val; 3127} 3128 3129static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3130{ 3131 u64 val; 3132 3133 if (mem_cgroup_is_root(memcg)) { 3134 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE); 3135 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS); 3136 if (swap) 3137 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP); 3138 } else { 3139 if (!swap) 3140 val = page_counter_read(&memcg->memory); 3141 else 3142 val = page_counter_read(&memcg->memsw); 3143 } 3144 return val << PAGE_SHIFT; 3145} 3146 3147enum { 3148 RES_USAGE, 3149 RES_LIMIT, 3150 RES_MAX_USAGE, 3151 RES_FAILCNT, 3152 RES_SOFT_LIMIT, 3153}; 3154 3155static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3156 struct cftype *cft) 3157{ 3158 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3159 struct page_counter *counter; 3160 3161 switch (MEMFILE_TYPE(cft->private)) { 3162 case _MEM: 3163 counter = &memcg->memory; 3164 break; 3165 case _MEMSWAP: 3166 counter = &memcg->memsw; 3167 break; 3168 case _KMEM: 3169 counter = &memcg->kmem; 3170 break; 3171 default: 3172 BUG(); 3173 } 3174 3175 switch (MEMFILE_ATTR(cft->private)) { 3176 case RES_USAGE: 3177 if (counter == &memcg->memory) 3178 return mem_cgroup_usage(memcg, false); 3179 if (counter == &memcg->memsw) 3180 return mem_cgroup_usage(memcg, true); 3181 return (u64)page_counter_read(counter) * PAGE_SIZE; 3182 case RES_LIMIT: 3183 return (u64)counter->limit * PAGE_SIZE; 3184 case RES_MAX_USAGE: 3185 return (u64)counter->watermark * PAGE_SIZE; 3186 case RES_FAILCNT: 3187 return counter->failcnt; 3188 case RES_SOFT_LIMIT: 3189 return (u64)memcg->soft_limit * PAGE_SIZE; 3190 default: 3191 BUG(); 3192 } 3193} 3194 3195#ifdef CONFIG_MEMCG_KMEM 3196static int memcg_activate_kmem(struct mem_cgroup *memcg, 3197 unsigned long nr_pages) 3198{ 3199 int err = 0; 3200 int memcg_id; 3201 3202 BUG_ON(memcg->kmemcg_id >= 0); 3203 BUG_ON(memcg->kmem_acct_activated); 3204 BUG_ON(memcg->kmem_acct_active); 3205 3206 /* 3207 * For simplicity, we won't allow this to be disabled. It also can't 3208 * be changed if the cgroup has children already, or if tasks had 3209 * already joined. 3210 * 3211 * If tasks join before we set the limit, a person looking at 3212 * kmem.usage_in_bytes will have no way to determine when it took 3213 * place, which makes the value quite meaningless. 3214 * 3215 * After it first became limited, changes in the value of the limit are 3216 * of course permitted. 3217 */ 3218 mutex_lock(&memcg_create_mutex); 3219 if (cgroup_has_tasks(memcg->css.cgroup) || 3220 (memcg->use_hierarchy && memcg_has_children(memcg))) 3221 err = -EBUSY; 3222 mutex_unlock(&memcg_create_mutex); 3223 if (err) 3224 goto out; 3225 3226 memcg_id = memcg_alloc_cache_id(); 3227 if (memcg_id < 0) { 3228 err = memcg_id; 3229 goto out; 3230 } 3231 3232 /* 3233 * We couldn't have accounted to this cgroup, because it hasn't got 3234 * activated yet, so this should succeed. 3235 */ 3236 err = page_counter_limit(&memcg->kmem, nr_pages); 3237 VM_BUG_ON(err); 3238 3239 static_key_slow_inc(&memcg_kmem_enabled_key); 3240 /* 3241 * A memory cgroup is considered kmem-active as soon as it gets 3242 * kmemcg_id. Setting the id after enabling static branching will 3243 * guarantee no one starts accounting before all call sites are 3244 * patched. 3245 */ 3246 memcg->kmemcg_id = memcg_id; 3247 memcg->kmem_acct_activated = true; 3248 memcg->kmem_acct_active = true; 3249out: 3250 return err; 3251} 3252 3253static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 3254 unsigned long limit) 3255{ 3256 int ret; 3257 3258 mutex_lock(&memcg_limit_mutex); 3259 if (!memcg_kmem_is_active(memcg)) 3260 ret = memcg_activate_kmem(memcg, limit); 3261 else 3262 ret = page_counter_limit(&memcg->kmem, limit); 3263 mutex_unlock(&memcg_limit_mutex); 3264 return ret; 3265} 3266 3267static int memcg_propagate_kmem(struct mem_cgroup *memcg) 3268{ 3269 int ret = 0; 3270 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3271 3272 if (!parent) 3273 return 0; 3274 3275 mutex_lock(&memcg_limit_mutex); 3276 /* 3277 * If the parent cgroup is not kmem-active now, it cannot be activated 3278 * after this point, because it has at least one child already. 3279 */ 3280 if (memcg_kmem_is_active(parent)) 3281 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX); 3282 mutex_unlock(&memcg_limit_mutex); 3283 return ret; 3284} 3285#else 3286static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 3287 unsigned long limit) 3288{ 3289 return -EINVAL; 3290} 3291#endif /* CONFIG_MEMCG_KMEM */ 3292 3293/* 3294 * The user of this function is... 3295 * RES_LIMIT. 3296 */ 3297static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3298 char *buf, size_t nbytes, loff_t off) 3299{ 3300 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3301 unsigned long nr_pages; 3302 int ret; 3303 3304 buf = strstrip(buf); 3305 ret = page_counter_memparse(buf, "-1", &nr_pages); 3306 if (ret) 3307 return ret; 3308 3309 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3310 case RES_LIMIT: 3311 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3312 ret = -EINVAL; 3313 break; 3314 } 3315 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3316 case _MEM: 3317 ret = mem_cgroup_resize_limit(memcg, nr_pages); 3318 break; 3319 case _MEMSWAP: 3320 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 3321 break; 3322 case _KMEM: 3323 ret = memcg_update_kmem_limit(memcg, nr_pages); 3324 break; 3325 } 3326 break; 3327 case RES_SOFT_LIMIT: 3328 memcg->soft_limit = nr_pages; 3329 ret = 0; 3330 break; 3331 } 3332 return ret ?: nbytes; 3333} 3334 3335static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3336 size_t nbytes, loff_t off) 3337{ 3338 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3339 struct page_counter *counter; 3340 3341 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3342 case _MEM: 3343 counter = &memcg->memory; 3344 break; 3345 case _MEMSWAP: 3346 counter = &memcg->memsw; 3347 break; 3348 case _KMEM: 3349 counter = &memcg->kmem; 3350 break; 3351 default: 3352 BUG(); 3353 } 3354 3355 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3356 case RES_MAX_USAGE: 3357 page_counter_reset_watermark(counter); 3358 break; 3359 case RES_FAILCNT: 3360 counter->failcnt = 0; 3361 break; 3362 default: 3363 BUG(); 3364 } 3365 3366 return nbytes; 3367} 3368 3369static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3370 struct cftype *cft) 3371{ 3372 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3373} 3374 3375#ifdef CONFIG_MMU 3376static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3377 struct cftype *cft, u64 val) 3378{ 3379 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3380 3381 if (val & ~MOVE_MASK) 3382 return -EINVAL; 3383 3384 /* 3385 * No kind of locking is needed in here, because ->can_attach() will 3386 * check this value once in the beginning of the process, and then carry 3387 * on with stale data. This means that changes to this value will only 3388 * affect task migrations starting after the change. 3389 */ 3390 memcg->move_charge_at_immigrate = val; 3391 return 0; 3392} 3393#else 3394static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3395 struct cftype *cft, u64 val) 3396{ 3397 return -ENOSYS; 3398} 3399#endif 3400 3401#ifdef CONFIG_NUMA 3402static int memcg_numa_stat_show(struct seq_file *m, void *v) 3403{ 3404 struct numa_stat { 3405 const char *name; 3406 unsigned int lru_mask; 3407 }; 3408 3409 static const struct numa_stat stats[] = { 3410 { "total", LRU_ALL }, 3411 { "file", LRU_ALL_FILE }, 3412 { "anon", LRU_ALL_ANON }, 3413 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3414 }; 3415 const struct numa_stat *stat; 3416 int nid; 3417 unsigned long nr; 3418 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3419 3420 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3421 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3422 seq_printf(m, "%s=%lu", stat->name, nr); 3423 for_each_node_state(nid, N_MEMORY) { 3424 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3425 stat->lru_mask); 3426 seq_printf(m, " N%d=%lu", nid, nr); 3427 } 3428 seq_putc(m, '\n'); 3429 } 3430 3431 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3432 struct mem_cgroup *iter; 3433 3434 nr = 0; 3435 for_each_mem_cgroup_tree(iter, memcg) 3436 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3437 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3438 for_each_node_state(nid, N_MEMORY) { 3439 nr = 0; 3440 for_each_mem_cgroup_tree(iter, memcg) 3441 nr += mem_cgroup_node_nr_lru_pages( 3442 iter, nid, stat->lru_mask); 3443 seq_printf(m, " N%d=%lu", nid, nr); 3444 } 3445 seq_putc(m, '\n'); 3446 } 3447 3448 return 0; 3449} 3450#endif /* CONFIG_NUMA */ 3451 3452static int memcg_stat_show(struct seq_file *m, void *v) 3453{ 3454 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3455 unsigned long memory, memsw; 3456 struct mem_cgroup *mi; 3457 unsigned int i; 3458 3459 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3460 MEM_CGROUP_STAT_NSTATS); 3461 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3462 MEM_CGROUP_EVENTS_NSTATS); 3463 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3464 3465 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3466 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 3467 continue; 3468 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 3469 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3470 } 3471 3472 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3473 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3474 mem_cgroup_read_events(memcg, i)); 3475 3476 for (i = 0; i < NR_LRU_LISTS; i++) 3477 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3478 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3479 3480 /* Hierarchical information */ 3481 memory = memsw = PAGE_COUNTER_MAX; 3482 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3483 memory = min(memory, mi->memory.limit); 3484 memsw = min(memsw, mi->memsw.limit); 3485 } 3486 seq_printf(m, "hierarchical_memory_limit %llu\n", 3487 (u64)memory * PAGE_SIZE); 3488 if (do_swap_account) 3489 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3490 (u64)memsw * PAGE_SIZE); 3491 3492 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3493 long long val = 0; 3494 3495 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 3496 continue; 3497 for_each_mem_cgroup_tree(mi, memcg) 3498 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3499 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 3500 } 3501 3502 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3503 unsigned long long val = 0; 3504 3505 for_each_mem_cgroup_tree(mi, memcg) 3506 val += mem_cgroup_read_events(mi, i); 3507 seq_printf(m, "total_%s %llu\n", 3508 mem_cgroup_events_names[i], val); 3509 } 3510 3511 for (i = 0; i < NR_LRU_LISTS; i++) { 3512 unsigned long long val = 0; 3513 3514 for_each_mem_cgroup_tree(mi, memcg) 3515 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3516 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3517 } 3518 3519#ifdef CONFIG_DEBUG_VM 3520 { 3521 int nid, zid; 3522 struct mem_cgroup_per_zone *mz; 3523 struct zone_reclaim_stat *rstat; 3524 unsigned long recent_rotated[2] = {0, 0}; 3525 unsigned long recent_scanned[2] = {0, 0}; 3526 3527 for_each_online_node(nid) 3528 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 3529 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 3530 rstat = &mz->lruvec.reclaim_stat; 3531 3532 recent_rotated[0] += rstat->recent_rotated[0]; 3533 recent_rotated[1] += rstat->recent_rotated[1]; 3534 recent_scanned[0] += rstat->recent_scanned[0]; 3535 recent_scanned[1] += rstat->recent_scanned[1]; 3536 } 3537 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3538 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3539 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3540 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3541 } 3542#endif 3543 3544 return 0; 3545} 3546 3547static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3548 struct cftype *cft) 3549{ 3550 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3551 3552 return mem_cgroup_swappiness(memcg); 3553} 3554 3555static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3556 struct cftype *cft, u64 val) 3557{ 3558 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3559 3560 if (val > 100) 3561 return -EINVAL; 3562 3563 if (css->parent) 3564 memcg->swappiness = val; 3565 else 3566 vm_swappiness = val; 3567 3568 return 0; 3569} 3570 3571static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3572{ 3573 struct mem_cgroup_threshold_ary *t; 3574 unsigned long usage; 3575 int i; 3576 3577 rcu_read_lock(); 3578 if (!swap) 3579 t = rcu_dereference(memcg->thresholds.primary); 3580 else 3581 t = rcu_dereference(memcg->memsw_thresholds.primary); 3582 3583 if (!t) 3584 goto unlock; 3585 3586 usage = mem_cgroup_usage(memcg, swap); 3587 3588 /* 3589 * current_threshold points to threshold just below or equal to usage. 3590 * If it's not true, a threshold was crossed after last 3591 * call of __mem_cgroup_threshold(). 3592 */ 3593 i = t->current_threshold; 3594 3595 /* 3596 * Iterate backward over array of thresholds starting from 3597 * current_threshold and check if a threshold is crossed. 3598 * If none of thresholds below usage is crossed, we read 3599 * only one element of the array here. 3600 */ 3601 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3602 eventfd_signal(t->entries[i].eventfd, 1); 3603 3604 /* i = current_threshold + 1 */ 3605 i++; 3606 3607 /* 3608 * Iterate forward over array of thresholds starting from 3609 * current_threshold+1 and check if a threshold is crossed. 3610 * If none of thresholds above usage is crossed, we read 3611 * only one element of the array here. 3612 */ 3613 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3614 eventfd_signal(t->entries[i].eventfd, 1); 3615 3616 /* Update current_threshold */ 3617 t->current_threshold = i - 1; 3618unlock: 3619 rcu_read_unlock(); 3620} 3621 3622static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3623{ 3624 while (memcg) { 3625 __mem_cgroup_threshold(memcg, false); 3626 if (do_swap_account) 3627 __mem_cgroup_threshold(memcg, true); 3628 3629 memcg = parent_mem_cgroup(memcg); 3630 } 3631} 3632 3633static int compare_thresholds(const void *a, const void *b) 3634{ 3635 const struct mem_cgroup_threshold *_a = a; 3636 const struct mem_cgroup_threshold *_b = b; 3637 3638 if (_a->threshold > _b->threshold) 3639 return 1; 3640 3641 if (_a->threshold < _b->threshold) 3642 return -1; 3643 3644 return 0; 3645} 3646 3647static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3648{ 3649 struct mem_cgroup_eventfd_list *ev; 3650 3651 spin_lock(&memcg_oom_lock); 3652 3653 list_for_each_entry(ev, &memcg->oom_notify, list) 3654 eventfd_signal(ev->eventfd, 1); 3655 3656 spin_unlock(&memcg_oom_lock); 3657 return 0; 3658} 3659 3660static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3661{ 3662 struct mem_cgroup *iter; 3663 3664 for_each_mem_cgroup_tree(iter, memcg) 3665 mem_cgroup_oom_notify_cb(iter); 3666} 3667 3668static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3669 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3670{ 3671 struct mem_cgroup_thresholds *thresholds; 3672 struct mem_cgroup_threshold_ary *new; 3673 unsigned long threshold; 3674 unsigned long usage; 3675 int i, size, ret; 3676 3677 ret = page_counter_memparse(args, "-1", &threshold); 3678 if (ret) 3679 return ret; 3680 threshold <<= PAGE_SHIFT; 3681 3682 mutex_lock(&memcg->thresholds_lock); 3683 3684 if (type == _MEM) { 3685 thresholds = &memcg->thresholds; 3686 usage = mem_cgroup_usage(memcg, false); 3687 } else if (type == _MEMSWAP) { 3688 thresholds = &memcg->memsw_thresholds; 3689 usage = mem_cgroup_usage(memcg, true); 3690 } else 3691 BUG(); 3692 3693 /* Check if a threshold crossed before adding a new one */ 3694 if (thresholds->primary) 3695 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3696 3697 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3698 3699 /* Allocate memory for new array of thresholds */ 3700 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3701 GFP_KERNEL); 3702 if (!new) { 3703 ret = -ENOMEM; 3704 goto unlock; 3705 } 3706 new->size = size; 3707 3708 /* Copy thresholds (if any) to new array */ 3709 if (thresholds->primary) { 3710 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3711 sizeof(struct mem_cgroup_threshold)); 3712 } 3713 3714 /* Add new threshold */ 3715 new->entries[size - 1].eventfd = eventfd; 3716 new->entries[size - 1].threshold = threshold; 3717 3718 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3719 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3720 compare_thresholds, NULL); 3721 3722 /* Find current threshold */ 3723 new->current_threshold = -1; 3724 for (i = 0; i < size; i++) { 3725 if (new->entries[i].threshold <= usage) { 3726 /* 3727 * new->current_threshold will not be used until 3728 * rcu_assign_pointer(), so it's safe to increment 3729 * it here. 3730 */ 3731 ++new->current_threshold; 3732 } else 3733 break; 3734 } 3735 3736 /* Free old spare buffer and save old primary buffer as spare */ 3737 kfree(thresholds->spare); 3738 thresholds->spare = thresholds->primary; 3739 3740 rcu_assign_pointer(thresholds->primary, new); 3741 3742 /* To be sure that nobody uses thresholds */ 3743 synchronize_rcu(); 3744 3745unlock: 3746 mutex_unlock(&memcg->thresholds_lock); 3747 3748 return ret; 3749} 3750 3751static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3752 struct eventfd_ctx *eventfd, const char *args) 3753{ 3754 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3755} 3756 3757static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3758 struct eventfd_ctx *eventfd, const char *args) 3759{ 3760 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3761} 3762 3763static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3764 struct eventfd_ctx *eventfd, enum res_type type) 3765{ 3766 struct mem_cgroup_thresholds *thresholds; 3767 struct mem_cgroup_threshold_ary *new; 3768 unsigned long usage; 3769 int i, j, size; 3770 3771 mutex_lock(&memcg->thresholds_lock); 3772 3773 if (type == _MEM) { 3774 thresholds = &memcg->thresholds; 3775 usage = mem_cgroup_usage(memcg, false); 3776 } else if (type == _MEMSWAP) { 3777 thresholds = &memcg->memsw_thresholds; 3778 usage = mem_cgroup_usage(memcg, true); 3779 } else 3780 BUG(); 3781 3782 if (!thresholds->primary) 3783 goto unlock; 3784 3785 /* Check if a threshold crossed before removing */ 3786 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3787 3788 /* Calculate new number of threshold */ 3789 size = 0; 3790 for (i = 0; i < thresholds->primary->size; i++) { 3791 if (thresholds->primary->entries[i].eventfd != eventfd) 3792 size++; 3793 } 3794 3795 new = thresholds->spare; 3796 3797 /* Set thresholds array to NULL if we don't have thresholds */ 3798 if (!size) { 3799 kfree(new); 3800 new = NULL; 3801 goto swap_buffers; 3802 } 3803 3804 new->size = size; 3805 3806 /* Copy thresholds and find current threshold */ 3807 new->current_threshold = -1; 3808 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3809 if (thresholds->primary->entries[i].eventfd == eventfd) 3810 continue; 3811 3812 new->entries[j] = thresholds->primary->entries[i]; 3813 if (new->entries[j].threshold <= usage) { 3814 /* 3815 * new->current_threshold will not be used 3816 * until rcu_assign_pointer(), so it's safe to increment 3817 * it here. 3818 */ 3819 ++new->current_threshold; 3820 } 3821 j++; 3822 } 3823 3824swap_buffers: 3825 /* Swap primary and spare array */ 3826 thresholds->spare = thresholds->primary; 3827 3828 rcu_assign_pointer(thresholds->primary, new); 3829 3830 /* To be sure that nobody uses thresholds */ 3831 synchronize_rcu(); 3832 3833 /* If all events are unregistered, free the spare array */ 3834 if (!new) { 3835 kfree(thresholds->spare); 3836 thresholds->spare = NULL; 3837 } 3838unlock: 3839 mutex_unlock(&memcg->thresholds_lock); 3840} 3841 3842static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3843 struct eventfd_ctx *eventfd) 3844{ 3845 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3846} 3847 3848static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3849 struct eventfd_ctx *eventfd) 3850{ 3851 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3852} 3853 3854static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3855 struct eventfd_ctx *eventfd, const char *args) 3856{ 3857 struct mem_cgroup_eventfd_list *event; 3858 3859 event = kmalloc(sizeof(*event), GFP_KERNEL); 3860 if (!event) 3861 return -ENOMEM; 3862 3863 spin_lock(&memcg_oom_lock); 3864 3865 event->eventfd = eventfd; 3866 list_add(&event->list, &memcg->oom_notify); 3867 3868 /* already in OOM ? */ 3869 if (atomic_read(&memcg->under_oom)) 3870 eventfd_signal(eventfd, 1); 3871 spin_unlock(&memcg_oom_lock); 3872 3873 return 0; 3874} 3875 3876static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3877 struct eventfd_ctx *eventfd) 3878{ 3879 struct mem_cgroup_eventfd_list *ev, *tmp; 3880 3881 spin_lock(&memcg_oom_lock); 3882 3883 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3884 if (ev->eventfd == eventfd) { 3885 list_del(&ev->list); 3886 kfree(ev); 3887 } 3888 } 3889 3890 spin_unlock(&memcg_oom_lock); 3891} 3892 3893static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3894{ 3895 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3896 3897 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3898 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom)); 3899 return 0; 3900} 3901 3902static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3903 struct cftype *cft, u64 val) 3904{ 3905 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3906 3907 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3908 if (!css->parent || !((val == 0) || (val == 1))) 3909 return -EINVAL; 3910 3911 memcg->oom_kill_disable = val; 3912 if (!val) 3913 memcg_oom_recover(memcg); 3914 3915 return 0; 3916} 3917 3918#ifdef CONFIG_MEMCG_KMEM 3919static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 3920{ 3921 int ret; 3922 3923 ret = memcg_propagate_kmem(memcg); 3924 if (ret) 3925 return ret; 3926 3927 return mem_cgroup_sockets_init(memcg, ss); 3928} 3929 3930static void memcg_deactivate_kmem(struct mem_cgroup *memcg) 3931{ 3932 struct cgroup_subsys_state *css; 3933 struct mem_cgroup *parent, *child; 3934 int kmemcg_id; 3935 3936 if (!memcg->kmem_acct_active) 3937 return; 3938 3939 /* 3940 * Clear the 'active' flag before clearing memcg_caches arrays entries. 3941 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it 3942 * guarantees no cache will be created for this cgroup after we are 3943 * done (see memcg_create_kmem_cache()). 3944 */ 3945 memcg->kmem_acct_active = false; 3946 3947 memcg_deactivate_kmem_caches(memcg); 3948 3949 kmemcg_id = memcg->kmemcg_id; 3950 BUG_ON(kmemcg_id < 0); 3951 3952 parent = parent_mem_cgroup(memcg); 3953 if (!parent) 3954 parent = root_mem_cgroup; 3955 3956 /* 3957 * Change kmemcg_id of this cgroup and all its descendants to the 3958 * parent's id, and then move all entries from this cgroup's list_lrus 3959 * to ones of the parent. After we have finished, all list_lrus 3960 * corresponding to this cgroup are guaranteed to remain empty. The 3961 * ordering is imposed by list_lru_node->lock taken by 3962 * memcg_drain_all_list_lrus(). 3963 */ 3964 css_for_each_descendant_pre(css, &memcg->css) { 3965 child = mem_cgroup_from_css(css); 3966 BUG_ON(child->kmemcg_id != kmemcg_id); 3967 child->kmemcg_id = parent->kmemcg_id; 3968 if (!memcg->use_hierarchy) 3969 break; 3970 } 3971 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 3972 3973 memcg_free_cache_id(kmemcg_id); 3974} 3975 3976static void memcg_destroy_kmem(struct mem_cgroup *memcg) 3977{ 3978 if (memcg->kmem_acct_activated) { 3979 memcg_destroy_kmem_caches(memcg); 3980 static_key_slow_dec(&memcg_kmem_enabled_key); 3981 WARN_ON(page_counter_read(&memcg->kmem)); 3982 } 3983 mem_cgroup_sockets_destroy(memcg); 3984} 3985#else 3986static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 3987{ 3988 return 0; 3989} 3990 3991static void memcg_deactivate_kmem(struct mem_cgroup *memcg) 3992{ 3993} 3994 3995static void memcg_destroy_kmem(struct mem_cgroup *memcg) 3996{ 3997} 3998#endif 3999 4000/* 4001 * DO NOT USE IN NEW FILES. 4002 * 4003 * "cgroup.event_control" implementation. 4004 * 4005 * This is way over-engineered. It tries to support fully configurable 4006 * events for each user. Such level of flexibility is completely 4007 * unnecessary especially in the light of the planned unified hierarchy. 4008 * 4009 * Please deprecate this and replace with something simpler if at all 4010 * possible. 4011 */ 4012 4013/* 4014 * Unregister event and free resources. 4015 * 4016 * Gets called from workqueue. 4017 */ 4018static void memcg_event_remove(struct work_struct *work) 4019{ 4020 struct mem_cgroup_event *event = 4021 container_of(work, struct mem_cgroup_event, remove); 4022 struct mem_cgroup *memcg = event->memcg; 4023 4024 remove_wait_queue(event->wqh, &event->wait); 4025 4026 event->unregister_event(memcg, event->eventfd); 4027 4028 /* Notify userspace the event is going away. */ 4029 eventfd_signal(event->eventfd, 1); 4030 4031 eventfd_ctx_put(event->eventfd); 4032 kfree(event); 4033 css_put(&memcg->css); 4034} 4035 4036/* 4037 * Gets called on POLLHUP on eventfd when user closes it. 4038 * 4039 * Called with wqh->lock held and interrupts disabled. 4040 */ 4041static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 4042 int sync, void *key) 4043{ 4044 struct mem_cgroup_event *event = 4045 container_of(wait, struct mem_cgroup_event, wait); 4046 struct mem_cgroup *memcg = event->memcg; 4047 unsigned long flags = (unsigned long)key; 4048 4049 if (flags & POLLHUP) { 4050 /* 4051 * If the event has been detached at cgroup removal, we 4052 * can simply return knowing the other side will cleanup 4053 * for us. 4054 * 4055 * We can't race against event freeing since the other 4056 * side will require wqh->lock via remove_wait_queue(), 4057 * which we hold. 4058 */ 4059 spin_lock(&memcg->event_list_lock); 4060 if (!list_empty(&event->list)) { 4061 list_del_init(&event->list); 4062 /* 4063 * We are in atomic context, but cgroup_event_remove() 4064 * may sleep, so we have to call it in workqueue. 4065 */ 4066 schedule_work(&event->remove); 4067 } 4068 spin_unlock(&memcg->event_list_lock); 4069 } 4070 4071 return 0; 4072} 4073 4074static void memcg_event_ptable_queue_proc(struct file *file, 4075 wait_queue_head_t *wqh, poll_table *pt) 4076{ 4077 struct mem_cgroup_event *event = 4078 container_of(pt, struct mem_cgroup_event, pt); 4079 4080 event->wqh = wqh; 4081 add_wait_queue(wqh, &event->wait); 4082} 4083 4084/* 4085 * DO NOT USE IN NEW FILES. 4086 * 4087 * Parse input and register new cgroup event handler. 4088 * 4089 * Input must be in format '<event_fd> <control_fd> <args>'. 4090 * Interpretation of args is defined by control file implementation. 4091 */ 4092static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4093 char *buf, size_t nbytes, loff_t off) 4094{ 4095 struct cgroup_subsys_state *css = of_css(of); 4096 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4097 struct mem_cgroup_event *event; 4098 struct cgroup_subsys_state *cfile_css; 4099 unsigned int efd, cfd; 4100 struct fd efile; 4101 struct fd cfile; 4102 const char *name; 4103 char *endp; 4104 int ret; 4105 4106 buf = strstrip(buf); 4107 4108 efd = simple_strtoul(buf, &endp, 10); 4109 if (*endp != ' ') 4110 return -EINVAL; 4111 buf = endp + 1; 4112 4113 cfd = simple_strtoul(buf, &endp, 10); 4114 if ((*endp != ' ') && (*endp != '\0')) 4115 return -EINVAL; 4116 buf = endp + 1; 4117 4118 event = kzalloc(sizeof(*event), GFP_KERNEL); 4119 if (!event) 4120 return -ENOMEM; 4121 4122 event->memcg = memcg; 4123 INIT_LIST_HEAD(&event->list); 4124 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4125 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4126 INIT_WORK(&event->remove, memcg_event_remove); 4127 4128 efile = fdget(efd); 4129 if (!efile.file) { 4130 ret = -EBADF; 4131 goto out_kfree; 4132 } 4133 4134 event->eventfd = eventfd_ctx_fileget(efile.file); 4135 if (IS_ERR(event->eventfd)) { 4136 ret = PTR_ERR(event->eventfd); 4137 goto out_put_efile; 4138 } 4139 4140 cfile = fdget(cfd); 4141 if (!cfile.file) { 4142 ret = -EBADF; 4143 goto out_put_eventfd; 4144 } 4145 4146 /* the process need read permission on control file */ 4147 /* AV: shouldn't we check that it's been opened for read instead? */ 4148 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4149 if (ret < 0) 4150 goto out_put_cfile; 4151 4152 /* 4153 * Determine the event callbacks and set them in @event. This used 4154 * to be done via struct cftype but cgroup core no longer knows 4155 * about these events. The following is crude but the whole thing 4156 * is for compatibility anyway. 4157 * 4158 * DO NOT ADD NEW FILES. 4159 */ 4160 name = cfile.file->f_path.dentry->d_name.name; 4161 4162 if (!strcmp(name, "memory.usage_in_bytes")) { 4163 event->register_event = mem_cgroup_usage_register_event; 4164 event->unregister_event = mem_cgroup_usage_unregister_event; 4165 } else if (!strcmp(name, "memory.oom_control")) { 4166 event->register_event = mem_cgroup_oom_register_event; 4167 event->unregister_event = mem_cgroup_oom_unregister_event; 4168 } else if (!strcmp(name, "memory.pressure_level")) { 4169 event->register_event = vmpressure_register_event; 4170 event->unregister_event = vmpressure_unregister_event; 4171 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4172 event->register_event = memsw_cgroup_usage_register_event; 4173 event->unregister_event = memsw_cgroup_usage_unregister_event; 4174 } else { 4175 ret = -EINVAL; 4176 goto out_put_cfile; 4177 } 4178 4179 /* 4180 * Verify @cfile should belong to @css. Also, remaining events are 4181 * automatically removed on cgroup destruction but the removal is 4182 * asynchronous, so take an extra ref on @css. 4183 */ 4184 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4185 &memory_cgrp_subsys); 4186 ret = -EINVAL; 4187 if (IS_ERR(cfile_css)) 4188 goto out_put_cfile; 4189 if (cfile_css != css) { 4190 css_put(cfile_css); 4191 goto out_put_cfile; 4192 } 4193 4194 ret = event->register_event(memcg, event->eventfd, buf); 4195 if (ret) 4196 goto out_put_css; 4197 4198 efile.file->f_op->poll(efile.file, &event->pt); 4199 4200 spin_lock(&memcg->event_list_lock); 4201 list_add(&event->list, &memcg->event_list); 4202 spin_unlock(&memcg->event_list_lock); 4203 4204 fdput(cfile); 4205 fdput(efile); 4206 4207 return nbytes; 4208 4209out_put_css: 4210 css_put(css); 4211out_put_cfile: 4212 fdput(cfile); 4213out_put_eventfd: 4214 eventfd_ctx_put(event->eventfd); 4215out_put_efile: 4216 fdput(efile); 4217out_kfree: 4218 kfree(event); 4219 4220 return ret; 4221} 4222 4223static struct cftype mem_cgroup_legacy_files[] = { 4224 { 4225 .name = "usage_in_bytes", 4226 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4227 .read_u64 = mem_cgroup_read_u64, 4228 }, 4229 { 4230 .name = "max_usage_in_bytes", 4231 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4232 .write = mem_cgroup_reset, 4233 .read_u64 = mem_cgroup_read_u64, 4234 }, 4235 { 4236 .name = "limit_in_bytes", 4237 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4238 .write = mem_cgroup_write, 4239 .read_u64 = mem_cgroup_read_u64, 4240 }, 4241 { 4242 .name = "soft_limit_in_bytes", 4243 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4244 .write = mem_cgroup_write, 4245 .read_u64 = mem_cgroup_read_u64, 4246 }, 4247 { 4248 .name = "failcnt", 4249 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4250 .write = mem_cgroup_reset, 4251 .read_u64 = mem_cgroup_read_u64, 4252 }, 4253 { 4254 .name = "stat", 4255 .seq_show = memcg_stat_show, 4256 }, 4257 { 4258 .name = "force_empty", 4259 .write = mem_cgroup_force_empty_write, 4260 }, 4261 { 4262 .name = "use_hierarchy", 4263 .write_u64 = mem_cgroup_hierarchy_write, 4264 .read_u64 = mem_cgroup_hierarchy_read, 4265 }, 4266 { 4267 .name = "cgroup.event_control", /* XXX: for compat */ 4268 .write = memcg_write_event_control, 4269 .flags = CFTYPE_NO_PREFIX, 4270 .mode = S_IWUGO, 4271 }, 4272 { 4273 .name = "swappiness", 4274 .read_u64 = mem_cgroup_swappiness_read, 4275 .write_u64 = mem_cgroup_swappiness_write, 4276 }, 4277 { 4278 .name = "move_charge_at_immigrate", 4279 .read_u64 = mem_cgroup_move_charge_read, 4280 .write_u64 = mem_cgroup_move_charge_write, 4281 }, 4282 { 4283 .name = "oom_control", 4284 .seq_show = mem_cgroup_oom_control_read, 4285 .write_u64 = mem_cgroup_oom_control_write, 4286 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4287 }, 4288 { 4289 .name = "pressure_level", 4290 }, 4291#ifdef CONFIG_NUMA 4292 { 4293 .name = "numa_stat", 4294 .seq_show = memcg_numa_stat_show, 4295 }, 4296#endif 4297#ifdef CONFIG_MEMCG_KMEM 4298 { 4299 .name = "kmem.limit_in_bytes", 4300 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4301 .write = mem_cgroup_write, 4302 .read_u64 = mem_cgroup_read_u64, 4303 }, 4304 { 4305 .name = "kmem.usage_in_bytes", 4306 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4307 .read_u64 = mem_cgroup_read_u64, 4308 }, 4309 { 4310 .name = "kmem.failcnt", 4311 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4312 .write = mem_cgroup_reset, 4313 .read_u64 = mem_cgroup_read_u64, 4314 }, 4315 { 4316 .name = "kmem.max_usage_in_bytes", 4317 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4318 .write = mem_cgroup_reset, 4319 .read_u64 = mem_cgroup_read_u64, 4320 }, 4321#ifdef CONFIG_SLABINFO 4322 { 4323 .name = "kmem.slabinfo", 4324 .seq_start = slab_start, 4325 .seq_next = slab_next, 4326 .seq_stop = slab_stop, 4327 .seq_show = memcg_slab_show, 4328 }, 4329#endif 4330#endif 4331 { }, /* terminate */ 4332}; 4333 4334static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4335{ 4336 struct mem_cgroup_per_node *pn; 4337 struct mem_cgroup_per_zone *mz; 4338 int zone, tmp = node; 4339 /* 4340 * This routine is called against possible nodes. 4341 * But it's BUG to call kmalloc() against offline node. 4342 * 4343 * TODO: this routine can waste much memory for nodes which will 4344 * never be onlined. It's better to use memory hotplug callback 4345 * function. 4346 */ 4347 if (!node_state(node, N_NORMAL_MEMORY)) 4348 tmp = -1; 4349 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4350 if (!pn) 4351 return 1; 4352 4353 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4354 mz = &pn->zoneinfo[zone]; 4355 lruvec_init(&mz->lruvec); 4356 mz->usage_in_excess = 0; 4357 mz->on_tree = false; 4358 mz->memcg = memcg; 4359 } 4360 memcg->nodeinfo[node] = pn; 4361 return 0; 4362} 4363 4364static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4365{ 4366 kfree(memcg->nodeinfo[node]); 4367} 4368 4369static struct mem_cgroup *mem_cgroup_alloc(void) 4370{ 4371 struct mem_cgroup *memcg; 4372 size_t size; 4373 4374 size = sizeof(struct mem_cgroup); 4375 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4376 4377 memcg = kzalloc(size, GFP_KERNEL); 4378 if (!memcg) 4379 return NULL; 4380 4381 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4382 if (!memcg->stat) 4383 goto out_free; 4384 spin_lock_init(&memcg->pcp_counter_lock); 4385 return memcg; 4386 4387out_free: 4388 kfree(memcg); 4389 return NULL; 4390} 4391 4392/* 4393 * At destroying mem_cgroup, references from swap_cgroup can remain. 4394 * (scanning all at force_empty is too costly...) 4395 * 4396 * Instead of clearing all references at force_empty, we remember 4397 * the number of reference from swap_cgroup and free mem_cgroup when 4398 * it goes down to 0. 4399 * 4400 * Removal of cgroup itself succeeds regardless of refs from swap. 4401 */ 4402 4403static void __mem_cgroup_free(struct mem_cgroup *memcg) 4404{ 4405 int node; 4406 4407 mem_cgroup_remove_from_trees(memcg); 4408 4409 for_each_node(node) 4410 free_mem_cgroup_per_zone_info(memcg, node); 4411 4412 free_percpu(memcg->stat); 4413 kfree(memcg); 4414} 4415 4416/* 4417 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4418 */ 4419struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 4420{ 4421 if (!memcg->memory.parent) 4422 return NULL; 4423 return mem_cgroup_from_counter(memcg->memory.parent, memory); 4424} 4425EXPORT_SYMBOL(parent_mem_cgroup); 4426 4427static struct cgroup_subsys_state * __ref 4428mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4429{ 4430 struct mem_cgroup *memcg; 4431 long error = -ENOMEM; 4432 int node; 4433 4434 memcg = mem_cgroup_alloc(); 4435 if (!memcg) 4436 return ERR_PTR(error); 4437 4438 for_each_node(node) 4439 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4440 goto free_out; 4441 4442 /* root ? */ 4443 if (parent_css == NULL) { 4444 root_mem_cgroup = memcg; 4445 page_counter_init(&memcg->memory, NULL); 4446 memcg->high = PAGE_COUNTER_MAX; 4447 memcg->soft_limit = PAGE_COUNTER_MAX; 4448 page_counter_init(&memcg->memsw, NULL); 4449 page_counter_init(&memcg->kmem, NULL); 4450 } 4451 4452 memcg->last_scanned_node = MAX_NUMNODES; 4453 INIT_LIST_HEAD(&memcg->oom_notify); 4454 memcg->move_charge_at_immigrate = 0; 4455 mutex_init(&memcg->thresholds_lock); 4456 spin_lock_init(&memcg->move_lock); 4457 vmpressure_init(&memcg->vmpressure); 4458 INIT_LIST_HEAD(&memcg->event_list); 4459 spin_lock_init(&memcg->event_list_lock); 4460#ifdef CONFIG_MEMCG_KMEM 4461 memcg->kmemcg_id = -1; 4462#endif 4463 4464 return &memcg->css; 4465 4466free_out: 4467 __mem_cgroup_free(memcg); 4468 return ERR_PTR(error); 4469} 4470 4471static int 4472mem_cgroup_css_online(struct cgroup_subsys_state *css) 4473{ 4474 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4475 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent); 4476 int ret; 4477 4478 if (css->id > MEM_CGROUP_ID_MAX) 4479 return -ENOSPC; 4480 4481 if (!parent) 4482 return 0; 4483 4484 mutex_lock(&memcg_create_mutex); 4485 4486 memcg->use_hierarchy = parent->use_hierarchy; 4487 memcg->oom_kill_disable = parent->oom_kill_disable; 4488 memcg->swappiness = mem_cgroup_swappiness(parent); 4489 4490 if (parent->use_hierarchy) { 4491 page_counter_init(&memcg->memory, &parent->memory); 4492 memcg->high = PAGE_COUNTER_MAX; 4493 memcg->soft_limit = PAGE_COUNTER_MAX; 4494 page_counter_init(&memcg->memsw, &parent->memsw); 4495 page_counter_init(&memcg->kmem, &parent->kmem); 4496 4497 /* 4498 * No need to take a reference to the parent because cgroup 4499 * core guarantees its existence. 4500 */ 4501 } else { 4502 page_counter_init(&memcg->memory, NULL); 4503 memcg->high = PAGE_COUNTER_MAX; 4504 memcg->soft_limit = PAGE_COUNTER_MAX; 4505 page_counter_init(&memcg->memsw, NULL); 4506 page_counter_init(&memcg->kmem, NULL); 4507 /* 4508 * Deeper hierachy with use_hierarchy == false doesn't make 4509 * much sense so let cgroup subsystem know about this 4510 * unfortunate state in our controller. 4511 */ 4512 if (parent != root_mem_cgroup) 4513 memory_cgrp_subsys.broken_hierarchy = true; 4514 } 4515 mutex_unlock(&memcg_create_mutex); 4516 4517 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys); 4518 if (ret) 4519 return ret; 4520 4521 /* 4522 * Make sure the memcg is initialized: mem_cgroup_iter() 4523 * orders reading memcg->initialized against its callers 4524 * reading the memcg members. 4525 */ 4526 smp_store_release(&memcg->initialized, 1); 4527 4528 return 0; 4529} 4530 4531static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4532{ 4533 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4534 struct mem_cgroup_event *event, *tmp; 4535 4536 /* 4537 * Unregister events and notify userspace. 4538 * Notify userspace about cgroup removing only after rmdir of cgroup 4539 * directory to avoid race between userspace and kernelspace. 4540 */ 4541 spin_lock(&memcg->event_list_lock); 4542 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4543 list_del_init(&event->list); 4544 schedule_work(&event->remove); 4545 } 4546 spin_unlock(&memcg->event_list_lock); 4547 4548 vmpressure_cleanup(&memcg->vmpressure); 4549 4550 memcg_deactivate_kmem(memcg); 4551} 4552 4553static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4554{ 4555 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4556 4557 memcg_destroy_kmem(memcg); 4558 __mem_cgroup_free(memcg); 4559} 4560 4561/** 4562 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4563 * @css: the target css 4564 * 4565 * Reset the states of the mem_cgroup associated with @css. This is 4566 * invoked when the userland requests disabling on the default hierarchy 4567 * but the memcg is pinned through dependency. The memcg should stop 4568 * applying policies and should revert to the vanilla state as it may be 4569 * made visible again. 4570 * 4571 * The current implementation only resets the essential configurations. 4572 * This needs to be expanded to cover all the visible parts. 4573 */ 4574static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4575{ 4576 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4577 4578 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX); 4579 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX); 4580 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX); 4581 memcg->low = 0; 4582 memcg->high = PAGE_COUNTER_MAX; 4583 memcg->soft_limit = PAGE_COUNTER_MAX; 4584} 4585 4586#ifdef CONFIG_MMU 4587/* Handlers for move charge at task migration. */ 4588static int mem_cgroup_do_precharge(unsigned long count) 4589{ 4590 int ret; 4591 4592 /* Try a single bulk charge without reclaim first */ 4593 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count); 4594 if (!ret) { 4595 mc.precharge += count; 4596 return ret; 4597 } 4598 if (ret == -EINTR) { 4599 cancel_charge(root_mem_cgroup, count); 4600 return ret; 4601 } 4602 4603 /* Try charges one by one with reclaim */ 4604 while (count--) { 4605 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); 4606 /* 4607 * In case of failure, any residual charges against 4608 * mc.to will be dropped by mem_cgroup_clear_mc() 4609 * later on. However, cancel any charges that are 4610 * bypassed to root right away or they'll be lost. 4611 */ 4612 if (ret == -EINTR) 4613 cancel_charge(root_mem_cgroup, 1); 4614 if (ret) 4615 return ret; 4616 mc.precharge++; 4617 cond_resched(); 4618 } 4619 return 0; 4620} 4621 4622/** 4623 * get_mctgt_type - get target type of moving charge 4624 * @vma: the vma the pte to be checked belongs 4625 * @addr: the address corresponding to the pte to be checked 4626 * @ptent: the pte to be checked 4627 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4628 * 4629 * Returns 4630 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4631 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4632 * move charge. if @target is not NULL, the page is stored in target->page 4633 * with extra refcnt got(Callers should handle it). 4634 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4635 * target for charge migration. if @target is not NULL, the entry is stored 4636 * in target->ent. 4637 * 4638 * Called with pte lock held. 4639 */ 4640union mc_target { 4641 struct page *page; 4642 swp_entry_t ent; 4643}; 4644 4645enum mc_target_type { 4646 MC_TARGET_NONE = 0, 4647 MC_TARGET_PAGE, 4648 MC_TARGET_SWAP, 4649}; 4650 4651static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4652 unsigned long addr, pte_t ptent) 4653{ 4654 struct page *page = vm_normal_page(vma, addr, ptent); 4655 4656 if (!page || !page_mapped(page)) 4657 return NULL; 4658 if (PageAnon(page)) { 4659 if (!(mc.flags & MOVE_ANON)) 4660 return NULL; 4661 } else { 4662 if (!(mc.flags & MOVE_FILE)) 4663 return NULL; 4664 } 4665 if (!get_page_unless_zero(page)) 4666 return NULL; 4667 4668 return page; 4669} 4670 4671#ifdef CONFIG_SWAP 4672static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4673 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4674{ 4675 struct page *page = NULL; 4676 swp_entry_t ent = pte_to_swp_entry(ptent); 4677 4678 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4679 return NULL; 4680 /* 4681 * Because lookup_swap_cache() updates some statistics counter, 4682 * we call find_get_page() with swapper_space directly. 4683 */ 4684 page = find_get_page(swap_address_space(ent), ent.val); 4685 if (do_swap_account) 4686 entry->val = ent.val; 4687 4688 return page; 4689} 4690#else 4691static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4692 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4693{ 4694 return NULL; 4695} 4696#endif 4697 4698static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4699 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4700{ 4701 struct page *page = NULL; 4702 struct address_space *mapping; 4703 pgoff_t pgoff; 4704 4705 if (!vma->vm_file) /* anonymous vma */ 4706 return NULL; 4707 if (!(mc.flags & MOVE_FILE)) 4708 return NULL; 4709 4710 mapping = vma->vm_file->f_mapping; 4711 pgoff = linear_page_index(vma, addr); 4712 4713 /* page is moved even if it's not RSS of this task(page-faulted). */ 4714#ifdef CONFIG_SWAP 4715 /* shmem/tmpfs may report page out on swap: account for that too. */ 4716 if (shmem_mapping(mapping)) { 4717 page = find_get_entry(mapping, pgoff); 4718 if (radix_tree_exceptional_entry(page)) { 4719 swp_entry_t swp = radix_to_swp_entry(page); 4720 if (do_swap_account) 4721 *entry = swp; 4722 page = find_get_page(swap_address_space(swp), swp.val); 4723 } 4724 } else 4725 page = find_get_page(mapping, pgoff); 4726#else 4727 page = find_get_page(mapping, pgoff); 4728#endif 4729 return page; 4730} 4731 4732/** 4733 * mem_cgroup_move_account - move account of the page 4734 * @page: the page 4735 * @nr_pages: number of regular pages (>1 for huge pages) 4736 * @from: mem_cgroup which the page is moved from. 4737 * @to: mem_cgroup which the page is moved to. @from != @to. 4738 * 4739 * The caller must confirm following. 4740 * - page is not on LRU (isolate_page() is useful.) 4741 * - compound_lock is held when nr_pages > 1 4742 * 4743 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4744 * from old cgroup. 4745 */ 4746static int mem_cgroup_move_account(struct page *page, 4747 unsigned int nr_pages, 4748 struct mem_cgroup *from, 4749 struct mem_cgroup *to) 4750{ 4751 unsigned long flags; 4752 int ret; 4753 4754 VM_BUG_ON(from == to); 4755 VM_BUG_ON_PAGE(PageLRU(page), page); 4756 /* 4757 * The page is isolated from LRU. So, collapse function 4758 * will not handle this page. But page splitting can happen. 4759 * Do this check under compound_page_lock(). The caller should 4760 * hold it. 4761 */ 4762 ret = -EBUSY; 4763 if (nr_pages > 1 && !PageTransHuge(page)) 4764 goto out; 4765 4766 /* 4767 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup 4768 * of its source page while we change it: page migration takes 4769 * both pages off the LRU, but page cache replacement doesn't. 4770 */ 4771 if (!trylock_page(page)) 4772 goto out; 4773 4774 ret = -EINVAL; 4775 if (page->mem_cgroup != from) 4776 goto out_unlock; 4777 4778 spin_lock_irqsave(&from->move_lock, flags); 4779 4780 if (!PageAnon(page) && page_mapped(page)) { 4781 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4782 nr_pages); 4783 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4784 nr_pages); 4785 } 4786 4787 if (PageWriteback(page)) { 4788 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4789 nr_pages); 4790 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4791 nr_pages); 4792 } 4793 4794 /* 4795 * It is safe to change page->mem_cgroup here because the page 4796 * is referenced, charged, and isolated - we can't race with 4797 * uncharging, charging, migration, or LRU putback. 4798 */ 4799 4800 /* caller should have done css_get */ 4801 page->mem_cgroup = to; 4802 spin_unlock_irqrestore(&from->move_lock, flags); 4803 4804 ret = 0; 4805 4806 local_irq_disable(); 4807 mem_cgroup_charge_statistics(to, page, nr_pages); 4808 memcg_check_events(to, page); 4809 mem_cgroup_charge_statistics(from, page, -nr_pages); 4810 memcg_check_events(from, page); 4811 local_irq_enable(); 4812out_unlock: 4813 unlock_page(page); 4814out: 4815 return ret; 4816} 4817 4818static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4819 unsigned long addr, pte_t ptent, union mc_target *target) 4820{ 4821 struct page *page = NULL; 4822 enum mc_target_type ret = MC_TARGET_NONE; 4823 swp_entry_t ent = { .val = 0 }; 4824 4825 if (pte_present(ptent)) 4826 page = mc_handle_present_pte(vma, addr, ptent); 4827 else if (is_swap_pte(ptent)) 4828 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 4829 else if (pte_none(ptent)) 4830 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4831 4832 if (!page && !ent.val) 4833 return ret; 4834 if (page) { 4835 /* 4836 * Do only loose check w/o serialization. 4837 * mem_cgroup_move_account() checks the page is valid or 4838 * not under LRU exclusion. 4839 */ 4840 if (page->mem_cgroup == mc.from) { 4841 ret = MC_TARGET_PAGE; 4842 if (target) 4843 target->page = page; 4844 } 4845 if (!ret || !target) 4846 put_page(page); 4847 } 4848 /* There is a swap entry and a page doesn't exist or isn't charged */ 4849 if (ent.val && !ret && 4850 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4851 ret = MC_TARGET_SWAP; 4852 if (target) 4853 target->ent = ent; 4854 } 4855 return ret; 4856} 4857 4858#ifdef CONFIG_TRANSPARENT_HUGEPAGE 4859/* 4860 * We don't consider swapping or file mapped pages because THP does not 4861 * support them for now. 4862 * Caller should make sure that pmd_trans_huge(pmd) is true. 4863 */ 4864static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4865 unsigned long addr, pmd_t pmd, union mc_target *target) 4866{ 4867 struct page *page = NULL; 4868 enum mc_target_type ret = MC_TARGET_NONE; 4869 4870 page = pmd_page(pmd); 4871 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4872 if (!(mc.flags & MOVE_ANON)) 4873 return ret; 4874 if (page->mem_cgroup == mc.from) { 4875 ret = MC_TARGET_PAGE; 4876 if (target) { 4877 get_page(page); 4878 target->page = page; 4879 } 4880 } 4881 return ret; 4882} 4883#else 4884static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4885 unsigned long addr, pmd_t pmd, union mc_target *target) 4886{ 4887 return MC_TARGET_NONE; 4888} 4889#endif 4890 4891static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4892 unsigned long addr, unsigned long end, 4893 struct mm_walk *walk) 4894{ 4895 struct vm_area_struct *vma = walk->vma; 4896 pte_t *pte; 4897 spinlock_t *ptl; 4898 4899 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 4900 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4901 mc.precharge += HPAGE_PMD_NR; 4902 spin_unlock(ptl); 4903 return 0; 4904 } 4905 4906 if (pmd_trans_unstable(pmd)) 4907 return 0; 4908 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4909 for (; addr != end; pte++, addr += PAGE_SIZE) 4910 if (get_mctgt_type(vma, addr, *pte, NULL)) 4911 mc.precharge++; /* increment precharge temporarily */ 4912 pte_unmap_unlock(pte - 1, ptl); 4913 cond_resched(); 4914 4915 return 0; 4916} 4917 4918static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4919{ 4920 unsigned long precharge; 4921 4922 struct mm_walk mem_cgroup_count_precharge_walk = { 4923 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4924 .mm = mm, 4925 }; 4926 down_read(&mm->mmap_sem); 4927 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); 4928 up_read(&mm->mmap_sem); 4929 4930 precharge = mc.precharge; 4931 mc.precharge = 0; 4932 4933 return precharge; 4934} 4935 4936static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4937{ 4938 unsigned long precharge = mem_cgroup_count_precharge(mm); 4939 4940 VM_BUG_ON(mc.moving_task); 4941 mc.moving_task = current; 4942 return mem_cgroup_do_precharge(precharge); 4943} 4944 4945/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4946static void __mem_cgroup_clear_mc(void) 4947{ 4948 struct mem_cgroup *from = mc.from; 4949 struct mem_cgroup *to = mc.to; 4950 4951 /* we must uncharge all the leftover precharges from mc.to */ 4952 if (mc.precharge) { 4953 cancel_charge(mc.to, mc.precharge); 4954 mc.precharge = 0; 4955 } 4956 /* 4957 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4958 * we must uncharge here. 4959 */ 4960 if (mc.moved_charge) { 4961 cancel_charge(mc.from, mc.moved_charge); 4962 mc.moved_charge = 0; 4963 } 4964 /* we must fixup refcnts and charges */ 4965 if (mc.moved_swap) { 4966 /* uncharge swap account from the old cgroup */ 4967 if (!mem_cgroup_is_root(mc.from)) 4968 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4969 4970 /* 4971 * we charged both to->memory and to->memsw, so we 4972 * should uncharge to->memory. 4973 */ 4974 if (!mem_cgroup_is_root(mc.to)) 4975 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4976 4977 css_put_many(&mc.from->css, mc.moved_swap); 4978 4979 /* we've already done css_get(mc.to) */ 4980 mc.moved_swap = 0; 4981 } 4982 memcg_oom_recover(from); 4983 memcg_oom_recover(to); 4984 wake_up_all(&mc.waitq); 4985} 4986 4987static void mem_cgroup_clear_mc(void) 4988{ 4989 /* 4990 * we must clear moving_task before waking up waiters at the end of 4991 * task migration. 4992 */ 4993 mc.moving_task = NULL; 4994 __mem_cgroup_clear_mc(); 4995 spin_lock(&mc.lock); 4996 mc.from = NULL; 4997 mc.to = NULL; 4998 spin_unlock(&mc.lock); 4999} 5000 5001static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 5002 struct cgroup_taskset *tset) 5003{ 5004 struct task_struct *p = cgroup_taskset_first(tset); 5005 int ret = 0; 5006 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5007 unsigned long move_flags; 5008 5009 /* 5010 * We are now commited to this value whatever it is. Changes in this 5011 * tunable will only affect upcoming migrations, not the current one. 5012 * So we need to save it, and keep it going. 5013 */ 5014 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5015 if (move_flags) { 5016 struct mm_struct *mm; 5017 struct mem_cgroup *from = mem_cgroup_from_task(p); 5018 5019 VM_BUG_ON(from == memcg); 5020 5021 mm = get_task_mm(p); 5022 if (!mm) 5023 return 0; 5024 /* We move charges only when we move a owner of the mm */ 5025 if (mm->owner == p) { 5026 VM_BUG_ON(mc.from); 5027 VM_BUG_ON(mc.to); 5028 VM_BUG_ON(mc.precharge); 5029 VM_BUG_ON(mc.moved_charge); 5030 VM_BUG_ON(mc.moved_swap); 5031 5032 spin_lock(&mc.lock); 5033 mc.from = from; 5034 mc.to = memcg; 5035 mc.flags = move_flags; 5036 spin_unlock(&mc.lock); 5037 /* We set mc.moving_task later */ 5038 5039 ret = mem_cgroup_precharge_mc(mm); 5040 if (ret) 5041 mem_cgroup_clear_mc(); 5042 } 5043 mmput(mm); 5044 } 5045 return ret; 5046} 5047 5048static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 5049 struct cgroup_taskset *tset) 5050{ 5051 if (mc.to) 5052 mem_cgroup_clear_mc(); 5053} 5054 5055static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5056 unsigned long addr, unsigned long end, 5057 struct mm_walk *walk) 5058{ 5059 int ret = 0; 5060 struct vm_area_struct *vma = walk->vma; 5061 pte_t *pte; 5062 spinlock_t *ptl; 5063 enum mc_target_type target_type; 5064 union mc_target target; 5065 struct page *page; 5066 5067 /* 5068 * We don't take compound_lock() here but no race with splitting thp 5069 * happens because: 5070 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 5071 * under splitting, which means there's no concurrent thp split, 5072 * - if another thread runs into split_huge_page() just after we 5073 * entered this if-block, the thread must wait for page table lock 5074 * to be unlocked in __split_huge_page_splitting(), where the main 5075 * part of thp split is not executed yet. 5076 */ 5077 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 5078 if (mc.precharge < HPAGE_PMD_NR) { 5079 spin_unlock(ptl); 5080 return 0; 5081 } 5082 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5083 if (target_type == MC_TARGET_PAGE) { 5084 page = target.page; 5085 if (!isolate_lru_page(page)) { 5086 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 5087 mc.from, mc.to)) { 5088 mc.precharge -= HPAGE_PMD_NR; 5089 mc.moved_charge += HPAGE_PMD_NR; 5090 } 5091 putback_lru_page(page); 5092 } 5093 put_page(page); 5094 } 5095 spin_unlock(ptl); 5096 return 0; 5097 } 5098 5099 if (pmd_trans_unstable(pmd)) 5100 return 0; 5101retry: 5102 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5103 for (; addr != end; addr += PAGE_SIZE) { 5104 pte_t ptent = *(pte++); 5105 swp_entry_t ent; 5106 5107 if (!mc.precharge) 5108 break; 5109 5110 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5111 case MC_TARGET_PAGE: 5112 page = target.page; 5113 if (isolate_lru_page(page)) 5114 goto put; 5115 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) { 5116 mc.precharge--; 5117 /* we uncharge from mc.from later. */ 5118 mc.moved_charge++; 5119 } 5120 putback_lru_page(page); 5121put: /* get_mctgt_type() gets the page */ 5122 put_page(page); 5123 break; 5124 case MC_TARGET_SWAP: 5125 ent = target.ent; 5126 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5127 mc.precharge--; 5128 /* we fixup refcnts and charges later. */ 5129 mc.moved_swap++; 5130 } 5131 break; 5132 default: 5133 break; 5134 } 5135 } 5136 pte_unmap_unlock(pte - 1, ptl); 5137 cond_resched(); 5138 5139 if (addr != end) { 5140 /* 5141 * We have consumed all precharges we got in can_attach(). 5142 * We try charge one by one, but don't do any additional 5143 * charges to mc.to if we have failed in charge once in attach() 5144 * phase. 5145 */ 5146 ret = mem_cgroup_do_precharge(1); 5147 if (!ret) 5148 goto retry; 5149 } 5150 5151 return ret; 5152} 5153 5154static void mem_cgroup_move_charge(struct mm_struct *mm) 5155{ 5156 struct mm_walk mem_cgroup_move_charge_walk = { 5157 .pmd_entry = mem_cgroup_move_charge_pte_range, 5158 .mm = mm, 5159 }; 5160 5161 lru_add_drain_all(); 5162 /* 5163 * Signal mem_cgroup_begin_page_stat() to take the memcg's 5164 * move_lock while we're moving its pages to another memcg. 5165 * Then wait for already started RCU-only updates to finish. 5166 */ 5167 atomic_inc(&mc.from->moving_account); 5168 synchronize_rcu(); 5169retry: 5170 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 5171 /* 5172 * Someone who are holding the mmap_sem might be waiting in 5173 * waitq. So we cancel all extra charges, wake up all waiters, 5174 * and retry. Because we cancel precharges, we might not be able 5175 * to move enough charges, but moving charge is a best-effort 5176 * feature anyway, so it wouldn't be a big problem. 5177 */ 5178 __mem_cgroup_clear_mc(); 5179 cond_resched(); 5180 goto retry; 5181 } 5182 /* 5183 * When we have consumed all precharges and failed in doing 5184 * additional charge, the page walk just aborts. 5185 */ 5186 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); 5187 up_read(&mm->mmap_sem); 5188 atomic_dec(&mc.from->moving_account); 5189} 5190 5191static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 5192 struct cgroup_taskset *tset) 5193{ 5194 struct task_struct *p = cgroup_taskset_first(tset); 5195 struct mm_struct *mm = get_task_mm(p); 5196 5197 if (mm) { 5198 if (mc.to) 5199 mem_cgroup_move_charge(mm); 5200 mmput(mm); 5201 } 5202 if (mc.to) 5203 mem_cgroup_clear_mc(); 5204} 5205#else /* !CONFIG_MMU */ 5206static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 5207 struct cgroup_taskset *tset) 5208{ 5209 return 0; 5210} 5211static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 5212 struct cgroup_taskset *tset) 5213{ 5214} 5215static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 5216 struct cgroup_taskset *tset) 5217{ 5218} 5219#endif 5220 5221/* 5222 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5223 * to verify whether we're attached to the default hierarchy on each mount 5224 * attempt. 5225 */ 5226static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5227{ 5228 /* 5229 * use_hierarchy is forced on the default hierarchy. cgroup core 5230 * guarantees that @root doesn't have any children, so turning it 5231 * on for the root memcg is enough. 5232 */ 5233 if (cgroup_on_dfl(root_css->cgroup)) 5234 root_mem_cgroup->use_hierarchy = true; 5235 else 5236 root_mem_cgroup->use_hierarchy = false; 5237} 5238 5239static u64 memory_current_read(struct cgroup_subsys_state *css, 5240 struct cftype *cft) 5241{ 5242 return mem_cgroup_usage(mem_cgroup_from_css(css), false); 5243} 5244 5245static int memory_low_show(struct seq_file *m, void *v) 5246{ 5247 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5248 unsigned long low = READ_ONCE(memcg->low); 5249 5250 if (low == PAGE_COUNTER_MAX) 5251 seq_puts(m, "max\n"); 5252 else 5253 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5254 5255 return 0; 5256} 5257 5258static ssize_t memory_low_write(struct kernfs_open_file *of, 5259 char *buf, size_t nbytes, loff_t off) 5260{ 5261 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5262 unsigned long low; 5263 int err; 5264 5265 buf = strstrip(buf); 5266 err = page_counter_memparse(buf, "max", &low); 5267 if (err) 5268 return err; 5269 5270 memcg->low = low; 5271 5272 return nbytes; 5273} 5274 5275static int memory_high_show(struct seq_file *m, void *v) 5276{ 5277 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5278 unsigned long high = READ_ONCE(memcg->high); 5279 5280 if (high == PAGE_COUNTER_MAX) 5281 seq_puts(m, "max\n"); 5282 else 5283 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5284 5285 return 0; 5286} 5287 5288static ssize_t memory_high_write(struct kernfs_open_file *of, 5289 char *buf, size_t nbytes, loff_t off) 5290{ 5291 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5292 unsigned long nr_pages; 5293 unsigned long high; 5294 int err; 5295 5296 buf = strstrip(buf); 5297 err = page_counter_memparse(buf, "max", &high); 5298 if (err) 5299 return err; 5300 5301 memcg->high = high; 5302 5303 nr_pages = page_counter_read(&memcg->memory); 5304 if (nr_pages > high) 5305 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5306 GFP_KERNEL, true); 5307 5308 return nbytes; 5309} 5310 5311static int memory_max_show(struct seq_file *m, void *v) 5312{ 5313 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5314 unsigned long max = READ_ONCE(memcg->memory.limit); 5315 5316 if (max == PAGE_COUNTER_MAX) 5317 seq_puts(m, "max\n"); 5318 else 5319 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5320 5321 return 0; 5322} 5323 5324static ssize_t memory_max_write(struct kernfs_open_file *of, 5325 char *buf, size_t nbytes, loff_t off) 5326{ 5327 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5328 unsigned long max; 5329 int err; 5330 5331 buf = strstrip(buf); 5332 err = page_counter_memparse(buf, "max", &max); 5333 if (err) 5334 return err; 5335 5336 err = mem_cgroup_resize_limit(memcg, max); 5337 if (err) 5338 return err; 5339 5340 return nbytes; 5341} 5342 5343static int memory_events_show(struct seq_file *m, void *v) 5344{ 5345 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5346 5347 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5348 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5349 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5350 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5351 5352 return 0; 5353} 5354 5355static struct cftype memory_files[] = { 5356 { 5357 .name = "current", 5358 .read_u64 = memory_current_read, 5359 }, 5360 { 5361 .name = "low", 5362 .flags = CFTYPE_NOT_ON_ROOT, 5363 .seq_show = memory_low_show, 5364 .write = memory_low_write, 5365 }, 5366 { 5367 .name = "high", 5368 .flags = CFTYPE_NOT_ON_ROOT, 5369 .seq_show = memory_high_show, 5370 .write = memory_high_write, 5371 }, 5372 { 5373 .name = "max", 5374 .flags = CFTYPE_NOT_ON_ROOT, 5375 .seq_show = memory_max_show, 5376 .write = memory_max_write, 5377 }, 5378 { 5379 .name = "events", 5380 .flags = CFTYPE_NOT_ON_ROOT, 5381 .seq_show = memory_events_show, 5382 }, 5383 { } /* terminate */ 5384}; 5385 5386struct cgroup_subsys memory_cgrp_subsys = { 5387 .css_alloc = mem_cgroup_css_alloc, 5388 .css_online = mem_cgroup_css_online, 5389 .css_offline = mem_cgroup_css_offline, 5390 .css_free = mem_cgroup_css_free, 5391 .css_reset = mem_cgroup_css_reset, 5392 .can_attach = mem_cgroup_can_attach, 5393 .cancel_attach = mem_cgroup_cancel_attach, 5394 .attach = mem_cgroup_move_task, 5395 .bind = mem_cgroup_bind, 5396 .dfl_cftypes = memory_files, 5397 .legacy_cftypes = mem_cgroup_legacy_files, 5398 .early_init = 0, 5399}; 5400 5401/** 5402 * mem_cgroup_events - count memory events against a cgroup 5403 * @memcg: the memory cgroup 5404 * @idx: the event index 5405 * @nr: the number of events to account for 5406 */ 5407void mem_cgroup_events(struct mem_cgroup *memcg, 5408 enum mem_cgroup_events_index idx, 5409 unsigned int nr) 5410{ 5411 this_cpu_add(memcg->stat->events[idx], nr); 5412} 5413 5414/** 5415 * mem_cgroup_low - check if memory consumption is below the normal range 5416 * @root: the highest ancestor to consider 5417 * @memcg: the memory cgroup to check 5418 * 5419 * Returns %true if memory consumption of @memcg, and that of all 5420 * configurable ancestors up to @root, is below the normal range. 5421 */ 5422bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5423{ 5424 if (mem_cgroup_disabled()) 5425 return false; 5426 5427 /* 5428 * The toplevel group doesn't have a configurable range, so 5429 * it's never low when looked at directly, and it is not 5430 * considered an ancestor when assessing the hierarchy. 5431 */ 5432 5433 if (memcg == root_mem_cgroup) 5434 return false; 5435 5436 if (page_counter_read(&memcg->memory) >= memcg->low) 5437 return false; 5438 5439 while (memcg != root) { 5440 memcg = parent_mem_cgroup(memcg); 5441 5442 if (memcg == root_mem_cgroup) 5443 break; 5444 5445 if (page_counter_read(&memcg->memory) >= memcg->low) 5446 return false; 5447 } 5448 return true; 5449} 5450 5451/** 5452 * mem_cgroup_try_charge - try charging a page 5453 * @page: page to charge 5454 * @mm: mm context of the victim 5455 * @gfp_mask: reclaim mode 5456 * @memcgp: charged memcg return 5457 * 5458 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5459 * pages according to @gfp_mask if necessary. 5460 * 5461 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5462 * Otherwise, an error code is returned. 5463 * 5464 * After page->mapping has been set up, the caller must finalize the 5465 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5466 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5467 */ 5468int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5469 gfp_t gfp_mask, struct mem_cgroup **memcgp) 5470{ 5471 struct mem_cgroup *memcg = NULL; 5472 unsigned int nr_pages = 1; 5473 int ret = 0; 5474 5475 if (mem_cgroup_disabled()) 5476 goto out; 5477 5478 if (PageSwapCache(page)) { 5479 /* 5480 * Every swap fault against a single page tries to charge the 5481 * page, bail as early as possible. shmem_unuse() encounters 5482 * already charged pages, too. The USED bit is protected by 5483 * the page lock, which serializes swap cache removal, which 5484 * in turn serializes uncharging. 5485 */ 5486 if (page->mem_cgroup) 5487 goto out; 5488 } 5489 5490 if (PageTransHuge(page)) { 5491 nr_pages <<= compound_order(page); 5492 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5493 } 5494 5495 if (do_swap_account && PageSwapCache(page)) 5496 memcg = try_get_mem_cgroup_from_page(page); 5497 if (!memcg) 5498 memcg = get_mem_cgroup_from_mm(mm); 5499 5500 ret = try_charge(memcg, gfp_mask, nr_pages); 5501 5502 css_put(&memcg->css); 5503 5504 if (ret == -EINTR) { 5505 memcg = root_mem_cgroup; 5506 ret = 0; 5507 } 5508out: 5509 *memcgp = memcg; 5510 return ret; 5511} 5512 5513/** 5514 * mem_cgroup_commit_charge - commit a page charge 5515 * @page: page to charge 5516 * @memcg: memcg to charge the page to 5517 * @lrucare: page might be on LRU already 5518 * 5519 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5520 * after page->mapping has been set up. This must happen atomically 5521 * as part of the page instantiation, i.e. under the page table lock 5522 * for anonymous pages, under the page lock for page and swap cache. 5523 * 5524 * In addition, the page must not be on the LRU during the commit, to 5525 * prevent racing with task migration. If it might be, use @lrucare. 5526 * 5527 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5528 */ 5529void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5530 bool lrucare) 5531{ 5532 unsigned int nr_pages = 1; 5533 5534 VM_BUG_ON_PAGE(!page->mapping, page); 5535 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5536 5537 if (mem_cgroup_disabled()) 5538 return; 5539 /* 5540 * Swap faults will attempt to charge the same page multiple 5541 * times. But reuse_swap_page() might have removed the page 5542 * from swapcache already, so we can't check PageSwapCache(). 5543 */ 5544 if (!memcg) 5545 return; 5546 5547 commit_charge(page, memcg, lrucare); 5548 5549 if (PageTransHuge(page)) { 5550 nr_pages <<= compound_order(page); 5551 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5552 } 5553 5554 local_irq_disable(); 5555 mem_cgroup_charge_statistics(memcg, page, nr_pages); 5556 memcg_check_events(memcg, page); 5557 local_irq_enable(); 5558 5559 if (do_swap_account && PageSwapCache(page)) { 5560 swp_entry_t entry = { .val = page_private(page) }; 5561 /* 5562 * The swap entry might not get freed for a long time, 5563 * let's not wait for it. The page already received a 5564 * memory+swap charge, drop the swap entry duplicate. 5565 */ 5566 mem_cgroup_uncharge_swap(entry); 5567 } 5568} 5569 5570/** 5571 * mem_cgroup_cancel_charge - cancel a page charge 5572 * @page: page to charge 5573 * @memcg: memcg to charge the page to 5574 * 5575 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5576 */ 5577void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg) 5578{ 5579 unsigned int nr_pages = 1; 5580 5581 if (mem_cgroup_disabled()) 5582 return; 5583 /* 5584 * Swap faults will attempt to charge the same page multiple 5585 * times. But reuse_swap_page() might have removed the page 5586 * from swapcache already, so we can't check PageSwapCache(). 5587 */ 5588 if (!memcg) 5589 return; 5590 5591 if (PageTransHuge(page)) { 5592 nr_pages <<= compound_order(page); 5593 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5594 } 5595 5596 cancel_charge(memcg, nr_pages); 5597} 5598 5599static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5600 unsigned long nr_anon, unsigned long nr_file, 5601 unsigned long nr_huge, struct page *dummy_page) 5602{ 5603 unsigned long nr_pages = nr_anon + nr_file; 5604 unsigned long flags; 5605 5606 if (!mem_cgroup_is_root(memcg)) { 5607 page_counter_uncharge(&memcg->memory, nr_pages); 5608 if (do_swap_account) 5609 page_counter_uncharge(&memcg->memsw, nr_pages); 5610 memcg_oom_recover(memcg); 5611 } 5612 5613 local_irq_save(flags); 5614 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5615 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5616 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5617 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5618 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5619 memcg_check_events(memcg, dummy_page); 5620 local_irq_restore(flags); 5621 5622 if (!mem_cgroup_is_root(memcg)) 5623 css_put_many(&memcg->css, nr_pages); 5624} 5625 5626static void uncharge_list(struct list_head *page_list) 5627{ 5628 struct mem_cgroup *memcg = NULL; 5629 unsigned long nr_anon = 0; 5630 unsigned long nr_file = 0; 5631 unsigned long nr_huge = 0; 5632 unsigned long pgpgout = 0; 5633 struct list_head *next; 5634 struct page *page; 5635 5636 next = page_list->next; 5637 do { 5638 unsigned int nr_pages = 1; 5639 5640 page = list_entry(next, struct page, lru); 5641 next = page->lru.next; 5642 5643 VM_BUG_ON_PAGE(PageLRU(page), page); 5644 VM_BUG_ON_PAGE(page_count(page), page); 5645 5646 if (!page->mem_cgroup) 5647 continue; 5648 5649 /* 5650 * Nobody should be changing or seriously looking at 5651 * page->mem_cgroup at this point, we have fully 5652 * exclusive access to the page. 5653 */ 5654 5655 if (memcg != page->mem_cgroup) { 5656 if (memcg) { 5657 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5658 nr_huge, page); 5659 pgpgout = nr_anon = nr_file = nr_huge = 0; 5660 } 5661 memcg = page->mem_cgroup; 5662 } 5663 5664 if (PageTransHuge(page)) { 5665 nr_pages <<= compound_order(page); 5666 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5667 nr_huge += nr_pages; 5668 } 5669 5670 if (PageAnon(page)) 5671 nr_anon += nr_pages; 5672 else 5673 nr_file += nr_pages; 5674 5675 page->mem_cgroup = NULL; 5676 5677 pgpgout++; 5678 } while (next != page_list); 5679 5680 if (memcg) 5681 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5682 nr_huge, page); 5683} 5684 5685/** 5686 * mem_cgroup_uncharge - uncharge a page 5687 * @page: page to uncharge 5688 * 5689 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5690 * mem_cgroup_commit_charge(). 5691 */ 5692void mem_cgroup_uncharge(struct page *page) 5693{ 5694 if (mem_cgroup_disabled()) 5695 return; 5696 5697 /* Don't touch page->lru of any random page, pre-check: */ 5698 if (!page->mem_cgroup) 5699 return; 5700 5701 INIT_LIST_HEAD(&page->lru); 5702 uncharge_list(&page->lru); 5703} 5704 5705/** 5706 * mem_cgroup_uncharge_list - uncharge a list of page 5707 * @page_list: list of pages to uncharge 5708 * 5709 * Uncharge a list of pages previously charged with 5710 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5711 */ 5712void mem_cgroup_uncharge_list(struct list_head *page_list) 5713{ 5714 if (mem_cgroup_disabled()) 5715 return; 5716 5717 if (!list_empty(page_list)) 5718 uncharge_list(page_list); 5719} 5720 5721/** 5722 * mem_cgroup_migrate - migrate a charge to another page 5723 * @oldpage: currently charged page 5724 * @newpage: page to transfer the charge to 5725 * @lrucare: either or both pages might be on the LRU already 5726 * 5727 * Migrate the charge from @oldpage to @newpage. 5728 * 5729 * Both pages must be locked, @newpage->mapping must be set up. 5730 */ 5731void mem_cgroup_migrate(struct page *oldpage, struct page *newpage, 5732 bool lrucare) 5733{ 5734 struct mem_cgroup *memcg; 5735 int isolated; 5736 5737 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5738 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5739 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage); 5740 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage); 5741 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5742 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5743 newpage); 5744 5745 if (mem_cgroup_disabled()) 5746 return; 5747 5748 /* Page cache replacement: new page already charged? */ 5749 if (newpage->mem_cgroup) 5750 return; 5751 5752 /* 5753 * Swapcache readahead pages can get migrated before being 5754 * charged, and migration from compaction can happen to an 5755 * uncharged page when the PFN walker finds a page that 5756 * reclaim just put back on the LRU but has not released yet. 5757 */ 5758 memcg = oldpage->mem_cgroup; 5759 if (!memcg) 5760 return; 5761 5762 if (lrucare) 5763 lock_page_lru(oldpage, &isolated); 5764 5765 oldpage->mem_cgroup = NULL; 5766 5767 if (lrucare) 5768 unlock_page_lru(oldpage, isolated); 5769 5770 commit_charge(newpage, memcg, lrucare); 5771} 5772 5773/* 5774 * subsys_initcall() for memory controller. 5775 * 5776 * Some parts like hotcpu_notifier() have to be initialized from this context 5777 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 5778 * everything that doesn't depend on a specific mem_cgroup structure should 5779 * be initialized from here. 5780 */ 5781static int __init mem_cgroup_init(void) 5782{ 5783 int cpu, node; 5784 5785 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 5786 5787 for_each_possible_cpu(cpu) 5788 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5789 drain_local_stock); 5790 5791 for_each_node(node) { 5792 struct mem_cgroup_tree_per_node *rtpn; 5793 int zone; 5794 5795 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5796 node_online(node) ? node : NUMA_NO_NODE); 5797 5798 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5799 struct mem_cgroup_tree_per_zone *rtpz; 5800 5801 rtpz = &rtpn->rb_tree_per_zone[zone]; 5802 rtpz->rb_root = RB_ROOT; 5803 spin_lock_init(&rtpz->lock); 5804 } 5805 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5806 } 5807 5808 return 0; 5809} 5810subsys_initcall(mem_cgroup_init); 5811 5812#ifdef CONFIG_MEMCG_SWAP 5813/** 5814 * mem_cgroup_swapout - transfer a memsw charge to swap 5815 * @page: page whose memsw charge to transfer 5816 * @entry: swap entry to move the charge to 5817 * 5818 * Transfer the memsw charge of @page to @entry. 5819 */ 5820void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5821{ 5822 struct mem_cgroup *memcg; 5823 unsigned short oldid; 5824 5825 VM_BUG_ON_PAGE(PageLRU(page), page); 5826 VM_BUG_ON_PAGE(page_count(page), page); 5827 5828 if (!do_swap_account) 5829 return; 5830 5831 memcg = page->mem_cgroup; 5832 5833 /* Readahead page, never charged */ 5834 if (!memcg) 5835 return; 5836 5837 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5838 VM_BUG_ON_PAGE(oldid, page); 5839 mem_cgroup_swap_statistics(memcg, true); 5840 5841 page->mem_cgroup = NULL; 5842 5843 if (!mem_cgroup_is_root(memcg)) 5844 page_counter_uncharge(&memcg->memory, 1); 5845 5846 /* Caller disabled preemption with mapping->tree_lock */ 5847 mem_cgroup_charge_statistics(memcg, page, -1); 5848 memcg_check_events(memcg, page); 5849} 5850 5851/** 5852 * mem_cgroup_uncharge_swap - uncharge a swap entry 5853 * @entry: swap entry to uncharge 5854 * 5855 * Drop the memsw charge associated with @entry. 5856 */ 5857void mem_cgroup_uncharge_swap(swp_entry_t entry) 5858{ 5859 struct mem_cgroup *memcg; 5860 unsigned short id; 5861 5862 if (!do_swap_account) 5863 return; 5864 5865 id = swap_cgroup_record(entry, 0); 5866 rcu_read_lock(); 5867 memcg = mem_cgroup_from_id(id); 5868 if (memcg) { 5869 if (!mem_cgroup_is_root(memcg)) 5870 page_counter_uncharge(&memcg->memsw, 1); 5871 mem_cgroup_swap_statistics(memcg, false); 5872 css_put(&memcg->css); 5873 } 5874 rcu_read_unlock(); 5875} 5876 5877/* for remember boot option*/ 5878#ifdef CONFIG_MEMCG_SWAP_ENABLED 5879static int really_do_swap_account __initdata = 1; 5880#else 5881static int really_do_swap_account __initdata; 5882#endif 5883 5884static int __init enable_swap_account(char *s) 5885{ 5886 if (!strcmp(s, "1")) 5887 really_do_swap_account = 1; 5888 else if (!strcmp(s, "0")) 5889 really_do_swap_account = 0; 5890 return 1; 5891} 5892__setup("swapaccount=", enable_swap_account); 5893 5894static struct cftype memsw_cgroup_files[] = { 5895 { 5896 .name = "memsw.usage_in_bytes", 5897 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5898 .read_u64 = mem_cgroup_read_u64, 5899 }, 5900 { 5901 .name = "memsw.max_usage_in_bytes", 5902 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5903 .write = mem_cgroup_reset, 5904 .read_u64 = mem_cgroup_read_u64, 5905 }, 5906 { 5907 .name = "memsw.limit_in_bytes", 5908 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 5909 .write = mem_cgroup_write, 5910 .read_u64 = mem_cgroup_read_u64, 5911 }, 5912 { 5913 .name = "memsw.failcnt", 5914 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 5915 .write = mem_cgroup_reset, 5916 .read_u64 = mem_cgroup_read_u64, 5917 }, 5918 { }, /* terminate */ 5919}; 5920 5921static int __init mem_cgroup_swap_init(void) 5922{ 5923 if (!mem_cgroup_disabled() && really_do_swap_account) { 5924 do_swap_account = 1; 5925 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 5926 memsw_cgroup_files)); 5927 } 5928 return 0; 5929} 5930subsys_initcall(mem_cgroup_swap_init); 5931 5932#endif /* CONFIG_MEMCG_SWAP */ 5933