1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15#include <linux/migrate.h>
16#include <linux/export.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/nsproxy.h>
23#include <linux/pagevec.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
29#include <linux/writeback.h>
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
32#include <linux/security.h>
33#include <linux/memcontrol.h>
34#include <linux/syscalls.h>
35#include <linux/hugetlb.h>
36#include <linux/hugetlb_cgroup.h>
37#include <linux/gfp.h>
38#include <linux/balloon_compaction.h>
39#include <linux/mmu_notifier.h>
40
41#include <asm/tlbflush.h>
42
43#define CREATE_TRACE_POINTS
44#include <trace/events/migrate.h>
45
46#include "internal.h"
47
48/*
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
52 */
53int migrate_prep(void)
54{
55	/*
56	 * Clear the LRU lists so pages can be isolated.
57	 * Note that pages may be moved off the LRU after we have
58	 * drained them. Those pages will fail to migrate like other
59	 * pages that may be busy.
60	 */
61	lru_add_drain_all();
62
63	return 0;
64}
65
66/* Do the necessary work of migrate_prep but not if it involves other CPUs */
67int migrate_prep_local(void)
68{
69	lru_add_drain();
70
71	return 0;
72}
73
74/*
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
77 *
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
81 */
82void putback_movable_pages(struct list_head *l)
83{
84	struct page *page;
85	struct page *page2;
86
87	list_for_each_entry_safe(page, page2, l, lru) {
88		if (unlikely(PageHuge(page))) {
89			putback_active_hugepage(page);
90			continue;
91		}
92		list_del(&page->lru);
93		dec_zone_page_state(page, NR_ISOLATED_ANON +
94				page_is_file_cache(page));
95		if (unlikely(isolated_balloon_page(page)))
96			balloon_page_putback(page);
97		else
98			putback_lru_page(page);
99	}
100}
101
102/*
103 * Restore a potential migration pte to a working pte entry
104 */
105static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106				 unsigned long addr, void *old)
107{
108	struct mm_struct *mm = vma->vm_mm;
109	swp_entry_t entry;
110 	pmd_t *pmd;
111	pte_t *ptep, pte;
112 	spinlock_t *ptl;
113
114	if (unlikely(PageHuge(new))) {
115		ptep = huge_pte_offset(mm, addr);
116		if (!ptep)
117			goto out;
118		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119	} else {
120		pmd = mm_find_pmd(mm, addr);
121		if (!pmd)
122			goto out;
123
124		ptep = pte_offset_map(pmd, addr);
125
126		/*
127		 * Peek to check is_swap_pte() before taking ptlock?  No, we
128		 * can race mremap's move_ptes(), which skips anon_vma lock.
129		 */
130
131		ptl = pte_lockptr(mm, pmd);
132	}
133
134 	spin_lock(ptl);
135	pte = *ptep;
136	if (!is_swap_pte(pte))
137		goto unlock;
138
139	entry = pte_to_swp_entry(pte);
140
141	if (!is_migration_entry(entry) ||
142	    migration_entry_to_page(entry) != old)
143		goto unlock;
144
145	get_page(new);
146	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147	if (pte_swp_soft_dirty(*ptep))
148		pte = pte_mksoft_dirty(pte);
149
150	/* Recheck VMA as permissions can change since migration started  */
151	if (is_write_migration_entry(entry))
152		pte = maybe_mkwrite(pte, vma);
153
154#ifdef CONFIG_HUGETLB_PAGE
155	if (PageHuge(new)) {
156		pte = pte_mkhuge(pte);
157		pte = arch_make_huge_pte(pte, vma, new, 0);
158	}
159#endif
160	flush_dcache_page(new);
161	set_pte_at(mm, addr, ptep, pte);
162
163	if (PageHuge(new)) {
164		if (PageAnon(new))
165			hugepage_add_anon_rmap(new, vma, addr);
166		else
167			page_dup_rmap(new);
168	} else if (PageAnon(new))
169		page_add_anon_rmap(new, vma, addr);
170	else
171		page_add_file_rmap(new);
172
173	/* No need to invalidate - it was non-present before */
174	update_mmu_cache(vma, addr, ptep);
175unlock:
176	pte_unmap_unlock(ptep, ptl);
177out:
178	return SWAP_AGAIN;
179}
180
181/*
182 * Get rid of all migration entries and replace them by
183 * references to the indicated page.
184 */
185static void remove_migration_ptes(struct page *old, struct page *new)
186{
187	struct rmap_walk_control rwc = {
188		.rmap_one = remove_migration_pte,
189		.arg = old,
190	};
191
192	rmap_walk(new, &rwc);
193}
194
195/*
196 * Something used the pte of a page under migration. We need to
197 * get to the page and wait until migration is finished.
198 * When we return from this function the fault will be retried.
199 */
200void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
201				spinlock_t *ptl)
202{
203	pte_t pte;
204	swp_entry_t entry;
205	struct page *page;
206
207	spin_lock(ptl);
208	pte = *ptep;
209	if (!is_swap_pte(pte))
210		goto out;
211
212	entry = pte_to_swp_entry(pte);
213	if (!is_migration_entry(entry))
214		goto out;
215
216	page = migration_entry_to_page(entry);
217
218	/*
219	 * Once radix-tree replacement of page migration started, page_count
220	 * *must* be zero. And, we don't want to call wait_on_page_locked()
221	 * against a page without get_page().
222	 * So, we use get_page_unless_zero(), here. Even failed, page fault
223	 * will occur again.
224	 */
225	if (!get_page_unless_zero(page))
226		goto out;
227	pte_unmap_unlock(ptep, ptl);
228	wait_on_page_locked(page);
229	put_page(page);
230	return;
231out:
232	pte_unmap_unlock(ptep, ptl);
233}
234
235void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
236				unsigned long address)
237{
238	spinlock_t *ptl = pte_lockptr(mm, pmd);
239	pte_t *ptep = pte_offset_map(pmd, address);
240	__migration_entry_wait(mm, ptep, ptl);
241}
242
243void migration_entry_wait_huge(struct vm_area_struct *vma,
244		struct mm_struct *mm, pte_t *pte)
245{
246	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
247	__migration_entry_wait(mm, pte, ptl);
248}
249
250#ifdef CONFIG_BLOCK
251/* Returns true if all buffers are successfully locked */
252static bool buffer_migrate_lock_buffers(struct buffer_head *head,
253							enum migrate_mode mode)
254{
255	struct buffer_head *bh = head;
256
257	/* Simple case, sync compaction */
258	if (mode != MIGRATE_ASYNC) {
259		do {
260			get_bh(bh);
261			lock_buffer(bh);
262			bh = bh->b_this_page;
263
264		} while (bh != head);
265
266		return true;
267	}
268
269	/* async case, we cannot block on lock_buffer so use trylock_buffer */
270	do {
271		get_bh(bh);
272		if (!trylock_buffer(bh)) {
273			/*
274			 * We failed to lock the buffer and cannot stall in
275			 * async migration. Release the taken locks
276			 */
277			struct buffer_head *failed_bh = bh;
278			put_bh(failed_bh);
279			bh = head;
280			while (bh != failed_bh) {
281				unlock_buffer(bh);
282				put_bh(bh);
283				bh = bh->b_this_page;
284			}
285			return false;
286		}
287
288		bh = bh->b_this_page;
289	} while (bh != head);
290	return true;
291}
292#else
293static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
294							enum migrate_mode mode)
295{
296	return true;
297}
298#endif /* CONFIG_BLOCK */
299
300/*
301 * Replace the page in the mapping.
302 *
303 * The number of remaining references must be:
304 * 1 for anonymous pages without a mapping
305 * 2 for pages with a mapping
306 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
307 */
308int migrate_page_move_mapping(struct address_space *mapping,
309		struct page *newpage, struct page *page,
310		struct buffer_head *head, enum migrate_mode mode,
311		int extra_count)
312{
313	int expected_count = 1 + extra_count;
314	void **pslot;
315
316	if (!mapping) {
317		/* Anonymous page without mapping */
318		if (page_count(page) != expected_count)
319			return -EAGAIN;
320		return MIGRATEPAGE_SUCCESS;
321	}
322
323	spin_lock_irq(&mapping->tree_lock);
324
325	pslot = radix_tree_lookup_slot(&mapping->page_tree,
326 					page_index(page));
327
328	expected_count += 1 + page_has_private(page);
329	if (page_count(page) != expected_count ||
330		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
331		spin_unlock_irq(&mapping->tree_lock);
332		return -EAGAIN;
333	}
334
335	if (!page_freeze_refs(page, expected_count)) {
336		spin_unlock_irq(&mapping->tree_lock);
337		return -EAGAIN;
338	}
339
340	/*
341	 * In the async migration case of moving a page with buffers, lock the
342	 * buffers using trylock before the mapping is moved. If the mapping
343	 * was moved, we later failed to lock the buffers and could not move
344	 * the mapping back due to an elevated page count, we would have to
345	 * block waiting on other references to be dropped.
346	 */
347	if (mode == MIGRATE_ASYNC && head &&
348			!buffer_migrate_lock_buffers(head, mode)) {
349		page_unfreeze_refs(page, expected_count);
350		spin_unlock_irq(&mapping->tree_lock);
351		return -EAGAIN;
352	}
353
354	/*
355	 * Now we know that no one else is looking at the page.
356	 */
357	get_page(newpage);	/* add cache reference */
358	if (PageSwapCache(page)) {
359		SetPageSwapCache(newpage);
360		set_page_private(newpage, page_private(page));
361	}
362
363	radix_tree_replace_slot(pslot, newpage);
364
365	/*
366	 * Drop cache reference from old page by unfreezing
367	 * to one less reference.
368	 * We know this isn't the last reference.
369	 */
370	page_unfreeze_refs(page, expected_count - 1);
371
372	/*
373	 * If moved to a different zone then also account
374	 * the page for that zone. Other VM counters will be
375	 * taken care of when we establish references to the
376	 * new page and drop references to the old page.
377	 *
378	 * Note that anonymous pages are accounted for
379	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
380	 * are mapped to swap space.
381	 */
382	__dec_zone_page_state(page, NR_FILE_PAGES);
383	__inc_zone_page_state(newpage, NR_FILE_PAGES);
384	if (!PageSwapCache(page) && PageSwapBacked(page)) {
385		__dec_zone_page_state(page, NR_SHMEM);
386		__inc_zone_page_state(newpage, NR_SHMEM);
387	}
388	spin_unlock_irq(&mapping->tree_lock);
389
390	return MIGRATEPAGE_SUCCESS;
391}
392
393/*
394 * The expected number of remaining references is the same as that
395 * of migrate_page_move_mapping().
396 */
397int migrate_huge_page_move_mapping(struct address_space *mapping,
398				   struct page *newpage, struct page *page)
399{
400	int expected_count;
401	void **pslot;
402
403	if (!mapping) {
404		if (page_count(page) != 1)
405			return -EAGAIN;
406		return MIGRATEPAGE_SUCCESS;
407	}
408
409	spin_lock_irq(&mapping->tree_lock);
410
411	pslot = radix_tree_lookup_slot(&mapping->page_tree,
412					page_index(page));
413
414	expected_count = 2 + page_has_private(page);
415	if (page_count(page) != expected_count ||
416		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
417		spin_unlock_irq(&mapping->tree_lock);
418		return -EAGAIN;
419	}
420
421	if (!page_freeze_refs(page, expected_count)) {
422		spin_unlock_irq(&mapping->tree_lock);
423		return -EAGAIN;
424	}
425
426	get_page(newpage);
427
428	radix_tree_replace_slot(pslot, newpage);
429
430	page_unfreeze_refs(page, expected_count - 1);
431
432	spin_unlock_irq(&mapping->tree_lock);
433	return MIGRATEPAGE_SUCCESS;
434}
435
436/*
437 * Gigantic pages are so large that we do not guarantee that page++ pointer
438 * arithmetic will work across the entire page.  We need something more
439 * specialized.
440 */
441static void __copy_gigantic_page(struct page *dst, struct page *src,
442				int nr_pages)
443{
444	int i;
445	struct page *dst_base = dst;
446	struct page *src_base = src;
447
448	for (i = 0; i < nr_pages; ) {
449		cond_resched();
450		copy_highpage(dst, src);
451
452		i++;
453		dst = mem_map_next(dst, dst_base, i);
454		src = mem_map_next(src, src_base, i);
455	}
456}
457
458static void copy_huge_page(struct page *dst, struct page *src)
459{
460	int i;
461	int nr_pages;
462
463	if (PageHuge(src)) {
464		/* hugetlbfs page */
465		struct hstate *h = page_hstate(src);
466		nr_pages = pages_per_huge_page(h);
467
468		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
469			__copy_gigantic_page(dst, src, nr_pages);
470			return;
471		}
472	} else {
473		/* thp page */
474		BUG_ON(!PageTransHuge(src));
475		nr_pages = hpage_nr_pages(src);
476	}
477
478	for (i = 0; i < nr_pages; i++) {
479		cond_resched();
480		copy_highpage(dst + i, src + i);
481	}
482}
483
484/*
485 * Copy the page to its new location
486 */
487void migrate_page_copy(struct page *newpage, struct page *page)
488{
489	int cpupid;
490
491	if (PageHuge(page) || PageTransHuge(page))
492		copy_huge_page(newpage, page);
493	else
494		copy_highpage(newpage, page);
495
496	if (PageError(page))
497		SetPageError(newpage);
498	if (PageReferenced(page))
499		SetPageReferenced(newpage);
500	if (PageUptodate(page))
501		SetPageUptodate(newpage);
502	if (TestClearPageActive(page)) {
503		VM_BUG_ON_PAGE(PageUnevictable(page), page);
504		SetPageActive(newpage);
505	} else if (TestClearPageUnevictable(page))
506		SetPageUnevictable(newpage);
507	if (PageChecked(page))
508		SetPageChecked(newpage);
509	if (PageMappedToDisk(page))
510		SetPageMappedToDisk(newpage);
511
512	if (PageDirty(page)) {
513		clear_page_dirty_for_io(page);
514		/*
515		 * Want to mark the page and the radix tree as dirty, and
516		 * redo the accounting that clear_page_dirty_for_io undid,
517		 * but we can't use set_page_dirty because that function
518		 * is actually a signal that all of the page has become dirty.
519		 * Whereas only part of our page may be dirty.
520		 */
521		if (PageSwapBacked(page))
522			SetPageDirty(newpage);
523		else
524			__set_page_dirty_nobuffers(newpage);
525 	}
526
527	/*
528	 * Copy NUMA information to the new page, to prevent over-eager
529	 * future migrations of this same page.
530	 */
531	cpupid = page_cpupid_xchg_last(page, -1);
532	page_cpupid_xchg_last(newpage, cpupid);
533
534	mlock_migrate_page(newpage, page);
535	ksm_migrate_page(newpage, page);
536	/*
537	 * Please do not reorder this without considering how mm/ksm.c's
538	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
539	 */
540	if (PageSwapCache(page))
541		ClearPageSwapCache(page);
542	ClearPagePrivate(page);
543	set_page_private(page, 0);
544
545	/*
546	 * If any waiters have accumulated on the new page then
547	 * wake them up.
548	 */
549	if (PageWriteback(newpage))
550		end_page_writeback(newpage);
551}
552
553/************************************************************
554 *                    Migration functions
555 ***********************************************************/
556
557/*
558 * Common logic to directly migrate a single page suitable for
559 * pages that do not use PagePrivate/PagePrivate2.
560 *
561 * Pages are locked upon entry and exit.
562 */
563int migrate_page(struct address_space *mapping,
564		struct page *newpage, struct page *page,
565		enum migrate_mode mode)
566{
567	int rc;
568
569	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
570
571	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
572
573	if (rc != MIGRATEPAGE_SUCCESS)
574		return rc;
575
576	migrate_page_copy(newpage, page);
577	return MIGRATEPAGE_SUCCESS;
578}
579EXPORT_SYMBOL(migrate_page);
580
581#ifdef CONFIG_BLOCK
582/*
583 * Migration function for pages with buffers. This function can only be used
584 * if the underlying filesystem guarantees that no other references to "page"
585 * exist.
586 */
587int buffer_migrate_page(struct address_space *mapping,
588		struct page *newpage, struct page *page, enum migrate_mode mode)
589{
590	struct buffer_head *bh, *head;
591	int rc;
592
593	if (!page_has_buffers(page))
594		return migrate_page(mapping, newpage, page, mode);
595
596	head = page_buffers(page);
597
598	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
599
600	if (rc != MIGRATEPAGE_SUCCESS)
601		return rc;
602
603	/*
604	 * In the async case, migrate_page_move_mapping locked the buffers
605	 * with an IRQ-safe spinlock held. In the sync case, the buffers
606	 * need to be locked now
607	 */
608	if (mode != MIGRATE_ASYNC)
609		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
610
611	ClearPagePrivate(page);
612	set_page_private(newpage, page_private(page));
613	set_page_private(page, 0);
614	put_page(page);
615	get_page(newpage);
616
617	bh = head;
618	do {
619		set_bh_page(bh, newpage, bh_offset(bh));
620		bh = bh->b_this_page;
621
622	} while (bh != head);
623
624	SetPagePrivate(newpage);
625
626	migrate_page_copy(newpage, page);
627
628	bh = head;
629	do {
630		unlock_buffer(bh);
631 		put_bh(bh);
632		bh = bh->b_this_page;
633
634	} while (bh != head);
635
636	return MIGRATEPAGE_SUCCESS;
637}
638EXPORT_SYMBOL(buffer_migrate_page);
639#endif
640
641/*
642 * Writeback a page to clean the dirty state
643 */
644static int writeout(struct address_space *mapping, struct page *page)
645{
646	struct writeback_control wbc = {
647		.sync_mode = WB_SYNC_NONE,
648		.nr_to_write = 1,
649		.range_start = 0,
650		.range_end = LLONG_MAX,
651		.for_reclaim = 1
652	};
653	int rc;
654
655	if (!mapping->a_ops->writepage)
656		/* No write method for the address space */
657		return -EINVAL;
658
659	if (!clear_page_dirty_for_io(page))
660		/* Someone else already triggered a write */
661		return -EAGAIN;
662
663	/*
664	 * A dirty page may imply that the underlying filesystem has
665	 * the page on some queue. So the page must be clean for
666	 * migration. Writeout may mean we loose the lock and the
667	 * page state is no longer what we checked for earlier.
668	 * At this point we know that the migration attempt cannot
669	 * be successful.
670	 */
671	remove_migration_ptes(page, page);
672
673	rc = mapping->a_ops->writepage(page, &wbc);
674
675	if (rc != AOP_WRITEPAGE_ACTIVATE)
676		/* unlocked. Relock */
677		lock_page(page);
678
679	return (rc < 0) ? -EIO : -EAGAIN;
680}
681
682/*
683 * Default handling if a filesystem does not provide a migration function.
684 */
685static int fallback_migrate_page(struct address_space *mapping,
686	struct page *newpage, struct page *page, enum migrate_mode mode)
687{
688	if (PageDirty(page)) {
689		/* Only writeback pages in full synchronous migration */
690		if (mode != MIGRATE_SYNC)
691			return -EBUSY;
692		return writeout(mapping, page);
693	}
694
695	/*
696	 * Buffers may be managed in a filesystem specific way.
697	 * We must have no buffers or drop them.
698	 */
699	if (page_has_private(page) &&
700	    !try_to_release_page(page, GFP_KERNEL))
701		return -EAGAIN;
702
703	return migrate_page(mapping, newpage, page, mode);
704}
705
706/*
707 * Move a page to a newly allocated page
708 * The page is locked and all ptes have been successfully removed.
709 *
710 * The new page will have replaced the old page if this function
711 * is successful.
712 *
713 * Return value:
714 *   < 0 - error code
715 *  MIGRATEPAGE_SUCCESS - success
716 */
717static int move_to_new_page(struct page *newpage, struct page *page,
718				int page_was_mapped, enum migrate_mode mode)
719{
720	struct address_space *mapping;
721	int rc;
722
723	/*
724	 * Block others from accessing the page when we get around to
725	 * establishing additional references. We are the only one
726	 * holding a reference to the new page at this point.
727	 */
728	if (!trylock_page(newpage))
729		BUG();
730
731	/* Prepare mapping for the new page.*/
732	newpage->index = page->index;
733	newpage->mapping = page->mapping;
734	if (PageSwapBacked(page))
735		SetPageSwapBacked(newpage);
736
737	mapping = page_mapping(page);
738	if (!mapping)
739		rc = migrate_page(mapping, newpage, page, mode);
740	else if (mapping->a_ops->migratepage)
741		/*
742		 * Most pages have a mapping and most filesystems provide a
743		 * migratepage callback. Anonymous pages are part of swap
744		 * space which also has its own migratepage callback. This
745		 * is the most common path for page migration.
746		 */
747		rc = mapping->a_ops->migratepage(mapping,
748						newpage, page, mode);
749	else
750		rc = fallback_migrate_page(mapping, newpage, page, mode);
751
752	if (rc != MIGRATEPAGE_SUCCESS) {
753		newpage->mapping = NULL;
754	} else {
755		mem_cgroup_migrate(page, newpage, false);
756		if (page_was_mapped)
757			remove_migration_ptes(page, newpage);
758		page->mapping = NULL;
759	}
760
761	unlock_page(newpage);
762
763	return rc;
764}
765
766static int __unmap_and_move(struct page *page, struct page *newpage,
767				int force, enum migrate_mode mode)
768{
769	int rc = -EAGAIN;
770	int page_was_mapped = 0;
771	struct anon_vma *anon_vma = NULL;
772
773	if (!trylock_page(page)) {
774		if (!force || mode == MIGRATE_ASYNC)
775			goto out;
776
777		/*
778		 * It's not safe for direct compaction to call lock_page.
779		 * For example, during page readahead pages are added locked
780		 * to the LRU. Later, when the IO completes the pages are
781		 * marked uptodate and unlocked. However, the queueing
782		 * could be merging multiple pages for one bio (e.g.
783		 * mpage_readpages). If an allocation happens for the
784		 * second or third page, the process can end up locking
785		 * the same page twice and deadlocking. Rather than
786		 * trying to be clever about what pages can be locked,
787		 * avoid the use of lock_page for direct compaction
788		 * altogether.
789		 */
790		if (current->flags & PF_MEMALLOC)
791			goto out;
792
793		lock_page(page);
794	}
795
796	if (PageWriteback(page)) {
797		/*
798		 * Only in the case of a full synchronous migration is it
799		 * necessary to wait for PageWriteback. In the async case,
800		 * the retry loop is too short and in the sync-light case,
801		 * the overhead of stalling is too much
802		 */
803		if (mode != MIGRATE_SYNC) {
804			rc = -EBUSY;
805			goto out_unlock;
806		}
807		if (!force)
808			goto out_unlock;
809		wait_on_page_writeback(page);
810	}
811	/*
812	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
813	 * we cannot notice that anon_vma is freed while we migrates a page.
814	 * This get_anon_vma() delays freeing anon_vma pointer until the end
815	 * of migration. File cache pages are no problem because of page_lock()
816	 * File Caches may use write_page() or lock_page() in migration, then,
817	 * just care Anon page here.
818	 */
819	if (PageAnon(page) && !PageKsm(page)) {
820		/*
821		 * Only page_lock_anon_vma_read() understands the subtleties of
822		 * getting a hold on an anon_vma from outside one of its mms.
823		 */
824		anon_vma = page_get_anon_vma(page);
825		if (anon_vma) {
826			/*
827			 * Anon page
828			 */
829		} else if (PageSwapCache(page)) {
830			/*
831			 * We cannot be sure that the anon_vma of an unmapped
832			 * swapcache page is safe to use because we don't
833			 * know in advance if the VMA that this page belonged
834			 * to still exists. If the VMA and others sharing the
835			 * data have been freed, then the anon_vma could
836			 * already be invalid.
837			 *
838			 * To avoid this possibility, swapcache pages get
839			 * migrated but are not remapped when migration
840			 * completes
841			 */
842		} else {
843			goto out_unlock;
844		}
845	}
846
847	if (unlikely(isolated_balloon_page(page))) {
848		/*
849		 * A ballooned page does not need any special attention from
850		 * physical to virtual reverse mapping procedures.
851		 * Skip any attempt to unmap PTEs or to remap swap cache,
852		 * in order to avoid burning cycles at rmap level, and perform
853		 * the page migration right away (proteced by page lock).
854		 */
855		rc = balloon_page_migrate(newpage, page, mode);
856		goto out_unlock;
857	}
858
859	/*
860	 * Corner case handling:
861	 * 1. When a new swap-cache page is read into, it is added to the LRU
862	 * and treated as swapcache but it has no rmap yet.
863	 * Calling try_to_unmap() against a page->mapping==NULL page will
864	 * trigger a BUG.  So handle it here.
865	 * 2. An orphaned page (see truncate_complete_page) might have
866	 * fs-private metadata. The page can be picked up due to memory
867	 * offlining.  Everywhere else except page reclaim, the page is
868	 * invisible to the vm, so the page can not be migrated.  So try to
869	 * free the metadata, so the page can be freed.
870	 */
871	if (!page->mapping) {
872		VM_BUG_ON_PAGE(PageAnon(page), page);
873		if (page_has_private(page)) {
874			try_to_free_buffers(page);
875			goto out_unlock;
876		}
877		goto skip_unmap;
878	}
879
880	/* Establish migration ptes or remove ptes */
881	if (page_mapped(page)) {
882		try_to_unmap(page,
883			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
884		page_was_mapped = 1;
885	}
886
887skip_unmap:
888	if (!page_mapped(page))
889		rc = move_to_new_page(newpage, page, page_was_mapped, mode);
890
891	if (rc && page_was_mapped)
892		remove_migration_ptes(page, page);
893
894	/* Drop an anon_vma reference if we took one */
895	if (anon_vma)
896		put_anon_vma(anon_vma);
897
898out_unlock:
899	unlock_page(page);
900out:
901	return rc;
902}
903
904/*
905 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
906 * around it.
907 */
908#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
909#define ICE_noinline noinline
910#else
911#define ICE_noinline
912#endif
913
914/*
915 * Obtain the lock on page, remove all ptes and migrate the page
916 * to the newly allocated page in newpage.
917 */
918static ICE_noinline int unmap_and_move(new_page_t get_new_page,
919				   free_page_t put_new_page,
920				   unsigned long private, struct page *page,
921				   int force, enum migrate_mode mode,
922				   enum migrate_reason reason)
923{
924	int rc = 0;
925	int *result = NULL;
926	struct page *newpage = get_new_page(page, private, &result);
927
928	if (!newpage)
929		return -ENOMEM;
930
931	if (page_count(page) == 1) {
932		/* page was freed from under us. So we are done. */
933		goto out;
934	}
935
936	if (unlikely(PageTransHuge(page)))
937		if (unlikely(split_huge_page(page)))
938			goto out;
939
940	rc = __unmap_and_move(page, newpage, force, mode);
941
942out:
943	if (rc != -EAGAIN) {
944		/*
945		 * A page that has been migrated has all references
946		 * removed and will be freed. A page that has not been
947		 * migrated will have kepts its references and be
948		 * restored.
949		 */
950		list_del(&page->lru);
951		dec_zone_page_state(page, NR_ISOLATED_ANON +
952				page_is_file_cache(page));
953		/* Soft-offlined page shouldn't go through lru cache list */
954		if (reason == MR_MEMORY_FAILURE)
955			put_page(page);
956		else
957			putback_lru_page(page);
958	}
959
960	/*
961	 * If migration was not successful and there's a freeing callback, use
962	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
963	 * during isolation.
964	 */
965	if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
966		ClearPageSwapBacked(newpage);
967		put_new_page(newpage, private);
968	} else if (unlikely(__is_movable_balloon_page(newpage))) {
969		/* drop our reference, page already in the balloon */
970		put_page(newpage);
971	} else
972		putback_lru_page(newpage);
973
974	if (result) {
975		if (rc)
976			*result = rc;
977		else
978			*result = page_to_nid(newpage);
979	}
980	return rc;
981}
982
983/*
984 * Counterpart of unmap_and_move_page() for hugepage migration.
985 *
986 * This function doesn't wait the completion of hugepage I/O
987 * because there is no race between I/O and migration for hugepage.
988 * Note that currently hugepage I/O occurs only in direct I/O
989 * where no lock is held and PG_writeback is irrelevant,
990 * and writeback status of all subpages are counted in the reference
991 * count of the head page (i.e. if all subpages of a 2MB hugepage are
992 * under direct I/O, the reference of the head page is 512 and a bit more.)
993 * This means that when we try to migrate hugepage whose subpages are
994 * doing direct I/O, some references remain after try_to_unmap() and
995 * hugepage migration fails without data corruption.
996 *
997 * There is also no race when direct I/O is issued on the page under migration,
998 * because then pte is replaced with migration swap entry and direct I/O code
999 * will wait in the page fault for migration to complete.
1000 */
1001static int unmap_and_move_huge_page(new_page_t get_new_page,
1002				free_page_t put_new_page, unsigned long private,
1003				struct page *hpage, int force,
1004				enum migrate_mode mode)
1005{
1006	int rc = 0;
1007	int *result = NULL;
1008	int page_was_mapped = 0;
1009	struct page *new_hpage;
1010	struct anon_vma *anon_vma = NULL;
1011
1012	/*
1013	 * Movability of hugepages depends on architectures and hugepage size.
1014	 * This check is necessary because some callers of hugepage migration
1015	 * like soft offline and memory hotremove don't walk through page
1016	 * tables or check whether the hugepage is pmd-based or not before
1017	 * kicking migration.
1018	 */
1019	if (!hugepage_migration_supported(page_hstate(hpage))) {
1020		putback_active_hugepage(hpage);
1021		return -ENOSYS;
1022	}
1023
1024	new_hpage = get_new_page(hpage, private, &result);
1025	if (!new_hpage)
1026		return -ENOMEM;
1027
1028	rc = -EAGAIN;
1029
1030	if (!trylock_page(hpage)) {
1031		if (!force || mode != MIGRATE_SYNC)
1032			goto out;
1033		lock_page(hpage);
1034	}
1035
1036	if (PageAnon(hpage))
1037		anon_vma = page_get_anon_vma(hpage);
1038
1039	if (page_mapped(hpage)) {
1040		try_to_unmap(hpage,
1041			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1042		page_was_mapped = 1;
1043	}
1044
1045	if (!page_mapped(hpage))
1046		rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode);
1047
1048	if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped)
1049		remove_migration_ptes(hpage, hpage);
1050
1051	if (anon_vma)
1052		put_anon_vma(anon_vma);
1053
1054	if (rc == MIGRATEPAGE_SUCCESS)
1055		hugetlb_cgroup_migrate(hpage, new_hpage);
1056
1057	unlock_page(hpage);
1058out:
1059	if (rc != -EAGAIN)
1060		putback_active_hugepage(hpage);
1061
1062	/*
1063	 * If migration was not successful and there's a freeing callback, use
1064	 * it.  Otherwise, put_page() will drop the reference grabbed during
1065	 * isolation.
1066	 */
1067	if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1068		put_new_page(new_hpage, private);
1069	else
1070		putback_active_hugepage(new_hpage);
1071
1072	if (result) {
1073		if (rc)
1074			*result = rc;
1075		else
1076			*result = page_to_nid(new_hpage);
1077	}
1078	return rc;
1079}
1080
1081/*
1082 * migrate_pages - migrate the pages specified in a list, to the free pages
1083 *		   supplied as the target for the page migration
1084 *
1085 * @from:		The list of pages to be migrated.
1086 * @get_new_page:	The function used to allocate free pages to be used
1087 *			as the target of the page migration.
1088 * @put_new_page:	The function used to free target pages if migration
1089 *			fails, or NULL if no special handling is necessary.
1090 * @private:		Private data to be passed on to get_new_page()
1091 * @mode:		The migration mode that specifies the constraints for
1092 *			page migration, if any.
1093 * @reason:		The reason for page migration.
1094 *
1095 * The function returns after 10 attempts or if no pages are movable any more
1096 * because the list has become empty or no retryable pages exist any more.
1097 * The caller should call putback_lru_pages() to return pages to the LRU
1098 * or free list only if ret != 0.
1099 *
1100 * Returns the number of pages that were not migrated, or an error code.
1101 */
1102int migrate_pages(struct list_head *from, new_page_t get_new_page,
1103		free_page_t put_new_page, unsigned long private,
1104		enum migrate_mode mode, int reason)
1105{
1106	int retry = 1;
1107	int nr_failed = 0;
1108	int nr_succeeded = 0;
1109	int pass = 0;
1110	struct page *page;
1111	struct page *page2;
1112	int swapwrite = current->flags & PF_SWAPWRITE;
1113	int rc;
1114
1115	if (!swapwrite)
1116		current->flags |= PF_SWAPWRITE;
1117
1118	for(pass = 0; pass < 10 && retry; pass++) {
1119		retry = 0;
1120
1121		list_for_each_entry_safe(page, page2, from, lru) {
1122			cond_resched();
1123
1124			if (PageHuge(page))
1125				rc = unmap_and_move_huge_page(get_new_page,
1126						put_new_page, private, page,
1127						pass > 2, mode);
1128			else
1129				rc = unmap_and_move(get_new_page, put_new_page,
1130						private, page, pass > 2, mode,
1131						reason);
1132
1133			switch(rc) {
1134			case -ENOMEM:
1135				goto out;
1136			case -EAGAIN:
1137				retry++;
1138				break;
1139			case MIGRATEPAGE_SUCCESS:
1140				nr_succeeded++;
1141				break;
1142			default:
1143				/*
1144				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1145				 * unlike -EAGAIN case, the failed page is
1146				 * removed from migration page list and not
1147				 * retried in the next outer loop.
1148				 */
1149				nr_failed++;
1150				break;
1151			}
1152		}
1153	}
1154	rc = nr_failed + retry;
1155out:
1156	if (nr_succeeded)
1157		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1158	if (nr_failed)
1159		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1160	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1161
1162	if (!swapwrite)
1163		current->flags &= ~PF_SWAPWRITE;
1164
1165	return rc;
1166}
1167
1168#ifdef CONFIG_NUMA
1169/*
1170 * Move a list of individual pages
1171 */
1172struct page_to_node {
1173	unsigned long addr;
1174	struct page *page;
1175	int node;
1176	int status;
1177};
1178
1179static struct page *new_page_node(struct page *p, unsigned long private,
1180		int **result)
1181{
1182	struct page_to_node *pm = (struct page_to_node *)private;
1183
1184	while (pm->node != MAX_NUMNODES && pm->page != p)
1185		pm++;
1186
1187	if (pm->node == MAX_NUMNODES)
1188		return NULL;
1189
1190	*result = &pm->status;
1191
1192	if (PageHuge(p))
1193		return alloc_huge_page_node(page_hstate(compound_head(p)),
1194					pm->node);
1195	else
1196		return alloc_pages_exact_node(pm->node,
1197				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1198}
1199
1200/*
1201 * Move a set of pages as indicated in the pm array. The addr
1202 * field must be set to the virtual address of the page to be moved
1203 * and the node number must contain a valid target node.
1204 * The pm array ends with node = MAX_NUMNODES.
1205 */
1206static int do_move_page_to_node_array(struct mm_struct *mm,
1207				      struct page_to_node *pm,
1208				      int migrate_all)
1209{
1210	int err;
1211	struct page_to_node *pp;
1212	LIST_HEAD(pagelist);
1213
1214	down_read(&mm->mmap_sem);
1215
1216	/*
1217	 * Build a list of pages to migrate
1218	 */
1219	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1220		struct vm_area_struct *vma;
1221		struct page *page;
1222
1223		err = -EFAULT;
1224		vma = find_vma(mm, pp->addr);
1225		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1226			goto set_status;
1227
1228		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1229
1230		err = PTR_ERR(page);
1231		if (IS_ERR(page))
1232			goto set_status;
1233
1234		err = -ENOENT;
1235		if (!page)
1236			goto set_status;
1237
1238		/* Use PageReserved to check for zero page */
1239		if (PageReserved(page))
1240			goto put_and_set;
1241
1242		pp->page = page;
1243		err = page_to_nid(page);
1244
1245		if (err == pp->node)
1246			/*
1247			 * Node already in the right place
1248			 */
1249			goto put_and_set;
1250
1251		err = -EACCES;
1252		if (page_mapcount(page) > 1 &&
1253				!migrate_all)
1254			goto put_and_set;
1255
1256		if (PageHuge(page)) {
1257			if (PageHead(page))
1258				isolate_huge_page(page, &pagelist);
1259			goto put_and_set;
1260		}
1261
1262		err = isolate_lru_page(page);
1263		if (!err) {
1264			list_add_tail(&page->lru, &pagelist);
1265			inc_zone_page_state(page, NR_ISOLATED_ANON +
1266					    page_is_file_cache(page));
1267		}
1268put_and_set:
1269		/*
1270		 * Either remove the duplicate refcount from
1271		 * isolate_lru_page() or drop the page ref if it was
1272		 * not isolated.
1273		 */
1274		put_page(page);
1275set_status:
1276		pp->status = err;
1277	}
1278
1279	err = 0;
1280	if (!list_empty(&pagelist)) {
1281		err = migrate_pages(&pagelist, new_page_node, NULL,
1282				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1283		if (err)
1284			putback_movable_pages(&pagelist);
1285	}
1286
1287	up_read(&mm->mmap_sem);
1288	return err;
1289}
1290
1291/*
1292 * Migrate an array of page address onto an array of nodes and fill
1293 * the corresponding array of status.
1294 */
1295static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1296			 unsigned long nr_pages,
1297			 const void __user * __user *pages,
1298			 const int __user *nodes,
1299			 int __user *status, int flags)
1300{
1301	struct page_to_node *pm;
1302	unsigned long chunk_nr_pages;
1303	unsigned long chunk_start;
1304	int err;
1305
1306	err = -ENOMEM;
1307	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1308	if (!pm)
1309		goto out;
1310
1311	migrate_prep();
1312
1313	/*
1314	 * Store a chunk of page_to_node array in a page,
1315	 * but keep the last one as a marker
1316	 */
1317	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1318
1319	for (chunk_start = 0;
1320	     chunk_start < nr_pages;
1321	     chunk_start += chunk_nr_pages) {
1322		int j;
1323
1324		if (chunk_start + chunk_nr_pages > nr_pages)
1325			chunk_nr_pages = nr_pages - chunk_start;
1326
1327		/* fill the chunk pm with addrs and nodes from user-space */
1328		for (j = 0; j < chunk_nr_pages; j++) {
1329			const void __user *p;
1330			int node;
1331
1332			err = -EFAULT;
1333			if (get_user(p, pages + j + chunk_start))
1334				goto out_pm;
1335			pm[j].addr = (unsigned long) p;
1336
1337			if (get_user(node, nodes + j + chunk_start))
1338				goto out_pm;
1339
1340			err = -ENODEV;
1341			if (node < 0 || node >= MAX_NUMNODES)
1342				goto out_pm;
1343
1344			if (!node_state(node, N_MEMORY))
1345				goto out_pm;
1346
1347			err = -EACCES;
1348			if (!node_isset(node, task_nodes))
1349				goto out_pm;
1350
1351			pm[j].node = node;
1352		}
1353
1354		/* End marker for this chunk */
1355		pm[chunk_nr_pages].node = MAX_NUMNODES;
1356
1357		/* Migrate this chunk */
1358		err = do_move_page_to_node_array(mm, pm,
1359						 flags & MPOL_MF_MOVE_ALL);
1360		if (err < 0)
1361			goto out_pm;
1362
1363		/* Return status information */
1364		for (j = 0; j < chunk_nr_pages; j++)
1365			if (put_user(pm[j].status, status + j + chunk_start)) {
1366				err = -EFAULT;
1367				goto out_pm;
1368			}
1369	}
1370	err = 0;
1371
1372out_pm:
1373	free_page((unsigned long)pm);
1374out:
1375	return err;
1376}
1377
1378/*
1379 * Determine the nodes of an array of pages and store it in an array of status.
1380 */
1381static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1382				const void __user **pages, int *status)
1383{
1384	unsigned long i;
1385
1386	down_read(&mm->mmap_sem);
1387
1388	for (i = 0; i < nr_pages; i++) {
1389		unsigned long addr = (unsigned long)(*pages);
1390		struct vm_area_struct *vma;
1391		struct page *page;
1392		int err = -EFAULT;
1393
1394		vma = find_vma(mm, addr);
1395		if (!vma || addr < vma->vm_start)
1396			goto set_status;
1397
1398		page = follow_page(vma, addr, 0);
1399
1400		err = PTR_ERR(page);
1401		if (IS_ERR(page))
1402			goto set_status;
1403
1404		err = -ENOENT;
1405		/* Use PageReserved to check for zero page */
1406		if (!page || PageReserved(page))
1407			goto set_status;
1408
1409		err = page_to_nid(page);
1410set_status:
1411		*status = err;
1412
1413		pages++;
1414		status++;
1415	}
1416
1417	up_read(&mm->mmap_sem);
1418}
1419
1420/*
1421 * Determine the nodes of a user array of pages and store it in
1422 * a user array of status.
1423 */
1424static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1425			 const void __user * __user *pages,
1426			 int __user *status)
1427{
1428#define DO_PAGES_STAT_CHUNK_NR 16
1429	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1430	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1431
1432	while (nr_pages) {
1433		unsigned long chunk_nr;
1434
1435		chunk_nr = nr_pages;
1436		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1437			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1438
1439		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1440			break;
1441
1442		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1443
1444		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1445			break;
1446
1447		pages += chunk_nr;
1448		status += chunk_nr;
1449		nr_pages -= chunk_nr;
1450	}
1451	return nr_pages ? -EFAULT : 0;
1452}
1453
1454/*
1455 * Move a list of pages in the address space of the currently executing
1456 * process.
1457 */
1458SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1459		const void __user * __user *, pages,
1460		const int __user *, nodes,
1461		int __user *, status, int, flags)
1462{
1463	const struct cred *cred = current_cred(), *tcred;
1464	struct task_struct *task;
1465	struct mm_struct *mm;
1466	int err;
1467	nodemask_t task_nodes;
1468
1469	/* Check flags */
1470	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1471		return -EINVAL;
1472
1473	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1474		return -EPERM;
1475
1476	/* Find the mm_struct */
1477	rcu_read_lock();
1478	task = pid ? find_task_by_vpid(pid) : current;
1479	if (!task) {
1480		rcu_read_unlock();
1481		return -ESRCH;
1482	}
1483	get_task_struct(task);
1484
1485	/*
1486	 * Check if this process has the right to modify the specified
1487	 * process. The right exists if the process has administrative
1488	 * capabilities, superuser privileges or the same
1489	 * userid as the target process.
1490	 */
1491	tcred = __task_cred(task);
1492	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1493	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1494	    !capable(CAP_SYS_NICE)) {
1495		rcu_read_unlock();
1496		err = -EPERM;
1497		goto out;
1498	}
1499	rcu_read_unlock();
1500
1501 	err = security_task_movememory(task);
1502 	if (err)
1503		goto out;
1504
1505	task_nodes = cpuset_mems_allowed(task);
1506	mm = get_task_mm(task);
1507	put_task_struct(task);
1508
1509	if (!mm)
1510		return -EINVAL;
1511
1512	if (nodes)
1513		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1514				    nodes, status, flags);
1515	else
1516		err = do_pages_stat(mm, nr_pages, pages, status);
1517
1518	mmput(mm);
1519	return err;
1520
1521out:
1522	put_task_struct(task);
1523	return err;
1524}
1525
1526#ifdef CONFIG_NUMA_BALANCING
1527/*
1528 * Returns true if this is a safe migration target node for misplaced NUMA
1529 * pages. Currently it only checks the watermarks which crude
1530 */
1531static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1532				   unsigned long nr_migrate_pages)
1533{
1534	int z;
1535	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1536		struct zone *zone = pgdat->node_zones + z;
1537
1538		if (!populated_zone(zone))
1539			continue;
1540
1541		if (!zone_reclaimable(zone))
1542			continue;
1543
1544		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1545		if (!zone_watermark_ok(zone, 0,
1546				       high_wmark_pages(zone) +
1547				       nr_migrate_pages,
1548				       0, 0))
1549			continue;
1550		return true;
1551	}
1552	return false;
1553}
1554
1555static struct page *alloc_misplaced_dst_page(struct page *page,
1556					   unsigned long data,
1557					   int **result)
1558{
1559	int nid = (int) data;
1560	struct page *newpage;
1561
1562	newpage = alloc_pages_exact_node(nid,
1563					 (GFP_HIGHUSER_MOVABLE |
1564					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1565					  __GFP_NORETRY | __GFP_NOWARN) &
1566					 ~__GFP_WAIT, 0);
1567
1568	return newpage;
1569}
1570
1571/*
1572 * page migration rate limiting control.
1573 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1574 * window of time. Default here says do not migrate more than 1280M per second.
1575 */
1576static unsigned int migrate_interval_millisecs __read_mostly = 100;
1577static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1578
1579/* Returns true if the node is migrate rate-limited after the update */
1580static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1581					unsigned long nr_pages)
1582{
1583	/*
1584	 * Rate-limit the amount of data that is being migrated to a node.
1585	 * Optimal placement is no good if the memory bus is saturated and
1586	 * all the time is being spent migrating!
1587	 */
1588	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1589		spin_lock(&pgdat->numabalancing_migrate_lock);
1590		pgdat->numabalancing_migrate_nr_pages = 0;
1591		pgdat->numabalancing_migrate_next_window = jiffies +
1592			msecs_to_jiffies(migrate_interval_millisecs);
1593		spin_unlock(&pgdat->numabalancing_migrate_lock);
1594	}
1595	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1596		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1597								nr_pages);
1598		return true;
1599	}
1600
1601	/*
1602	 * This is an unlocked non-atomic update so errors are possible.
1603	 * The consequences are failing to migrate when we potentiall should
1604	 * have which is not severe enough to warrant locking. If it is ever
1605	 * a problem, it can be converted to a per-cpu counter.
1606	 */
1607	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1608	return false;
1609}
1610
1611static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1612{
1613	int page_lru;
1614
1615	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1616
1617	/* Avoid migrating to a node that is nearly full */
1618	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1619		return 0;
1620
1621	if (isolate_lru_page(page))
1622		return 0;
1623
1624	/*
1625	 * migrate_misplaced_transhuge_page() skips page migration's usual
1626	 * check on page_count(), so we must do it here, now that the page
1627	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1628	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1629	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1630	 */
1631	if (PageTransHuge(page) && page_count(page) != 3) {
1632		putback_lru_page(page);
1633		return 0;
1634	}
1635
1636	page_lru = page_is_file_cache(page);
1637	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1638				hpage_nr_pages(page));
1639
1640	/*
1641	 * Isolating the page has taken another reference, so the
1642	 * caller's reference can be safely dropped without the page
1643	 * disappearing underneath us during migration.
1644	 */
1645	put_page(page);
1646	return 1;
1647}
1648
1649bool pmd_trans_migrating(pmd_t pmd)
1650{
1651	struct page *page = pmd_page(pmd);
1652	return PageLocked(page);
1653}
1654
1655/*
1656 * Attempt to migrate a misplaced page to the specified destination
1657 * node. Caller is expected to have an elevated reference count on
1658 * the page that will be dropped by this function before returning.
1659 */
1660int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1661			   int node)
1662{
1663	pg_data_t *pgdat = NODE_DATA(node);
1664	int isolated;
1665	int nr_remaining;
1666	LIST_HEAD(migratepages);
1667
1668	/*
1669	 * Don't migrate file pages that are mapped in multiple processes
1670	 * with execute permissions as they are probably shared libraries.
1671	 */
1672	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1673	    (vma->vm_flags & VM_EXEC))
1674		goto out;
1675
1676	/*
1677	 * Rate-limit the amount of data that is being migrated to a node.
1678	 * Optimal placement is no good if the memory bus is saturated and
1679	 * all the time is being spent migrating!
1680	 */
1681	if (numamigrate_update_ratelimit(pgdat, 1))
1682		goto out;
1683
1684	isolated = numamigrate_isolate_page(pgdat, page);
1685	if (!isolated)
1686		goto out;
1687
1688	list_add(&page->lru, &migratepages);
1689	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1690				     NULL, node, MIGRATE_ASYNC,
1691				     MR_NUMA_MISPLACED);
1692	if (nr_remaining) {
1693		if (!list_empty(&migratepages)) {
1694			list_del(&page->lru);
1695			dec_zone_page_state(page, NR_ISOLATED_ANON +
1696					page_is_file_cache(page));
1697			putback_lru_page(page);
1698		}
1699		isolated = 0;
1700	} else
1701		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1702	BUG_ON(!list_empty(&migratepages));
1703	return isolated;
1704
1705out:
1706	put_page(page);
1707	return 0;
1708}
1709#endif /* CONFIG_NUMA_BALANCING */
1710
1711#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1712/*
1713 * Migrates a THP to a given target node. page must be locked and is unlocked
1714 * before returning.
1715 */
1716int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1717				struct vm_area_struct *vma,
1718				pmd_t *pmd, pmd_t entry,
1719				unsigned long address,
1720				struct page *page, int node)
1721{
1722	spinlock_t *ptl;
1723	pg_data_t *pgdat = NODE_DATA(node);
1724	int isolated = 0;
1725	struct page *new_page = NULL;
1726	int page_lru = page_is_file_cache(page);
1727	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1728	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1729	pmd_t orig_entry;
1730
1731	/*
1732	 * Rate-limit the amount of data that is being migrated to a node.
1733	 * Optimal placement is no good if the memory bus is saturated and
1734	 * all the time is being spent migrating!
1735	 */
1736	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1737		goto out_dropref;
1738
1739	new_page = alloc_pages_node(node,
1740		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1741		HPAGE_PMD_ORDER);
1742	if (!new_page)
1743		goto out_fail;
1744
1745	isolated = numamigrate_isolate_page(pgdat, page);
1746	if (!isolated) {
1747		put_page(new_page);
1748		goto out_fail;
1749	}
1750
1751	if (mm_tlb_flush_pending(mm))
1752		flush_tlb_range(vma, mmun_start, mmun_end);
1753
1754	/* Prepare a page as a migration target */
1755	__set_page_locked(new_page);
1756	SetPageSwapBacked(new_page);
1757
1758	/* anon mapping, we can simply copy page->mapping to the new page: */
1759	new_page->mapping = page->mapping;
1760	new_page->index = page->index;
1761	migrate_page_copy(new_page, page);
1762	WARN_ON(PageLRU(new_page));
1763
1764	/* Recheck the target PMD */
1765	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1766	ptl = pmd_lock(mm, pmd);
1767	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1768fail_putback:
1769		spin_unlock(ptl);
1770		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1771
1772		/* Reverse changes made by migrate_page_copy() */
1773		if (TestClearPageActive(new_page))
1774			SetPageActive(page);
1775		if (TestClearPageUnevictable(new_page))
1776			SetPageUnevictable(page);
1777		mlock_migrate_page(page, new_page);
1778
1779		unlock_page(new_page);
1780		put_page(new_page);		/* Free it */
1781
1782		/* Retake the callers reference and putback on LRU */
1783		get_page(page);
1784		putback_lru_page(page);
1785		mod_zone_page_state(page_zone(page),
1786			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1787
1788		goto out_unlock;
1789	}
1790
1791	orig_entry = *pmd;
1792	entry = mk_pmd(new_page, vma->vm_page_prot);
1793	entry = pmd_mkhuge(entry);
1794	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1795
1796	/*
1797	 * Clear the old entry under pagetable lock and establish the new PTE.
1798	 * Any parallel GUP will either observe the old page blocking on the
1799	 * page lock, block on the page table lock or observe the new page.
1800	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1801	 * guarantee the copy is visible before the pagetable update.
1802	 */
1803	flush_cache_range(vma, mmun_start, mmun_end);
1804	page_add_anon_rmap(new_page, vma, mmun_start);
1805	pmdp_clear_flush_notify(vma, mmun_start, pmd);
1806	set_pmd_at(mm, mmun_start, pmd, entry);
1807	flush_tlb_range(vma, mmun_start, mmun_end);
1808	update_mmu_cache_pmd(vma, address, &entry);
1809
1810	if (page_count(page) != 2) {
1811		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1812		flush_tlb_range(vma, mmun_start, mmun_end);
1813		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1814		update_mmu_cache_pmd(vma, address, &entry);
1815		page_remove_rmap(new_page);
1816		goto fail_putback;
1817	}
1818
1819	mem_cgroup_migrate(page, new_page, false);
1820
1821	page_remove_rmap(page);
1822
1823	spin_unlock(ptl);
1824	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1825
1826	/* Take an "isolate" reference and put new page on the LRU. */
1827	get_page(new_page);
1828	putback_lru_page(new_page);
1829
1830	unlock_page(new_page);
1831	unlock_page(page);
1832	put_page(page);			/* Drop the rmap reference */
1833	put_page(page);			/* Drop the LRU isolation reference */
1834
1835	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1836	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1837
1838	mod_zone_page_state(page_zone(page),
1839			NR_ISOLATED_ANON + page_lru,
1840			-HPAGE_PMD_NR);
1841	return isolated;
1842
1843out_fail:
1844	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1845out_dropref:
1846	ptl = pmd_lock(mm, pmd);
1847	if (pmd_same(*pmd, entry)) {
1848		entry = pmd_modify(entry, vma->vm_page_prot);
1849		set_pmd_at(mm, mmun_start, pmd, entry);
1850		update_mmu_cache_pmd(vma, address, &entry);
1851	}
1852	spin_unlock(ptl);
1853
1854out_unlock:
1855	unlock_page(page);
1856	put_page(page);
1857	return 0;
1858}
1859#endif /* CONFIG_NUMA_BALANCING */
1860
1861#endif /* CONFIG_NUMA */
1862