1/* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11#include <linux/kernel.h> 12#include <linux/slab.h> 13#include <linux/backing-dev.h> 14#include <linux/mm.h> 15#include <linux/vmacache.h> 16#include <linux/shm.h> 17#include <linux/mman.h> 18#include <linux/pagemap.h> 19#include <linux/swap.h> 20#include <linux/syscalls.h> 21#include <linux/capability.h> 22#include <linux/init.h> 23#include <linux/file.h> 24#include <linux/fs.h> 25#include <linux/personality.h> 26#include <linux/security.h> 27#include <linux/hugetlb.h> 28#include <linux/profile.h> 29#include <linux/export.h> 30#include <linux/mount.h> 31#include <linux/mempolicy.h> 32#include <linux/rmap.h> 33#include <linux/mmu_notifier.h> 34#include <linux/mmdebug.h> 35#include <linux/perf_event.h> 36#include <linux/audit.h> 37#include <linux/khugepaged.h> 38#include <linux/uprobes.h> 39#include <linux/rbtree_augmented.h> 40#include <linux/sched/sysctl.h> 41#include <linux/notifier.h> 42#include <linux/memory.h> 43#include <linux/printk.h> 44 45#include <asm/uaccess.h> 46#include <asm/cacheflush.h> 47#include <asm/tlb.h> 48#include <asm/mmu_context.h> 49 50#include "internal.h" 51 52#ifndef arch_mmap_check 53#define arch_mmap_check(addr, len, flags) (0) 54#endif 55 56#ifndef arch_rebalance_pgtables 57#define arch_rebalance_pgtables(addr, len) (addr) 58#endif 59 60static void unmap_region(struct mm_struct *mm, 61 struct vm_area_struct *vma, struct vm_area_struct *prev, 62 unsigned long start, unsigned long end); 63 64/* description of effects of mapping type and prot in current implementation. 65 * this is due to the limited x86 page protection hardware. The expected 66 * behavior is in parens: 67 * 68 * map_type prot 69 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 70 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 71 * w: (no) no w: (no) no w: (yes) yes w: (no) no 72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 73 * 74 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 75 * w: (no) no w: (no) no w: (copy) copy w: (no) no 76 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 77 * 78 */ 79pgprot_t protection_map[16] = { 80 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 81 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 82}; 83 84pgprot_t vm_get_page_prot(unsigned long vm_flags) 85{ 86 return __pgprot(pgprot_val(protection_map[vm_flags & 87 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 88 pgprot_val(arch_vm_get_page_prot(vm_flags))); 89} 90EXPORT_SYMBOL(vm_get_page_prot); 91 92static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 93{ 94 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 95} 96 97/* Update vma->vm_page_prot to reflect vma->vm_flags. */ 98void vma_set_page_prot(struct vm_area_struct *vma) 99{ 100 unsigned long vm_flags = vma->vm_flags; 101 102 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 103 if (vma_wants_writenotify(vma)) { 104 vm_flags &= ~VM_SHARED; 105 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, 106 vm_flags); 107 } 108} 109 110 111int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ 112int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ 113unsigned long sysctl_overcommit_kbytes __read_mostly; 114int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 115unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 116unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 117/* 118 * Make sure vm_committed_as in one cacheline and not cacheline shared with 119 * other variables. It can be updated by several CPUs frequently. 120 */ 121struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 122 123/* 124 * The global memory commitment made in the system can be a metric 125 * that can be used to drive ballooning decisions when Linux is hosted 126 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 127 * balancing memory across competing virtual machines that are hosted. 128 * Several metrics drive this policy engine including the guest reported 129 * memory commitment. 130 */ 131unsigned long vm_memory_committed(void) 132{ 133 return percpu_counter_read_positive(&vm_committed_as); 134} 135EXPORT_SYMBOL_GPL(vm_memory_committed); 136 137/* 138 * Check that a process has enough memory to allocate a new virtual 139 * mapping. 0 means there is enough memory for the allocation to 140 * succeed and -ENOMEM implies there is not. 141 * 142 * We currently support three overcommit policies, which are set via the 143 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 144 * 145 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 146 * Additional code 2002 Jul 20 by Robert Love. 147 * 148 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 149 * 150 * Note this is a helper function intended to be used by LSMs which 151 * wish to use this logic. 152 */ 153int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 154{ 155 long free, allowed, reserve; 156 157 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 158 -(s64)vm_committed_as_batch * num_online_cpus(), 159 "memory commitment underflow"); 160 161 vm_acct_memory(pages); 162 163 /* 164 * Sometimes we want to use more memory than we have 165 */ 166 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 167 return 0; 168 169 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 170 free = global_page_state(NR_FREE_PAGES); 171 free += global_page_state(NR_FILE_PAGES); 172 173 /* 174 * shmem pages shouldn't be counted as free in this 175 * case, they can't be purged, only swapped out, and 176 * that won't affect the overall amount of available 177 * memory in the system. 178 */ 179 free -= global_page_state(NR_SHMEM); 180 181 free += get_nr_swap_pages(); 182 183 /* 184 * Any slabs which are created with the 185 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 186 * which are reclaimable, under pressure. The dentry 187 * cache and most inode caches should fall into this 188 */ 189 free += global_page_state(NR_SLAB_RECLAIMABLE); 190 191 /* 192 * Leave reserved pages. The pages are not for anonymous pages. 193 */ 194 if (free <= totalreserve_pages) 195 goto error; 196 else 197 free -= totalreserve_pages; 198 199 /* 200 * Reserve some for root 201 */ 202 if (!cap_sys_admin) 203 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 204 205 if (free > pages) 206 return 0; 207 208 goto error; 209 } 210 211 allowed = vm_commit_limit(); 212 /* 213 * Reserve some for root 214 */ 215 if (!cap_sys_admin) 216 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 217 218 /* 219 * Don't let a single process grow so big a user can't recover 220 */ 221 if (mm) { 222 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 223 allowed -= min_t(long, mm->total_vm / 32, reserve); 224 } 225 226 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 227 return 0; 228error: 229 vm_unacct_memory(pages); 230 231 return -ENOMEM; 232} 233 234/* 235 * Requires inode->i_mapping->i_mmap_rwsem 236 */ 237static void __remove_shared_vm_struct(struct vm_area_struct *vma, 238 struct file *file, struct address_space *mapping) 239{ 240 if (vma->vm_flags & VM_DENYWRITE) 241 atomic_inc(&file_inode(file)->i_writecount); 242 if (vma->vm_flags & VM_SHARED) 243 mapping_unmap_writable(mapping); 244 245 flush_dcache_mmap_lock(mapping); 246 vma_interval_tree_remove(vma, &mapping->i_mmap); 247 flush_dcache_mmap_unlock(mapping); 248} 249 250/* 251 * Unlink a file-based vm structure from its interval tree, to hide 252 * vma from rmap and vmtruncate before freeing its page tables. 253 */ 254void unlink_file_vma(struct vm_area_struct *vma) 255{ 256 struct file *file = vma->vm_file; 257 258 if (file) { 259 struct address_space *mapping = file->f_mapping; 260 i_mmap_lock_write(mapping); 261 __remove_shared_vm_struct(vma, file, mapping); 262 i_mmap_unlock_write(mapping); 263 } 264} 265 266/* 267 * Close a vm structure and free it, returning the next. 268 */ 269static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 270{ 271 struct vm_area_struct *next = vma->vm_next; 272 273 might_sleep(); 274 if (vma->vm_ops && vma->vm_ops->close) 275 vma->vm_ops->close(vma); 276 if (vma->vm_file) 277 fput(vma->vm_file); 278 mpol_put(vma_policy(vma)); 279 kmem_cache_free(vm_area_cachep, vma); 280 return next; 281} 282 283static unsigned long do_brk(unsigned long addr, unsigned long len); 284 285SYSCALL_DEFINE1(brk, unsigned long, brk) 286{ 287 unsigned long retval; 288 unsigned long newbrk, oldbrk; 289 struct mm_struct *mm = current->mm; 290 unsigned long min_brk; 291 bool populate; 292 293 down_write(&mm->mmap_sem); 294 295#ifdef CONFIG_COMPAT_BRK 296 /* 297 * CONFIG_COMPAT_BRK can still be overridden by setting 298 * randomize_va_space to 2, which will still cause mm->start_brk 299 * to be arbitrarily shifted 300 */ 301 if (current->brk_randomized) 302 min_brk = mm->start_brk; 303 else 304 min_brk = mm->end_data; 305#else 306 min_brk = mm->start_brk; 307#endif 308 if (brk < min_brk) 309 goto out; 310 311 /* 312 * Check against rlimit here. If this check is done later after the test 313 * of oldbrk with newbrk then it can escape the test and let the data 314 * segment grow beyond its set limit the in case where the limit is 315 * not page aligned -Ram Gupta 316 */ 317 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, 318 mm->end_data, mm->start_data)) 319 goto out; 320 321 newbrk = PAGE_ALIGN(brk); 322 oldbrk = PAGE_ALIGN(mm->brk); 323 if (oldbrk == newbrk) 324 goto set_brk; 325 326 /* Always allow shrinking brk. */ 327 if (brk <= mm->brk) { 328 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 329 goto set_brk; 330 goto out; 331 } 332 333 /* Check against existing mmap mappings. */ 334 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 335 goto out; 336 337 /* Ok, looks good - let it rip. */ 338 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 339 goto out; 340 341set_brk: 342 mm->brk = brk; 343 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; 344 up_write(&mm->mmap_sem); 345 if (populate) 346 mm_populate(oldbrk, newbrk - oldbrk); 347 return brk; 348 349out: 350 retval = mm->brk; 351 up_write(&mm->mmap_sem); 352 return retval; 353} 354 355static long vma_compute_subtree_gap(struct vm_area_struct *vma) 356{ 357 unsigned long max, subtree_gap; 358 max = vma->vm_start; 359 if (vma->vm_prev) 360 max -= vma->vm_prev->vm_end; 361 if (vma->vm_rb.rb_left) { 362 subtree_gap = rb_entry(vma->vm_rb.rb_left, 363 struct vm_area_struct, vm_rb)->rb_subtree_gap; 364 if (subtree_gap > max) 365 max = subtree_gap; 366 } 367 if (vma->vm_rb.rb_right) { 368 subtree_gap = rb_entry(vma->vm_rb.rb_right, 369 struct vm_area_struct, vm_rb)->rb_subtree_gap; 370 if (subtree_gap > max) 371 max = subtree_gap; 372 } 373 return max; 374} 375 376#ifdef CONFIG_DEBUG_VM_RB 377static int browse_rb(struct rb_root *root) 378{ 379 int i = 0, j, bug = 0; 380 struct rb_node *nd, *pn = NULL; 381 unsigned long prev = 0, pend = 0; 382 383 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 384 struct vm_area_struct *vma; 385 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 386 if (vma->vm_start < prev) { 387 pr_emerg("vm_start %lx < prev %lx\n", 388 vma->vm_start, prev); 389 bug = 1; 390 } 391 if (vma->vm_start < pend) { 392 pr_emerg("vm_start %lx < pend %lx\n", 393 vma->vm_start, pend); 394 bug = 1; 395 } 396 if (vma->vm_start > vma->vm_end) { 397 pr_emerg("vm_start %lx > vm_end %lx\n", 398 vma->vm_start, vma->vm_end); 399 bug = 1; 400 } 401 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { 402 pr_emerg("free gap %lx, correct %lx\n", 403 vma->rb_subtree_gap, 404 vma_compute_subtree_gap(vma)); 405 bug = 1; 406 } 407 i++; 408 pn = nd; 409 prev = vma->vm_start; 410 pend = vma->vm_end; 411 } 412 j = 0; 413 for (nd = pn; nd; nd = rb_prev(nd)) 414 j++; 415 if (i != j) { 416 pr_emerg("backwards %d, forwards %d\n", j, i); 417 bug = 1; 418 } 419 return bug ? -1 : i; 420} 421 422static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) 423{ 424 struct rb_node *nd; 425 426 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 427 struct vm_area_struct *vma; 428 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 429 VM_BUG_ON_VMA(vma != ignore && 430 vma->rb_subtree_gap != vma_compute_subtree_gap(vma), 431 vma); 432 } 433} 434 435static void validate_mm(struct mm_struct *mm) 436{ 437 int bug = 0; 438 int i = 0; 439 unsigned long highest_address = 0; 440 struct vm_area_struct *vma = mm->mmap; 441 442 while (vma) { 443 struct anon_vma *anon_vma = vma->anon_vma; 444 struct anon_vma_chain *avc; 445 446 if (anon_vma) { 447 anon_vma_lock_read(anon_vma); 448 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 449 anon_vma_interval_tree_verify(avc); 450 anon_vma_unlock_read(anon_vma); 451 } 452 453 highest_address = vma->vm_end; 454 vma = vma->vm_next; 455 i++; 456 } 457 if (i != mm->map_count) { 458 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); 459 bug = 1; 460 } 461 if (highest_address != mm->highest_vm_end) { 462 pr_emerg("mm->highest_vm_end %lx, found %lx\n", 463 mm->highest_vm_end, highest_address); 464 bug = 1; 465 } 466 i = browse_rb(&mm->mm_rb); 467 if (i != mm->map_count) { 468 if (i != -1) 469 pr_emerg("map_count %d rb %d\n", mm->map_count, i); 470 bug = 1; 471 } 472 VM_BUG_ON_MM(bug, mm); 473} 474#else 475#define validate_mm_rb(root, ignore) do { } while (0) 476#define validate_mm(mm) do { } while (0) 477#endif 478 479RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, 480 unsigned long, rb_subtree_gap, vma_compute_subtree_gap) 481 482/* 483 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or 484 * vma->vm_prev->vm_end values changed, without modifying the vma's position 485 * in the rbtree. 486 */ 487static void vma_gap_update(struct vm_area_struct *vma) 488{ 489 /* 490 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback 491 * function that does exacltly what we want. 492 */ 493 vma_gap_callbacks_propagate(&vma->vm_rb, NULL); 494} 495 496static inline void vma_rb_insert(struct vm_area_struct *vma, 497 struct rb_root *root) 498{ 499 /* All rb_subtree_gap values must be consistent prior to insertion */ 500 validate_mm_rb(root, NULL); 501 502 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 503} 504 505static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) 506{ 507 /* 508 * All rb_subtree_gap values must be consistent prior to erase, 509 * with the possible exception of the vma being erased. 510 */ 511 validate_mm_rb(root, vma); 512 513 /* 514 * Note rb_erase_augmented is a fairly large inline function, 515 * so make sure we instantiate it only once with our desired 516 * augmented rbtree callbacks. 517 */ 518 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); 519} 520 521/* 522 * vma has some anon_vma assigned, and is already inserted on that 523 * anon_vma's interval trees. 524 * 525 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 526 * vma must be removed from the anon_vma's interval trees using 527 * anon_vma_interval_tree_pre_update_vma(). 528 * 529 * After the update, the vma will be reinserted using 530 * anon_vma_interval_tree_post_update_vma(). 531 * 532 * The entire update must be protected by exclusive mmap_sem and by 533 * the root anon_vma's mutex. 534 */ 535static inline void 536anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 537{ 538 struct anon_vma_chain *avc; 539 540 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 541 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 542} 543 544static inline void 545anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 546{ 547 struct anon_vma_chain *avc; 548 549 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 550 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 551} 552 553static int find_vma_links(struct mm_struct *mm, unsigned long addr, 554 unsigned long end, struct vm_area_struct **pprev, 555 struct rb_node ***rb_link, struct rb_node **rb_parent) 556{ 557 struct rb_node **__rb_link, *__rb_parent, *rb_prev; 558 559 __rb_link = &mm->mm_rb.rb_node; 560 rb_prev = __rb_parent = NULL; 561 562 while (*__rb_link) { 563 struct vm_area_struct *vma_tmp; 564 565 __rb_parent = *__rb_link; 566 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 567 568 if (vma_tmp->vm_end > addr) { 569 /* Fail if an existing vma overlaps the area */ 570 if (vma_tmp->vm_start < end) 571 return -ENOMEM; 572 __rb_link = &__rb_parent->rb_left; 573 } else { 574 rb_prev = __rb_parent; 575 __rb_link = &__rb_parent->rb_right; 576 } 577 } 578 579 *pprev = NULL; 580 if (rb_prev) 581 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 582 *rb_link = __rb_link; 583 *rb_parent = __rb_parent; 584 return 0; 585} 586 587static unsigned long count_vma_pages_range(struct mm_struct *mm, 588 unsigned long addr, unsigned long end) 589{ 590 unsigned long nr_pages = 0; 591 struct vm_area_struct *vma; 592 593 /* Find first overlaping mapping */ 594 vma = find_vma_intersection(mm, addr, end); 595 if (!vma) 596 return 0; 597 598 nr_pages = (min(end, vma->vm_end) - 599 max(addr, vma->vm_start)) >> PAGE_SHIFT; 600 601 /* Iterate over the rest of the overlaps */ 602 for (vma = vma->vm_next; vma; vma = vma->vm_next) { 603 unsigned long overlap_len; 604 605 if (vma->vm_start > end) 606 break; 607 608 overlap_len = min(end, vma->vm_end) - vma->vm_start; 609 nr_pages += overlap_len >> PAGE_SHIFT; 610 } 611 612 return nr_pages; 613} 614 615void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 616 struct rb_node **rb_link, struct rb_node *rb_parent) 617{ 618 /* Update tracking information for the gap following the new vma. */ 619 if (vma->vm_next) 620 vma_gap_update(vma->vm_next); 621 else 622 mm->highest_vm_end = vma->vm_end; 623 624 /* 625 * vma->vm_prev wasn't known when we followed the rbtree to find the 626 * correct insertion point for that vma. As a result, we could not 627 * update the vma vm_rb parents rb_subtree_gap values on the way down. 628 * So, we first insert the vma with a zero rb_subtree_gap value 629 * (to be consistent with what we did on the way down), and then 630 * immediately update the gap to the correct value. Finally we 631 * rebalance the rbtree after all augmented values have been set. 632 */ 633 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 634 vma->rb_subtree_gap = 0; 635 vma_gap_update(vma); 636 vma_rb_insert(vma, &mm->mm_rb); 637} 638 639static void __vma_link_file(struct vm_area_struct *vma) 640{ 641 struct file *file; 642 643 file = vma->vm_file; 644 if (file) { 645 struct address_space *mapping = file->f_mapping; 646 647 if (vma->vm_flags & VM_DENYWRITE) 648 atomic_dec(&file_inode(file)->i_writecount); 649 if (vma->vm_flags & VM_SHARED) 650 atomic_inc(&mapping->i_mmap_writable); 651 652 flush_dcache_mmap_lock(mapping); 653 vma_interval_tree_insert(vma, &mapping->i_mmap); 654 flush_dcache_mmap_unlock(mapping); 655 } 656} 657 658static void 659__vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 660 struct vm_area_struct *prev, struct rb_node **rb_link, 661 struct rb_node *rb_parent) 662{ 663 __vma_link_list(mm, vma, prev, rb_parent); 664 __vma_link_rb(mm, vma, rb_link, rb_parent); 665} 666 667static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 668 struct vm_area_struct *prev, struct rb_node **rb_link, 669 struct rb_node *rb_parent) 670{ 671 struct address_space *mapping = NULL; 672 673 if (vma->vm_file) { 674 mapping = vma->vm_file->f_mapping; 675 i_mmap_lock_write(mapping); 676 } 677 678 __vma_link(mm, vma, prev, rb_link, rb_parent); 679 __vma_link_file(vma); 680 681 if (mapping) 682 i_mmap_unlock_write(mapping); 683 684 mm->map_count++; 685 validate_mm(mm); 686} 687 688/* 689 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the 690 * mm's list and rbtree. It has already been inserted into the interval tree. 691 */ 692static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 693{ 694 struct vm_area_struct *prev; 695 struct rb_node **rb_link, *rb_parent; 696 697 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 698 &prev, &rb_link, &rb_parent)) 699 BUG(); 700 __vma_link(mm, vma, prev, rb_link, rb_parent); 701 mm->map_count++; 702} 703 704static inline void 705__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 706 struct vm_area_struct *prev) 707{ 708 struct vm_area_struct *next; 709 710 vma_rb_erase(vma, &mm->mm_rb); 711 prev->vm_next = next = vma->vm_next; 712 if (next) 713 next->vm_prev = prev; 714 715 /* Kill the cache */ 716 vmacache_invalidate(mm); 717} 718 719/* 720 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 721 * is already present in an i_mmap tree without adjusting the tree. 722 * The following helper function should be used when such adjustments 723 * are necessary. The "insert" vma (if any) is to be inserted 724 * before we drop the necessary locks. 725 */ 726int vma_adjust(struct vm_area_struct *vma, unsigned long start, 727 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 728{ 729 struct mm_struct *mm = vma->vm_mm; 730 struct vm_area_struct *next = vma->vm_next; 731 struct vm_area_struct *importer = NULL; 732 struct address_space *mapping = NULL; 733 struct rb_root *root = NULL; 734 struct anon_vma *anon_vma = NULL; 735 struct file *file = vma->vm_file; 736 bool start_changed = false, end_changed = false; 737 long adjust_next = 0; 738 int remove_next = 0; 739 740 if (next && !insert) { 741 struct vm_area_struct *exporter = NULL; 742 743 if (end >= next->vm_end) { 744 /* 745 * vma expands, overlapping all the next, and 746 * perhaps the one after too (mprotect case 6). 747 */ 748again: remove_next = 1 + (end > next->vm_end); 749 end = next->vm_end; 750 exporter = next; 751 importer = vma; 752 } else if (end > next->vm_start) { 753 /* 754 * vma expands, overlapping part of the next: 755 * mprotect case 5 shifting the boundary up. 756 */ 757 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 758 exporter = next; 759 importer = vma; 760 } else if (end < vma->vm_end) { 761 /* 762 * vma shrinks, and !insert tells it's not 763 * split_vma inserting another: so it must be 764 * mprotect case 4 shifting the boundary down. 765 */ 766 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); 767 exporter = vma; 768 importer = next; 769 } 770 771 /* 772 * Easily overlooked: when mprotect shifts the boundary, 773 * make sure the expanding vma has anon_vma set if the 774 * shrinking vma had, to cover any anon pages imported. 775 */ 776 if (exporter && exporter->anon_vma && !importer->anon_vma) { 777 int error; 778 779 importer->anon_vma = exporter->anon_vma; 780 error = anon_vma_clone(importer, exporter); 781 if (error) 782 return error; 783 } 784 } 785 786 if (file) { 787 mapping = file->f_mapping; 788 root = &mapping->i_mmap; 789 uprobe_munmap(vma, vma->vm_start, vma->vm_end); 790 791 if (adjust_next) 792 uprobe_munmap(next, next->vm_start, next->vm_end); 793 794 i_mmap_lock_write(mapping); 795 if (insert) { 796 /* 797 * Put into interval tree now, so instantiated pages 798 * are visible to arm/parisc __flush_dcache_page 799 * throughout; but we cannot insert into address 800 * space until vma start or end is updated. 801 */ 802 __vma_link_file(insert); 803 } 804 } 805 806 vma_adjust_trans_huge(vma, start, end, adjust_next); 807 808 anon_vma = vma->anon_vma; 809 if (!anon_vma && adjust_next) 810 anon_vma = next->anon_vma; 811 if (anon_vma) { 812 VM_BUG_ON_VMA(adjust_next && next->anon_vma && 813 anon_vma != next->anon_vma, next); 814 anon_vma_lock_write(anon_vma); 815 anon_vma_interval_tree_pre_update_vma(vma); 816 if (adjust_next) 817 anon_vma_interval_tree_pre_update_vma(next); 818 } 819 820 if (root) { 821 flush_dcache_mmap_lock(mapping); 822 vma_interval_tree_remove(vma, root); 823 if (adjust_next) 824 vma_interval_tree_remove(next, root); 825 } 826 827 if (start != vma->vm_start) { 828 vma->vm_start = start; 829 start_changed = true; 830 } 831 if (end != vma->vm_end) { 832 vma->vm_end = end; 833 end_changed = true; 834 } 835 vma->vm_pgoff = pgoff; 836 if (adjust_next) { 837 next->vm_start += adjust_next << PAGE_SHIFT; 838 next->vm_pgoff += adjust_next; 839 } 840 841 if (root) { 842 if (adjust_next) 843 vma_interval_tree_insert(next, root); 844 vma_interval_tree_insert(vma, root); 845 flush_dcache_mmap_unlock(mapping); 846 } 847 848 if (remove_next) { 849 /* 850 * vma_merge has merged next into vma, and needs 851 * us to remove next before dropping the locks. 852 */ 853 __vma_unlink(mm, next, vma); 854 if (file) 855 __remove_shared_vm_struct(next, file, mapping); 856 } else if (insert) { 857 /* 858 * split_vma has split insert from vma, and needs 859 * us to insert it before dropping the locks 860 * (it may either follow vma or precede it). 861 */ 862 __insert_vm_struct(mm, insert); 863 } else { 864 if (start_changed) 865 vma_gap_update(vma); 866 if (end_changed) { 867 if (!next) 868 mm->highest_vm_end = end; 869 else if (!adjust_next) 870 vma_gap_update(next); 871 } 872 } 873 874 if (anon_vma) { 875 anon_vma_interval_tree_post_update_vma(vma); 876 if (adjust_next) 877 anon_vma_interval_tree_post_update_vma(next); 878 anon_vma_unlock_write(anon_vma); 879 } 880 if (mapping) 881 i_mmap_unlock_write(mapping); 882 883 if (root) { 884 uprobe_mmap(vma); 885 886 if (adjust_next) 887 uprobe_mmap(next); 888 } 889 890 if (remove_next) { 891 if (file) { 892 uprobe_munmap(next, next->vm_start, next->vm_end); 893 fput(file); 894 } 895 if (next->anon_vma) 896 anon_vma_merge(vma, next); 897 mm->map_count--; 898 mpol_put(vma_policy(next)); 899 kmem_cache_free(vm_area_cachep, next); 900 /* 901 * In mprotect's case 6 (see comments on vma_merge), 902 * we must remove another next too. It would clutter 903 * up the code too much to do both in one go. 904 */ 905 next = vma->vm_next; 906 if (remove_next == 2) 907 goto again; 908 else if (next) 909 vma_gap_update(next); 910 else 911 mm->highest_vm_end = end; 912 } 913 if (insert && file) 914 uprobe_mmap(insert); 915 916 validate_mm(mm); 917 918 return 0; 919} 920 921/* 922 * If the vma has a ->close operation then the driver probably needs to release 923 * per-vma resources, so we don't attempt to merge those. 924 */ 925static inline int is_mergeable_vma(struct vm_area_struct *vma, 926 struct file *file, unsigned long vm_flags) 927{ 928 /* 929 * VM_SOFTDIRTY should not prevent from VMA merging, if we 930 * match the flags but dirty bit -- the caller should mark 931 * merged VMA as dirty. If dirty bit won't be excluded from 932 * comparison, we increase pressue on the memory system forcing 933 * the kernel to generate new VMAs when old one could be 934 * extended instead. 935 */ 936 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 937 return 0; 938 if (vma->vm_file != file) 939 return 0; 940 if (vma->vm_ops && vma->vm_ops->close) 941 return 0; 942 return 1; 943} 944 945static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 946 struct anon_vma *anon_vma2, 947 struct vm_area_struct *vma) 948{ 949 /* 950 * The list_is_singular() test is to avoid merging VMA cloned from 951 * parents. This can improve scalability caused by anon_vma lock. 952 */ 953 if ((!anon_vma1 || !anon_vma2) && (!vma || 954 list_is_singular(&vma->anon_vma_chain))) 955 return 1; 956 return anon_vma1 == anon_vma2; 957} 958 959/* 960 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 961 * in front of (at a lower virtual address and file offset than) the vma. 962 * 963 * We cannot merge two vmas if they have differently assigned (non-NULL) 964 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 965 * 966 * We don't check here for the merged mmap wrapping around the end of pagecache 967 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 968 * wrap, nor mmaps which cover the final page at index -1UL. 969 */ 970static int 971can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 972 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 973{ 974 if (is_mergeable_vma(vma, file, vm_flags) && 975 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 976 if (vma->vm_pgoff == vm_pgoff) 977 return 1; 978 } 979 return 0; 980} 981 982/* 983 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 984 * beyond (at a higher virtual address and file offset than) the vma. 985 * 986 * We cannot merge two vmas if they have differently assigned (non-NULL) 987 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 988 */ 989static int 990can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 991 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 992{ 993 if (is_mergeable_vma(vma, file, vm_flags) && 994 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 995 pgoff_t vm_pglen; 996 vm_pglen = vma_pages(vma); 997 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 998 return 1; 999 } 1000 return 0; 1001} 1002 1003/* 1004 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 1005 * whether that can be merged with its predecessor or its successor. 1006 * Or both (it neatly fills a hole). 1007 * 1008 * In most cases - when called for mmap, brk or mremap - [addr,end) is 1009 * certain not to be mapped by the time vma_merge is called; but when 1010 * called for mprotect, it is certain to be already mapped (either at 1011 * an offset within prev, or at the start of next), and the flags of 1012 * this area are about to be changed to vm_flags - and the no-change 1013 * case has already been eliminated. 1014 * 1015 * The following mprotect cases have to be considered, where AAAA is 1016 * the area passed down from mprotect_fixup, never extending beyond one 1017 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 1018 * 1019 * AAAA AAAA AAAA AAAA 1020 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 1021 * cannot merge might become might become might become 1022 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 1023 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 1024 * mremap move: PPPPNNNNNNNN 8 1025 * AAAA 1026 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 1027 * might become case 1 below case 2 below case 3 below 1028 * 1029 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 1030 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 1031 */ 1032struct vm_area_struct *vma_merge(struct mm_struct *mm, 1033 struct vm_area_struct *prev, unsigned long addr, 1034 unsigned long end, unsigned long vm_flags, 1035 struct anon_vma *anon_vma, struct file *file, 1036 pgoff_t pgoff, struct mempolicy *policy) 1037{ 1038 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1039 struct vm_area_struct *area, *next; 1040 int err; 1041 1042 /* 1043 * We later require that vma->vm_flags == vm_flags, 1044 * so this tests vma->vm_flags & VM_SPECIAL, too. 1045 */ 1046 if (vm_flags & VM_SPECIAL) 1047 return NULL; 1048 1049 if (prev) 1050 next = prev->vm_next; 1051 else 1052 next = mm->mmap; 1053 area = next; 1054 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 1055 next = next->vm_next; 1056 1057 /* 1058 * Can it merge with the predecessor? 1059 */ 1060 if (prev && prev->vm_end == addr && 1061 mpol_equal(vma_policy(prev), policy) && 1062 can_vma_merge_after(prev, vm_flags, 1063 anon_vma, file, pgoff)) { 1064 /* 1065 * OK, it can. Can we now merge in the successor as well? 1066 */ 1067 if (next && end == next->vm_start && 1068 mpol_equal(policy, vma_policy(next)) && 1069 can_vma_merge_before(next, vm_flags, 1070 anon_vma, file, pgoff+pglen) && 1071 is_mergeable_anon_vma(prev->anon_vma, 1072 next->anon_vma, NULL)) { 1073 /* cases 1, 6 */ 1074 err = vma_adjust(prev, prev->vm_start, 1075 next->vm_end, prev->vm_pgoff, NULL); 1076 } else /* cases 2, 5, 7 */ 1077 err = vma_adjust(prev, prev->vm_start, 1078 end, prev->vm_pgoff, NULL); 1079 if (err) 1080 return NULL; 1081 khugepaged_enter_vma_merge(prev, vm_flags); 1082 return prev; 1083 } 1084 1085 /* 1086 * Can this new request be merged in front of next? 1087 */ 1088 if (next && end == next->vm_start && 1089 mpol_equal(policy, vma_policy(next)) && 1090 can_vma_merge_before(next, vm_flags, 1091 anon_vma, file, pgoff+pglen)) { 1092 if (prev && addr < prev->vm_end) /* case 4 */ 1093 err = vma_adjust(prev, prev->vm_start, 1094 addr, prev->vm_pgoff, NULL); 1095 else /* cases 3, 8 */ 1096 err = vma_adjust(area, addr, next->vm_end, 1097 next->vm_pgoff - pglen, NULL); 1098 if (err) 1099 return NULL; 1100 khugepaged_enter_vma_merge(area, vm_flags); 1101 return area; 1102 } 1103 1104 return NULL; 1105} 1106 1107/* 1108 * Rough compatbility check to quickly see if it's even worth looking 1109 * at sharing an anon_vma. 1110 * 1111 * They need to have the same vm_file, and the flags can only differ 1112 * in things that mprotect may change. 1113 * 1114 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1115 * we can merge the two vma's. For example, we refuse to merge a vma if 1116 * there is a vm_ops->close() function, because that indicates that the 1117 * driver is doing some kind of reference counting. But that doesn't 1118 * really matter for the anon_vma sharing case. 1119 */ 1120static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1121{ 1122 return a->vm_end == b->vm_start && 1123 mpol_equal(vma_policy(a), vma_policy(b)) && 1124 a->vm_file == b->vm_file && 1125 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && 1126 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1127} 1128 1129/* 1130 * Do some basic sanity checking to see if we can re-use the anon_vma 1131 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1132 * the same as 'old', the other will be the new one that is trying 1133 * to share the anon_vma. 1134 * 1135 * NOTE! This runs with mm_sem held for reading, so it is possible that 1136 * the anon_vma of 'old' is concurrently in the process of being set up 1137 * by another page fault trying to merge _that_. But that's ok: if it 1138 * is being set up, that automatically means that it will be a singleton 1139 * acceptable for merging, so we can do all of this optimistically. But 1140 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1141 * 1142 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1143 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1144 * is to return an anon_vma that is "complex" due to having gone through 1145 * a fork). 1146 * 1147 * We also make sure that the two vma's are compatible (adjacent, 1148 * and with the same memory policies). That's all stable, even with just 1149 * a read lock on the mm_sem. 1150 */ 1151static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1152{ 1153 if (anon_vma_compatible(a, b)) { 1154 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1155 1156 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1157 return anon_vma; 1158 } 1159 return NULL; 1160} 1161 1162/* 1163 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1164 * neighbouring vmas for a suitable anon_vma, before it goes off 1165 * to allocate a new anon_vma. It checks because a repetitive 1166 * sequence of mprotects and faults may otherwise lead to distinct 1167 * anon_vmas being allocated, preventing vma merge in subsequent 1168 * mprotect. 1169 */ 1170struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1171{ 1172 struct anon_vma *anon_vma; 1173 struct vm_area_struct *near; 1174 1175 near = vma->vm_next; 1176 if (!near) 1177 goto try_prev; 1178 1179 anon_vma = reusable_anon_vma(near, vma, near); 1180 if (anon_vma) 1181 return anon_vma; 1182try_prev: 1183 near = vma->vm_prev; 1184 if (!near) 1185 goto none; 1186 1187 anon_vma = reusable_anon_vma(near, near, vma); 1188 if (anon_vma) 1189 return anon_vma; 1190none: 1191 /* 1192 * There's no absolute need to look only at touching neighbours: 1193 * we could search further afield for "compatible" anon_vmas. 1194 * But it would probably just be a waste of time searching, 1195 * or lead to too many vmas hanging off the same anon_vma. 1196 * We're trying to allow mprotect remerging later on, 1197 * not trying to minimize memory used for anon_vmas. 1198 */ 1199 return NULL; 1200} 1201 1202#ifdef CONFIG_PROC_FS 1203void vm_stat_account(struct mm_struct *mm, unsigned long flags, 1204 struct file *file, long pages) 1205{ 1206 const unsigned long stack_flags 1207 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 1208 1209 mm->total_vm += pages; 1210 1211 if (file) { 1212 mm->shared_vm += pages; 1213 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 1214 mm->exec_vm += pages; 1215 } else if (flags & stack_flags) 1216 mm->stack_vm += pages; 1217} 1218#endif /* CONFIG_PROC_FS */ 1219 1220/* 1221 * If a hint addr is less than mmap_min_addr change hint to be as 1222 * low as possible but still greater than mmap_min_addr 1223 */ 1224static inline unsigned long round_hint_to_min(unsigned long hint) 1225{ 1226 hint &= PAGE_MASK; 1227 if (((void *)hint != NULL) && 1228 (hint < mmap_min_addr)) 1229 return PAGE_ALIGN(mmap_min_addr); 1230 return hint; 1231} 1232 1233static inline int mlock_future_check(struct mm_struct *mm, 1234 unsigned long flags, 1235 unsigned long len) 1236{ 1237 unsigned long locked, lock_limit; 1238 1239 /* mlock MCL_FUTURE? */ 1240 if (flags & VM_LOCKED) { 1241 locked = len >> PAGE_SHIFT; 1242 locked += mm->locked_vm; 1243 lock_limit = rlimit(RLIMIT_MEMLOCK); 1244 lock_limit >>= PAGE_SHIFT; 1245 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 1246 return -EAGAIN; 1247 } 1248 return 0; 1249} 1250 1251/* 1252 * The caller must hold down_write(¤t->mm->mmap_sem). 1253 */ 1254 1255unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1256 unsigned long len, unsigned long prot, 1257 unsigned long flags, unsigned long pgoff, 1258 unsigned long *populate) 1259{ 1260 struct mm_struct *mm = current->mm; 1261 vm_flags_t vm_flags; 1262 1263 *populate = 0; 1264 1265 /* 1266 * Does the application expect PROT_READ to imply PROT_EXEC? 1267 * 1268 * (the exception is when the underlying filesystem is noexec 1269 * mounted, in which case we dont add PROT_EXEC.) 1270 */ 1271 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 1272 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 1273 prot |= PROT_EXEC; 1274 1275 if (!len) 1276 return -EINVAL; 1277 1278 if (!(flags & MAP_FIXED)) 1279 addr = round_hint_to_min(addr); 1280 1281 /* Careful about overflows.. */ 1282 len = PAGE_ALIGN(len); 1283 if (!len) 1284 return -ENOMEM; 1285 1286 /* offset overflow? */ 1287 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 1288 return -EOVERFLOW; 1289 1290 /* Too many mappings? */ 1291 if (mm->map_count > sysctl_max_map_count) 1292 return -ENOMEM; 1293 1294 /* Obtain the address to map to. we verify (or select) it and ensure 1295 * that it represents a valid section of the address space. 1296 */ 1297 addr = get_unmapped_area(file, addr, len, pgoff, flags); 1298 if (addr & ~PAGE_MASK) 1299 return addr; 1300 1301 /* Do simple checking here so the lower-level routines won't have 1302 * to. we assume access permissions have been handled by the open 1303 * of the memory object, so we don't do any here. 1304 */ 1305 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 1306 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 1307 1308 if (flags & MAP_LOCKED) 1309 if (!can_do_mlock()) 1310 return -EPERM; 1311 1312 if (mlock_future_check(mm, vm_flags, len)) 1313 return -EAGAIN; 1314 1315 if (file) { 1316 struct inode *inode = file_inode(file); 1317 1318 switch (flags & MAP_TYPE) { 1319 case MAP_SHARED: 1320 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 1321 return -EACCES; 1322 1323 /* 1324 * Make sure we don't allow writing to an append-only 1325 * file.. 1326 */ 1327 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1328 return -EACCES; 1329 1330 /* 1331 * Make sure there are no mandatory locks on the file. 1332 */ 1333 if (locks_verify_locked(file)) 1334 return -EAGAIN; 1335 1336 vm_flags |= VM_SHARED | VM_MAYSHARE; 1337 if (!(file->f_mode & FMODE_WRITE)) 1338 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1339 1340 /* fall through */ 1341 case MAP_PRIVATE: 1342 if (!(file->f_mode & FMODE_READ)) 1343 return -EACCES; 1344 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1345 if (vm_flags & VM_EXEC) 1346 return -EPERM; 1347 vm_flags &= ~VM_MAYEXEC; 1348 } 1349 1350 if (!file->f_op->mmap) 1351 return -ENODEV; 1352 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1353 return -EINVAL; 1354 break; 1355 1356 default: 1357 return -EINVAL; 1358 } 1359 } else { 1360 switch (flags & MAP_TYPE) { 1361 case MAP_SHARED: 1362 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1363 return -EINVAL; 1364 /* 1365 * Ignore pgoff. 1366 */ 1367 pgoff = 0; 1368 vm_flags |= VM_SHARED | VM_MAYSHARE; 1369 break; 1370 case MAP_PRIVATE: 1371 /* 1372 * Set pgoff according to addr for anon_vma. 1373 */ 1374 pgoff = addr >> PAGE_SHIFT; 1375 break; 1376 default: 1377 return -EINVAL; 1378 } 1379 } 1380 1381 /* 1382 * Set 'VM_NORESERVE' if we should not account for the 1383 * memory use of this mapping. 1384 */ 1385 if (flags & MAP_NORESERVE) { 1386 /* We honor MAP_NORESERVE if allowed to overcommit */ 1387 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1388 vm_flags |= VM_NORESERVE; 1389 1390 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1391 if (file && is_file_hugepages(file)) 1392 vm_flags |= VM_NORESERVE; 1393 } 1394 1395 addr = mmap_region(file, addr, len, vm_flags, pgoff); 1396 if (!IS_ERR_VALUE(addr) && 1397 ((vm_flags & VM_LOCKED) || 1398 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) 1399 *populate = len; 1400 return addr; 1401} 1402 1403SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, 1404 unsigned long, prot, unsigned long, flags, 1405 unsigned long, fd, unsigned long, pgoff) 1406{ 1407 struct file *file = NULL; 1408 unsigned long retval = -EBADF; 1409 1410 if (!(flags & MAP_ANONYMOUS)) { 1411 audit_mmap_fd(fd, flags); 1412 file = fget(fd); 1413 if (!file) 1414 goto out; 1415 if (is_file_hugepages(file)) 1416 len = ALIGN(len, huge_page_size(hstate_file(file))); 1417 retval = -EINVAL; 1418 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) 1419 goto out_fput; 1420 } else if (flags & MAP_HUGETLB) { 1421 struct user_struct *user = NULL; 1422 struct hstate *hs; 1423 1424 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); 1425 if (!hs) 1426 return -EINVAL; 1427 1428 len = ALIGN(len, huge_page_size(hs)); 1429 /* 1430 * VM_NORESERVE is used because the reservations will be 1431 * taken when vm_ops->mmap() is called 1432 * A dummy user value is used because we are not locking 1433 * memory so no accounting is necessary 1434 */ 1435 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, 1436 VM_NORESERVE, 1437 &user, HUGETLB_ANONHUGE_INODE, 1438 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); 1439 if (IS_ERR(file)) 1440 return PTR_ERR(file); 1441 } 1442 1443 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); 1444 1445 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); 1446out_fput: 1447 if (file) 1448 fput(file); 1449out: 1450 return retval; 1451} 1452 1453#ifdef __ARCH_WANT_SYS_OLD_MMAP 1454struct mmap_arg_struct { 1455 unsigned long addr; 1456 unsigned long len; 1457 unsigned long prot; 1458 unsigned long flags; 1459 unsigned long fd; 1460 unsigned long offset; 1461}; 1462 1463SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) 1464{ 1465 struct mmap_arg_struct a; 1466 1467 if (copy_from_user(&a, arg, sizeof(a))) 1468 return -EFAULT; 1469 if (a.offset & ~PAGE_MASK) 1470 return -EINVAL; 1471 1472 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1473 a.offset >> PAGE_SHIFT); 1474} 1475#endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1476 1477/* 1478 * Some shared mappigns will want the pages marked read-only 1479 * to track write events. If so, we'll downgrade vm_page_prot 1480 * to the private version (using protection_map[] without the 1481 * VM_SHARED bit). 1482 */ 1483int vma_wants_writenotify(struct vm_area_struct *vma) 1484{ 1485 vm_flags_t vm_flags = vma->vm_flags; 1486 1487 /* If it was private or non-writable, the write bit is already clear */ 1488 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1489 return 0; 1490 1491 /* The backer wishes to know when pages are first written to? */ 1492 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1493 return 1; 1494 1495 /* The open routine did something to the protections that pgprot_modify 1496 * won't preserve? */ 1497 if (pgprot_val(vma->vm_page_prot) != 1498 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags))) 1499 return 0; 1500 1501 /* Do we need to track softdirty? */ 1502 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) 1503 return 1; 1504 1505 /* Specialty mapping? */ 1506 if (vm_flags & VM_PFNMAP) 1507 return 0; 1508 1509 /* Can the mapping track the dirty pages? */ 1510 return vma->vm_file && vma->vm_file->f_mapping && 1511 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1512} 1513 1514/* 1515 * We account for memory if it's a private writeable mapping, 1516 * not hugepages and VM_NORESERVE wasn't set. 1517 */ 1518static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) 1519{ 1520 /* 1521 * hugetlb has its own accounting separate from the core VM 1522 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1523 */ 1524 if (file && is_file_hugepages(file)) 1525 return 0; 1526 1527 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1528} 1529 1530unsigned long mmap_region(struct file *file, unsigned long addr, 1531 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) 1532{ 1533 struct mm_struct *mm = current->mm; 1534 struct vm_area_struct *vma, *prev; 1535 int error; 1536 struct rb_node **rb_link, *rb_parent; 1537 unsigned long charged = 0; 1538 1539 /* Check against address space limit. */ 1540 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) { 1541 unsigned long nr_pages; 1542 1543 /* 1544 * MAP_FIXED may remove pages of mappings that intersects with 1545 * requested mapping. Account for the pages it would unmap. 1546 */ 1547 if (!(vm_flags & MAP_FIXED)) 1548 return -ENOMEM; 1549 1550 nr_pages = count_vma_pages_range(mm, addr, addr + len); 1551 1552 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages)) 1553 return -ENOMEM; 1554 } 1555 1556 /* Clear old maps */ 1557 error = -ENOMEM; 1558 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 1559 &rb_parent)) { 1560 if (do_munmap(mm, addr, len)) 1561 return -ENOMEM; 1562 } 1563 1564 /* 1565 * Private writable mapping: check memory availability 1566 */ 1567 if (accountable_mapping(file, vm_flags)) { 1568 charged = len >> PAGE_SHIFT; 1569 if (security_vm_enough_memory_mm(mm, charged)) 1570 return -ENOMEM; 1571 vm_flags |= VM_ACCOUNT; 1572 } 1573 1574 /* 1575 * Can we just expand an old mapping? 1576 */ 1577 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, 1578 NULL); 1579 if (vma) 1580 goto out; 1581 1582 /* 1583 * Determine the object being mapped and call the appropriate 1584 * specific mapper. the address has already been validated, but 1585 * not unmapped, but the maps are removed from the list. 1586 */ 1587 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1588 if (!vma) { 1589 error = -ENOMEM; 1590 goto unacct_error; 1591 } 1592 1593 vma->vm_mm = mm; 1594 vma->vm_start = addr; 1595 vma->vm_end = addr + len; 1596 vma->vm_flags = vm_flags; 1597 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1598 vma->vm_pgoff = pgoff; 1599 INIT_LIST_HEAD(&vma->anon_vma_chain); 1600 1601 if (file) { 1602 if (vm_flags & VM_DENYWRITE) { 1603 error = deny_write_access(file); 1604 if (error) 1605 goto free_vma; 1606 } 1607 if (vm_flags & VM_SHARED) { 1608 error = mapping_map_writable(file->f_mapping); 1609 if (error) 1610 goto allow_write_and_free_vma; 1611 } 1612 1613 /* ->mmap() can change vma->vm_file, but must guarantee that 1614 * vma_link() below can deny write-access if VM_DENYWRITE is set 1615 * and map writably if VM_SHARED is set. This usually means the 1616 * new file must not have been exposed to user-space, yet. 1617 */ 1618 vma->vm_file = get_file(file); 1619 error = file->f_op->mmap(file, vma); 1620 if (error) 1621 goto unmap_and_free_vma; 1622 1623 /* Can addr have changed?? 1624 * 1625 * Answer: Yes, several device drivers can do it in their 1626 * f_op->mmap method. -DaveM 1627 * Bug: If addr is changed, prev, rb_link, rb_parent should 1628 * be updated for vma_link() 1629 */ 1630 WARN_ON_ONCE(addr != vma->vm_start); 1631 1632 addr = vma->vm_start; 1633 vm_flags = vma->vm_flags; 1634 } else if (vm_flags & VM_SHARED) { 1635 error = shmem_zero_setup(vma); 1636 if (error) 1637 goto free_vma; 1638 } 1639 1640 vma_link(mm, vma, prev, rb_link, rb_parent); 1641 /* Once vma denies write, undo our temporary denial count */ 1642 if (file) { 1643 if (vm_flags & VM_SHARED) 1644 mapping_unmap_writable(file->f_mapping); 1645 if (vm_flags & VM_DENYWRITE) 1646 allow_write_access(file); 1647 } 1648 file = vma->vm_file; 1649out: 1650 perf_event_mmap(vma); 1651 1652 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1653 if (vm_flags & VM_LOCKED) { 1654 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || 1655 vma == get_gate_vma(current->mm))) 1656 mm->locked_vm += (len >> PAGE_SHIFT); 1657 else 1658 vma->vm_flags &= ~VM_LOCKED; 1659 } 1660 1661 if (file) 1662 uprobe_mmap(vma); 1663 1664 /* 1665 * New (or expanded) vma always get soft dirty status. 1666 * Otherwise user-space soft-dirty page tracker won't 1667 * be able to distinguish situation when vma area unmapped, 1668 * then new mapped in-place (which must be aimed as 1669 * a completely new data area). 1670 */ 1671 vma->vm_flags |= VM_SOFTDIRTY; 1672 1673 vma_set_page_prot(vma); 1674 1675 return addr; 1676 1677unmap_and_free_vma: 1678 vma->vm_file = NULL; 1679 fput(file); 1680 1681 /* Undo any partial mapping done by a device driver. */ 1682 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1683 charged = 0; 1684 if (vm_flags & VM_SHARED) 1685 mapping_unmap_writable(file->f_mapping); 1686allow_write_and_free_vma: 1687 if (vm_flags & VM_DENYWRITE) 1688 allow_write_access(file); 1689free_vma: 1690 kmem_cache_free(vm_area_cachep, vma); 1691unacct_error: 1692 if (charged) 1693 vm_unacct_memory(charged); 1694 return error; 1695} 1696 1697unsigned long unmapped_area(struct vm_unmapped_area_info *info) 1698{ 1699 /* 1700 * We implement the search by looking for an rbtree node that 1701 * immediately follows a suitable gap. That is, 1702 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; 1703 * - gap_end = vma->vm_start >= info->low_limit + length; 1704 * - gap_end - gap_start >= length 1705 */ 1706 1707 struct mm_struct *mm = current->mm; 1708 struct vm_area_struct *vma; 1709 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1710 1711 /* Adjust search length to account for worst case alignment overhead */ 1712 length = info->length + info->align_mask; 1713 if (length < info->length) 1714 return -ENOMEM; 1715 1716 /* Adjust search limits by the desired length */ 1717 if (info->high_limit < length) 1718 return -ENOMEM; 1719 high_limit = info->high_limit - length; 1720 1721 if (info->low_limit > high_limit) 1722 return -ENOMEM; 1723 low_limit = info->low_limit + length; 1724 1725 /* Check if rbtree root looks promising */ 1726 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1727 goto check_highest; 1728 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1729 if (vma->rb_subtree_gap < length) 1730 goto check_highest; 1731 1732 while (true) { 1733 /* Visit left subtree if it looks promising */ 1734 gap_end = vma->vm_start; 1735 if (gap_end >= low_limit && vma->vm_rb.rb_left) { 1736 struct vm_area_struct *left = 1737 rb_entry(vma->vm_rb.rb_left, 1738 struct vm_area_struct, vm_rb); 1739 if (left->rb_subtree_gap >= length) { 1740 vma = left; 1741 continue; 1742 } 1743 } 1744 1745 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1746check_current: 1747 /* Check if current node has a suitable gap */ 1748 if (gap_start > high_limit) 1749 return -ENOMEM; 1750 if (gap_end >= low_limit && gap_end - gap_start >= length) 1751 goto found; 1752 1753 /* Visit right subtree if it looks promising */ 1754 if (vma->vm_rb.rb_right) { 1755 struct vm_area_struct *right = 1756 rb_entry(vma->vm_rb.rb_right, 1757 struct vm_area_struct, vm_rb); 1758 if (right->rb_subtree_gap >= length) { 1759 vma = right; 1760 continue; 1761 } 1762 } 1763 1764 /* Go back up the rbtree to find next candidate node */ 1765 while (true) { 1766 struct rb_node *prev = &vma->vm_rb; 1767 if (!rb_parent(prev)) 1768 goto check_highest; 1769 vma = rb_entry(rb_parent(prev), 1770 struct vm_area_struct, vm_rb); 1771 if (prev == vma->vm_rb.rb_left) { 1772 gap_start = vma->vm_prev->vm_end; 1773 gap_end = vma->vm_start; 1774 goto check_current; 1775 } 1776 } 1777 } 1778 1779check_highest: 1780 /* Check highest gap, which does not precede any rbtree node */ 1781 gap_start = mm->highest_vm_end; 1782 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */ 1783 if (gap_start > high_limit) 1784 return -ENOMEM; 1785 1786found: 1787 /* We found a suitable gap. Clip it with the original low_limit. */ 1788 if (gap_start < info->low_limit) 1789 gap_start = info->low_limit; 1790 1791 /* Adjust gap address to the desired alignment */ 1792 gap_start += (info->align_offset - gap_start) & info->align_mask; 1793 1794 VM_BUG_ON(gap_start + info->length > info->high_limit); 1795 VM_BUG_ON(gap_start + info->length > gap_end); 1796 return gap_start; 1797} 1798 1799unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 1800{ 1801 struct mm_struct *mm = current->mm; 1802 struct vm_area_struct *vma; 1803 unsigned long length, low_limit, high_limit, gap_start, gap_end; 1804 1805 /* Adjust search length to account for worst case alignment overhead */ 1806 length = info->length + info->align_mask; 1807 if (length < info->length) 1808 return -ENOMEM; 1809 1810 /* 1811 * Adjust search limits by the desired length. 1812 * See implementation comment at top of unmapped_area(). 1813 */ 1814 gap_end = info->high_limit; 1815 if (gap_end < length) 1816 return -ENOMEM; 1817 high_limit = gap_end - length; 1818 1819 if (info->low_limit > high_limit) 1820 return -ENOMEM; 1821 low_limit = info->low_limit + length; 1822 1823 /* Check highest gap, which does not precede any rbtree node */ 1824 gap_start = mm->highest_vm_end; 1825 if (gap_start <= high_limit) 1826 goto found_highest; 1827 1828 /* Check if rbtree root looks promising */ 1829 if (RB_EMPTY_ROOT(&mm->mm_rb)) 1830 return -ENOMEM; 1831 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); 1832 if (vma->rb_subtree_gap < length) 1833 return -ENOMEM; 1834 1835 while (true) { 1836 /* Visit right subtree if it looks promising */ 1837 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; 1838 if (gap_start <= high_limit && vma->vm_rb.rb_right) { 1839 struct vm_area_struct *right = 1840 rb_entry(vma->vm_rb.rb_right, 1841 struct vm_area_struct, vm_rb); 1842 if (right->rb_subtree_gap >= length) { 1843 vma = right; 1844 continue; 1845 } 1846 } 1847 1848check_current: 1849 /* Check if current node has a suitable gap */ 1850 gap_end = vma->vm_start; 1851 if (gap_end < low_limit) 1852 return -ENOMEM; 1853 if (gap_start <= high_limit && gap_end - gap_start >= length) 1854 goto found; 1855 1856 /* Visit left subtree if it looks promising */ 1857 if (vma->vm_rb.rb_left) { 1858 struct vm_area_struct *left = 1859 rb_entry(vma->vm_rb.rb_left, 1860 struct vm_area_struct, vm_rb); 1861 if (left->rb_subtree_gap >= length) { 1862 vma = left; 1863 continue; 1864 } 1865 } 1866 1867 /* Go back up the rbtree to find next candidate node */ 1868 while (true) { 1869 struct rb_node *prev = &vma->vm_rb; 1870 if (!rb_parent(prev)) 1871 return -ENOMEM; 1872 vma = rb_entry(rb_parent(prev), 1873 struct vm_area_struct, vm_rb); 1874 if (prev == vma->vm_rb.rb_right) { 1875 gap_start = vma->vm_prev ? 1876 vma->vm_prev->vm_end : 0; 1877 goto check_current; 1878 } 1879 } 1880 } 1881 1882found: 1883 /* We found a suitable gap. Clip it with the original high_limit. */ 1884 if (gap_end > info->high_limit) 1885 gap_end = info->high_limit; 1886 1887found_highest: 1888 /* Compute highest gap address at the desired alignment */ 1889 gap_end -= info->length; 1890 gap_end -= (gap_end - info->align_offset) & info->align_mask; 1891 1892 VM_BUG_ON(gap_end < info->low_limit); 1893 VM_BUG_ON(gap_end < gap_start); 1894 return gap_end; 1895} 1896 1897/* Get an address range which is currently unmapped. 1898 * For shmat() with addr=0. 1899 * 1900 * Ugly calling convention alert: 1901 * Return value with the low bits set means error value, 1902 * ie 1903 * if (ret & ~PAGE_MASK) 1904 * error = ret; 1905 * 1906 * This function "knows" that -ENOMEM has the bits set. 1907 */ 1908#ifndef HAVE_ARCH_UNMAPPED_AREA 1909unsigned long 1910arch_get_unmapped_area(struct file *filp, unsigned long addr, 1911 unsigned long len, unsigned long pgoff, unsigned long flags) 1912{ 1913 struct mm_struct *mm = current->mm; 1914 struct vm_area_struct *vma; 1915 struct vm_unmapped_area_info info; 1916 1917 if (len > TASK_SIZE - mmap_min_addr) 1918 return -ENOMEM; 1919 1920 if (flags & MAP_FIXED) 1921 return addr; 1922 1923 if (addr) { 1924 addr = PAGE_ALIGN(addr); 1925 vma = find_vma(mm, addr); 1926 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1927 (!vma || addr + len <= vma->vm_start)) 1928 return addr; 1929 } 1930 1931 info.flags = 0; 1932 info.length = len; 1933 info.low_limit = mm->mmap_base; 1934 info.high_limit = TASK_SIZE; 1935 info.align_mask = 0; 1936 return vm_unmapped_area(&info); 1937} 1938#endif 1939 1940/* 1941 * This mmap-allocator allocates new areas top-down from below the 1942 * stack's low limit (the base): 1943 */ 1944#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1945unsigned long 1946arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1947 const unsigned long len, const unsigned long pgoff, 1948 const unsigned long flags) 1949{ 1950 struct vm_area_struct *vma; 1951 struct mm_struct *mm = current->mm; 1952 unsigned long addr = addr0; 1953 struct vm_unmapped_area_info info; 1954 1955 /* requested length too big for entire address space */ 1956 if (len > TASK_SIZE - mmap_min_addr) 1957 return -ENOMEM; 1958 1959 if (flags & MAP_FIXED) 1960 return addr; 1961 1962 /* requesting a specific address */ 1963 if (addr) { 1964 addr = PAGE_ALIGN(addr); 1965 vma = find_vma(mm, addr); 1966 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 1967 (!vma || addr + len <= vma->vm_start)) 1968 return addr; 1969 } 1970 1971 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 1972 info.length = len; 1973 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 1974 info.high_limit = mm->mmap_base; 1975 info.align_mask = 0; 1976 addr = vm_unmapped_area(&info); 1977 1978 /* 1979 * A failed mmap() very likely causes application failure, 1980 * so fall back to the bottom-up function here. This scenario 1981 * can happen with large stack limits and large mmap() 1982 * allocations. 1983 */ 1984 if (addr & ~PAGE_MASK) { 1985 VM_BUG_ON(addr != -ENOMEM); 1986 info.flags = 0; 1987 info.low_limit = TASK_UNMAPPED_BASE; 1988 info.high_limit = TASK_SIZE; 1989 addr = vm_unmapped_area(&info); 1990 } 1991 1992 return addr; 1993} 1994#endif 1995 1996unsigned long 1997get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1998 unsigned long pgoff, unsigned long flags) 1999{ 2000 unsigned long (*get_area)(struct file *, unsigned long, 2001 unsigned long, unsigned long, unsigned long); 2002 2003 unsigned long error = arch_mmap_check(addr, len, flags); 2004 if (error) 2005 return error; 2006 2007 /* Careful about overflows.. */ 2008 if (len > TASK_SIZE) 2009 return -ENOMEM; 2010 2011 get_area = current->mm->get_unmapped_area; 2012 if (file && file->f_op->get_unmapped_area) 2013 get_area = file->f_op->get_unmapped_area; 2014 addr = get_area(file, addr, len, pgoff, flags); 2015 if (IS_ERR_VALUE(addr)) 2016 return addr; 2017 2018 if (addr > TASK_SIZE - len) 2019 return -ENOMEM; 2020 if (addr & ~PAGE_MASK) 2021 return -EINVAL; 2022 2023 addr = arch_rebalance_pgtables(addr, len); 2024 error = security_mmap_addr(addr); 2025 return error ? error : addr; 2026} 2027 2028EXPORT_SYMBOL(get_unmapped_area); 2029 2030/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2031struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 2032{ 2033 struct rb_node *rb_node; 2034 struct vm_area_struct *vma; 2035 2036 /* Check the cache first. */ 2037 vma = vmacache_find(mm, addr); 2038 if (likely(vma)) 2039 return vma; 2040 2041 rb_node = mm->mm_rb.rb_node; 2042 vma = NULL; 2043 2044 while (rb_node) { 2045 struct vm_area_struct *tmp; 2046 2047 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2048 2049 if (tmp->vm_end > addr) { 2050 vma = tmp; 2051 if (tmp->vm_start <= addr) 2052 break; 2053 rb_node = rb_node->rb_left; 2054 } else 2055 rb_node = rb_node->rb_right; 2056 } 2057 2058 if (vma) 2059 vmacache_update(addr, vma); 2060 return vma; 2061} 2062 2063EXPORT_SYMBOL(find_vma); 2064 2065/* 2066 * Same as find_vma, but also return a pointer to the previous VMA in *pprev. 2067 */ 2068struct vm_area_struct * 2069find_vma_prev(struct mm_struct *mm, unsigned long addr, 2070 struct vm_area_struct **pprev) 2071{ 2072 struct vm_area_struct *vma; 2073 2074 vma = find_vma(mm, addr); 2075 if (vma) { 2076 *pprev = vma->vm_prev; 2077 } else { 2078 struct rb_node *rb_node = mm->mm_rb.rb_node; 2079 *pprev = NULL; 2080 while (rb_node) { 2081 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); 2082 rb_node = rb_node->rb_right; 2083 } 2084 } 2085 return vma; 2086} 2087 2088/* 2089 * Verify that the stack growth is acceptable and 2090 * update accounting. This is shared with both the 2091 * grow-up and grow-down cases. 2092 */ 2093static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 2094{ 2095 struct mm_struct *mm = vma->vm_mm; 2096 struct rlimit *rlim = current->signal->rlim; 2097 unsigned long new_start, actual_size; 2098 2099 /* address space limit tests */ 2100 if (!may_expand_vm(mm, grow)) 2101 return -ENOMEM; 2102 2103 /* Stack limit test */ 2104 actual_size = size; 2105 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN))) 2106 actual_size -= PAGE_SIZE; 2107 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur)) 2108 return -ENOMEM; 2109 2110 /* mlock limit tests */ 2111 if (vma->vm_flags & VM_LOCKED) { 2112 unsigned long locked; 2113 unsigned long limit; 2114 locked = mm->locked_vm + grow; 2115 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); 2116 limit >>= PAGE_SHIFT; 2117 if (locked > limit && !capable(CAP_IPC_LOCK)) 2118 return -ENOMEM; 2119 } 2120 2121 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2122 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2123 vma->vm_end - size; 2124 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2125 return -EFAULT; 2126 2127 /* 2128 * Overcommit.. This must be the final test, as it will 2129 * update security statistics. 2130 */ 2131 if (security_vm_enough_memory_mm(mm, grow)) 2132 return -ENOMEM; 2133 2134 /* Ok, everything looks good - let it rip */ 2135 if (vma->vm_flags & VM_LOCKED) 2136 mm->locked_vm += grow; 2137 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 2138 return 0; 2139} 2140 2141#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 2142/* 2143 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 2144 * vma is the last one with address > vma->vm_end. Have to extend vma. 2145 */ 2146int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2147{ 2148 int error = 0; 2149 2150 if (!(vma->vm_flags & VM_GROWSUP)) 2151 return -EFAULT; 2152 2153 /* Guard against wrapping around to address 0. */ 2154 if (address < PAGE_ALIGN(address+4)) 2155 address = PAGE_ALIGN(address+4); 2156 else 2157 return -ENOMEM; 2158 2159 /* We must make sure the anon_vma is allocated. */ 2160 if (unlikely(anon_vma_prepare(vma))) 2161 return -ENOMEM; 2162 2163 /* 2164 * vma->vm_start/vm_end cannot change under us because the caller 2165 * is required to hold the mmap_sem in read mode. We need the 2166 * anon_vma lock to serialize against concurrent expand_stacks. 2167 */ 2168 anon_vma_lock_write(vma->anon_vma); 2169 2170 /* Somebody else might have raced and expanded it already */ 2171 if (address > vma->vm_end) { 2172 unsigned long size, grow; 2173 2174 size = address - vma->vm_start; 2175 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2176 2177 error = -ENOMEM; 2178 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2179 error = acct_stack_growth(vma, size, grow); 2180 if (!error) { 2181 /* 2182 * vma_gap_update() doesn't support concurrent 2183 * updates, but we only hold a shared mmap_sem 2184 * lock here, so we need to protect against 2185 * concurrent vma expansions. 2186 * anon_vma_lock_write() doesn't help here, as 2187 * we don't guarantee that all growable vmas 2188 * in a mm share the same root anon vma. 2189 * So, we reuse mm->page_table_lock to guard 2190 * against concurrent vma expansions. 2191 */ 2192 spin_lock(&vma->vm_mm->page_table_lock); 2193 anon_vma_interval_tree_pre_update_vma(vma); 2194 vma->vm_end = address; 2195 anon_vma_interval_tree_post_update_vma(vma); 2196 if (vma->vm_next) 2197 vma_gap_update(vma->vm_next); 2198 else 2199 vma->vm_mm->highest_vm_end = address; 2200 spin_unlock(&vma->vm_mm->page_table_lock); 2201 2202 perf_event_mmap(vma); 2203 } 2204 } 2205 } 2206 anon_vma_unlock_write(vma->anon_vma); 2207 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2208 validate_mm(vma->vm_mm); 2209 return error; 2210} 2211#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 2212 2213/* 2214 * vma is the first one with address < vma->vm_start. Have to extend vma. 2215 */ 2216int expand_downwards(struct vm_area_struct *vma, 2217 unsigned long address) 2218{ 2219 int error; 2220 2221 address &= PAGE_MASK; 2222 error = security_mmap_addr(address); 2223 if (error) 2224 return error; 2225 2226 /* We must make sure the anon_vma is allocated. */ 2227 if (unlikely(anon_vma_prepare(vma))) 2228 return -ENOMEM; 2229 2230 /* 2231 * vma->vm_start/vm_end cannot change under us because the caller 2232 * is required to hold the mmap_sem in read mode. We need the 2233 * anon_vma lock to serialize against concurrent expand_stacks. 2234 */ 2235 anon_vma_lock_write(vma->anon_vma); 2236 2237 /* Somebody else might have raced and expanded it already */ 2238 if (address < vma->vm_start) { 2239 unsigned long size, grow; 2240 2241 size = vma->vm_end - address; 2242 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2243 2244 error = -ENOMEM; 2245 if (grow <= vma->vm_pgoff) { 2246 error = acct_stack_growth(vma, size, grow); 2247 if (!error) { 2248 /* 2249 * vma_gap_update() doesn't support concurrent 2250 * updates, but we only hold a shared mmap_sem 2251 * lock here, so we need to protect against 2252 * concurrent vma expansions. 2253 * anon_vma_lock_write() doesn't help here, as 2254 * we don't guarantee that all growable vmas 2255 * in a mm share the same root anon vma. 2256 * So, we reuse mm->page_table_lock to guard 2257 * against concurrent vma expansions. 2258 */ 2259 spin_lock(&vma->vm_mm->page_table_lock); 2260 anon_vma_interval_tree_pre_update_vma(vma); 2261 vma->vm_start = address; 2262 vma->vm_pgoff -= grow; 2263 anon_vma_interval_tree_post_update_vma(vma); 2264 vma_gap_update(vma); 2265 spin_unlock(&vma->vm_mm->page_table_lock); 2266 2267 perf_event_mmap(vma); 2268 } 2269 } 2270 } 2271 anon_vma_unlock_write(vma->anon_vma); 2272 khugepaged_enter_vma_merge(vma, vma->vm_flags); 2273 validate_mm(vma->vm_mm); 2274 return error; 2275} 2276 2277/* 2278 * Note how expand_stack() refuses to expand the stack all the way to 2279 * abut the next virtual mapping, *unless* that mapping itself is also 2280 * a stack mapping. We want to leave room for a guard page, after all 2281 * (the guard page itself is not added here, that is done by the 2282 * actual page faulting logic) 2283 * 2284 * This matches the behavior of the guard page logic (see mm/memory.c: 2285 * check_stack_guard_page()), which only allows the guard page to be 2286 * removed under these circumstances. 2287 */ 2288#ifdef CONFIG_STACK_GROWSUP 2289int expand_stack(struct vm_area_struct *vma, unsigned long address) 2290{ 2291 struct vm_area_struct *next; 2292 2293 address &= PAGE_MASK; 2294 next = vma->vm_next; 2295 if (next && next->vm_start == address + PAGE_SIZE) { 2296 if (!(next->vm_flags & VM_GROWSUP)) 2297 return -ENOMEM; 2298 } 2299 return expand_upwards(vma, address); 2300} 2301 2302struct vm_area_struct * 2303find_extend_vma(struct mm_struct *mm, unsigned long addr) 2304{ 2305 struct vm_area_struct *vma, *prev; 2306 2307 addr &= PAGE_MASK; 2308 vma = find_vma_prev(mm, addr, &prev); 2309 if (vma && (vma->vm_start <= addr)) 2310 return vma; 2311 if (!prev || expand_stack(prev, addr)) 2312 return NULL; 2313 if (prev->vm_flags & VM_LOCKED) 2314 populate_vma_page_range(prev, addr, prev->vm_end, NULL); 2315 return prev; 2316} 2317#else 2318int expand_stack(struct vm_area_struct *vma, unsigned long address) 2319{ 2320 struct vm_area_struct *prev; 2321 2322 address &= PAGE_MASK; 2323 prev = vma->vm_prev; 2324 if (prev && prev->vm_end == address) { 2325 if (!(prev->vm_flags & VM_GROWSDOWN)) 2326 return -ENOMEM; 2327 } 2328 return expand_downwards(vma, address); 2329} 2330 2331struct vm_area_struct * 2332find_extend_vma(struct mm_struct *mm, unsigned long addr) 2333{ 2334 struct vm_area_struct *vma; 2335 unsigned long start; 2336 2337 addr &= PAGE_MASK; 2338 vma = find_vma(mm, addr); 2339 if (!vma) 2340 return NULL; 2341 if (vma->vm_start <= addr) 2342 return vma; 2343 if (!(vma->vm_flags & VM_GROWSDOWN)) 2344 return NULL; 2345 start = vma->vm_start; 2346 if (expand_stack(vma, addr)) 2347 return NULL; 2348 if (vma->vm_flags & VM_LOCKED) 2349 populate_vma_page_range(vma, addr, start, NULL); 2350 return vma; 2351} 2352#endif 2353 2354EXPORT_SYMBOL_GPL(find_extend_vma); 2355 2356/* 2357 * Ok - we have the memory areas we should free on the vma list, 2358 * so release them, and do the vma updates. 2359 * 2360 * Called with the mm semaphore held. 2361 */ 2362static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 2363{ 2364 unsigned long nr_accounted = 0; 2365 2366 /* Update high watermark before we lower total_vm */ 2367 update_hiwater_vm(mm); 2368 do { 2369 long nrpages = vma_pages(vma); 2370 2371 if (vma->vm_flags & VM_ACCOUNT) 2372 nr_accounted += nrpages; 2373 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 2374 vma = remove_vma(vma); 2375 } while (vma); 2376 vm_unacct_memory(nr_accounted); 2377 validate_mm(mm); 2378} 2379 2380/* 2381 * Get rid of page table information in the indicated region. 2382 * 2383 * Called with the mm semaphore held. 2384 */ 2385static void unmap_region(struct mm_struct *mm, 2386 struct vm_area_struct *vma, struct vm_area_struct *prev, 2387 unsigned long start, unsigned long end) 2388{ 2389 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; 2390 struct mmu_gather tlb; 2391 2392 lru_add_drain(); 2393 tlb_gather_mmu(&tlb, mm, start, end); 2394 update_hiwater_rss(mm); 2395 unmap_vmas(&tlb, vma, start, end); 2396 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2397 next ? next->vm_start : USER_PGTABLES_CEILING); 2398 tlb_finish_mmu(&tlb, start, end); 2399} 2400 2401/* 2402 * Create a list of vma's touched by the unmap, removing them from the mm's 2403 * vma list as we go.. 2404 */ 2405static void 2406detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 2407 struct vm_area_struct *prev, unsigned long end) 2408{ 2409 struct vm_area_struct **insertion_point; 2410 struct vm_area_struct *tail_vma = NULL; 2411 2412 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 2413 vma->vm_prev = NULL; 2414 do { 2415 vma_rb_erase(vma, &mm->mm_rb); 2416 mm->map_count--; 2417 tail_vma = vma; 2418 vma = vma->vm_next; 2419 } while (vma && vma->vm_start < end); 2420 *insertion_point = vma; 2421 if (vma) { 2422 vma->vm_prev = prev; 2423 vma_gap_update(vma); 2424 } else 2425 mm->highest_vm_end = prev ? prev->vm_end : 0; 2426 tail_vma->vm_next = NULL; 2427 2428 /* Kill the cache */ 2429 vmacache_invalidate(mm); 2430} 2431 2432/* 2433 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the 2434 * munmap path where it doesn't make sense to fail. 2435 */ 2436static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2437 unsigned long addr, int new_below) 2438{ 2439 struct vm_area_struct *new; 2440 int err = -ENOMEM; 2441 2442 if (is_vm_hugetlb_page(vma) && (addr & 2443 ~(huge_page_mask(hstate_vma(vma))))) 2444 return -EINVAL; 2445 2446 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2447 if (!new) 2448 goto out_err; 2449 2450 /* most fields are the same, copy all, and then fixup */ 2451 *new = *vma; 2452 2453 INIT_LIST_HEAD(&new->anon_vma_chain); 2454 2455 if (new_below) 2456 new->vm_end = addr; 2457 else { 2458 new->vm_start = addr; 2459 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2460 } 2461 2462 err = vma_dup_policy(vma, new); 2463 if (err) 2464 goto out_free_vma; 2465 2466 err = anon_vma_clone(new, vma); 2467 if (err) 2468 goto out_free_mpol; 2469 2470 if (new->vm_file) 2471 get_file(new->vm_file); 2472 2473 if (new->vm_ops && new->vm_ops->open) 2474 new->vm_ops->open(new); 2475 2476 if (new_below) 2477 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 2478 ((addr - new->vm_start) >> PAGE_SHIFT), new); 2479 else 2480 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 2481 2482 /* Success. */ 2483 if (!err) 2484 return 0; 2485 2486 /* Clean everything up if vma_adjust failed. */ 2487 if (new->vm_ops && new->vm_ops->close) 2488 new->vm_ops->close(new); 2489 if (new->vm_file) 2490 fput(new->vm_file); 2491 unlink_anon_vmas(new); 2492 out_free_mpol: 2493 mpol_put(vma_policy(new)); 2494 out_free_vma: 2495 kmem_cache_free(vm_area_cachep, new); 2496 out_err: 2497 return err; 2498} 2499 2500/* 2501 * Split a vma into two pieces at address 'addr', a new vma is allocated 2502 * either for the first part or the tail. 2503 */ 2504int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, 2505 unsigned long addr, int new_below) 2506{ 2507 if (mm->map_count >= sysctl_max_map_count) 2508 return -ENOMEM; 2509 2510 return __split_vma(mm, vma, addr, new_below); 2511} 2512 2513/* Munmap is split into 2 main parts -- this part which finds 2514 * what needs doing, and the areas themselves, which do the 2515 * work. This now handles partial unmappings. 2516 * Jeremy Fitzhardinge <jeremy@goop.org> 2517 */ 2518int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 2519{ 2520 unsigned long end; 2521 struct vm_area_struct *vma, *prev, *last; 2522 2523 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 2524 return -EINVAL; 2525 2526 len = PAGE_ALIGN(len); 2527 if (len == 0) 2528 return -EINVAL; 2529 2530 /* Find the first overlapping VMA */ 2531 vma = find_vma(mm, start); 2532 if (!vma) 2533 return 0; 2534 prev = vma->vm_prev; 2535 /* we have start < vma->vm_end */ 2536 2537 /* if it doesn't overlap, we have nothing.. */ 2538 end = start + len; 2539 if (vma->vm_start >= end) 2540 return 0; 2541 2542 /* 2543 * If we need to split any vma, do it now to save pain later. 2544 * 2545 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2546 * unmapped vm_area_struct will remain in use: so lower split_vma 2547 * places tmp vma above, and higher split_vma places tmp vma below. 2548 */ 2549 if (start > vma->vm_start) { 2550 int error; 2551 2552 /* 2553 * Make sure that map_count on return from munmap() will 2554 * not exceed its limit; but let map_count go just above 2555 * its limit temporarily, to help free resources as expected. 2556 */ 2557 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2558 return -ENOMEM; 2559 2560 error = __split_vma(mm, vma, start, 0); 2561 if (error) 2562 return error; 2563 prev = vma; 2564 } 2565 2566 /* Does it split the last one? */ 2567 last = find_vma(mm, end); 2568 if (last && end > last->vm_start) { 2569 int error = __split_vma(mm, last, end, 1); 2570 if (error) 2571 return error; 2572 } 2573 vma = prev ? prev->vm_next : mm->mmap; 2574 2575 /* 2576 * unlock any mlock()ed ranges before detaching vmas 2577 */ 2578 if (mm->locked_vm) { 2579 struct vm_area_struct *tmp = vma; 2580 while (tmp && tmp->vm_start < end) { 2581 if (tmp->vm_flags & VM_LOCKED) { 2582 mm->locked_vm -= vma_pages(tmp); 2583 munlock_vma_pages_all(tmp); 2584 } 2585 tmp = tmp->vm_next; 2586 } 2587 } 2588 2589 /* 2590 * Remove the vma's, and unmap the actual pages 2591 */ 2592 detach_vmas_to_be_unmapped(mm, vma, prev, end); 2593 unmap_region(mm, vma, prev, start, end); 2594 2595 arch_unmap(mm, vma, start, end); 2596 2597 /* Fix up all other VM information */ 2598 remove_vma_list(mm, vma); 2599 2600 return 0; 2601} 2602 2603int vm_munmap(unsigned long start, size_t len) 2604{ 2605 int ret; 2606 struct mm_struct *mm = current->mm; 2607 2608 down_write(&mm->mmap_sem); 2609 ret = do_munmap(mm, start, len); 2610 up_write(&mm->mmap_sem); 2611 return ret; 2612} 2613EXPORT_SYMBOL(vm_munmap); 2614 2615SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 2616{ 2617 profile_munmap(addr); 2618 return vm_munmap(addr, len); 2619} 2620 2621 2622/* 2623 * Emulation of deprecated remap_file_pages() syscall. 2624 */ 2625SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, 2626 unsigned long, prot, unsigned long, pgoff, unsigned long, flags) 2627{ 2628 2629 struct mm_struct *mm = current->mm; 2630 struct vm_area_struct *vma; 2631 unsigned long populate = 0; 2632 unsigned long ret = -EINVAL; 2633 struct file *file; 2634 2635 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. " 2636 "See Documentation/vm/remap_file_pages.txt.\n", 2637 current->comm, current->pid); 2638 2639 if (prot) 2640 return ret; 2641 start = start & PAGE_MASK; 2642 size = size & PAGE_MASK; 2643 2644 if (start + size <= start) 2645 return ret; 2646 2647 /* Does pgoff wrap? */ 2648 if (pgoff + (size >> PAGE_SHIFT) < pgoff) 2649 return ret; 2650 2651 down_write(&mm->mmap_sem); 2652 vma = find_vma(mm, start); 2653 2654 if (!vma || !(vma->vm_flags & VM_SHARED)) 2655 goto out; 2656 2657 if (start < vma->vm_start) 2658 goto out; 2659 2660 if (start + size > vma->vm_end) { 2661 struct vm_area_struct *next; 2662 2663 for (next = vma->vm_next; next; next = next->vm_next) { 2664 /* hole between vmas ? */ 2665 if (next->vm_start != next->vm_prev->vm_end) 2666 goto out; 2667 2668 if (next->vm_file != vma->vm_file) 2669 goto out; 2670 2671 if (next->vm_flags != vma->vm_flags) 2672 goto out; 2673 2674 if (start + size <= next->vm_end) 2675 break; 2676 } 2677 2678 if (!next) 2679 goto out; 2680 } 2681 2682 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; 2683 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; 2684 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; 2685 2686 flags &= MAP_NONBLOCK; 2687 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; 2688 if (vma->vm_flags & VM_LOCKED) { 2689 struct vm_area_struct *tmp; 2690 flags |= MAP_LOCKED; 2691 2692 /* drop PG_Mlocked flag for over-mapped range */ 2693 for (tmp = vma; tmp->vm_start >= start + size; 2694 tmp = tmp->vm_next) { 2695 munlock_vma_pages_range(tmp, 2696 max(tmp->vm_start, start), 2697 min(tmp->vm_end, start + size)); 2698 } 2699 } 2700 2701 file = get_file(vma->vm_file); 2702 ret = do_mmap_pgoff(vma->vm_file, start, size, 2703 prot, flags, pgoff, &populate); 2704 fput(file); 2705out: 2706 up_write(&mm->mmap_sem); 2707 if (populate) 2708 mm_populate(ret, populate); 2709 if (!IS_ERR_VALUE(ret)) 2710 ret = 0; 2711 return ret; 2712} 2713 2714static inline void verify_mm_writelocked(struct mm_struct *mm) 2715{ 2716#ifdef CONFIG_DEBUG_VM 2717 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 2718 WARN_ON(1); 2719 up_read(&mm->mmap_sem); 2720 } 2721#endif 2722} 2723 2724/* 2725 * this is really a simplified "do_mmap". it only handles 2726 * anonymous maps. eventually we may be able to do some 2727 * brk-specific accounting here. 2728 */ 2729static unsigned long do_brk(unsigned long addr, unsigned long len) 2730{ 2731 struct mm_struct *mm = current->mm; 2732 struct vm_area_struct *vma, *prev; 2733 unsigned long flags; 2734 struct rb_node **rb_link, *rb_parent; 2735 pgoff_t pgoff = addr >> PAGE_SHIFT; 2736 int error; 2737 2738 len = PAGE_ALIGN(len); 2739 if (!len) 2740 return addr; 2741 2742 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2743 2744 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2745 if (error & ~PAGE_MASK) 2746 return error; 2747 2748 error = mlock_future_check(mm, mm->def_flags, len); 2749 if (error) 2750 return error; 2751 2752 /* 2753 * mm->mmap_sem is required to protect against another thread 2754 * changing the mappings in case we sleep. 2755 */ 2756 verify_mm_writelocked(mm); 2757 2758 /* 2759 * Clear old maps. this also does some error checking for us 2760 */ 2761 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, 2762 &rb_parent)) { 2763 if (do_munmap(mm, addr, len)) 2764 return -ENOMEM; 2765 } 2766 2767 /* Check against address space limits *after* clearing old maps... */ 2768 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2769 return -ENOMEM; 2770 2771 if (mm->map_count > sysctl_max_map_count) 2772 return -ENOMEM; 2773 2774 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2775 return -ENOMEM; 2776 2777 /* Can we just expand an old private anonymous mapping? */ 2778 vma = vma_merge(mm, prev, addr, addr + len, flags, 2779 NULL, NULL, pgoff, NULL); 2780 if (vma) 2781 goto out; 2782 2783 /* 2784 * create a vma struct for an anonymous mapping 2785 */ 2786 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2787 if (!vma) { 2788 vm_unacct_memory(len >> PAGE_SHIFT); 2789 return -ENOMEM; 2790 } 2791 2792 INIT_LIST_HEAD(&vma->anon_vma_chain); 2793 vma->vm_mm = mm; 2794 vma->vm_start = addr; 2795 vma->vm_end = addr + len; 2796 vma->vm_pgoff = pgoff; 2797 vma->vm_flags = flags; 2798 vma->vm_page_prot = vm_get_page_prot(flags); 2799 vma_link(mm, vma, prev, rb_link, rb_parent); 2800out: 2801 perf_event_mmap(vma); 2802 mm->total_vm += len >> PAGE_SHIFT; 2803 if (flags & VM_LOCKED) 2804 mm->locked_vm += (len >> PAGE_SHIFT); 2805 vma->vm_flags |= VM_SOFTDIRTY; 2806 return addr; 2807} 2808 2809unsigned long vm_brk(unsigned long addr, unsigned long len) 2810{ 2811 struct mm_struct *mm = current->mm; 2812 unsigned long ret; 2813 bool populate; 2814 2815 down_write(&mm->mmap_sem); 2816 ret = do_brk(addr, len); 2817 populate = ((mm->def_flags & VM_LOCKED) != 0); 2818 up_write(&mm->mmap_sem); 2819 if (populate) 2820 mm_populate(addr, len); 2821 return ret; 2822} 2823EXPORT_SYMBOL(vm_brk); 2824 2825/* Release all mmaps. */ 2826void exit_mmap(struct mm_struct *mm) 2827{ 2828 struct mmu_gather tlb; 2829 struct vm_area_struct *vma; 2830 unsigned long nr_accounted = 0; 2831 2832 /* mm's last user has gone, and its about to be pulled down */ 2833 mmu_notifier_release(mm); 2834 2835 if (mm->locked_vm) { 2836 vma = mm->mmap; 2837 while (vma) { 2838 if (vma->vm_flags & VM_LOCKED) 2839 munlock_vma_pages_all(vma); 2840 vma = vma->vm_next; 2841 } 2842 } 2843 2844 arch_exit_mmap(mm); 2845 2846 vma = mm->mmap; 2847 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2848 return; 2849 2850 lru_add_drain(); 2851 flush_cache_mm(mm); 2852 tlb_gather_mmu(&tlb, mm, 0, -1); 2853 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2854 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2855 unmap_vmas(&tlb, vma, 0, -1); 2856 2857 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); 2858 tlb_finish_mmu(&tlb, 0, -1); 2859 2860 /* 2861 * Walk the list again, actually closing and freeing it, 2862 * with preemption enabled, without holding any MM locks. 2863 */ 2864 while (vma) { 2865 if (vma->vm_flags & VM_ACCOUNT) 2866 nr_accounted += vma_pages(vma); 2867 vma = remove_vma(vma); 2868 } 2869 vm_unacct_memory(nr_accounted); 2870} 2871 2872/* Insert vm structure into process list sorted by address 2873 * and into the inode's i_mmap tree. If vm_file is non-NULL 2874 * then i_mmap_rwsem is taken here. 2875 */ 2876int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 2877{ 2878 struct vm_area_struct *prev; 2879 struct rb_node **rb_link, *rb_parent; 2880 2881 /* 2882 * The vm_pgoff of a purely anonymous vma should be irrelevant 2883 * until its first write fault, when page's anon_vma and index 2884 * are set. But now set the vm_pgoff it will almost certainly 2885 * end up with (unless mremap moves it elsewhere before that 2886 * first wfault), so /proc/pid/maps tells a consistent story. 2887 * 2888 * By setting it to reflect the virtual start address of the 2889 * vma, merges and splits can happen in a seamless way, just 2890 * using the existing file pgoff checks and manipulations. 2891 * Similarly in do_mmap_pgoff and in do_brk. 2892 */ 2893 if (!vma->vm_file) { 2894 BUG_ON(vma->anon_vma); 2895 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2896 } 2897 if (find_vma_links(mm, vma->vm_start, vma->vm_end, 2898 &prev, &rb_link, &rb_parent)) 2899 return -ENOMEM; 2900 if ((vma->vm_flags & VM_ACCOUNT) && 2901 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2902 return -ENOMEM; 2903 2904 vma_link(mm, vma, prev, rb_link, rb_parent); 2905 return 0; 2906} 2907 2908/* 2909 * Copy the vma structure to a new location in the same mm, 2910 * prior to moving page table entries, to effect an mremap move. 2911 */ 2912struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2913 unsigned long addr, unsigned long len, pgoff_t pgoff, 2914 bool *need_rmap_locks) 2915{ 2916 struct vm_area_struct *vma = *vmap; 2917 unsigned long vma_start = vma->vm_start; 2918 struct mm_struct *mm = vma->vm_mm; 2919 struct vm_area_struct *new_vma, *prev; 2920 struct rb_node **rb_link, *rb_parent; 2921 bool faulted_in_anon_vma = true; 2922 2923 /* 2924 * If anonymous vma has not yet been faulted, update new pgoff 2925 * to match new location, to increase its chance of merging. 2926 */ 2927 if (unlikely(!vma->vm_file && !vma->anon_vma)) { 2928 pgoff = addr >> PAGE_SHIFT; 2929 faulted_in_anon_vma = false; 2930 } 2931 2932 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) 2933 return NULL; /* should never get here */ 2934 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2935 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2936 if (new_vma) { 2937 /* 2938 * Source vma may have been merged into new_vma 2939 */ 2940 if (unlikely(vma_start >= new_vma->vm_start && 2941 vma_start < new_vma->vm_end)) { 2942 /* 2943 * The only way we can get a vma_merge with 2944 * self during an mremap is if the vma hasn't 2945 * been faulted in yet and we were allowed to 2946 * reset the dst vma->vm_pgoff to the 2947 * destination address of the mremap to allow 2948 * the merge to happen. mremap must change the 2949 * vm_pgoff linearity between src and dst vmas 2950 * (in turn preventing a vma_merge) to be 2951 * safe. It is only safe to keep the vm_pgoff 2952 * linear if there are no pages mapped yet. 2953 */ 2954 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 2955 *vmap = vma = new_vma; 2956 } 2957 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 2958 } else { 2959 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2960 if (new_vma) { 2961 *new_vma = *vma; 2962 new_vma->vm_start = addr; 2963 new_vma->vm_end = addr + len; 2964 new_vma->vm_pgoff = pgoff; 2965 if (vma_dup_policy(vma, new_vma)) 2966 goto out_free_vma; 2967 INIT_LIST_HEAD(&new_vma->anon_vma_chain); 2968 if (anon_vma_clone(new_vma, vma)) 2969 goto out_free_mempol; 2970 if (new_vma->vm_file) 2971 get_file(new_vma->vm_file); 2972 if (new_vma->vm_ops && new_vma->vm_ops->open) 2973 new_vma->vm_ops->open(new_vma); 2974 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2975 *need_rmap_locks = false; 2976 } 2977 } 2978 return new_vma; 2979 2980 out_free_mempol: 2981 mpol_put(vma_policy(new_vma)); 2982 out_free_vma: 2983 kmem_cache_free(vm_area_cachep, new_vma); 2984 return NULL; 2985} 2986 2987/* 2988 * Return true if the calling process may expand its vm space by the passed 2989 * number of pages 2990 */ 2991int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2992{ 2993 unsigned long cur = mm->total_vm; /* pages */ 2994 unsigned long lim; 2995 2996 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; 2997 2998 if (cur + npages > lim) 2999 return 0; 3000 return 1; 3001} 3002 3003static int special_mapping_fault(struct vm_area_struct *vma, 3004 struct vm_fault *vmf); 3005 3006/* 3007 * Having a close hook prevents vma merging regardless of flags. 3008 */ 3009static void special_mapping_close(struct vm_area_struct *vma) 3010{ 3011} 3012 3013static const char *special_mapping_name(struct vm_area_struct *vma) 3014{ 3015 return ((struct vm_special_mapping *)vma->vm_private_data)->name; 3016} 3017 3018static const struct vm_operations_struct special_mapping_vmops = { 3019 .close = special_mapping_close, 3020 .fault = special_mapping_fault, 3021 .name = special_mapping_name, 3022}; 3023 3024static const struct vm_operations_struct legacy_special_mapping_vmops = { 3025 .close = special_mapping_close, 3026 .fault = special_mapping_fault, 3027}; 3028 3029static int special_mapping_fault(struct vm_area_struct *vma, 3030 struct vm_fault *vmf) 3031{ 3032 pgoff_t pgoff; 3033 struct page **pages; 3034 3035 /* 3036 * special mappings have no vm_file, and in that case, the mm 3037 * uses vm_pgoff internally. So we have to subtract it from here. 3038 * We are allowed to do this because we are the mm; do not copy 3039 * this code into drivers! 3040 */ 3041 pgoff = vmf->pgoff - vma->vm_pgoff; 3042 3043 if (vma->vm_ops == &legacy_special_mapping_vmops) 3044 pages = vma->vm_private_data; 3045 else 3046 pages = ((struct vm_special_mapping *)vma->vm_private_data)-> 3047 pages; 3048 3049 for (; pgoff && *pages; ++pages) 3050 pgoff--; 3051 3052 if (*pages) { 3053 struct page *page = *pages; 3054 get_page(page); 3055 vmf->page = page; 3056 return 0; 3057 } 3058 3059 return VM_FAULT_SIGBUS; 3060} 3061 3062static struct vm_area_struct *__install_special_mapping( 3063 struct mm_struct *mm, 3064 unsigned long addr, unsigned long len, 3065 unsigned long vm_flags, const struct vm_operations_struct *ops, 3066 void *priv) 3067{ 3068 int ret; 3069 struct vm_area_struct *vma; 3070 3071 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 3072 if (unlikely(vma == NULL)) 3073 return ERR_PTR(-ENOMEM); 3074 3075 INIT_LIST_HEAD(&vma->anon_vma_chain); 3076 vma->vm_mm = mm; 3077 vma->vm_start = addr; 3078 vma->vm_end = addr + len; 3079 3080 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; 3081 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3082 3083 vma->vm_ops = ops; 3084 vma->vm_private_data = priv; 3085 3086 ret = insert_vm_struct(mm, vma); 3087 if (ret) 3088 goto out; 3089 3090 mm->total_vm += len >> PAGE_SHIFT; 3091 3092 perf_event_mmap(vma); 3093 3094 return vma; 3095 3096out: 3097 kmem_cache_free(vm_area_cachep, vma); 3098 return ERR_PTR(ret); 3099} 3100 3101/* 3102 * Called with mm->mmap_sem held for writing. 3103 * Insert a new vma covering the given region, with the given flags. 3104 * Its pages are supplied by the given array of struct page *. 3105 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 3106 * The region past the last page supplied will always produce SIGBUS. 3107 * The array pointer and the pages it points to are assumed to stay alive 3108 * for as long as this mapping might exist. 3109 */ 3110struct vm_area_struct *_install_special_mapping( 3111 struct mm_struct *mm, 3112 unsigned long addr, unsigned long len, 3113 unsigned long vm_flags, const struct vm_special_mapping *spec) 3114{ 3115 return __install_special_mapping(mm, addr, len, vm_flags, 3116 &special_mapping_vmops, (void *)spec); 3117} 3118 3119int install_special_mapping(struct mm_struct *mm, 3120 unsigned long addr, unsigned long len, 3121 unsigned long vm_flags, struct page **pages) 3122{ 3123 struct vm_area_struct *vma = __install_special_mapping( 3124 mm, addr, len, vm_flags, &legacy_special_mapping_vmops, 3125 (void *)pages); 3126 3127 return PTR_ERR_OR_ZERO(vma); 3128} 3129 3130static DEFINE_MUTEX(mm_all_locks_mutex); 3131 3132static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3133{ 3134 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3135 /* 3136 * The LSB of head.next can't change from under us 3137 * because we hold the mm_all_locks_mutex. 3138 */ 3139 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); 3140 /* 3141 * We can safely modify head.next after taking the 3142 * anon_vma->root->rwsem. If some other vma in this mm shares 3143 * the same anon_vma we won't take it again. 3144 * 3145 * No need of atomic instructions here, head.next 3146 * can't change from under us thanks to the 3147 * anon_vma->root->rwsem. 3148 */ 3149 if (__test_and_set_bit(0, (unsigned long *) 3150 &anon_vma->root->rb_root.rb_node)) 3151 BUG(); 3152 } 3153} 3154 3155static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3156{ 3157 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3158 /* 3159 * AS_MM_ALL_LOCKS can't change from under us because 3160 * we hold the mm_all_locks_mutex. 3161 * 3162 * Operations on ->flags have to be atomic because 3163 * even if AS_MM_ALL_LOCKS is stable thanks to the 3164 * mm_all_locks_mutex, there may be other cpus 3165 * changing other bitflags in parallel to us. 3166 */ 3167 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3168 BUG(); 3169 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); 3170 } 3171} 3172 3173/* 3174 * This operation locks against the VM for all pte/vma/mm related 3175 * operations that could ever happen on a certain mm. This includes 3176 * vmtruncate, try_to_unmap, and all page faults. 3177 * 3178 * The caller must take the mmap_sem in write mode before calling 3179 * mm_take_all_locks(). The caller isn't allowed to release the 3180 * mmap_sem until mm_drop_all_locks() returns. 3181 * 3182 * mmap_sem in write mode is required in order to block all operations 3183 * that could modify pagetables and free pages without need of 3184 * altering the vma layout. It's also needed in write mode to avoid new 3185 * anon_vmas to be associated with existing vmas. 3186 * 3187 * A single task can't take more than one mm_take_all_locks() in a row 3188 * or it would deadlock. 3189 * 3190 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3191 * mapping->flags avoid to take the same lock twice, if more than one 3192 * vma in this mm is backed by the same anon_vma or address_space. 3193 * 3194 * We can take all the locks in random order because the VM code 3195 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never 3196 * takes more than one of them in a row. Secondly we're protected 3197 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 3198 * 3199 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3200 * that may have to take thousand of locks. 3201 * 3202 * mm_take_all_locks() can fail if it's interrupted by signals. 3203 */ 3204int mm_take_all_locks(struct mm_struct *mm) 3205{ 3206 struct vm_area_struct *vma; 3207 struct anon_vma_chain *avc; 3208 3209 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3210 3211 mutex_lock(&mm_all_locks_mutex); 3212 3213 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3214 if (signal_pending(current)) 3215 goto out_unlock; 3216 if (vma->vm_file && vma->vm_file->f_mapping) 3217 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3218 } 3219 3220 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3221 if (signal_pending(current)) 3222 goto out_unlock; 3223 if (vma->anon_vma) 3224 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3225 vm_lock_anon_vma(mm, avc->anon_vma); 3226 } 3227 3228 return 0; 3229 3230out_unlock: 3231 mm_drop_all_locks(mm); 3232 return -EINTR; 3233} 3234 3235static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3236{ 3237 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { 3238 /* 3239 * The LSB of head.next can't change to 0 from under 3240 * us because we hold the mm_all_locks_mutex. 3241 * 3242 * We must however clear the bitflag before unlocking 3243 * the vma so the users using the anon_vma->rb_root will 3244 * never see our bitflag. 3245 * 3246 * No need of atomic instructions here, head.next 3247 * can't change from under us until we release the 3248 * anon_vma->root->rwsem. 3249 */ 3250 if (!__test_and_clear_bit(0, (unsigned long *) 3251 &anon_vma->root->rb_root.rb_node)) 3252 BUG(); 3253 anon_vma_unlock_write(anon_vma); 3254 } 3255} 3256 3257static void vm_unlock_mapping(struct address_space *mapping) 3258{ 3259 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3260 /* 3261 * AS_MM_ALL_LOCKS can't change to 0 from under us 3262 * because we hold the mm_all_locks_mutex. 3263 */ 3264 i_mmap_unlock_write(mapping); 3265 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3266 &mapping->flags)) 3267 BUG(); 3268 } 3269} 3270 3271/* 3272 * The mmap_sem cannot be released by the caller until 3273 * mm_drop_all_locks() returns. 3274 */ 3275void mm_drop_all_locks(struct mm_struct *mm) 3276{ 3277 struct vm_area_struct *vma; 3278 struct anon_vma_chain *avc; 3279 3280 BUG_ON(down_read_trylock(&mm->mmap_sem)); 3281 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3282 3283 for (vma = mm->mmap; vma; vma = vma->vm_next) { 3284 if (vma->anon_vma) 3285 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3286 vm_unlock_anon_vma(avc->anon_vma); 3287 if (vma->vm_file && vma->vm_file->f_mapping) 3288 vm_unlock_mapping(vma->vm_file->f_mapping); 3289 } 3290 3291 mutex_unlock(&mm_all_locks_mutex); 3292} 3293 3294/* 3295 * initialise the VMA slab 3296 */ 3297void __init mmap_init(void) 3298{ 3299 int ret; 3300 3301 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3302 VM_BUG_ON(ret); 3303} 3304 3305/* 3306 * Initialise sysctl_user_reserve_kbytes. 3307 * 3308 * This is intended to prevent a user from starting a single memory hogging 3309 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER 3310 * mode. 3311 * 3312 * The default value is min(3% of free memory, 128MB) 3313 * 128MB is enough to recover with sshd/login, bash, and top/kill. 3314 */ 3315static int init_user_reserve(void) 3316{ 3317 unsigned long free_kbytes; 3318 3319 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3320 3321 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); 3322 return 0; 3323} 3324subsys_initcall(init_user_reserve); 3325 3326/* 3327 * Initialise sysctl_admin_reserve_kbytes. 3328 * 3329 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin 3330 * to log in and kill a memory hogging process. 3331 * 3332 * Systems with more than 256MB will reserve 8MB, enough to recover 3333 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will 3334 * only reserve 3% of free pages by default. 3335 */ 3336static int init_admin_reserve(void) 3337{ 3338 unsigned long free_kbytes; 3339 3340 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3341 3342 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); 3343 return 0; 3344} 3345subsys_initcall(init_admin_reserve); 3346 3347/* 3348 * Reinititalise user and admin reserves if memory is added or removed. 3349 * 3350 * The default user reserve max is 128MB, and the default max for the 3351 * admin reserve is 8MB. These are usually, but not always, enough to 3352 * enable recovery from a memory hogging process using login/sshd, a shell, 3353 * and tools like top. It may make sense to increase or even disable the 3354 * reserve depending on the existence of swap or variations in the recovery 3355 * tools. So, the admin may have changed them. 3356 * 3357 * If memory is added and the reserves have been eliminated or increased above 3358 * the default max, then we'll trust the admin. 3359 * 3360 * If memory is removed and there isn't enough free memory, then we 3361 * need to reset the reserves. 3362 * 3363 * Otherwise keep the reserve set by the admin. 3364 */ 3365static int reserve_mem_notifier(struct notifier_block *nb, 3366 unsigned long action, void *data) 3367{ 3368 unsigned long tmp, free_kbytes; 3369 3370 switch (action) { 3371 case MEM_ONLINE: 3372 /* Default max is 128MB. Leave alone if modified by operator. */ 3373 tmp = sysctl_user_reserve_kbytes; 3374 if (0 < tmp && tmp < (1UL << 17)) 3375 init_user_reserve(); 3376 3377 /* Default max is 8MB. Leave alone if modified by operator. */ 3378 tmp = sysctl_admin_reserve_kbytes; 3379 if (0 < tmp && tmp < (1UL << 13)) 3380 init_admin_reserve(); 3381 3382 break; 3383 case MEM_OFFLINE: 3384 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); 3385 3386 if (sysctl_user_reserve_kbytes > free_kbytes) { 3387 init_user_reserve(); 3388 pr_info("vm.user_reserve_kbytes reset to %lu\n", 3389 sysctl_user_reserve_kbytes); 3390 } 3391 3392 if (sysctl_admin_reserve_kbytes > free_kbytes) { 3393 init_admin_reserve(); 3394 pr_info("vm.admin_reserve_kbytes reset to %lu\n", 3395 sysctl_admin_reserve_kbytes); 3396 } 3397 break; 3398 default: 3399 break; 3400 } 3401 return NOTIFY_OK; 3402} 3403 3404static struct notifier_block reserve_mem_nb = { 3405 .notifier_call = reserve_mem_notifier, 3406}; 3407 3408static int __meminit init_reserve_notifier(void) 3409{ 3410 if (register_hotmemory_notifier(&reserve_mem_nb)) 3411 pr_err("Failed registering memory add/remove notifier for admin reserve\n"); 3412 3413 return 0; 3414} 3415subsys_initcall(init_reserve_notifier); 3416