1/* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15#include <linux/migrate.h> 16#include <linux/export.h> 17#include <linux/swap.h> 18#include <linux/swapops.h> 19#include <linux/pagemap.h> 20#include <linux/buffer_head.h> 21#include <linux/mm_inline.h> 22#include <linux/nsproxy.h> 23#include <linux/pagevec.h> 24#include <linux/ksm.h> 25#include <linux/rmap.h> 26#include <linux/topology.h> 27#include <linux/cpu.h> 28#include <linux/cpuset.h> 29#include <linux/writeback.h> 30#include <linux/mempolicy.h> 31#include <linux/vmalloc.h> 32#include <linux/security.h> 33#include <linux/memcontrol.h> 34#include <linux/syscalls.h> 35#include <linux/hugetlb.h> 36#include <linux/hugetlb_cgroup.h> 37#include <linux/gfp.h> 38#include <linux/balloon_compaction.h> 39#include <linux/mmu_notifier.h> 40 41#include <asm/tlbflush.h> 42 43#define CREATE_TRACE_POINTS 44#include <trace/events/migrate.h> 45 46#include "internal.h" 47 48/* 49 * migrate_prep() needs to be called before we start compiling a list of pages 50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 51 * undesirable, use migrate_prep_local() 52 */ 53int migrate_prep(void) 54{ 55 /* 56 * Clear the LRU lists so pages can be isolated. 57 * Note that pages may be moved off the LRU after we have 58 * drained them. Those pages will fail to migrate like other 59 * pages that may be busy. 60 */ 61 lru_add_drain_all(); 62 63 return 0; 64} 65 66/* Do the necessary work of migrate_prep but not if it involves other CPUs */ 67int migrate_prep_local(void) 68{ 69 lru_add_drain(); 70 71 return 0; 72} 73 74/* 75 * Put previously isolated pages back onto the appropriate lists 76 * from where they were once taken off for compaction/migration. 77 * 78 * This function shall be used whenever the isolated pageset has been 79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 80 * and isolate_huge_page(). 81 */ 82void putback_movable_pages(struct list_head *l) 83{ 84 struct page *page; 85 struct page *page2; 86 87 list_for_each_entry_safe(page, page2, l, lru) { 88 if (unlikely(PageHuge(page))) { 89 putback_active_hugepage(page); 90 continue; 91 } 92 list_del(&page->lru); 93 dec_zone_page_state(page, NR_ISOLATED_ANON + 94 page_is_file_cache(page)); 95 if (unlikely(isolated_balloon_page(page))) 96 balloon_page_putback(page); 97 else 98 putback_lru_page(page); 99 } 100} 101 102/* 103 * Restore a potential migration pte to a working pte entry 104 */ 105static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 106 unsigned long addr, void *old) 107{ 108 struct mm_struct *mm = vma->vm_mm; 109 swp_entry_t entry; 110 pmd_t *pmd; 111 pte_t *ptep, pte; 112 spinlock_t *ptl; 113 114 if (unlikely(PageHuge(new))) { 115 ptep = huge_pte_offset(mm, addr); 116 if (!ptep) 117 goto out; 118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 119 } else { 120 pmd = mm_find_pmd(mm, addr); 121 if (!pmd) 122 goto out; 123 124 ptep = pte_offset_map(pmd, addr); 125 126 /* 127 * Peek to check is_swap_pte() before taking ptlock? No, we 128 * can race mremap's move_ptes(), which skips anon_vma lock. 129 */ 130 131 ptl = pte_lockptr(mm, pmd); 132 } 133 134 spin_lock(ptl); 135 pte = *ptep; 136 if (!is_swap_pte(pte)) 137 goto unlock; 138 139 entry = pte_to_swp_entry(pte); 140 141 if (!is_migration_entry(entry) || 142 migration_entry_to_page(entry) != old) 143 goto unlock; 144 145 get_page(new); 146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 147 if (pte_swp_soft_dirty(*ptep)) 148 pte = pte_mksoft_dirty(pte); 149 150 /* Recheck VMA as permissions can change since migration started */ 151 if (is_write_migration_entry(entry)) 152 pte = maybe_mkwrite(pte, vma); 153 154#ifdef CONFIG_HUGETLB_PAGE 155 if (PageHuge(new)) { 156 pte = pte_mkhuge(pte); 157 pte = arch_make_huge_pte(pte, vma, new, 0); 158 } 159#endif 160 flush_dcache_page(new); 161 set_pte_at(mm, addr, ptep, pte); 162 163 if (PageHuge(new)) { 164 if (PageAnon(new)) 165 hugepage_add_anon_rmap(new, vma, addr); 166 else 167 page_dup_rmap(new); 168 } else if (PageAnon(new)) 169 page_add_anon_rmap(new, vma, addr); 170 else 171 page_add_file_rmap(new); 172 173 /* No need to invalidate - it was non-present before */ 174 update_mmu_cache(vma, addr, ptep); 175unlock: 176 pte_unmap_unlock(ptep, ptl); 177out: 178 return SWAP_AGAIN; 179} 180 181/* 182 * Get rid of all migration entries and replace them by 183 * references to the indicated page. 184 */ 185static void remove_migration_ptes(struct page *old, struct page *new) 186{ 187 struct rmap_walk_control rwc = { 188 .rmap_one = remove_migration_pte, 189 .arg = old, 190 }; 191 192 rmap_walk(new, &rwc); 193} 194 195/* 196 * Something used the pte of a page under migration. We need to 197 * get to the page and wait until migration is finished. 198 * When we return from this function the fault will be retried. 199 */ 200void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 201 spinlock_t *ptl) 202{ 203 pte_t pte; 204 swp_entry_t entry; 205 struct page *page; 206 207 spin_lock(ptl); 208 pte = *ptep; 209 if (!is_swap_pte(pte)) 210 goto out; 211 212 entry = pte_to_swp_entry(pte); 213 if (!is_migration_entry(entry)) 214 goto out; 215 216 page = migration_entry_to_page(entry); 217 218 /* 219 * Once radix-tree replacement of page migration started, page_count 220 * *must* be zero. And, we don't want to call wait_on_page_locked() 221 * against a page without get_page(). 222 * So, we use get_page_unless_zero(), here. Even failed, page fault 223 * will occur again. 224 */ 225 if (!get_page_unless_zero(page)) 226 goto out; 227 pte_unmap_unlock(ptep, ptl); 228 wait_on_page_locked(page); 229 put_page(page); 230 return; 231out: 232 pte_unmap_unlock(ptep, ptl); 233} 234 235void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 236 unsigned long address) 237{ 238 spinlock_t *ptl = pte_lockptr(mm, pmd); 239 pte_t *ptep = pte_offset_map(pmd, address); 240 __migration_entry_wait(mm, ptep, ptl); 241} 242 243void migration_entry_wait_huge(struct vm_area_struct *vma, 244 struct mm_struct *mm, pte_t *pte) 245{ 246 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 247 __migration_entry_wait(mm, pte, ptl); 248} 249 250#ifdef CONFIG_BLOCK 251/* Returns true if all buffers are successfully locked */ 252static bool buffer_migrate_lock_buffers(struct buffer_head *head, 253 enum migrate_mode mode) 254{ 255 struct buffer_head *bh = head; 256 257 /* Simple case, sync compaction */ 258 if (mode != MIGRATE_ASYNC) { 259 do { 260 get_bh(bh); 261 lock_buffer(bh); 262 bh = bh->b_this_page; 263 264 } while (bh != head); 265 266 return true; 267 } 268 269 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 270 do { 271 get_bh(bh); 272 if (!trylock_buffer(bh)) { 273 /* 274 * We failed to lock the buffer and cannot stall in 275 * async migration. Release the taken locks 276 */ 277 struct buffer_head *failed_bh = bh; 278 put_bh(failed_bh); 279 bh = head; 280 while (bh != failed_bh) { 281 unlock_buffer(bh); 282 put_bh(bh); 283 bh = bh->b_this_page; 284 } 285 return false; 286 } 287 288 bh = bh->b_this_page; 289 } while (bh != head); 290 return true; 291} 292#else 293static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 294 enum migrate_mode mode) 295{ 296 return true; 297} 298#endif /* CONFIG_BLOCK */ 299 300/* 301 * Replace the page in the mapping. 302 * 303 * The number of remaining references must be: 304 * 1 for anonymous pages without a mapping 305 * 2 for pages with a mapping 306 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 307 */ 308int migrate_page_move_mapping(struct address_space *mapping, 309 struct page *newpage, struct page *page, 310 struct buffer_head *head, enum migrate_mode mode, 311 int extra_count) 312{ 313 int expected_count = 1 + extra_count; 314 void **pslot; 315 316 if (!mapping) { 317 /* Anonymous page without mapping */ 318 if (page_count(page) != expected_count) 319 return -EAGAIN; 320 return MIGRATEPAGE_SUCCESS; 321 } 322 323 spin_lock_irq(&mapping->tree_lock); 324 325 pslot = radix_tree_lookup_slot(&mapping->page_tree, 326 page_index(page)); 327 328 expected_count += 1 + page_has_private(page); 329 if (page_count(page) != expected_count || 330 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 331 spin_unlock_irq(&mapping->tree_lock); 332 return -EAGAIN; 333 } 334 335 if (!page_freeze_refs(page, expected_count)) { 336 spin_unlock_irq(&mapping->tree_lock); 337 return -EAGAIN; 338 } 339 340 /* 341 * In the async migration case of moving a page with buffers, lock the 342 * buffers using trylock before the mapping is moved. If the mapping 343 * was moved, we later failed to lock the buffers and could not move 344 * the mapping back due to an elevated page count, we would have to 345 * block waiting on other references to be dropped. 346 */ 347 if (mode == MIGRATE_ASYNC && head && 348 !buffer_migrate_lock_buffers(head, mode)) { 349 page_unfreeze_refs(page, expected_count); 350 spin_unlock_irq(&mapping->tree_lock); 351 return -EAGAIN; 352 } 353 354 /* 355 * Now we know that no one else is looking at the page. 356 */ 357 get_page(newpage); /* add cache reference */ 358 if (PageSwapCache(page)) { 359 SetPageSwapCache(newpage); 360 set_page_private(newpage, page_private(page)); 361 } 362 363 radix_tree_replace_slot(pslot, newpage); 364 365 /* 366 * Drop cache reference from old page by unfreezing 367 * to one less reference. 368 * We know this isn't the last reference. 369 */ 370 page_unfreeze_refs(page, expected_count - 1); 371 372 /* 373 * If moved to a different zone then also account 374 * the page for that zone. Other VM counters will be 375 * taken care of when we establish references to the 376 * new page and drop references to the old page. 377 * 378 * Note that anonymous pages are accounted for 379 * via NR_FILE_PAGES and NR_ANON_PAGES if they 380 * are mapped to swap space. 381 */ 382 __dec_zone_page_state(page, NR_FILE_PAGES); 383 __inc_zone_page_state(newpage, NR_FILE_PAGES); 384 if (!PageSwapCache(page) && PageSwapBacked(page)) { 385 __dec_zone_page_state(page, NR_SHMEM); 386 __inc_zone_page_state(newpage, NR_SHMEM); 387 } 388 spin_unlock_irq(&mapping->tree_lock); 389 390 return MIGRATEPAGE_SUCCESS; 391} 392 393/* 394 * The expected number of remaining references is the same as that 395 * of migrate_page_move_mapping(). 396 */ 397int migrate_huge_page_move_mapping(struct address_space *mapping, 398 struct page *newpage, struct page *page) 399{ 400 int expected_count; 401 void **pslot; 402 403 if (!mapping) { 404 if (page_count(page) != 1) 405 return -EAGAIN; 406 return MIGRATEPAGE_SUCCESS; 407 } 408 409 spin_lock_irq(&mapping->tree_lock); 410 411 pslot = radix_tree_lookup_slot(&mapping->page_tree, 412 page_index(page)); 413 414 expected_count = 2 + page_has_private(page); 415 if (page_count(page) != expected_count || 416 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 417 spin_unlock_irq(&mapping->tree_lock); 418 return -EAGAIN; 419 } 420 421 if (!page_freeze_refs(page, expected_count)) { 422 spin_unlock_irq(&mapping->tree_lock); 423 return -EAGAIN; 424 } 425 426 get_page(newpage); 427 428 radix_tree_replace_slot(pslot, newpage); 429 430 page_unfreeze_refs(page, expected_count - 1); 431 432 spin_unlock_irq(&mapping->tree_lock); 433 return MIGRATEPAGE_SUCCESS; 434} 435 436/* 437 * Gigantic pages are so large that we do not guarantee that page++ pointer 438 * arithmetic will work across the entire page. We need something more 439 * specialized. 440 */ 441static void __copy_gigantic_page(struct page *dst, struct page *src, 442 int nr_pages) 443{ 444 int i; 445 struct page *dst_base = dst; 446 struct page *src_base = src; 447 448 for (i = 0; i < nr_pages; ) { 449 cond_resched(); 450 copy_highpage(dst, src); 451 452 i++; 453 dst = mem_map_next(dst, dst_base, i); 454 src = mem_map_next(src, src_base, i); 455 } 456} 457 458static void copy_huge_page(struct page *dst, struct page *src) 459{ 460 int i; 461 int nr_pages; 462 463 if (PageHuge(src)) { 464 /* hugetlbfs page */ 465 struct hstate *h = page_hstate(src); 466 nr_pages = pages_per_huge_page(h); 467 468 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 469 __copy_gigantic_page(dst, src, nr_pages); 470 return; 471 } 472 } else { 473 /* thp page */ 474 BUG_ON(!PageTransHuge(src)); 475 nr_pages = hpage_nr_pages(src); 476 } 477 478 for (i = 0; i < nr_pages; i++) { 479 cond_resched(); 480 copy_highpage(dst + i, src + i); 481 } 482} 483 484/* 485 * Copy the page to its new location 486 */ 487void migrate_page_copy(struct page *newpage, struct page *page) 488{ 489 int cpupid; 490 491 if (PageHuge(page) || PageTransHuge(page)) 492 copy_huge_page(newpage, page); 493 else 494 copy_highpage(newpage, page); 495 496 if (PageError(page)) 497 SetPageError(newpage); 498 if (PageReferenced(page)) 499 SetPageReferenced(newpage); 500 if (PageUptodate(page)) 501 SetPageUptodate(newpage); 502 if (TestClearPageActive(page)) { 503 VM_BUG_ON_PAGE(PageUnevictable(page), page); 504 SetPageActive(newpage); 505 } else if (TestClearPageUnevictable(page)) 506 SetPageUnevictable(newpage); 507 if (PageChecked(page)) 508 SetPageChecked(newpage); 509 if (PageMappedToDisk(page)) 510 SetPageMappedToDisk(newpage); 511 512 if (PageDirty(page)) { 513 clear_page_dirty_for_io(page); 514 /* 515 * Want to mark the page and the radix tree as dirty, and 516 * redo the accounting that clear_page_dirty_for_io undid, 517 * but we can't use set_page_dirty because that function 518 * is actually a signal that all of the page has become dirty. 519 * Whereas only part of our page may be dirty. 520 */ 521 if (PageSwapBacked(page)) 522 SetPageDirty(newpage); 523 else 524 __set_page_dirty_nobuffers(newpage); 525 } 526 527 /* 528 * Copy NUMA information to the new page, to prevent over-eager 529 * future migrations of this same page. 530 */ 531 cpupid = page_cpupid_xchg_last(page, -1); 532 page_cpupid_xchg_last(newpage, cpupid); 533 534 mlock_migrate_page(newpage, page); 535 ksm_migrate_page(newpage, page); 536 /* 537 * Please do not reorder this without considering how mm/ksm.c's 538 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 539 */ 540 if (PageSwapCache(page)) 541 ClearPageSwapCache(page); 542 ClearPagePrivate(page); 543 set_page_private(page, 0); 544 545 /* 546 * If any waiters have accumulated on the new page then 547 * wake them up. 548 */ 549 if (PageWriteback(newpage)) 550 end_page_writeback(newpage); 551} 552 553/************************************************************ 554 * Migration functions 555 ***********************************************************/ 556 557/* 558 * Common logic to directly migrate a single page suitable for 559 * pages that do not use PagePrivate/PagePrivate2. 560 * 561 * Pages are locked upon entry and exit. 562 */ 563int migrate_page(struct address_space *mapping, 564 struct page *newpage, struct page *page, 565 enum migrate_mode mode) 566{ 567 int rc; 568 569 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 570 571 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 572 573 if (rc != MIGRATEPAGE_SUCCESS) 574 return rc; 575 576 migrate_page_copy(newpage, page); 577 return MIGRATEPAGE_SUCCESS; 578} 579EXPORT_SYMBOL(migrate_page); 580 581#ifdef CONFIG_BLOCK 582/* 583 * Migration function for pages with buffers. This function can only be used 584 * if the underlying filesystem guarantees that no other references to "page" 585 * exist. 586 */ 587int buffer_migrate_page(struct address_space *mapping, 588 struct page *newpage, struct page *page, enum migrate_mode mode) 589{ 590 struct buffer_head *bh, *head; 591 int rc; 592 593 if (!page_has_buffers(page)) 594 return migrate_page(mapping, newpage, page, mode); 595 596 head = page_buffers(page); 597 598 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 599 600 if (rc != MIGRATEPAGE_SUCCESS) 601 return rc; 602 603 /* 604 * In the async case, migrate_page_move_mapping locked the buffers 605 * with an IRQ-safe spinlock held. In the sync case, the buffers 606 * need to be locked now 607 */ 608 if (mode != MIGRATE_ASYNC) 609 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 610 611 ClearPagePrivate(page); 612 set_page_private(newpage, page_private(page)); 613 set_page_private(page, 0); 614 put_page(page); 615 get_page(newpage); 616 617 bh = head; 618 do { 619 set_bh_page(bh, newpage, bh_offset(bh)); 620 bh = bh->b_this_page; 621 622 } while (bh != head); 623 624 SetPagePrivate(newpage); 625 626 migrate_page_copy(newpage, page); 627 628 bh = head; 629 do { 630 unlock_buffer(bh); 631 put_bh(bh); 632 bh = bh->b_this_page; 633 634 } while (bh != head); 635 636 return MIGRATEPAGE_SUCCESS; 637} 638EXPORT_SYMBOL(buffer_migrate_page); 639#endif 640 641/* 642 * Writeback a page to clean the dirty state 643 */ 644static int writeout(struct address_space *mapping, struct page *page) 645{ 646 struct writeback_control wbc = { 647 .sync_mode = WB_SYNC_NONE, 648 .nr_to_write = 1, 649 .range_start = 0, 650 .range_end = LLONG_MAX, 651 .for_reclaim = 1 652 }; 653 int rc; 654 655 if (!mapping->a_ops->writepage) 656 /* No write method for the address space */ 657 return -EINVAL; 658 659 if (!clear_page_dirty_for_io(page)) 660 /* Someone else already triggered a write */ 661 return -EAGAIN; 662 663 /* 664 * A dirty page may imply that the underlying filesystem has 665 * the page on some queue. So the page must be clean for 666 * migration. Writeout may mean we loose the lock and the 667 * page state is no longer what we checked for earlier. 668 * At this point we know that the migration attempt cannot 669 * be successful. 670 */ 671 remove_migration_ptes(page, page); 672 673 rc = mapping->a_ops->writepage(page, &wbc); 674 675 if (rc != AOP_WRITEPAGE_ACTIVATE) 676 /* unlocked. Relock */ 677 lock_page(page); 678 679 return (rc < 0) ? -EIO : -EAGAIN; 680} 681 682/* 683 * Default handling if a filesystem does not provide a migration function. 684 */ 685static int fallback_migrate_page(struct address_space *mapping, 686 struct page *newpage, struct page *page, enum migrate_mode mode) 687{ 688 if (PageDirty(page)) { 689 /* Only writeback pages in full synchronous migration */ 690 if (mode != MIGRATE_SYNC) 691 return -EBUSY; 692 return writeout(mapping, page); 693 } 694 695 /* 696 * Buffers may be managed in a filesystem specific way. 697 * We must have no buffers or drop them. 698 */ 699 if (page_has_private(page) && 700 !try_to_release_page(page, GFP_KERNEL)) 701 return -EAGAIN; 702 703 return migrate_page(mapping, newpage, page, mode); 704} 705 706/* 707 * Move a page to a newly allocated page 708 * The page is locked and all ptes have been successfully removed. 709 * 710 * The new page will have replaced the old page if this function 711 * is successful. 712 * 713 * Return value: 714 * < 0 - error code 715 * MIGRATEPAGE_SUCCESS - success 716 */ 717static int move_to_new_page(struct page *newpage, struct page *page, 718 int page_was_mapped, enum migrate_mode mode) 719{ 720 struct address_space *mapping; 721 int rc; 722 723 /* 724 * Block others from accessing the page when we get around to 725 * establishing additional references. We are the only one 726 * holding a reference to the new page at this point. 727 */ 728 if (!trylock_page(newpage)) 729 BUG(); 730 731 /* Prepare mapping for the new page.*/ 732 newpage->index = page->index; 733 newpage->mapping = page->mapping; 734 if (PageSwapBacked(page)) 735 SetPageSwapBacked(newpage); 736 737 mapping = page_mapping(page); 738 if (!mapping) 739 rc = migrate_page(mapping, newpage, page, mode); 740 else if (mapping->a_ops->migratepage) 741 /* 742 * Most pages have a mapping and most filesystems provide a 743 * migratepage callback. Anonymous pages are part of swap 744 * space which also has its own migratepage callback. This 745 * is the most common path for page migration. 746 */ 747 rc = mapping->a_ops->migratepage(mapping, 748 newpage, page, mode); 749 else 750 rc = fallback_migrate_page(mapping, newpage, page, mode); 751 752 if (rc != MIGRATEPAGE_SUCCESS) { 753 newpage->mapping = NULL; 754 } else { 755 mem_cgroup_migrate(page, newpage, false); 756 if (page_was_mapped) 757 remove_migration_ptes(page, newpage); 758 page->mapping = NULL; 759 } 760 761 unlock_page(newpage); 762 763 return rc; 764} 765 766static int __unmap_and_move(struct page *page, struct page *newpage, 767 int force, enum migrate_mode mode) 768{ 769 int rc = -EAGAIN; 770 int page_was_mapped = 0; 771 struct anon_vma *anon_vma = NULL; 772 773 if (!trylock_page(page)) { 774 if (!force || mode == MIGRATE_ASYNC) 775 goto out; 776 777 /* 778 * It's not safe for direct compaction to call lock_page. 779 * For example, during page readahead pages are added locked 780 * to the LRU. Later, when the IO completes the pages are 781 * marked uptodate and unlocked. However, the queueing 782 * could be merging multiple pages for one bio (e.g. 783 * mpage_readpages). If an allocation happens for the 784 * second or third page, the process can end up locking 785 * the same page twice and deadlocking. Rather than 786 * trying to be clever about what pages can be locked, 787 * avoid the use of lock_page for direct compaction 788 * altogether. 789 */ 790 if (current->flags & PF_MEMALLOC) 791 goto out; 792 793 lock_page(page); 794 } 795 796 if (PageWriteback(page)) { 797 /* 798 * Only in the case of a full synchronous migration is it 799 * necessary to wait for PageWriteback. In the async case, 800 * the retry loop is too short and in the sync-light case, 801 * the overhead of stalling is too much 802 */ 803 if (mode != MIGRATE_SYNC) { 804 rc = -EBUSY; 805 goto out_unlock; 806 } 807 if (!force) 808 goto out_unlock; 809 wait_on_page_writeback(page); 810 } 811 /* 812 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 813 * we cannot notice that anon_vma is freed while we migrates a page. 814 * This get_anon_vma() delays freeing anon_vma pointer until the end 815 * of migration. File cache pages are no problem because of page_lock() 816 * File Caches may use write_page() or lock_page() in migration, then, 817 * just care Anon page here. 818 */ 819 if (PageAnon(page) && !PageKsm(page)) { 820 /* 821 * Only page_lock_anon_vma_read() understands the subtleties of 822 * getting a hold on an anon_vma from outside one of its mms. 823 */ 824 anon_vma = page_get_anon_vma(page); 825 if (anon_vma) { 826 /* 827 * Anon page 828 */ 829 } else if (PageSwapCache(page)) { 830 /* 831 * We cannot be sure that the anon_vma of an unmapped 832 * swapcache page is safe to use because we don't 833 * know in advance if the VMA that this page belonged 834 * to still exists. If the VMA and others sharing the 835 * data have been freed, then the anon_vma could 836 * already be invalid. 837 * 838 * To avoid this possibility, swapcache pages get 839 * migrated but are not remapped when migration 840 * completes 841 */ 842 } else { 843 goto out_unlock; 844 } 845 } 846 847 if (unlikely(isolated_balloon_page(page))) { 848 /* 849 * A ballooned page does not need any special attention from 850 * physical to virtual reverse mapping procedures. 851 * Skip any attempt to unmap PTEs or to remap swap cache, 852 * in order to avoid burning cycles at rmap level, and perform 853 * the page migration right away (proteced by page lock). 854 */ 855 rc = balloon_page_migrate(newpage, page, mode); 856 goto out_unlock; 857 } 858 859 /* 860 * Corner case handling: 861 * 1. When a new swap-cache page is read into, it is added to the LRU 862 * and treated as swapcache but it has no rmap yet. 863 * Calling try_to_unmap() against a page->mapping==NULL page will 864 * trigger a BUG. So handle it here. 865 * 2. An orphaned page (see truncate_complete_page) might have 866 * fs-private metadata. The page can be picked up due to memory 867 * offlining. Everywhere else except page reclaim, the page is 868 * invisible to the vm, so the page can not be migrated. So try to 869 * free the metadata, so the page can be freed. 870 */ 871 if (!page->mapping) { 872 VM_BUG_ON_PAGE(PageAnon(page), page); 873 if (page_has_private(page)) { 874 try_to_free_buffers(page); 875 goto out_unlock; 876 } 877 goto skip_unmap; 878 } 879 880 /* Establish migration ptes or remove ptes */ 881 if (page_mapped(page)) { 882 try_to_unmap(page, 883 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 884 page_was_mapped = 1; 885 } 886 887skip_unmap: 888 if (!page_mapped(page)) 889 rc = move_to_new_page(newpage, page, page_was_mapped, mode); 890 891 if (rc && page_was_mapped) 892 remove_migration_ptes(page, page); 893 894 /* Drop an anon_vma reference if we took one */ 895 if (anon_vma) 896 put_anon_vma(anon_vma); 897 898out_unlock: 899 unlock_page(page); 900out: 901 return rc; 902} 903 904/* 905 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 906 * around it. 907 */ 908#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 909#define ICE_noinline noinline 910#else 911#define ICE_noinline 912#endif 913 914/* 915 * Obtain the lock on page, remove all ptes and migrate the page 916 * to the newly allocated page in newpage. 917 */ 918static ICE_noinline int unmap_and_move(new_page_t get_new_page, 919 free_page_t put_new_page, 920 unsigned long private, struct page *page, 921 int force, enum migrate_mode mode, 922 enum migrate_reason reason) 923{ 924 int rc = 0; 925 int *result = NULL; 926 struct page *newpage = get_new_page(page, private, &result); 927 928 if (!newpage) 929 return -ENOMEM; 930 931 if (page_count(page) == 1) { 932 /* page was freed from under us. So we are done. */ 933 goto out; 934 } 935 936 if (unlikely(PageTransHuge(page))) 937 if (unlikely(split_huge_page(page))) 938 goto out; 939 940 rc = __unmap_and_move(page, newpage, force, mode); 941 942out: 943 if (rc != -EAGAIN) { 944 /* 945 * A page that has been migrated has all references 946 * removed and will be freed. A page that has not been 947 * migrated will have kepts its references and be 948 * restored. 949 */ 950 list_del(&page->lru); 951 dec_zone_page_state(page, NR_ISOLATED_ANON + 952 page_is_file_cache(page)); 953 /* Soft-offlined page shouldn't go through lru cache list */ 954 if (reason == MR_MEMORY_FAILURE) 955 put_page(page); 956 else 957 putback_lru_page(page); 958 } 959 960 /* 961 * If migration was not successful and there's a freeing callback, use 962 * it. Otherwise, putback_lru_page() will drop the reference grabbed 963 * during isolation. 964 */ 965 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) { 966 ClearPageSwapBacked(newpage); 967 put_new_page(newpage, private); 968 } else if (unlikely(__is_movable_balloon_page(newpage))) { 969 /* drop our reference, page already in the balloon */ 970 put_page(newpage); 971 } else 972 putback_lru_page(newpage); 973 974 if (result) { 975 if (rc) 976 *result = rc; 977 else 978 *result = page_to_nid(newpage); 979 } 980 return rc; 981} 982 983/* 984 * Counterpart of unmap_and_move_page() for hugepage migration. 985 * 986 * This function doesn't wait the completion of hugepage I/O 987 * because there is no race between I/O and migration for hugepage. 988 * Note that currently hugepage I/O occurs only in direct I/O 989 * where no lock is held and PG_writeback is irrelevant, 990 * and writeback status of all subpages are counted in the reference 991 * count of the head page (i.e. if all subpages of a 2MB hugepage are 992 * under direct I/O, the reference of the head page is 512 and a bit more.) 993 * This means that when we try to migrate hugepage whose subpages are 994 * doing direct I/O, some references remain after try_to_unmap() and 995 * hugepage migration fails without data corruption. 996 * 997 * There is also no race when direct I/O is issued on the page under migration, 998 * because then pte is replaced with migration swap entry and direct I/O code 999 * will wait in the page fault for migration to complete. 1000 */ 1001static int unmap_and_move_huge_page(new_page_t get_new_page, 1002 free_page_t put_new_page, unsigned long private, 1003 struct page *hpage, int force, 1004 enum migrate_mode mode) 1005{ 1006 int rc = 0; 1007 int *result = NULL; 1008 int page_was_mapped = 0; 1009 struct page *new_hpage; 1010 struct anon_vma *anon_vma = NULL; 1011 1012 /* 1013 * Movability of hugepages depends on architectures and hugepage size. 1014 * This check is necessary because some callers of hugepage migration 1015 * like soft offline and memory hotremove don't walk through page 1016 * tables or check whether the hugepage is pmd-based or not before 1017 * kicking migration. 1018 */ 1019 if (!hugepage_migration_supported(page_hstate(hpage))) { 1020 putback_active_hugepage(hpage); 1021 return -ENOSYS; 1022 } 1023 1024 new_hpage = get_new_page(hpage, private, &result); 1025 if (!new_hpage) 1026 return -ENOMEM; 1027 1028 rc = -EAGAIN; 1029 1030 if (!trylock_page(hpage)) { 1031 if (!force || mode != MIGRATE_SYNC) 1032 goto out; 1033 lock_page(hpage); 1034 } 1035 1036 if (PageAnon(hpage)) 1037 anon_vma = page_get_anon_vma(hpage); 1038 1039 if (page_mapped(hpage)) { 1040 try_to_unmap(hpage, 1041 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1042 page_was_mapped = 1; 1043 } 1044 1045 if (!page_mapped(hpage)) 1046 rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode); 1047 1048 if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped) 1049 remove_migration_ptes(hpage, hpage); 1050 1051 if (anon_vma) 1052 put_anon_vma(anon_vma); 1053 1054 if (rc == MIGRATEPAGE_SUCCESS) 1055 hugetlb_cgroup_migrate(hpage, new_hpage); 1056 1057 unlock_page(hpage); 1058out: 1059 if (rc != -EAGAIN) 1060 putback_active_hugepage(hpage); 1061 1062 /* 1063 * If migration was not successful and there's a freeing callback, use 1064 * it. Otherwise, put_page() will drop the reference grabbed during 1065 * isolation. 1066 */ 1067 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) 1068 put_new_page(new_hpage, private); 1069 else 1070 putback_active_hugepage(new_hpage); 1071 1072 if (result) { 1073 if (rc) 1074 *result = rc; 1075 else 1076 *result = page_to_nid(new_hpage); 1077 } 1078 return rc; 1079} 1080 1081/* 1082 * migrate_pages - migrate the pages specified in a list, to the free pages 1083 * supplied as the target for the page migration 1084 * 1085 * @from: The list of pages to be migrated. 1086 * @get_new_page: The function used to allocate free pages to be used 1087 * as the target of the page migration. 1088 * @put_new_page: The function used to free target pages if migration 1089 * fails, or NULL if no special handling is necessary. 1090 * @private: Private data to be passed on to get_new_page() 1091 * @mode: The migration mode that specifies the constraints for 1092 * page migration, if any. 1093 * @reason: The reason for page migration. 1094 * 1095 * The function returns after 10 attempts or if no pages are movable any more 1096 * because the list has become empty or no retryable pages exist any more. 1097 * The caller should call putback_lru_pages() to return pages to the LRU 1098 * or free list only if ret != 0. 1099 * 1100 * Returns the number of pages that were not migrated, or an error code. 1101 */ 1102int migrate_pages(struct list_head *from, new_page_t get_new_page, 1103 free_page_t put_new_page, unsigned long private, 1104 enum migrate_mode mode, int reason) 1105{ 1106 int retry = 1; 1107 int nr_failed = 0; 1108 int nr_succeeded = 0; 1109 int pass = 0; 1110 struct page *page; 1111 struct page *page2; 1112 int swapwrite = current->flags & PF_SWAPWRITE; 1113 int rc; 1114 1115 if (!swapwrite) 1116 current->flags |= PF_SWAPWRITE; 1117 1118 for(pass = 0; pass < 10 && retry; pass++) { 1119 retry = 0; 1120 1121 list_for_each_entry_safe(page, page2, from, lru) { 1122 cond_resched(); 1123 1124 if (PageHuge(page)) 1125 rc = unmap_and_move_huge_page(get_new_page, 1126 put_new_page, private, page, 1127 pass > 2, mode); 1128 else 1129 rc = unmap_and_move(get_new_page, put_new_page, 1130 private, page, pass > 2, mode, 1131 reason); 1132 1133 switch(rc) { 1134 case -ENOMEM: 1135 goto out; 1136 case -EAGAIN: 1137 retry++; 1138 break; 1139 case MIGRATEPAGE_SUCCESS: 1140 nr_succeeded++; 1141 break; 1142 default: 1143 /* 1144 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1145 * unlike -EAGAIN case, the failed page is 1146 * removed from migration page list and not 1147 * retried in the next outer loop. 1148 */ 1149 nr_failed++; 1150 break; 1151 } 1152 } 1153 } 1154 rc = nr_failed + retry; 1155out: 1156 if (nr_succeeded) 1157 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1158 if (nr_failed) 1159 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1160 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1161 1162 if (!swapwrite) 1163 current->flags &= ~PF_SWAPWRITE; 1164 1165 return rc; 1166} 1167 1168#ifdef CONFIG_NUMA 1169/* 1170 * Move a list of individual pages 1171 */ 1172struct page_to_node { 1173 unsigned long addr; 1174 struct page *page; 1175 int node; 1176 int status; 1177}; 1178 1179static struct page *new_page_node(struct page *p, unsigned long private, 1180 int **result) 1181{ 1182 struct page_to_node *pm = (struct page_to_node *)private; 1183 1184 while (pm->node != MAX_NUMNODES && pm->page != p) 1185 pm++; 1186 1187 if (pm->node == MAX_NUMNODES) 1188 return NULL; 1189 1190 *result = &pm->status; 1191 1192 if (PageHuge(p)) 1193 return alloc_huge_page_node(page_hstate(compound_head(p)), 1194 pm->node); 1195 else 1196 return alloc_pages_exact_node(pm->node, 1197 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1198} 1199 1200/* 1201 * Move a set of pages as indicated in the pm array. The addr 1202 * field must be set to the virtual address of the page to be moved 1203 * and the node number must contain a valid target node. 1204 * The pm array ends with node = MAX_NUMNODES. 1205 */ 1206static int do_move_page_to_node_array(struct mm_struct *mm, 1207 struct page_to_node *pm, 1208 int migrate_all) 1209{ 1210 int err; 1211 struct page_to_node *pp; 1212 LIST_HEAD(pagelist); 1213 1214 down_read(&mm->mmap_sem); 1215 1216 /* 1217 * Build a list of pages to migrate 1218 */ 1219 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1220 struct vm_area_struct *vma; 1221 struct page *page; 1222 1223 err = -EFAULT; 1224 vma = find_vma(mm, pp->addr); 1225 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1226 goto set_status; 1227 1228 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); 1229 1230 err = PTR_ERR(page); 1231 if (IS_ERR(page)) 1232 goto set_status; 1233 1234 err = -ENOENT; 1235 if (!page) 1236 goto set_status; 1237 1238 /* Use PageReserved to check for zero page */ 1239 if (PageReserved(page)) 1240 goto put_and_set; 1241 1242 pp->page = page; 1243 err = page_to_nid(page); 1244 1245 if (err == pp->node) 1246 /* 1247 * Node already in the right place 1248 */ 1249 goto put_and_set; 1250 1251 err = -EACCES; 1252 if (page_mapcount(page) > 1 && 1253 !migrate_all) 1254 goto put_and_set; 1255 1256 if (PageHuge(page)) { 1257 if (PageHead(page)) 1258 isolate_huge_page(page, &pagelist); 1259 goto put_and_set; 1260 } 1261 1262 err = isolate_lru_page(page); 1263 if (!err) { 1264 list_add_tail(&page->lru, &pagelist); 1265 inc_zone_page_state(page, NR_ISOLATED_ANON + 1266 page_is_file_cache(page)); 1267 } 1268put_and_set: 1269 /* 1270 * Either remove the duplicate refcount from 1271 * isolate_lru_page() or drop the page ref if it was 1272 * not isolated. 1273 */ 1274 put_page(page); 1275set_status: 1276 pp->status = err; 1277 } 1278 1279 err = 0; 1280 if (!list_empty(&pagelist)) { 1281 err = migrate_pages(&pagelist, new_page_node, NULL, 1282 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1283 if (err) 1284 putback_movable_pages(&pagelist); 1285 } 1286 1287 up_read(&mm->mmap_sem); 1288 return err; 1289} 1290 1291/* 1292 * Migrate an array of page address onto an array of nodes and fill 1293 * the corresponding array of status. 1294 */ 1295static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1296 unsigned long nr_pages, 1297 const void __user * __user *pages, 1298 const int __user *nodes, 1299 int __user *status, int flags) 1300{ 1301 struct page_to_node *pm; 1302 unsigned long chunk_nr_pages; 1303 unsigned long chunk_start; 1304 int err; 1305 1306 err = -ENOMEM; 1307 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1308 if (!pm) 1309 goto out; 1310 1311 migrate_prep(); 1312 1313 /* 1314 * Store a chunk of page_to_node array in a page, 1315 * but keep the last one as a marker 1316 */ 1317 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1318 1319 for (chunk_start = 0; 1320 chunk_start < nr_pages; 1321 chunk_start += chunk_nr_pages) { 1322 int j; 1323 1324 if (chunk_start + chunk_nr_pages > nr_pages) 1325 chunk_nr_pages = nr_pages - chunk_start; 1326 1327 /* fill the chunk pm with addrs and nodes from user-space */ 1328 for (j = 0; j < chunk_nr_pages; j++) { 1329 const void __user *p; 1330 int node; 1331 1332 err = -EFAULT; 1333 if (get_user(p, pages + j + chunk_start)) 1334 goto out_pm; 1335 pm[j].addr = (unsigned long) p; 1336 1337 if (get_user(node, nodes + j + chunk_start)) 1338 goto out_pm; 1339 1340 err = -ENODEV; 1341 if (node < 0 || node >= MAX_NUMNODES) 1342 goto out_pm; 1343 1344 if (!node_state(node, N_MEMORY)) 1345 goto out_pm; 1346 1347 err = -EACCES; 1348 if (!node_isset(node, task_nodes)) 1349 goto out_pm; 1350 1351 pm[j].node = node; 1352 } 1353 1354 /* End marker for this chunk */ 1355 pm[chunk_nr_pages].node = MAX_NUMNODES; 1356 1357 /* Migrate this chunk */ 1358 err = do_move_page_to_node_array(mm, pm, 1359 flags & MPOL_MF_MOVE_ALL); 1360 if (err < 0) 1361 goto out_pm; 1362 1363 /* Return status information */ 1364 for (j = 0; j < chunk_nr_pages; j++) 1365 if (put_user(pm[j].status, status + j + chunk_start)) { 1366 err = -EFAULT; 1367 goto out_pm; 1368 } 1369 } 1370 err = 0; 1371 1372out_pm: 1373 free_page((unsigned long)pm); 1374out: 1375 return err; 1376} 1377 1378/* 1379 * Determine the nodes of an array of pages and store it in an array of status. 1380 */ 1381static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1382 const void __user **pages, int *status) 1383{ 1384 unsigned long i; 1385 1386 down_read(&mm->mmap_sem); 1387 1388 for (i = 0; i < nr_pages; i++) { 1389 unsigned long addr = (unsigned long)(*pages); 1390 struct vm_area_struct *vma; 1391 struct page *page; 1392 int err = -EFAULT; 1393 1394 vma = find_vma(mm, addr); 1395 if (!vma || addr < vma->vm_start) 1396 goto set_status; 1397 1398 page = follow_page(vma, addr, 0); 1399 1400 err = PTR_ERR(page); 1401 if (IS_ERR(page)) 1402 goto set_status; 1403 1404 err = -ENOENT; 1405 /* Use PageReserved to check for zero page */ 1406 if (!page || PageReserved(page)) 1407 goto set_status; 1408 1409 err = page_to_nid(page); 1410set_status: 1411 *status = err; 1412 1413 pages++; 1414 status++; 1415 } 1416 1417 up_read(&mm->mmap_sem); 1418} 1419 1420/* 1421 * Determine the nodes of a user array of pages and store it in 1422 * a user array of status. 1423 */ 1424static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1425 const void __user * __user *pages, 1426 int __user *status) 1427{ 1428#define DO_PAGES_STAT_CHUNK_NR 16 1429 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1430 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1431 1432 while (nr_pages) { 1433 unsigned long chunk_nr; 1434 1435 chunk_nr = nr_pages; 1436 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1437 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1438 1439 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1440 break; 1441 1442 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1443 1444 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1445 break; 1446 1447 pages += chunk_nr; 1448 status += chunk_nr; 1449 nr_pages -= chunk_nr; 1450 } 1451 return nr_pages ? -EFAULT : 0; 1452} 1453 1454/* 1455 * Move a list of pages in the address space of the currently executing 1456 * process. 1457 */ 1458SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1459 const void __user * __user *, pages, 1460 const int __user *, nodes, 1461 int __user *, status, int, flags) 1462{ 1463 const struct cred *cred = current_cred(), *tcred; 1464 struct task_struct *task; 1465 struct mm_struct *mm; 1466 int err; 1467 nodemask_t task_nodes; 1468 1469 /* Check flags */ 1470 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1471 return -EINVAL; 1472 1473 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1474 return -EPERM; 1475 1476 /* Find the mm_struct */ 1477 rcu_read_lock(); 1478 task = pid ? find_task_by_vpid(pid) : current; 1479 if (!task) { 1480 rcu_read_unlock(); 1481 return -ESRCH; 1482 } 1483 get_task_struct(task); 1484 1485 /* 1486 * Check if this process has the right to modify the specified 1487 * process. The right exists if the process has administrative 1488 * capabilities, superuser privileges or the same 1489 * userid as the target process. 1490 */ 1491 tcred = __task_cred(task); 1492 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1493 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1494 !capable(CAP_SYS_NICE)) { 1495 rcu_read_unlock(); 1496 err = -EPERM; 1497 goto out; 1498 } 1499 rcu_read_unlock(); 1500 1501 err = security_task_movememory(task); 1502 if (err) 1503 goto out; 1504 1505 task_nodes = cpuset_mems_allowed(task); 1506 mm = get_task_mm(task); 1507 put_task_struct(task); 1508 1509 if (!mm) 1510 return -EINVAL; 1511 1512 if (nodes) 1513 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1514 nodes, status, flags); 1515 else 1516 err = do_pages_stat(mm, nr_pages, pages, status); 1517 1518 mmput(mm); 1519 return err; 1520 1521out: 1522 put_task_struct(task); 1523 return err; 1524} 1525 1526#ifdef CONFIG_NUMA_BALANCING 1527/* 1528 * Returns true if this is a safe migration target node for misplaced NUMA 1529 * pages. Currently it only checks the watermarks which crude 1530 */ 1531static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1532 unsigned long nr_migrate_pages) 1533{ 1534 int z; 1535 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1536 struct zone *zone = pgdat->node_zones + z; 1537 1538 if (!populated_zone(zone)) 1539 continue; 1540 1541 if (!zone_reclaimable(zone)) 1542 continue; 1543 1544 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1545 if (!zone_watermark_ok(zone, 0, 1546 high_wmark_pages(zone) + 1547 nr_migrate_pages, 1548 0, 0)) 1549 continue; 1550 return true; 1551 } 1552 return false; 1553} 1554 1555static struct page *alloc_misplaced_dst_page(struct page *page, 1556 unsigned long data, 1557 int **result) 1558{ 1559 int nid = (int) data; 1560 struct page *newpage; 1561 1562 newpage = alloc_pages_exact_node(nid, 1563 (GFP_HIGHUSER_MOVABLE | 1564 __GFP_THISNODE | __GFP_NOMEMALLOC | 1565 __GFP_NORETRY | __GFP_NOWARN) & 1566 ~__GFP_WAIT, 0); 1567 1568 return newpage; 1569} 1570 1571/* 1572 * page migration rate limiting control. 1573 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1574 * window of time. Default here says do not migrate more than 1280M per second. 1575 */ 1576static unsigned int migrate_interval_millisecs __read_mostly = 100; 1577static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1578 1579/* Returns true if the node is migrate rate-limited after the update */ 1580static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1581 unsigned long nr_pages) 1582{ 1583 /* 1584 * Rate-limit the amount of data that is being migrated to a node. 1585 * Optimal placement is no good if the memory bus is saturated and 1586 * all the time is being spent migrating! 1587 */ 1588 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1589 spin_lock(&pgdat->numabalancing_migrate_lock); 1590 pgdat->numabalancing_migrate_nr_pages = 0; 1591 pgdat->numabalancing_migrate_next_window = jiffies + 1592 msecs_to_jiffies(migrate_interval_millisecs); 1593 spin_unlock(&pgdat->numabalancing_migrate_lock); 1594 } 1595 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1596 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1597 nr_pages); 1598 return true; 1599 } 1600 1601 /* 1602 * This is an unlocked non-atomic update so errors are possible. 1603 * The consequences are failing to migrate when we potentiall should 1604 * have which is not severe enough to warrant locking. If it is ever 1605 * a problem, it can be converted to a per-cpu counter. 1606 */ 1607 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1608 return false; 1609} 1610 1611static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1612{ 1613 int page_lru; 1614 1615 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1616 1617 /* Avoid migrating to a node that is nearly full */ 1618 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1619 return 0; 1620 1621 if (isolate_lru_page(page)) 1622 return 0; 1623 1624 /* 1625 * migrate_misplaced_transhuge_page() skips page migration's usual 1626 * check on page_count(), so we must do it here, now that the page 1627 * has been isolated: a GUP pin, or any other pin, prevents migration. 1628 * The expected page count is 3: 1 for page's mapcount and 1 for the 1629 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1630 */ 1631 if (PageTransHuge(page) && page_count(page) != 3) { 1632 putback_lru_page(page); 1633 return 0; 1634 } 1635 1636 page_lru = page_is_file_cache(page); 1637 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1638 hpage_nr_pages(page)); 1639 1640 /* 1641 * Isolating the page has taken another reference, so the 1642 * caller's reference can be safely dropped without the page 1643 * disappearing underneath us during migration. 1644 */ 1645 put_page(page); 1646 return 1; 1647} 1648 1649bool pmd_trans_migrating(pmd_t pmd) 1650{ 1651 struct page *page = pmd_page(pmd); 1652 return PageLocked(page); 1653} 1654 1655/* 1656 * Attempt to migrate a misplaced page to the specified destination 1657 * node. Caller is expected to have an elevated reference count on 1658 * the page that will be dropped by this function before returning. 1659 */ 1660int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1661 int node) 1662{ 1663 pg_data_t *pgdat = NODE_DATA(node); 1664 int isolated; 1665 int nr_remaining; 1666 LIST_HEAD(migratepages); 1667 1668 /* 1669 * Don't migrate file pages that are mapped in multiple processes 1670 * with execute permissions as they are probably shared libraries. 1671 */ 1672 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1673 (vma->vm_flags & VM_EXEC)) 1674 goto out; 1675 1676 /* 1677 * Rate-limit the amount of data that is being migrated to a node. 1678 * Optimal placement is no good if the memory bus is saturated and 1679 * all the time is being spent migrating! 1680 */ 1681 if (numamigrate_update_ratelimit(pgdat, 1)) 1682 goto out; 1683 1684 isolated = numamigrate_isolate_page(pgdat, page); 1685 if (!isolated) 1686 goto out; 1687 1688 list_add(&page->lru, &migratepages); 1689 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1690 NULL, node, MIGRATE_ASYNC, 1691 MR_NUMA_MISPLACED); 1692 if (nr_remaining) { 1693 if (!list_empty(&migratepages)) { 1694 list_del(&page->lru); 1695 dec_zone_page_state(page, NR_ISOLATED_ANON + 1696 page_is_file_cache(page)); 1697 putback_lru_page(page); 1698 } 1699 isolated = 0; 1700 } else 1701 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1702 BUG_ON(!list_empty(&migratepages)); 1703 return isolated; 1704 1705out: 1706 put_page(page); 1707 return 0; 1708} 1709#endif /* CONFIG_NUMA_BALANCING */ 1710 1711#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1712/* 1713 * Migrates a THP to a given target node. page must be locked and is unlocked 1714 * before returning. 1715 */ 1716int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1717 struct vm_area_struct *vma, 1718 pmd_t *pmd, pmd_t entry, 1719 unsigned long address, 1720 struct page *page, int node) 1721{ 1722 spinlock_t *ptl; 1723 pg_data_t *pgdat = NODE_DATA(node); 1724 int isolated = 0; 1725 struct page *new_page = NULL; 1726 int page_lru = page_is_file_cache(page); 1727 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1728 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1729 pmd_t orig_entry; 1730 1731 /* 1732 * Rate-limit the amount of data that is being migrated to a node. 1733 * Optimal placement is no good if the memory bus is saturated and 1734 * all the time is being spent migrating! 1735 */ 1736 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1737 goto out_dropref; 1738 1739 new_page = alloc_pages_node(node, 1740 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT, 1741 HPAGE_PMD_ORDER); 1742 if (!new_page) 1743 goto out_fail; 1744 1745 isolated = numamigrate_isolate_page(pgdat, page); 1746 if (!isolated) { 1747 put_page(new_page); 1748 goto out_fail; 1749 } 1750 1751 if (mm_tlb_flush_pending(mm)) 1752 flush_tlb_range(vma, mmun_start, mmun_end); 1753 1754 /* Prepare a page as a migration target */ 1755 __set_page_locked(new_page); 1756 SetPageSwapBacked(new_page); 1757 1758 /* anon mapping, we can simply copy page->mapping to the new page: */ 1759 new_page->mapping = page->mapping; 1760 new_page->index = page->index; 1761 migrate_page_copy(new_page, page); 1762 WARN_ON(PageLRU(new_page)); 1763 1764 /* Recheck the target PMD */ 1765 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1766 ptl = pmd_lock(mm, pmd); 1767 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1768fail_putback: 1769 spin_unlock(ptl); 1770 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1771 1772 /* Reverse changes made by migrate_page_copy() */ 1773 if (TestClearPageActive(new_page)) 1774 SetPageActive(page); 1775 if (TestClearPageUnevictable(new_page)) 1776 SetPageUnevictable(page); 1777 mlock_migrate_page(page, new_page); 1778 1779 unlock_page(new_page); 1780 put_page(new_page); /* Free it */ 1781 1782 /* Retake the callers reference and putback on LRU */ 1783 get_page(page); 1784 putback_lru_page(page); 1785 mod_zone_page_state(page_zone(page), 1786 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1787 1788 goto out_unlock; 1789 } 1790 1791 orig_entry = *pmd; 1792 entry = mk_pmd(new_page, vma->vm_page_prot); 1793 entry = pmd_mkhuge(entry); 1794 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1795 1796 /* 1797 * Clear the old entry under pagetable lock and establish the new PTE. 1798 * Any parallel GUP will either observe the old page blocking on the 1799 * page lock, block on the page table lock or observe the new page. 1800 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1801 * guarantee the copy is visible before the pagetable update. 1802 */ 1803 flush_cache_range(vma, mmun_start, mmun_end); 1804 page_add_anon_rmap(new_page, vma, mmun_start); 1805 pmdp_clear_flush_notify(vma, mmun_start, pmd); 1806 set_pmd_at(mm, mmun_start, pmd, entry); 1807 flush_tlb_range(vma, mmun_start, mmun_end); 1808 update_mmu_cache_pmd(vma, address, &entry); 1809 1810 if (page_count(page) != 2) { 1811 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1812 flush_tlb_range(vma, mmun_start, mmun_end); 1813 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 1814 update_mmu_cache_pmd(vma, address, &entry); 1815 page_remove_rmap(new_page); 1816 goto fail_putback; 1817 } 1818 1819 mem_cgroup_migrate(page, new_page, false); 1820 1821 page_remove_rmap(page); 1822 1823 spin_unlock(ptl); 1824 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1825 1826 /* Take an "isolate" reference and put new page on the LRU. */ 1827 get_page(new_page); 1828 putback_lru_page(new_page); 1829 1830 unlock_page(new_page); 1831 unlock_page(page); 1832 put_page(page); /* Drop the rmap reference */ 1833 put_page(page); /* Drop the LRU isolation reference */ 1834 1835 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1836 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1837 1838 mod_zone_page_state(page_zone(page), 1839 NR_ISOLATED_ANON + page_lru, 1840 -HPAGE_PMD_NR); 1841 return isolated; 1842 1843out_fail: 1844 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1845out_dropref: 1846 ptl = pmd_lock(mm, pmd); 1847 if (pmd_same(*pmd, entry)) { 1848 entry = pmd_modify(entry, vma->vm_page_prot); 1849 set_pmd_at(mm, mmun_start, pmd, entry); 1850 update_mmu_cache_pmd(vma, address, &entry); 1851 } 1852 spin_unlock(ptl); 1853 1854out_unlock: 1855 unlock_page(page); 1856 put_page(page); 1857 return 0; 1858} 1859#endif /* CONFIG_NUMA_BALANCING */ 1860 1861#endif /* CONFIG_NUMA */ 1862