1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states.	The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
41#include <linux/kernel-page-flags.h>
42#include <linux/sched.h>
43#include <linux/ksm.h>
44#include <linux/rmap.h>
45#include <linux/export.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
49#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
52#include <linux/slab.h>
53#include <linux/swapops.h>
54#include <linux/hugetlb.h>
55#include <linux/memory_hotplug.h>
56#include <linux/mm_inline.h>
57#include <linux/kfifo.h>
58#include "internal.h"
59
60int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62int sysctl_memory_failure_recovery __read_mostly = 1;
63
64atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65
66#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
68u32 hwpoison_filter_enable = 0;
69u32 hwpoison_filter_dev_major = ~0U;
70u32 hwpoison_filter_dev_minor = ~0U;
71u64 hwpoison_filter_flags_mask;
72u64 hwpoison_filter_flags_value;
73EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78
79static int hwpoison_filter_dev(struct page *p)
80{
81	struct address_space *mapping;
82	dev_t dev;
83
84	if (hwpoison_filter_dev_major == ~0U &&
85	    hwpoison_filter_dev_minor == ~0U)
86		return 0;
87
88	/*
89	 * page_mapping() does not accept slab pages.
90	 */
91	if (PageSlab(p))
92		return -EINVAL;
93
94	mapping = page_mapping(p);
95	if (mapping == NULL || mapping->host == NULL)
96		return -EINVAL;
97
98	dev = mapping->host->i_sb->s_dev;
99	if (hwpoison_filter_dev_major != ~0U &&
100	    hwpoison_filter_dev_major != MAJOR(dev))
101		return -EINVAL;
102	if (hwpoison_filter_dev_minor != ~0U &&
103	    hwpoison_filter_dev_minor != MINOR(dev))
104		return -EINVAL;
105
106	return 0;
107}
108
109static int hwpoison_filter_flags(struct page *p)
110{
111	if (!hwpoison_filter_flags_mask)
112		return 0;
113
114	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115				    hwpoison_filter_flags_value)
116		return 0;
117	else
118		return -EINVAL;
119}
120
121/*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
131#ifdef	CONFIG_MEMCG_SWAP
132u64 hwpoison_filter_memcg;
133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134static int hwpoison_filter_task(struct page *p)
135{
136	struct mem_cgroup *mem;
137	struct cgroup_subsys_state *css;
138	unsigned long ino;
139
140	if (!hwpoison_filter_memcg)
141		return 0;
142
143	mem = try_get_mem_cgroup_from_page(p);
144	if (!mem)
145		return -EINVAL;
146
147	css = mem_cgroup_css(mem);
148	ino = cgroup_ino(css->cgroup);
149	css_put(css);
150
151	if (ino != hwpoison_filter_memcg)
152		return -EINVAL;
153
154	return 0;
155}
156#else
157static int hwpoison_filter_task(struct page *p) { return 0; }
158#endif
159
160int hwpoison_filter(struct page *p)
161{
162	if (!hwpoison_filter_enable)
163		return 0;
164
165	if (hwpoison_filter_dev(p))
166		return -EINVAL;
167
168	if (hwpoison_filter_flags(p))
169		return -EINVAL;
170
171	if (hwpoison_filter_task(p))
172		return -EINVAL;
173
174	return 0;
175}
176#else
177int hwpoison_filter(struct page *p)
178{
179	return 0;
180}
181#endif
182
183EXPORT_SYMBOL_GPL(hwpoison_filter);
184
185/*
186 * Send all the processes who have the page mapped a signal.
187 * ``action optional'' if they are not immediately affected by the error
188 * ``action required'' if error happened in current execution context
189 */
190static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191			unsigned long pfn, struct page *page, int flags)
192{
193	struct siginfo si;
194	int ret;
195
196	printk(KERN_ERR
197		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198		pfn, t->comm, t->pid);
199	si.si_signo = SIGBUS;
200	si.si_errno = 0;
201	si.si_addr = (void *)addr;
202#ifdef __ARCH_SI_TRAPNO
203	si.si_trapno = trapno;
204#endif
205	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
206
207	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
208		si.si_code = BUS_MCEERR_AR;
209		ret = force_sig_info(SIGBUS, &si, current);
210	} else {
211		/*
212		 * Don't use force here, it's convenient if the signal
213		 * can be temporarily blocked.
214		 * This could cause a loop when the user sets SIGBUS
215		 * to SIG_IGN, but hopefully no one will do that?
216		 */
217		si.si_code = BUS_MCEERR_AO;
218		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
219	}
220	if (ret < 0)
221		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222		       t->comm, t->pid, ret);
223	return ret;
224}
225
226/*
227 * When a unknown page type is encountered drain as many buffers as possible
228 * in the hope to turn the page into a LRU or free page, which we can handle.
229 */
230void shake_page(struct page *p, int access)
231{
232	if (!PageSlab(p)) {
233		lru_add_drain_all();
234		if (PageLRU(p))
235			return;
236		drain_all_pages(page_zone(p));
237		if (PageLRU(p) || is_free_buddy_page(p))
238			return;
239	}
240
241	/*
242	 * Only call shrink_node_slabs here (which would also shrink
243	 * other caches) if access is not potentially fatal.
244	 */
245	if (access)
246		drop_slab_node(page_to_nid(p));
247}
248EXPORT_SYMBOL_GPL(shake_page);
249
250/*
251 * Kill all processes that have a poisoned page mapped and then isolate
252 * the page.
253 *
254 * General strategy:
255 * Find all processes having the page mapped and kill them.
256 * But we keep a page reference around so that the page is not
257 * actually freed yet.
258 * Then stash the page away
259 *
260 * There's no convenient way to get back to mapped processes
261 * from the VMAs. So do a brute-force search over all
262 * running processes.
263 *
264 * Remember that machine checks are not common (or rather
265 * if they are common you have other problems), so this shouldn't
266 * be a performance issue.
267 *
268 * Also there are some races possible while we get from the
269 * error detection to actually handle it.
270 */
271
272struct to_kill {
273	struct list_head nd;
274	struct task_struct *tsk;
275	unsigned long addr;
276	char addr_valid;
277};
278
279/*
280 * Failure handling: if we can't find or can't kill a process there's
281 * not much we can do.	We just print a message and ignore otherwise.
282 */
283
284/*
285 * Schedule a process for later kill.
286 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287 * TBD would GFP_NOIO be enough?
288 */
289static void add_to_kill(struct task_struct *tsk, struct page *p,
290		       struct vm_area_struct *vma,
291		       struct list_head *to_kill,
292		       struct to_kill **tkc)
293{
294	struct to_kill *tk;
295
296	if (*tkc) {
297		tk = *tkc;
298		*tkc = NULL;
299	} else {
300		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
301		if (!tk) {
302			printk(KERN_ERR
303		"MCE: Out of memory while machine check handling\n");
304			return;
305		}
306	}
307	tk->addr = page_address_in_vma(p, vma);
308	tk->addr_valid = 1;
309
310	/*
311	 * In theory we don't have to kill when the page was
312	 * munmaped. But it could be also a mremap. Since that's
313	 * likely very rare kill anyways just out of paranoia, but use
314	 * a SIGKILL because the error is not contained anymore.
315	 */
316	if (tk->addr == -EFAULT) {
317		pr_info("MCE: Unable to find user space address %lx in %s\n",
318			page_to_pfn(p), tsk->comm);
319		tk->addr_valid = 0;
320	}
321	get_task_struct(tsk);
322	tk->tsk = tsk;
323	list_add_tail(&tk->nd, to_kill);
324}
325
326/*
327 * Kill the processes that have been collected earlier.
328 *
329 * Only do anything when DOIT is set, otherwise just free the list
330 * (this is used for clean pages which do not need killing)
331 * Also when FAIL is set do a force kill because something went
332 * wrong earlier.
333 */
334static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
335			  int fail, struct page *page, unsigned long pfn,
336			  int flags)
337{
338	struct to_kill *tk, *next;
339
340	list_for_each_entry_safe (tk, next, to_kill, nd) {
341		if (forcekill) {
342			/*
343			 * In case something went wrong with munmapping
344			 * make sure the process doesn't catch the
345			 * signal and then access the memory. Just kill it.
346			 */
347			if (fail || tk->addr_valid == 0) {
348				printk(KERN_ERR
349		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
350					pfn, tk->tsk->comm, tk->tsk->pid);
351				force_sig(SIGKILL, tk->tsk);
352			}
353
354			/*
355			 * In theory the process could have mapped
356			 * something else on the address in-between. We could
357			 * check for that, but we need to tell the
358			 * process anyways.
359			 */
360			else if (kill_proc(tk->tsk, tk->addr, trapno,
361					      pfn, page, flags) < 0)
362				printk(KERN_ERR
363		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
364					pfn, tk->tsk->comm, tk->tsk->pid);
365		}
366		put_task_struct(tk->tsk);
367		kfree(tk);
368	}
369}
370
371/*
372 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
373 * on behalf of the thread group. Return task_struct of the (first found)
374 * dedicated thread if found, and return NULL otherwise.
375 *
376 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
377 * have to call rcu_read_lock/unlock() in this function.
378 */
379static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
380{
381	struct task_struct *t;
382
383	for_each_thread(tsk, t)
384		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
385			return t;
386	return NULL;
387}
388
389/*
390 * Determine whether a given process is "early kill" process which expects
391 * to be signaled when some page under the process is hwpoisoned.
392 * Return task_struct of the dedicated thread (main thread unless explicitly
393 * specified) if the process is "early kill," and otherwise returns NULL.
394 */
395static struct task_struct *task_early_kill(struct task_struct *tsk,
396					   int force_early)
397{
398	struct task_struct *t;
399	if (!tsk->mm)
400		return NULL;
401	if (force_early)
402		return tsk;
403	t = find_early_kill_thread(tsk);
404	if (t)
405		return t;
406	if (sysctl_memory_failure_early_kill)
407		return tsk;
408	return NULL;
409}
410
411/*
412 * Collect processes when the error hit an anonymous page.
413 */
414static void collect_procs_anon(struct page *page, struct list_head *to_kill,
415			      struct to_kill **tkc, int force_early)
416{
417	struct vm_area_struct *vma;
418	struct task_struct *tsk;
419	struct anon_vma *av;
420	pgoff_t pgoff;
421
422	av = page_lock_anon_vma_read(page);
423	if (av == NULL)	/* Not actually mapped anymore */
424		return;
425
426	pgoff = page_to_pgoff(page);
427	read_lock(&tasklist_lock);
428	for_each_process (tsk) {
429		struct anon_vma_chain *vmac;
430		struct task_struct *t = task_early_kill(tsk, force_early);
431
432		if (!t)
433			continue;
434		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
435					       pgoff, pgoff) {
436			vma = vmac->vma;
437			if (!page_mapped_in_vma(page, vma))
438				continue;
439			if (vma->vm_mm == t->mm)
440				add_to_kill(t, page, vma, to_kill, tkc);
441		}
442	}
443	read_unlock(&tasklist_lock);
444	page_unlock_anon_vma_read(av);
445}
446
447/*
448 * Collect processes when the error hit a file mapped page.
449 */
450static void collect_procs_file(struct page *page, struct list_head *to_kill,
451			      struct to_kill **tkc, int force_early)
452{
453	struct vm_area_struct *vma;
454	struct task_struct *tsk;
455	struct address_space *mapping = page->mapping;
456
457	i_mmap_lock_read(mapping);
458	read_lock(&tasklist_lock);
459	for_each_process(tsk) {
460		pgoff_t pgoff = page_to_pgoff(page);
461		struct task_struct *t = task_early_kill(tsk, force_early);
462
463		if (!t)
464			continue;
465		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
466				      pgoff) {
467			/*
468			 * Send early kill signal to tasks where a vma covers
469			 * the page but the corrupted page is not necessarily
470			 * mapped it in its pte.
471			 * Assume applications who requested early kill want
472			 * to be informed of all such data corruptions.
473			 */
474			if (vma->vm_mm == t->mm)
475				add_to_kill(t, page, vma, to_kill, tkc);
476		}
477	}
478	read_unlock(&tasklist_lock);
479	i_mmap_unlock_read(mapping);
480}
481
482/*
483 * Collect the processes who have the corrupted page mapped to kill.
484 * This is done in two steps for locking reasons.
485 * First preallocate one tokill structure outside the spin locks,
486 * so that we can kill at least one process reasonably reliable.
487 */
488static void collect_procs(struct page *page, struct list_head *tokill,
489				int force_early)
490{
491	struct to_kill *tk;
492
493	if (!page->mapping)
494		return;
495
496	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
497	if (!tk)
498		return;
499	if (PageAnon(page))
500		collect_procs_anon(page, tokill, &tk, force_early);
501	else
502		collect_procs_file(page, tokill, &tk, force_early);
503	kfree(tk);
504}
505
506/*
507 * Error handlers for various types of pages.
508 */
509
510enum outcome {
511	IGNORED,	/* Error: cannot be handled */
512	FAILED,		/* Error: handling failed */
513	DELAYED,	/* Will be handled later */
514	RECOVERED,	/* Successfully recovered */
515};
516
517static const char *action_name[] = {
518	[IGNORED] = "Ignored",
519	[FAILED] = "Failed",
520	[DELAYED] = "Delayed",
521	[RECOVERED] = "Recovered",
522};
523
524enum action_page_type {
525	MSG_KERNEL,
526	MSG_KERNEL_HIGH_ORDER,
527	MSG_SLAB,
528	MSG_DIFFERENT_COMPOUND,
529	MSG_POISONED_HUGE,
530	MSG_HUGE,
531	MSG_FREE_HUGE,
532	MSG_UNMAP_FAILED,
533	MSG_DIRTY_SWAPCACHE,
534	MSG_CLEAN_SWAPCACHE,
535	MSG_DIRTY_MLOCKED_LRU,
536	MSG_CLEAN_MLOCKED_LRU,
537	MSG_DIRTY_UNEVICTABLE_LRU,
538	MSG_CLEAN_UNEVICTABLE_LRU,
539	MSG_DIRTY_LRU,
540	MSG_CLEAN_LRU,
541	MSG_TRUNCATED_LRU,
542	MSG_BUDDY,
543	MSG_BUDDY_2ND,
544	MSG_UNKNOWN,
545};
546
547static const char * const action_page_types[] = {
548	[MSG_KERNEL]			= "reserved kernel page",
549	[MSG_KERNEL_HIGH_ORDER]		= "high-order kernel page",
550	[MSG_SLAB]			= "kernel slab page",
551	[MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
552	[MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
553	[MSG_HUGE]			= "huge page",
554	[MSG_FREE_HUGE]			= "free huge page",
555	[MSG_UNMAP_FAILED]		= "unmapping failed page",
556	[MSG_DIRTY_SWAPCACHE]		= "dirty swapcache page",
557	[MSG_CLEAN_SWAPCACHE]		= "clean swapcache page",
558	[MSG_DIRTY_MLOCKED_LRU]		= "dirty mlocked LRU page",
559	[MSG_CLEAN_MLOCKED_LRU]		= "clean mlocked LRU page",
560	[MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
561	[MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
562	[MSG_DIRTY_LRU]			= "dirty LRU page",
563	[MSG_CLEAN_LRU]			= "clean LRU page",
564	[MSG_TRUNCATED_LRU]		= "already truncated LRU page",
565	[MSG_BUDDY]			= "free buddy page",
566	[MSG_BUDDY_2ND]			= "free buddy page (2nd try)",
567	[MSG_UNKNOWN]			= "unknown page",
568};
569
570/*
571 * XXX: It is possible that a page is isolated from LRU cache,
572 * and then kept in swap cache or failed to remove from page cache.
573 * The page count will stop it from being freed by unpoison.
574 * Stress tests should be aware of this memory leak problem.
575 */
576static int delete_from_lru_cache(struct page *p)
577{
578	if (!isolate_lru_page(p)) {
579		/*
580		 * Clear sensible page flags, so that the buddy system won't
581		 * complain when the page is unpoison-and-freed.
582		 */
583		ClearPageActive(p);
584		ClearPageUnevictable(p);
585		/*
586		 * drop the page count elevated by isolate_lru_page()
587		 */
588		page_cache_release(p);
589		return 0;
590	}
591	return -EIO;
592}
593
594/*
595 * Error hit kernel page.
596 * Do nothing, try to be lucky and not touch this instead. For a few cases we
597 * could be more sophisticated.
598 */
599static int me_kernel(struct page *p, unsigned long pfn)
600{
601	return IGNORED;
602}
603
604/*
605 * Page in unknown state. Do nothing.
606 */
607static int me_unknown(struct page *p, unsigned long pfn)
608{
609	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
610	return FAILED;
611}
612
613/*
614 * Clean (or cleaned) page cache page.
615 */
616static int me_pagecache_clean(struct page *p, unsigned long pfn)
617{
618	int err;
619	int ret = FAILED;
620	struct address_space *mapping;
621
622	delete_from_lru_cache(p);
623
624	/*
625	 * For anonymous pages we're done the only reference left
626	 * should be the one m_f() holds.
627	 */
628	if (PageAnon(p))
629		return RECOVERED;
630
631	/*
632	 * Now truncate the page in the page cache. This is really
633	 * more like a "temporary hole punch"
634	 * Don't do this for block devices when someone else
635	 * has a reference, because it could be file system metadata
636	 * and that's not safe to truncate.
637	 */
638	mapping = page_mapping(p);
639	if (!mapping) {
640		/*
641		 * Page has been teared down in the meanwhile
642		 */
643		return FAILED;
644	}
645
646	/*
647	 * Truncation is a bit tricky. Enable it per file system for now.
648	 *
649	 * Open: to take i_mutex or not for this? Right now we don't.
650	 */
651	if (mapping->a_ops->error_remove_page) {
652		err = mapping->a_ops->error_remove_page(mapping, p);
653		if (err != 0) {
654			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
655					pfn, err);
656		} else if (page_has_private(p) &&
657				!try_to_release_page(p, GFP_NOIO)) {
658			pr_info("MCE %#lx: failed to release buffers\n", pfn);
659		} else {
660			ret = RECOVERED;
661		}
662	} else {
663		/*
664		 * If the file system doesn't support it just invalidate
665		 * This fails on dirty or anything with private pages
666		 */
667		if (invalidate_inode_page(p))
668			ret = RECOVERED;
669		else
670			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
671				pfn);
672	}
673	return ret;
674}
675
676/*
677 * Dirty pagecache page
678 * Issues: when the error hit a hole page the error is not properly
679 * propagated.
680 */
681static int me_pagecache_dirty(struct page *p, unsigned long pfn)
682{
683	struct address_space *mapping = page_mapping(p);
684
685	SetPageError(p);
686	/* TBD: print more information about the file. */
687	if (mapping) {
688		/*
689		 * IO error will be reported by write(), fsync(), etc.
690		 * who check the mapping.
691		 * This way the application knows that something went
692		 * wrong with its dirty file data.
693		 *
694		 * There's one open issue:
695		 *
696		 * The EIO will be only reported on the next IO
697		 * operation and then cleared through the IO map.
698		 * Normally Linux has two mechanisms to pass IO error
699		 * first through the AS_EIO flag in the address space
700		 * and then through the PageError flag in the page.
701		 * Since we drop pages on memory failure handling the
702		 * only mechanism open to use is through AS_AIO.
703		 *
704		 * This has the disadvantage that it gets cleared on
705		 * the first operation that returns an error, while
706		 * the PageError bit is more sticky and only cleared
707		 * when the page is reread or dropped.  If an
708		 * application assumes it will always get error on
709		 * fsync, but does other operations on the fd before
710		 * and the page is dropped between then the error
711		 * will not be properly reported.
712		 *
713		 * This can already happen even without hwpoisoned
714		 * pages: first on metadata IO errors (which only
715		 * report through AS_EIO) or when the page is dropped
716		 * at the wrong time.
717		 *
718		 * So right now we assume that the application DTRT on
719		 * the first EIO, but we're not worse than other parts
720		 * of the kernel.
721		 */
722		mapping_set_error(mapping, EIO);
723	}
724
725	return me_pagecache_clean(p, pfn);
726}
727
728/*
729 * Clean and dirty swap cache.
730 *
731 * Dirty swap cache page is tricky to handle. The page could live both in page
732 * cache and swap cache(ie. page is freshly swapped in). So it could be
733 * referenced concurrently by 2 types of PTEs:
734 * normal PTEs and swap PTEs. We try to handle them consistently by calling
735 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
736 * and then
737 *      - clear dirty bit to prevent IO
738 *      - remove from LRU
739 *      - but keep in the swap cache, so that when we return to it on
740 *        a later page fault, we know the application is accessing
741 *        corrupted data and shall be killed (we installed simple
742 *        interception code in do_swap_page to catch it).
743 *
744 * Clean swap cache pages can be directly isolated. A later page fault will
745 * bring in the known good data from disk.
746 */
747static int me_swapcache_dirty(struct page *p, unsigned long pfn)
748{
749	ClearPageDirty(p);
750	/* Trigger EIO in shmem: */
751	ClearPageUptodate(p);
752
753	if (!delete_from_lru_cache(p))
754		return DELAYED;
755	else
756		return FAILED;
757}
758
759static int me_swapcache_clean(struct page *p, unsigned long pfn)
760{
761	delete_from_swap_cache(p);
762
763	if (!delete_from_lru_cache(p))
764		return RECOVERED;
765	else
766		return FAILED;
767}
768
769/*
770 * Huge pages. Needs work.
771 * Issues:
772 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
773 *   To narrow down kill region to one page, we need to break up pmd.
774 */
775static int me_huge_page(struct page *p, unsigned long pfn)
776{
777	int res = 0;
778	struct page *hpage = compound_head(p);
779	/*
780	 * We can safely recover from error on free or reserved (i.e.
781	 * not in-use) hugepage by dequeuing it from freelist.
782	 * To check whether a hugepage is in-use or not, we can't use
783	 * page->lru because it can be used in other hugepage operations,
784	 * such as __unmap_hugepage_range() and gather_surplus_pages().
785	 * So instead we use page_mapping() and PageAnon().
786	 * We assume that this function is called with page lock held,
787	 * so there is no race between isolation and mapping/unmapping.
788	 */
789	if (!(page_mapping(hpage) || PageAnon(hpage))) {
790		res = dequeue_hwpoisoned_huge_page(hpage);
791		if (!res)
792			return RECOVERED;
793	}
794	return DELAYED;
795}
796
797/*
798 * Various page states we can handle.
799 *
800 * A page state is defined by its current page->flags bits.
801 * The table matches them in order and calls the right handler.
802 *
803 * This is quite tricky because we can access page at any time
804 * in its live cycle, so all accesses have to be extremely careful.
805 *
806 * This is not complete. More states could be added.
807 * For any missing state don't attempt recovery.
808 */
809
810#define dirty		(1UL << PG_dirty)
811#define sc		(1UL << PG_swapcache)
812#define unevict		(1UL << PG_unevictable)
813#define mlock		(1UL << PG_mlocked)
814#define writeback	(1UL << PG_writeback)
815#define lru		(1UL << PG_lru)
816#define swapbacked	(1UL << PG_swapbacked)
817#define head		(1UL << PG_head)
818#define tail		(1UL << PG_tail)
819#define compound	(1UL << PG_compound)
820#define slab		(1UL << PG_slab)
821#define reserved	(1UL << PG_reserved)
822
823static struct page_state {
824	unsigned long mask;
825	unsigned long res;
826	enum action_page_type type;
827	int (*action)(struct page *p, unsigned long pfn);
828} error_states[] = {
829	{ reserved,	reserved,	MSG_KERNEL,	me_kernel },
830	/*
831	 * free pages are specially detected outside this table:
832	 * PG_buddy pages only make a small fraction of all free pages.
833	 */
834
835	/*
836	 * Could in theory check if slab page is free or if we can drop
837	 * currently unused objects without touching them. But just
838	 * treat it as standard kernel for now.
839	 */
840	{ slab,		slab,		MSG_SLAB,	me_kernel },
841
842#ifdef CONFIG_PAGEFLAGS_EXTENDED
843	{ head,		head,		MSG_HUGE,		me_huge_page },
844	{ tail,		tail,		MSG_HUGE,		me_huge_page },
845#else
846	{ compound,	compound,	MSG_HUGE,		me_huge_page },
847#endif
848
849	{ sc|dirty,	sc|dirty,	MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
850	{ sc|dirty,	sc,		MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
851
852	{ mlock|dirty,	mlock|dirty,	MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
853	{ mlock|dirty,	mlock,		MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
854
855	{ unevict|dirty, unevict|dirty,	MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
856	{ unevict|dirty, unevict,	MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
857
858	{ lru|dirty,	lru|dirty,	MSG_DIRTY_LRU,	me_pagecache_dirty },
859	{ lru|dirty,	lru,		MSG_CLEAN_LRU,	me_pagecache_clean },
860
861	/*
862	 * Catchall entry: must be at end.
863	 */
864	{ 0,		0,		MSG_UNKNOWN,	me_unknown },
865};
866
867#undef dirty
868#undef sc
869#undef unevict
870#undef mlock
871#undef writeback
872#undef lru
873#undef swapbacked
874#undef head
875#undef tail
876#undef compound
877#undef slab
878#undef reserved
879
880/*
881 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
882 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
883 */
884static void action_result(unsigned long pfn, enum action_page_type type, int result)
885{
886	pr_err("MCE %#lx: recovery action for %s: %s\n",
887		pfn, action_page_types[type], action_name[result]);
888}
889
890static int page_action(struct page_state *ps, struct page *p,
891			unsigned long pfn)
892{
893	int result;
894	int count;
895
896	result = ps->action(p, pfn);
897
898	count = page_count(p) - 1;
899	if (ps->action == me_swapcache_dirty && result == DELAYED)
900		count--;
901	if (count != 0) {
902		printk(KERN_ERR
903		       "MCE %#lx: %s still referenced by %d users\n",
904		       pfn, action_page_types[ps->type], count);
905		result = FAILED;
906	}
907	action_result(pfn, ps->type, result);
908
909	/* Could do more checks here if page looks ok */
910	/*
911	 * Could adjust zone counters here to correct for the missing page.
912	 */
913
914	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
915}
916
917/*
918 * Do all that is necessary to remove user space mappings. Unmap
919 * the pages and send SIGBUS to the processes if the data was dirty.
920 */
921static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
922				  int trapno, int flags, struct page **hpagep)
923{
924	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
925	struct address_space *mapping;
926	LIST_HEAD(tokill);
927	int ret;
928	int kill = 1, forcekill;
929	struct page *hpage = *hpagep;
930	struct page *ppage;
931
932	/*
933	 * Here we are interested only in user-mapped pages, so skip any
934	 * other types of pages.
935	 */
936	if (PageReserved(p) || PageSlab(p))
937		return SWAP_SUCCESS;
938	if (!(PageLRU(hpage) || PageHuge(p)))
939		return SWAP_SUCCESS;
940
941	/*
942	 * This check implies we don't kill processes if their pages
943	 * are in the swap cache early. Those are always late kills.
944	 */
945	if (!page_mapped(hpage))
946		return SWAP_SUCCESS;
947
948	if (PageKsm(p)) {
949		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
950		return SWAP_FAIL;
951	}
952
953	if (PageSwapCache(p)) {
954		printk(KERN_ERR
955		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
956		ttu |= TTU_IGNORE_HWPOISON;
957	}
958
959	/*
960	 * Propagate the dirty bit from PTEs to struct page first, because we
961	 * need this to decide if we should kill or just drop the page.
962	 * XXX: the dirty test could be racy: set_page_dirty() may not always
963	 * be called inside page lock (it's recommended but not enforced).
964	 */
965	mapping = page_mapping(hpage);
966	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
967	    mapping_cap_writeback_dirty(mapping)) {
968		if (page_mkclean(hpage)) {
969			SetPageDirty(hpage);
970		} else {
971			kill = 0;
972			ttu |= TTU_IGNORE_HWPOISON;
973			printk(KERN_INFO
974	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
975				pfn);
976		}
977	}
978
979	/*
980	 * ppage: poisoned page
981	 *   if p is regular page(4k page)
982	 *        ppage == real poisoned page;
983	 *   else p is hugetlb or THP, ppage == head page.
984	 */
985	ppage = hpage;
986
987	if (PageTransHuge(hpage)) {
988		/*
989		 * Verify that this isn't a hugetlbfs head page, the check for
990		 * PageAnon is just for avoid tripping a split_huge_page
991		 * internal debug check, as split_huge_page refuses to deal with
992		 * anything that isn't an anon page. PageAnon can't go away fro
993		 * under us because we hold a refcount on the hpage, without a
994		 * refcount on the hpage. split_huge_page can't be safely called
995		 * in the first place, having a refcount on the tail isn't
996		 * enough * to be safe.
997		 */
998		if (!PageHuge(hpage) && PageAnon(hpage)) {
999			if (unlikely(split_huge_page(hpage))) {
1000				/*
1001				 * FIXME: if splitting THP is failed, it is
1002				 * better to stop the following operation rather
1003				 * than causing panic by unmapping. System might
1004				 * survive if the page is freed later.
1005				 */
1006				printk(KERN_INFO
1007					"MCE %#lx: failed to split THP\n", pfn);
1008
1009				BUG_ON(!PageHWPoison(p));
1010				return SWAP_FAIL;
1011			}
1012			/*
1013			 * We pinned the head page for hwpoison handling,
1014			 * now we split the thp and we are interested in
1015			 * the hwpoisoned raw page, so move the refcount
1016			 * to it. Similarly, page lock is shifted.
1017			 */
1018			if (hpage != p) {
1019				if (!(flags & MF_COUNT_INCREASED)) {
1020					put_page(hpage);
1021					get_page(p);
1022				}
1023				lock_page(p);
1024				unlock_page(hpage);
1025				*hpagep = p;
1026			}
1027			/* THP is split, so ppage should be the real poisoned page. */
1028			ppage = p;
1029		}
1030	}
1031
1032	/*
1033	 * First collect all the processes that have the page
1034	 * mapped in dirty form.  This has to be done before try_to_unmap,
1035	 * because ttu takes the rmap data structures down.
1036	 *
1037	 * Error handling: We ignore errors here because
1038	 * there's nothing that can be done.
1039	 */
1040	if (kill)
1041		collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1042
1043	ret = try_to_unmap(ppage, ttu);
1044	if (ret != SWAP_SUCCESS)
1045		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1046				pfn, page_mapcount(ppage));
1047
1048	/*
1049	 * Now that the dirty bit has been propagated to the
1050	 * struct page and all unmaps done we can decide if
1051	 * killing is needed or not.  Only kill when the page
1052	 * was dirty or the process is not restartable,
1053	 * otherwise the tokill list is merely
1054	 * freed.  When there was a problem unmapping earlier
1055	 * use a more force-full uncatchable kill to prevent
1056	 * any accesses to the poisoned memory.
1057	 */
1058	forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1059	kill_procs(&tokill, forcekill, trapno,
1060		      ret != SWAP_SUCCESS, p, pfn, flags);
1061
1062	return ret;
1063}
1064
1065static void set_page_hwpoison_huge_page(struct page *hpage)
1066{
1067	int i;
1068	int nr_pages = 1 << compound_order(hpage);
1069	for (i = 0; i < nr_pages; i++)
1070		SetPageHWPoison(hpage + i);
1071}
1072
1073static void clear_page_hwpoison_huge_page(struct page *hpage)
1074{
1075	int i;
1076	int nr_pages = 1 << compound_order(hpage);
1077	for (i = 0; i < nr_pages; i++)
1078		ClearPageHWPoison(hpage + i);
1079}
1080
1081/**
1082 * memory_failure - Handle memory failure of a page.
1083 * @pfn: Page Number of the corrupted page
1084 * @trapno: Trap number reported in the signal to user space.
1085 * @flags: fine tune action taken
1086 *
1087 * This function is called by the low level machine check code
1088 * of an architecture when it detects hardware memory corruption
1089 * of a page. It tries its best to recover, which includes
1090 * dropping pages, killing processes etc.
1091 *
1092 * The function is primarily of use for corruptions that
1093 * happen outside the current execution context (e.g. when
1094 * detected by a background scrubber)
1095 *
1096 * Must run in process context (e.g. a work queue) with interrupts
1097 * enabled and no spinlocks hold.
1098 */
1099int memory_failure(unsigned long pfn, int trapno, int flags)
1100{
1101	struct page_state *ps;
1102	struct page *p;
1103	struct page *hpage;
1104	int res;
1105	unsigned int nr_pages;
1106	unsigned long page_flags;
1107
1108	if (!sysctl_memory_failure_recovery)
1109		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1110
1111	if (!pfn_valid(pfn)) {
1112		printk(KERN_ERR
1113		       "MCE %#lx: memory outside kernel control\n",
1114		       pfn);
1115		return -ENXIO;
1116	}
1117
1118	p = pfn_to_page(pfn);
1119	hpage = compound_head(p);
1120	if (TestSetPageHWPoison(p)) {
1121		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1122		return 0;
1123	}
1124
1125	/*
1126	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1127	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1128	 * transparent hugepages, they are supposed to be split and error
1129	 * measurement is done in normal page units.  So nr_pages should be one
1130	 * in this case.
1131	 */
1132	if (PageHuge(p))
1133		nr_pages = 1 << compound_order(hpage);
1134	else /* normal page or thp */
1135		nr_pages = 1;
1136	atomic_long_add(nr_pages, &num_poisoned_pages);
1137
1138	/*
1139	 * We need/can do nothing about count=0 pages.
1140	 * 1) it's a free page, and therefore in safe hand:
1141	 *    prep_new_page() will be the gate keeper.
1142	 * 2) it's a free hugepage, which is also safe:
1143	 *    an affected hugepage will be dequeued from hugepage freelist,
1144	 *    so there's no concern about reusing it ever after.
1145	 * 3) it's part of a non-compound high order page.
1146	 *    Implies some kernel user: cannot stop them from
1147	 *    R/W the page; let's pray that the page has been
1148	 *    used and will be freed some time later.
1149	 * In fact it's dangerous to directly bump up page count from 0,
1150	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1151	 */
1152	if (!(flags & MF_COUNT_INCREASED) &&
1153		!get_page_unless_zero(hpage)) {
1154		if (is_free_buddy_page(p)) {
1155			action_result(pfn, MSG_BUDDY, DELAYED);
1156			return 0;
1157		} else if (PageHuge(hpage)) {
1158			/*
1159			 * Check "filter hit" and "race with other subpage."
1160			 */
1161			lock_page(hpage);
1162			if (PageHWPoison(hpage)) {
1163				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1164				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1165					atomic_long_sub(nr_pages, &num_poisoned_pages);
1166					unlock_page(hpage);
1167					return 0;
1168				}
1169			}
1170			set_page_hwpoison_huge_page(hpage);
1171			res = dequeue_hwpoisoned_huge_page(hpage);
1172			action_result(pfn, MSG_FREE_HUGE,
1173				      res ? IGNORED : DELAYED);
1174			unlock_page(hpage);
1175			return res;
1176		} else {
1177			action_result(pfn, MSG_KERNEL_HIGH_ORDER, IGNORED);
1178			return -EBUSY;
1179		}
1180	}
1181
1182	/*
1183	 * We ignore non-LRU pages for good reasons.
1184	 * - PG_locked is only well defined for LRU pages and a few others
1185	 * - to avoid races with __set_page_locked()
1186	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1187	 * The check (unnecessarily) ignores LRU pages being isolated and
1188	 * walked by the page reclaim code, however that's not a big loss.
1189	 */
1190	if (!PageHuge(p)) {
1191		if (!PageLRU(hpage))
1192			shake_page(hpage, 0);
1193		if (!PageLRU(hpage)) {
1194			/*
1195			 * shake_page could have turned it free.
1196			 */
1197			if (is_free_buddy_page(p)) {
1198				if (flags & MF_COUNT_INCREASED)
1199					action_result(pfn, MSG_BUDDY, DELAYED);
1200				else
1201					action_result(pfn, MSG_BUDDY_2ND,
1202						      DELAYED);
1203				return 0;
1204			}
1205		}
1206	}
1207
1208	lock_page(hpage);
1209
1210	/*
1211	 * The page could have changed compound pages during the locking.
1212	 * If this happens just bail out.
1213	 */
1214	if (compound_head(p) != hpage) {
1215		action_result(pfn, MSG_DIFFERENT_COMPOUND, IGNORED);
1216		res = -EBUSY;
1217		goto out;
1218	}
1219
1220	/*
1221	 * We use page flags to determine what action should be taken, but
1222	 * the flags can be modified by the error containment action.  One
1223	 * example is an mlocked page, where PG_mlocked is cleared by
1224	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1225	 * correctly, we save a copy of the page flags at this time.
1226	 */
1227	page_flags = p->flags;
1228
1229	/*
1230	 * unpoison always clear PG_hwpoison inside page lock
1231	 */
1232	if (!PageHWPoison(p)) {
1233		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1234		atomic_long_sub(nr_pages, &num_poisoned_pages);
1235		put_page(hpage);
1236		res = 0;
1237		goto out;
1238	}
1239	if (hwpoison_filter(p)) {
1240		if (TestClearPageHWPoison(p))
1241			atomic_long_sub(nr_pages, &num_poisoned_pages);
1242		unlock_page(hpage);
1243		put_page(hpage);
1244		return 0;
1245	}
1246
1247	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1248		goto identify_page_state;
1249
1250	/*
1251	 * For error on the tail page, we should set PG_hwpoison
1252	 * on the head page to show that the hugepage is hwpoisoned
1253	 */
1254	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1255		action_result(pfn, MSG_POISONED_HUGE, IGNORED);
1256		unlock_page(hpage);
1257		put_page(hpage);
1258		return 0;
1259	}
1260	/*
1261	 * Set PG_hwpoison on all pages in an error hugepage,
1262	 * because containment is done in hugepage unit for now.
1263	 * Since we have done TestSetPageHWPoison() for the head page with
1264	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1265	 */
1266	if (PageHuge(p))
1267		set_page_hwpoison_huge_page(hpage);
1268
1269	/*
1270	 * It's very difficult to mess with pages currently under IO
1271	 * and in many cases impossible, so we just avoid it here.
1272	 */
1273	wait_on_page_writeback(p);
1274
1275	/*
1276	 * Now take care of user space mappings.
1277	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1278	 *
1279	 * When the raw error page is thp tail page, hpage points to the raw
1280	 * page after thp split.
1281	 */
1282	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1283	    != SWAP_SUCCESS) {
1284		action_result(pfn, MSG_UNMAP_FAILED, IGNORED);
1285		res = -EBUSY;
1286		goto out;
1287	}
1288
1289	/*
1290	 * Torn down by someone else?
1291	 */
1292	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1293		action_result(pfn, MSG_TRUNCATED_LRU, IGNORED);
1294		res = -EBUSY;
1295		goto out;
1296	}
1297
1298identify_page_state:
1299	res = -EBUSY;
1300	/*
1301	 * The first check uses the current page flags which may not have any
1302	 * relevant information. The second check with the saved page flagss is
1303	 * carried out only if the first check can't determine the page status.
1304	 */
1305	for (ps = error_states;; ps++)
1306		if ((p->flags & ps->mask) == ps->res)
1307			break;
1308
1309	page_flags |= (p->flags & (1UL << PG_dirty));
1310
1311	if (!ps->mask)
1312		for (ps = error_states;; ps++)
1313			if ((page_flags & ps->mask) == ps->res)
1314				break;
1315	res = page_action(ps, p, pfn);
1316out:
1317	unlock_page(hpage);
1318	return res;
1319}
1320EXPORT_SYMBOL_GPL(memory_failure);
1321
1322#define MEMORY_FAILURE_FIFO_ORDER	4
1323#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1324
1325struct memory_failure_entry {
1326	unsigned long pfn;
1327	int trapno;
1328	int flags;
1329};
1330
1331struct memory_failure_cpu {
1332	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1333		      MEMORY_FAILURE_FIFO_SIZE);
1334	spinlock_t lock;
1335	struct work_struct work;
1336};
1337
1338static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1339
1340/**
1341 * memory_failure_queue - Schedule handling memory failure of a page.
1342 * @pfn: Page Number of the corrupted page
1343 * @trapno: Trap number reported in the signal to user space.
1344 * @flags: Flags for memory failure handling
1345 *
1346 * This function is called by the low level hardware error handler
1347 * when it detects hardware memory corruption of a page. It schedules
1348 * the recovering of error page, including dropping pages, killing
1349 * processes etc.
1350 *
1351 * The function is primarily of use for corruptions that
1352 * happen outside the current execution context (e.g. when
1353 * detected by a background scrubber)
1354 *
1355 * Can run in IRQ context.
1356 */
1357void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1358{
1359	struct memory_failure_cpu *mf_cpu;
1360	unsigned long proc_flags;
1361	struct memory_failure_entry entry = {
1362		.pfn =		pfn,
1363		.trapno =	trapno,
1364		.flags =	flags,
1365	};
1366
1367	mf_cpu = &get_cpu_var(memory_failure_cpu);
1368	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1369	if (kfifo_put(&mf_cpu->fifo, entry))
1370		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1371	else
1372		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1373		       pfn);
1374	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1375	put_cpu_var(memory_failure_cpu);
1376}
1377EXPORT_SYMBOL_GPL(memory_failure_queue);
1378
1379static void memory_failure_work_func(struct work_struct *work)
1380{
1381	struct memory_failure_cpu *mf_cpu;
1382	struct memory_failure_entry entry = { 0, };
1383	unsigned long proc_flags;
1384	int gotten;
1385
1386	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1387	for (;;) {
1388		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1389		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1390		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1391		if (!gotten)
1392			break;
1393		if (entry.flags & MF_SOFT_OFFLINE)
1394			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1395		else
1396			memory_failure(entry.pfn, entry.trapno, entry.flags);
1397	}
1398}
1399
1400static int __init memory_failure_init(void)
1401{
1402	struct memory_failure_cpu *mf_cpu;
1403	int cpu;
1404
1405	for_each_possible_cpu(cpu) {
1406		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1407		spin_lock_init(&mf_cpu->lock);
1408		INIT_KFIFO(mf_cpu->fifo);
1409		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1410	}
1411
1412	return 0;
1413}
1414core_initcall(memory_failure_init);
1415
1416/**
1417 * unpoison_memory - Unpoison a previously poisoned page
1418 * @pfn: Page number of the to be unpoisoned page
1419 *
1420 * Software-unpoison a page that has been poisoned by
1421 * memory_failure() earlier.
1422 *
1423 * This is only done on the software-level, so it only works
1424 * for linux injected failures, not real hardware failures
1425 *
1426 * Returns 0 for success, otherwise -errno.
1427 */
1428int unpoison_memory(unsigned long pfn)
1429{
1430	struct page *page;
1431	struct page *p;
1432	int freeit = 0;
1433	unsigned int nr_pages;
1434
1435	if (!pfn_valid(pfn))
1436		return -ENXIO;
1437
1438	p = pfn_to_page(pfn);
1439	page = compound_head(p);
1440
1441	if (!PageHWPoison(p)) {
1442		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1443		return 0;
1444	}
1445
1446	/*
1447	 * unpoison_memory() can encounter thp only when the thp is being
1448	 * worked by memory_failure() and the page lock is not held yet.
1449	 * In such case, we yield to memory_failure() and make unpoison fail.
1450	 */
1451	if (!PageHuge(page) && PageTransHuge(page)) {
1452		pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1453			return 0;
1454	}
1455
1456	nr_pages = 1 << compound_order(page);
1457
1458	if (!get_page_unless_zero(page)) {
1459		/*
1460		 * Since HWPoisoned hugepage should have non-zero refcount,
1461		 * race between memory failure and unpoison seems to happen.
1462		 * In such case unpoison fails and memory failure runs
1463		 * to the end.
1464		 */
1465		if (PageHuge(page)) {
1466			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1467			return 0;
1468		}
1469		if (TestClearPageHWPoison(p))
1470			atomic_long_dec(&num_poisoned_pages);
1471		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1472		return 0;
1473	}
1474
1475	lock_page(page);
1476	/*
1477	 * This test is racy because PG_hwpoison is set outside of page lock.
1478	 * That's acceptable because that won't trigger kernel panic. Instead,
1479	 * the PG_hwpoison page will be caught and isolated on the entrance to
1480	 * the free buddy page pool.
1481	 */
1482	if (TestClearPageHWPoison(page)) {
1483		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1484		atomic_long_sub(nr_pages, &num_poisoned_pages);
1485		freeit = 1;
1486		if (PageHuge(page))
1487			clear_page_hwpoison_huge_page(page);
1488	}
1489	unlock_page(page);
1490
1491	put_page(page);
1492	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1493		put_page(page);
1494
1495	return 0;
1496}
1497EXPORT_SYMBOL(unpoison_memory);
1498
1499static struct page *new_page(struct page *p, unsigned long private, int **x)
1500{
1501	int nid = page_to_nid(p);
1502	if (PageHuge(p))
1503		return alloc_huge_page_node(page_hstate(compound_head(p)),
1504						   nid);
1505	else
1506		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1507}
1508
1509/*
1510 * Safely get reference count of an arbitrary page.
1511 * Returns 0 for a free page, -EIO for a zero refcount page
1512 * that is not free, and 1 for any other page type.
1513 * For 1 the page is returned with increased page count, otherwise not.
1514 */
1515static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1516{
1517	int ret;
1518
1519	if (flags & MF_COUNT_INCREASED)
1520		return 1;
1521
1522	/*
1523	 * When the target page is a free hugepage, just remove it
1524	 * from free hugepage list.
1525	 */
1526	if (!get_page_unless_zero(compound_head(p))) {
1527		if (PageHuge(p)) {
1528			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1529			ret = 0;
1530		} else if (is_free_buddy_page(p)) {
1531			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1532			ret = 0;
1533		} else {
1534			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1535				__func__, pfn, p->flags);
1536			ret = -EIO;
1537		}
1538	} else {
1539		/* Not a free page */
1540		ret = 1;
1541	}
1542	return ret;
1543}
1544
1545static int get_any_page(struct page *page, unsigned long pfn, int flags)
1546{
1547	int ret = __get_any_page(page, pfn, flags);
1548
1549	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1550		/*
1551		 * Try to free it.
1552		 */
1553		put_page(page);
1554		shake_page(page, 1);
1555
1556		/*
1557		 * Did it turn free?
1558		 */
1559		ret = __get_any_page(page, pfn, 0);
1560		if (ret == 1 && !PageLRU(page)) {
1561			/* Drop page reference which is from __get_any_page() */
1562			put_page(page);
1563			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1564				pfn, page->flags);
1565			return -EIO;
1566		}
1567	}
1568	return ret;
1569}
1570
1571static int soft_offline_huge_page(struct page *page, int flags)
1572{
1573	int ret;
1574	unsigned long pfn = page_to_pfn(page);
1575	struct page *hpage = compound_head(page);
1576	LIST_HEAD(pagelist);
1577
1578	/*
1579	 * This double-check of PageHWPoison is to avoid the race with
1580	 * memory_failure(). See also comment in __soft_offline_page().
1581	 */
1582	lock_page(hpage);
1583	if (PageHWPoison(hpage)) {
1584		unlock_page(hpage);
1585		put_page(hpage);
1586		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1587		return -EBUSY;
1588	}
1589	unlock_page(hpage);
1590
1591	ret = isolate_huge_page(hpage, &pagelist);
1592	/*
1593	 * get_any_page() and isolate_huge_page() takes a refcount each,
1594	 * so need to drop one here.
1595	 */
1596	put_page(hpage);
1597	if (!ret) {
1598		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1599		return -EBUSY;
1600	}
1601
1602	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1603				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1604	if (ret) {
1605		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1606			pfn, ret, page->flags);
1607		/*
1608		 * We know that soft_offline_huge_page() tries to migrate
1609		 * only one hugepage pointed to by hpage, so we need not
1610		 * run through the pagelist here.
1611		 */
1612		putback_active_hugepage(hpage);
1613		if (ret > 0)
1614			ret = -EIO;
1615	} else {
1616		/* overcommit hugetlb page will be freed to buddy */
1617		if (PageHuge(page)) {
1618			set_page_hwpoison_huge_page(hpage);
1619			dequeue_hwpoisoned_huge_page(hpage);
1620			atomic_long_add(1 << compound_order(hpage),
1621					&num_poisoned_pages);
1622		} else {
1623			SetPageHWPoison(page);
1624			atomic_long_inc(&num_poisoned_pages);
1625		}
1626	}
1627	return ret;
1628}
1629
1630static int __soft_offline_page(struct page *page, int flags)
1631{
1632	int ret;
1633	unsigned long pfn = page_to_pfn(page);
1634
1635	/*
1636	 * Check PageHWPoison again inside page lock because PageHWPoison
1637	 * is set by memory_failure() outside page lock. Note that
1638	 * memory_failure() also double-checks PageHWPoison inside page lock,
1639	 * so there's no race between soft_offline_page() and memory_failure().
1640	 */
1641	lock_page(page);
1642	wait_on_page_writeback(page);
1643	if (PageHWPoison(page)) {
1644		unlock_page(page);
1645		put_page(page);
1646		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1647		return -EBUSY;
1648	}
1649	/*
1650	 * Try to invalidate first. This should work for
1651	 * non dirty unmapped page cache pages.
1652	 */
1653	ret = invalidate_inode_page(page);
1654	unlock_page(page);
1655	/*
1656	 * RED-PEN would be better to keep it isolated here, but we
1657	 * would need to fix isolation locking first.
1658	 */
1659	if (ret == 1) {
1660		put_page(page);
1661		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1662		SetPageHWPoison(page);
1663		atomic_long_inc(&num_poisoned_pages);
1664		return 0;
1665	}
1666
1667	/*
1668	 * Simple invalidation didn't work.
1669	 * Try to migrate to a new page instead. migrate.c
1670	 * handles a large number of cases for us.
1671	 */
1672	ret = isolate_lru_page(page);
1673	/*
1674	 * Drop page reference which is came from get_any_page()
1675	 * successful isolate_lru_page() already took another one.
1676	 */
1677	put_page(page);
1678	if (!ret) {
1679		LIST_HEAD(pagelist);
1680		inc_zone_page_state(page, NR_ISOLATED_ANON +
1681					page_is_file_cache(page));
1682		list_add(&page->lru, &pagelist);
1683		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1684					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1685		if (ret) {
1686			if (!list_empty(&pagelist)) {
1687				list_del(&page->lru);
1688				dec_zone_page_state(page, NR_ISOLATED_ANON +
1689						page_is_file_cache(page));
1690				putback_lru_page(page);
1691			}
1692
1693			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1694				pfn, ret, page->flags);
1695			if (ret > 0)
1696				ret = -EIO;
1697		} else {
1698			SetPageHWPoison(page);
1699			atomic_long_inc(&num_poisoned_pages);
1700		}
1701	} else {
1702		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1703			pfn, ret, page_count(page), page->flags);
1704	}
1705	return ret;
1706}
1707
1708/**
1709 * soft_offline_page - Soft offline a page.
1710 * @page: page to offline
1711 * @flags: flags. Same as memory_failure().
1712 *
1713 * Returns 0 on success, otherwise negated errno.
1714 *
1715 * Soft offline a page, by migration or invalidation,
1716 * without killing anything. This is for the case when
1717 * a page is not corrupted yet (so it's still valid to access),
1718 * but has had a number of corrected errors and is better taken
1719 * out.
1720 *
1721 * The actual policy on when to do that is maintained by
1722 * user space.
1723 *
1724 * This should never impact any application or cause data loss,
1725 * however it might take some time.
1726 *
1727 * This is not a 100% solution for all memory, but tries to be
1728 * ``good enough'' for the majority of memory.
1729 */
1730int soft_offline_page(struct page *page, int flags)
1731{
1732	int ret;
1733	unsigned long pfn = page_to_pfn(page);
1734	struct page *hpage = compound_head(page);
1735
1736	if (PageHWPoison(page)) {
1737		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1738		return -EBUSY;
1739	}
1740	if (!PageHuge(page) && PageTransHuge(hpage)) {
1741		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1742			pr_info("soft offline: %#lx: failed to split THP\n",
1743				pfn);
1744			return -EBUSY;
1745		}
1746	}
1747
1748	get_online_mems();
1749
1750	ret = get_any_page(page, pfn, flags);
1751	put_online_mems();
1752	if (ret > 0) { /* for in-use pages */
1753		if (PageHuge(page))
1754			ret = soft_offline_huge_page(page, flags);
1755		else
1756			ret = __soft_offline_page(page, flags);
1757	} else if (ret == 0) { /* for free pages */
1758		if (PageHuge(page)) {
1759			set_page_hwpoison_huge_page(hpage);
1760			if (!dequeue_hwpoisoned_huge_page(hpage))
1761				atomic_long_add(1 << compound_order(hpage),
1762					&num_poisoned_pages);
1763		} else {
1764			if (!TestSetPageHWPoison(page))
1765				atomic_long_inc(&num_poisoned_pages);
1766		}
1767	}
1768	return ret;
1769}
1770