1/*
2 *  bootmem - A boot-time physical memory allocator and configurator
3 *
4 *  Copyright (C) 1999 Ingo Molnar
5 *                1999 Kanoj Sarcar, SGI
6 *                2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11#include <linux/init.h>
12#include <linux/pfn.h>
13#include <linux/slab.h>
14#include <linux/bootmem.h>
15#include <linux/export.h>
16#include <linux/kmemleak.h>
17#include <linux/range.h>
18#include <linux/memblock.h>
19
20#include <asm/bug.h>
21#include <asm/io.h>
22#include <asm/processor.h>
23
24#include "internal.h"
25
26#ifndef CONFIG_NEED_MULTIPLE_NODES
27struct pglist_data __refdata contig_page_data;
28EXPORT_SYMBOL(contig_page_data);
29#endif
30
31unsigned long max_low_pfn;
32unsigned long min_low_pfn;
33unsigned long max_pfn;
34
35static void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
36					u64 goal, u64 limit)
37{
38	void *ptr;
39	u64 addr;
40
41	if (limit > memblock.current_limit)
42		limit = memblock.current_limit;
43
44	addr = memblock_find_in_range_node(size, align, goal, limit, nid);
45	if (!addr)
46		return NULL;
47
48	if (memblock_reserve(addr, size))
49		return NULL;
50
51	ptr = phys_to_virt(addr);
52	memset(ptr, 0, size);
53	/*
54	 * The min_count is set to 0 so that bootmem allocated blocks
55	 * are never reported as leaks.
56	 */
57	kmemleak_alloc(ptr, size, 0, 0);
58	return ptr;
59}
60
61/*
62 * free_bootmem_late - free bootmem pages directly to page allocator
63 * @addr: starting address of the range
64 * @size: size of the range in bytes
65 *
66 * This is only useful when the bootmem allocator has already been torn
67 * down, but we are still initializing the system.  Pages are given directly
68 * to the page allocator, no bootmem metadata is updated because it is gone.
69 */
70void __init free_bootmem_late(unsigned long addr, unsigned long size)
71{
72	unsigned long cursor, end;
73
74	kmemleak_free_part(__va(addr), size);
75
76	cursor = PFN_UP(addr);
77	end = PFN_DOWN(addr + size);
78
79	for (; cursor < end; cursor++) {
80		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
81		totalram_pages++;
82	}
83}
84
85static void __init __free_pages_memory(unsigned long start, unsigned long end)
86{
87	int order;
88
89	while (start < end) {
90		order = min(MAX_ORDER - 1UL, __ffs(start));
91
92		while (start + (1UL << order) > end)
93			order--;
94
95		__free_pages_bootmem(pfn_to_page(start), start, order);
96
97		start += (1UL << order);
98	}
99}
100
101static unsigned long __init __free_memory_core(phys_addr_t start,
102				 phys_addr_t end)
103{
104	unsigned long start_pfn = PFN_UP(start);
105	unsigned long end_pfn = min_t(unsigned long,
106				      PFN_DOWN(end), max_low_pfn);
107
108	if (start_pfn > end_pfn)
109		return 0;
110
111	__free_pages_memory(start_pfn, end_pfn);
112
113	return end_pfn - start_pfn;
114}
115
116static unsigned long __init free_low_memory_core_early(void)
117{
118	unsigned long count = 0;
119	phys_addr_t start, end;
120	u64 i;
121
122	memblock_clear_hotplug(0, -1);
123
124	for_each_free_mem_range(i, NUMA_NO_NODE, &start, &end, NULL)
125		count += __free_memory_core(start, end);
126
127#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
128	{
129		phys_addr_t size;
130
131		/* Free memblock.reserved array if it was allocated */
132		size = get_allocated_memblock_reserved_regions_info(&start);
133		if (size)
134			count += __free_memory_core(start, start + size);
135
136		/* Free memblock.memory array if it was allocated */
137		size = get_allocated_memblock_memory_regions_info(&start);
138		if (size)
139			count += __free_memory_core(start, start + size);
140	}
141#endif
142
143	return count;
144}
145
146static int reset_managed_pages_done __initdata;
147
148void reset_node_managed_pages(pg_data_t *pgdat)
149{
150	struct zone *z;
151
152	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
153		z->managed_pages = 0;
154}
155
156void __init reset_all_zones_managed_pages(void)
157{
158	struct pglist_data *pgdat;
159
160	if (reset_managed_pages_done)
161		return;
162
163	for_each_online_pgdat(pgdat)
164		reset_node_managed_pages(pgdat);
165
166	reset_managed_pages_done = 1;
167}
168
169/**
170 * free_all_bootmem - release free pages to the buddy allocator
171 *
172 * Returns the number of pages actually released.
173 */
174unsigned long __init free_all_bootmem(void)
175{
176	unsigned long pages;
177
178	reset_all_zones_managed_pages();
179
180	/*
181	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
182	 *  because in some case like Node0 doesn't have RAM installed
183	 *  low ram will be on Node1
184	 */
185	pages = free_low_memory_core_early();
186	totalram_pages += pages;
187
188	return pages;
189}
190
191/**
192 * free_bootmem_node - mark a page range as usable
193 * @pgdat: node the range resides on
194 * @physaddr: starting address of the range
195 * @size: size of the range in bytes
196 *
197 * Partial pages will be considered reserved and left as they are.
198 *
199 * The range must reside completely on the specified node.
200 */
201void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
202			      unsigned long size)
203{
204	memblock_free(physaddr, size);
205}
206
207/**
208 * free_bootmem - mark a page range as usable
209 * @addr: starting address of the range
210 * @size: size of the range in bytes
211 *
212 * Partial pages will be considered reserved and left as they are.
213 *
214 * The range must be contiguous but may span node boundaries.
215 */
216void __init free_bootmem(unsigned long addr, unsigned long size)
217{
218	memblock_free(addr, size);
219}
220
221static void * __init ___alloc_bootmem_nopanic(unsigned long size,
222					unsigned long align,
223					unsigned long goal,
224					unsigned long limit)
225{
226	void *ptr;
227
228	if (WARN_ON_ONCE(slab_is_available()))
229		return kzalloc(size, GFP_NOWAIT);
230
231restart:
232
233	ptr = __alloc_memory_core_early(NUMA_NO_NODE, size, align, goal, limit);
234
235	if (ptr)
236		return ptr;
237
238	if (goal != 0) {
239		goal = 0;
240		goto restart;
241	}
242
243	return NULL;
244}
245
246/**
247 * __alloc_bootmem_nopanic - allocate boot memory without panicking
248 * @size: size of the request in bytes
249 * @align: alignment of the region
250 * @goal: preferred starting address of the region
251 *
252 * The goal is dropped if it can not be satisfied and the allocation will
253 * fall back to memory below @goal.
254 *
255 * Allocation may happen on any node in the system.
256 *
257 * Returns NULL on failure.
258 */
259void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
260					unsigned long goal)
261{
262	unsigned long limit = -1UL;
263
264	return ___alloc_bootmem_nopanic(size, align, goal, limit);
265}
266
267static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
268					unsigned long goal, unsigned long limit)
269{
270	void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
271
272	if (mem)
273		return mem;
274	/*
275	 * Whoops, we cannot satisfy the allocation request.
276	 */
277	printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
278	panic("Out of memory");
279	return NULL;
280}
281
282/**
283 * __alloc_bootmem - allocate boot memory
284 * @size: size of the request in bytes
285 * @align: alignment of the region
286 * @goal: preferred starting address of the region
287 *
288 * The goal is dropped if it can not be satisfied and the allocation will
289 * fall back to memory below @goal.
290 *
291 * Allocation may happen on any node in the system.
292 *
293 * The function panics if the request can not be satisfied.
294 */
295void * __init __alloc_bootmem(unsigned long size, unsigned long align,
296			      unsigned long goal)
297{
298	unsigned long limit = -1UL;
299
300	return ___alloc_bootmem(size, align, goal, limit);
301}
302
303void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
304						   unsigned long size,
305						   unsigned long align,
306						   unsigned long goal,
307						   unsigned long limit)
308{
309	void *ptr;
310
311again:
312	ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
313					goal, limit);
314	if (ptr)
315		return ptr;
316
317	ptr = __alloc_memory_core_early(NUMA_NO_NODE, size, align,
318					goal, limit);
319	if (ptr)
320		return ptr;
321
322	if (goal) {
323		goal = 0;
324		goto again;
325	}
326
327	return NULL;
328}
329
330void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
331				   unsigned long align, unsigned long goal)
332{
333	if (WARN_ON_ONCE(slab_is_available()))
334		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
335
336	return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
337}
338
339static void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
340				    unsigned long align, unsigned long goal,
341				    unsigned long limit)
342{
343	void *ptr;
344
345	ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, limit);
346	if (ptr)
347		return ptr;
348
349	printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
350	panic("Out of memory");
351	return NULL;
352}
353
354/**
355 * __alloc_bootmem_node - allocate boot memory from a specific node
356 * @pgdat: node to allocate from
357 * @size: size of the request in bytes
358 * @align: alignment of the region
359 * @goal: preferred starting address of the region
360 *
361 * The goal is dropped if it can not be satisfied and the allocation will
362 * fall back to memory below @goal.
363 *
364 * Allocation may fall back to any node in the system if the specified node
365 * can not hold the requested memory.
366 *
367 * The function panics if the request can not be satisfied.
368 */
369void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
370				   unsigned long align, unsigned long goal)
371{
372	if (WARN_ON_ONCE(slab_is_available()))
373		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
374
375	return ___alloc_bootmem_node(pgdat, size, align, goal, 0);
376}
377
378void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
379				   unsigned long align, unsigned long goal)
380{
381	return __alloc_bootmem_node(pgdat, size, align, goal);
382}
383
384#ifndef ARCH_LOW_ADDRESS_LIMIT
385#define ARCH_LOW_ADDRESS_LIMIT	0xffffffffUL
386#endif
387
388/**
389 * __alloc_bootmem_low - allocate low boot memory
390 * @size: size of the request in bytes
391 * @align: alignment of the region
392 * @goal: preferred starting address of the region
393 *
394 * The goal is dropped if it can not be satisfied and the allocation will
395 * fall back to memory below @goal.
396 *
397 * Allocation may happen on any node in the system.
398 *
399 * The function panics if the request can not be satisfied.
400 */
401void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
402				  unsigned long goal)
403{
404	return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
405}
406
407void * __init __alloc_bootmem_low_nopanic(unsigned long size,
408					  unsigned long align,
409					  unsigned long goal)
410{
411	return ___alloc_bootmem_nopanic(size, align, goal,
412					ARCH_LOW_ADDRESS_LIMIT);
413}
414
415/**
416 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
417 * @pgdat: node to allocate from
418 * @size: size of the request in bytes
419 * @align: alignment of the region
420 * @goal: preferred starting address of the region
421 *
422 * The goal is dropped if it can not be satisfied and the allocation will
423 * fall back to memory below @goal.
424 *
425 * Allocation may fall back to any node in the system if the specified node
426 * can not hold the requested memory.
427 *
428 * The function panics if the request can not be satisfied.
429 */
430void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
431				       unsigned long align, unsigned long goal)
432{
433	if (WARN_ON_ONCE(slab_is_available()))
434		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
435
436	return ___alloc_bootmem_node(pgdat, size, align, goal,
437				     ARCH_LOW_ADDRESS_LIMIT);
438}
439