1/*
2 *  linux/mm/swap.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
24#include <linux/export.h>
25#include <linux/mm_inline.h>
26#include <linux/percpu_counter.h>
27#include <linux/percpu.h>
28#include <linux/cpu.h>
29#include <linux/notifier.h>
30#include <linux/backing-dev.h>
31#include <linux/memcontrol.h>
32#include <linux/gfp.h>
33#include <linux/uio.h>
34#include <linux/hugetlb.h>
35
36#include "internal.h"
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/pagemap.h>
40
41/* How many pages do we try to swap or page in/out together? */
42int page_cluster;
43
44static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
45static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
46static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
47
48/*
49 * This path almost never happens for VM activity - pages are normally
50 * freed via pagevecs.  But it gets used by networking.
51 */
52static void __page_cache_release(struct page *page)
53{
54	if (PageLRU(page)) {
55		struct zone *zone = page_zone(page);
56		struct lruvec *lruvec;
57		unsigned long flags;
58
59		spin_lock_irqsave(&zone->lru_lock, flags);
60		lruvec = mem_cgroup_page_lruvec(page, zone);
61		VM_BUG_ON_PAGE(!PageLRU(page), page);
62		__ClearPageLRU(page);
63		del_page_from_lru_list(page, lruvec, page_off_lru(page));
64		spin_unlock_irqrestore(&zone->lru_lock, flags);
65	}
66	mem_cgroup_uncharge(page);
67}
68
69static void __put_single_page(struct page *page)
70{
71	__page_cache_release(page);
72	free_hot_cold_page(page, false);
73}
74
75static void __put_compound_page(struct page *page)
76{
77	compound_page_dtor *dtor;
78
79	/*
80	 * __page_cache_release() is supposed to be called for thp, not for
81	 * hugetlb. This is because hugetlb page does never have PageLRU set
82	 * (it's never listed to any LRU lists) and no memcg routines should
83	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
84	 */
85	if (!PageHuge(page))
86		__page_cache_release(page);
87	dtor = get_compound_page_dtor(page);
88	(*dtor)(page);
89}
90
91/**
92 * Two special cases here: we could avoid taking compound_lock_irqsave
93 * and could skip the tail refcounting(in _mapcount).
94 *
95 * 1. Hugetlbfs page:
96 *
97 *    PageHeadHuge will remain true until the compound page
98 *    is released and enters the buddy allocator, and it could
99 *    not be split by __split_huge_page_refcount().
100 *
101 *    So if we see PageHeadHuge set, and we have the tail page pin,
102 *    then we could safely put head page.
103 *
104 * 2. Slab THP page:
105 *
106 *    PG_slab is cleared before the slab frees the head page, and
107 *    tail pin cannot be the last reference left on the head page,
108 *    because the slab code is free to reuse the compound page
109 *    after a kfree/kmem_cache_free without having to check if
110 *    there's any tail pin left.  In turn all tail pinsmust be always
111 *    released while the head is still pinned by the slab code
112 *    and so we know PG_slab will be still set too.
113 *
114 *    So if we see PageSlab set, and we have the tail page pin,
115 *    then we could safely put head page.
116 */
117static __always_inline
118void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
119{
120	/*
121	 * If @page is a THP tail, we must read the tail page
122	 * flags after the head page flags. The
123	 * __split_huge_page_refcount side enforces write memory barriers
124	 * between clearing PageTail and before the head page
125	 * can be freed and reallocated.
126	 */
127	smp_rmb();
128	if (likely(PageTail(page))) {
129		/*
130		 * __split_huge_page_refcount cannot race
131		 * here, see the comment above this function.
132		 */
133		VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
134		VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
135		if (put_page_testzero(page_head)) {
136			/*
137			 * If this is the tail of a slab THP page,
138			 * the tail pin must not be the last reference
139			 * held on the page, because the PG_slab cannot
140			 * be cleared before all tail pins (which skips
141			 * the _mapcount tail refcounting) have been
142			 * released.
143			 *
144			 * If this is the tail of a hugetlbfs page,
145			 * the tail pin may be the last reference on
146			 * the page instead, because PageHeadHuge will
147			 * not go away until the compound page enters
148			 * the buddy allocator.
149			 */
150			VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
151			__put_compound_page(page_head);
152		}
153	} else
154		/*
155		 * __split_huge_page_refcount run before us,
156		 * @page was a THP tail. The split @page_head
157		 * has been freed and reallocated as slab or
158		 * hugetlbfs page of smaller order (only
159		 * possible if reallocated as slab on x86).
160		 */
161		if (put_page_testzero(page))
162			__put_single_page(page);
163}
164
165static __always_inline
166void put_refcounted_compound_page(struct page *page_head, struct page *page)
167{
168	if (likely(page != page_head && get_page_unless_zero(page_head))) {
169		unsigned long flags;
170
171		/*
172		 * @page_head wasn't a dangling pointer but it may not
173		 * be a head page anymore by the time we obtain the
174		 * lock. That is ok as long as it can't be freed from
175		 * under us.
176		 */
177		flags = compound_lock_irqsave(page_head);
178		if (unlikely(!PageTail(page))) {
179			/* __split_huge_page_refcount run before us */
180			compound_unlock_irqrestore(page_head, flags);
181			if (put_page_testzero(page_head)) {
182				/*
183				 * The @page_head may have been freed
184				 * and reallocated as a compound page
185				 * of smaller order and then freed
186				 * again.  All we know is that it
187				 * cannot have become: a THP page, a
188				 * compound page of higher order, a
189				 * tail page.  That is because we
190				 * still hold the refcount of the
191				 * split THP tail and page_head was
192				 * the THP head before the split.
193				 */
194				if (PageHead(page_head))
195					__put_compound_page(page_head);
196				else
197					__put_single_page(page_head);
198			}
199out_put_single:
200			if (put_page_testzero(page))
201				__put_single_page(page);
202			return;
203		}
204		VM_BUG_ON_PAGE(page_head != page->first_page, page);
205		/*
206		 * We can release the refcount taken by
207		 * get_page_unless_zero() now that
208		 * __split_huge_page_refcount() is blocked on the
209		 * compound_lock.
210		 */
211		if (put_page_testzero(page_head))
212			VM_BUG_ON_PAGE(1, page_head);
213		/* __split_huge_page_refcount will wait now */
214		VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
215		atomic_dec(&page->_mapcount);
216		VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
217		VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
218		compound_unlock_irqrestore(page_head, flags);
219
220		if (put_page_testzero(page_head)) {
221			if (PageHead(page_head))
222				__put_compound_page(page_head);
223			else
224				__put_single_page(page_head);
225		}
226	} else {
227		/* @page_head is a dangling pointer */
228		VM_BUG_ON_PAGE(PageTail(page), page);
229		goto out_put_single;
230	}
231}
232
233static void put_compound_page(struct page *page)
234{
235	struct page *page_head;
236
237	/*
238	 * We see the PageCompound set and PageTail not set, so @page maybe:
239	 *  1. hugetlbfs head page, or
240	 *  2. THP head page.
241	 */
242	if (likely(!PageTail(page))) {
243		if (put_page_testzero(page)) {
244			/*
245			 * By the time all refcounts have been released
246			 * split_huge_page cannot run anymore from under us.
247			 */
248			if (PageHead(page))
249				__put_compound_page(page);
250			else
251				__put_single_page(page);
252		}
253		return;
254	}
255
256	/*
257	 * We see the PageCompound set and PageTail set, so @page maybe:
258	 *  1. a tail hugetlbfs page, or
259	 *  2. a tail THP page, or
260	 *  3. a split THP page.
261	 *
262	 *  Case 3 is possible, as we may race with
263	 *  __split_huge_page_refcount tearing down a THP page.
264	 */
265	page_head = compound_head_by_tail(page);
266	if (!__compound_tail_refcounted(page_head))
267		put_unrefcounted_compound_page(page_head, page);
268	else
269		put_refcounted_compound_page(page_head, page);
270}
271
272void put_page(struct page *page)
273{
274	if (unlikely(PageCompound(page)))
275		put_compound_page(page);
276	else if (put_page_testzero(page))
277		__put_single_page(page);
278}
279EXPORT_SYMBOL(put_page);
280
281/*
282 * This function is exported but must not be called by anything other
283 * than get_page(). It implements the slow path of get_page().
284 */
285bool __get_page_tail(struct page *page)
286{
287	/*
288	 * This takes care of get_page() if run on a tail page
289	 * returned by one of the get_user_pages/follow_page variants.
290	 * get_user_pages/follow_page itself doesn't need the compound
291	 * lock because it runs __get_page_tail_foll() under the
292	 * proper PT lock that already serializes against
293	 * split_huge_page().
294	 */
295	unsigned long flags;
296	bool got;
297	struct page *page_head = compound_head(page);
298
299	/* Ref to put_compound_page() comment. */
300	if (!__compound_tail_refcounted(page_head)) {
301		smp_rmb();
302		if (likely(PageTail(page))) {
303			/*
304			 * This is a hugetlbfs page or a slab
305			 * page. __split_huge_page_refcount
306			 * cannot race here.
307			 */
308			VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
309			__get_page_tail_foll(page, true);
310			return true;
311		} else {
312			/*
313			 * __split_huge_page_refcount run
314			 * before us, "page" was a THP
315			 * tail. The split page_head has been
316			 * freed and reallocated as slab or
317			 * hugetlbfs page of smaller order
318			 * (only possible if reallocated as
319			 * slab on x86).
320			 */
321			return false;
322		}
323	}
324
325	got = false;
326	if (likely(page != page_head && get_page_unless_zero(page_head))) {
327		/*
328		 * page_head wasn't a dangling pointer but it
329		 * may not be a head page anymore by the time
330		 * we obtain the lock. That is ok as long as it
331		 * can't be freed from under us.
332		 */
333		flags = compound_lock_irqsave(page_head);
334		/* here __split_huge_page_refcount won't run anymore */
335		if (likely(PageTail(page))) {
336			__get_page_tail_foll(page, false);
337			got = true;
338		}
339		compound_unlock_irqrestore(page_head, flags);
340		if (unlikely(!got))
341			put_page(page_head);
342	}
343	return got;
344}
345EXPORT_SYMBOL(__get_page_tail);
346
347/**
348 * put_pages_list() - release a list of pages
349 * @pages: list of pages threaded on page->lru
350 *
351 * Release a list of pages which are strung together on page.lru.  Currently
352 * used by read_cache_pages() and related error recovery code.
353 */
354void put_pages_list(struct list_head *pages)
355{
356	while (!list_empty(pages)) {
357		struct page *victim;
358
359		victim = list_entry(pages->prev, struct page, lru);
360		list_del(&victim->lru);
361		page_cache_release(victim);
362	}
363}
364EXPORT_SYMBOL(put_pages_list);
365
366/*
367 * get_kernel_pages() - pin kernel pages in memory
368 * @kiov:	An array of struct kvec structures
369 * @nr_segs:	number of segments to pin
370 * @write:	pinning for read/write, currently ignored
371 * @pages:	array that receives pointers to the pages pinned.
372 *		Should be at least nr_segs long.
373 *
374 * Returns number of pages pinned. This may be fewer than the number
375 * requested. If nr_pages is 0 or negative, returns 0. If no pages
376 * were pinned, returns -errno. Each page returned must be released
377 * with a put_page() call when it is finished with.
378 */
379int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
380		struct page **pages)
381{
382	int seg;
383
384	for (seg = 0; seg < nr_segs; seg++) {
385		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
386			return seg;
387
388		pages[seg] = kmap_to_page(kiov[seg].iov_base);
389		page_cache_get(pages[seg]);
390	}
391
392	return seg;
393}
394EXPORT_SYMBOL_GPL(get_kernel_pages);
395
396/*
397 * get_kernel_page() - pin a kernel page in memory
398 * @start:	starting kernel address
399 * @write:	pinning for read/write, currently ignored
400 * @pages:	array that receives pointer to the page pinned.
401 *		Must be at least nr_segs long.
402 *
403 * Returns 1 if page is pinned. If the page was not pinned, returns
404 * -errno. The page returned must be released with a put_page() call
405 * when it is finished with.
406 */
407int get_kernel_page(unsigned long start, int write, struct page **pages)
408{
409	const struct kvec kiov = {
410		.iov_base = (void *)start,
411		.iov_len = PAGE_SIZE
412	};
413
414	return get_kernel_pages(&kiov, 1, write, pages);
415}
416EXPORT_SYMBOL_GPL(get_kernel_page);
417
418static void pagevec_lru_move_fn(struct pagevec *pvec,
419	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
420	void *arg)
421{
422	int i;
423	struct zone *zone = NULL;
424	struct lruvec *lruvec;
425	unsigned long flags = 0;
426
427	for (i = 0; i < pagevec_count(pvec); i++) {
428		struct page *page = pvec->pages[i];
429		struct zone *pagezone = page_zone(page);
430
431		if (pagezone != zone) {
432			if (zone)
433				spin_unlock_irqrestore(&zone->lru_lock, flags);
434			zone = pagezone;
435			spin_lock_irqsave(&zone->lru_lock, flags);
436		}
437
438		lruvec = mem_cgroup_page_lruvec(page, zone);
439		(*move_fn)(page, lruvec, arg);
440	}
441	if (zone)
442		spin_unlock_irqrestore(&zone->lru_lock, flags);
443	release_pages(pvec->pages, pvec->nr, pvec->cold);
444	pagevec_reinit(pvec);
445}
446
447static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
448				 void *arg)
449{
450	int *pgmoved = arg;
451
452	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
453		enum lru_list lru = page_lru_base_type(page);
454		list_move_tail(&page->lru, &lruvec->lists[lru]);
455		(*pgmoved)++;
456	}
457}
458
459/*
460 * pagevec_move_tail() must be called with IRQ disabled.
461 * Otherwise this may cause nasty races.
462 */
463static void pagevec_move_tail(struct pagevec *pvec)
464{
465	int pgmoved = 0;
466
467	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
468	__count_vm_events(PGROTATED, pgmoved);
469}
470
471/*
472 * Writeback is about to end against a page which has been marked for immediate
473 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
474 * inactive list.
475 */
476void rotate_reclaimable_page(struct page *page)
477{
478	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
479	    !PageUnevictable(page) && PageLRU(page)) {
480		struct pagevec *pvec;
481		unsigned long flags;
482
483		page_cache_get(page);
484		local_irq_save(flags);
485		pvec = this_cpu_ptr(&lru_rotate_pvecs);
486		if (!pagevec_add(pvec, page))
487			pagevec_move_tail(pvec);
488		local_irq_restore(flags);
489	}
490}
491
492static void update_page_reclaim_stat(struct lruvec *lruvec,
493				     int file, int rotated)
494{
495	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
496
497	reclaim_stat->recent_scanned[file]++;
498	if (rotated)
499		reclaim_stat->recent_rotated[file]++;
500}
501
502static void __activate_page(struct page *page, struct lruvec *lruvec,
503			    void *arg)
504{
505	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
506		int file = page_is_file_cache(page);
507		int lru = page_lru_base_type(page);
508
509		del_page_from_lru_list(page, lruvec, lru);
510		SetPageActive(page);
511		lru += LRU_ACTIVE;
512		add_page_to_lru_list(page, lruvec, lru);
513		trace_mm_lru_activate(page);
514
515		__count_vm_event(PGACTIVATE);
516		update_page_reclaim_stat(lruvec, file, 1);
517	}
518}
519
520#ifdef CONFIG_SMP
521static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
522
523static void activate_page_drain(int cpu)
524{
525	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
526
527	if (pagevec_count(pvec))
528		pagevec_lru_move_fn(pvec, __activate_page, NULL);
529}
530
531static bool need_activate_page_drain(int cpu)
532{
533	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
534}
535
536void activate_page(struct page *page)
537{
538	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
539		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
540
541		page_cache_get(page);
542		if (!pagevec_add(pvec, page))
543			pagevec_lru_move_fn(pvec, __activate_page, NULL);
544		put_cpu_var(activate_page_pvecs);
545	}
546}
547
548#else
549static inline void activate_page_drain(int cpu)
550{
551}
552
553static bool need_activate_page_drain(int cpu)
554{
555	return false;
556}
557
558void activate_page(struct page *page)
559{
560	struct zone *zone = page_zone(page);
561
562	spin_lock_irq(&zone->lru_lock);
563	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
564	spin_unlock_irq(&zone->lru_lock);
565}
566#endif
567
568static void __lru_cache_activate_page(struct page *page)
569{
570	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
571	int i;
572
573	/*
574	 * Search backwards on the optimistic assumption that the page being
575	 * activated has just been added to this pagevec. Note that only
576	 * the local pagevec is examined as a !PageLRU page could be in the
577	 * process of being released, reclaimed, migrated or on a remote
578	 * pagevec that is currently being drained. Furthermore, marking
579	 * a remote pagevec's page PageActive potentially hits a race where
580	 * a page is marked PageActive just after it is added to the inactive
581	 * list causing accounting errors and BUG_ON checks to trigger.
582	 */
583	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
584		struct page *pagevec_page = pvec->pages[i];
585
586		if (pagevec_page == page) {
587			SetPageActive(page);
588			break;
589		}
590	}
591
592	put_cpu_var(lru_add_pvec);
593}
594
595/*
596 * Mark a page as having seen activity.
597 *
598 * inactive,unreferenced	->	inactive,referenced
599 * inactive,referenced		->	active,unreferenced
600 * active,unreferenced		->	active,referenced
601 *
602 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
603 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
604 */
605void mark_page_accessed(struct page *page)
606{
607	if (!PageActive(page) && !PageUnevictable(page) &&
608			PageReferenced(page)) {
609
610		/*
611		 * If the page is on the LRU, queue it for activation via
612		 * activate_page_pvecs. Otherwise, assume the page is on a
613		 * pagevec, mark it active and it'll be moved to the active
614		 * LRU on the next drain.
615		 */
616		if (PageLRU(page))
617			activate_page(page);
618		else
619			__lru_cache_activate_page(page);
620		ClearPageReferenced(page);
621		if (page_is_file_cache(page))
622			workingset_activation(page);
623	} else if (!PageReferenced(page)) {
624		SetPageReferenced(page);
625	}
626}
627EXPORT_SYMBOL(mark_page_accessed);
628
629static void __lru_cache_add(struct page *page)
630{
631	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
632
633	page_cache_get(page);
634	if (!pagevec_space(pvec))
635		__pagevec_lru_add(pvec);
636	pagevec_add(pvec, page);
637	put_cpu_var(lru_add_pvec);
638}
639
640/**
641 * lru_cache_add: add a page to the page lists
642 * @page: the page to add
643 */
644void lru_cache_add_anon(struct page *page)
645{
646	if (PageActive(page))
647		ClearPageActive(page);
648	__lru_cache_add(page);
649}
650
651void lru_cache_add_file(struct page *page)
652{
653	if (PageActive(page))
654		ClearPageActive(page);
655	__lru_cache_add(page);
656}
657EXPORT_SYMBOL(lru_cache_add_file);
658
659/**
660 * lru_cache_add - add a page to a page list
661 * @page: the page to be added to the LRU.
662 *
663 * Queue the page for addition to the LRU via pagevec. The decision on whether
664 * to add the page to the [in]active [file|anon] list is deferred until the
665 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
666 * have the page added to the active list using mark_page_accessed().
667 */
668void lru_cache_add(struct page *page)
669{
670	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
671	VM_BUG_ON_PAGE(PageLRU(page), page);
672	__lru_cache_add(page);
673}
674
675/**
676 * add_page_to_unevictable_list - add a page to the unevictable list
677 * @page:  the page to be added to the unevictable list
678 *
679 * Add page directly to its zone's unevictable list.  To avoid races with
680 * tasks that might be making the page evictable, through eg. munlock,
681 * munmap or exit, while it's not on the lru, we want to add the page
682 * while it's locked or otherwise "invisible" to other tasks.  This is
683 * difficult to do when using the pagevec cache, so bypass that.
684 */
685void add_page_to_unevictable_list(struct page *page)
686{
687	struct zone *zone = page_zone(page);
688	struct lruvec *lruvec;
689
690	spin_lock_irq(&zone->lru_lock);
691	lruvec = mem_cgroup_page_lruvec(page, zone);
692	ClearPageActive(page);
693	SetPageUnevictable(page);
694	SetPageLRU(page);
695	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
696	spin_unlock_irq(&zone->lru_lock);
697}
698
699/**
700 * lru_cache_add_active_or_unevictable
701 * @page:  the page to be added to LRU
702 * @vma:   vma in which page is mapped for determining reclaimability
703 *
704 * Place @page on the active or unevictable LRU list, depending on its
705 * evictability.  Note that if the page is not evictable, it goes
706 * directly back onto it's zone's unevictable list, it does NOT use a
707 * per cpu pagevec.
708 */
709void lru_cache_add_active_or_unevictable(struct page *page,
710					 struct vm_area_struct *vma)
711{
712	VM_BUG_ON_PAGE(PageLRU(page), page);
713
714	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
715		SetPageActive(page);
716		lru_cache_add(page);
717		return;
718	}
719
720	if (!TestSetPageMlocked(page)) {
721		/*
722		 * We use the irq-unsafe __mod_zone_page_stat because this
723		 * counter is not modified from interrupt context, and the pte
724		 * lock is held(spinlock), which implies preemption disabled.
725		 */
726		__mod_zone_page_state(page_zone(page), NR_MLOCK,
727				    hpage_nr_pages(page));
728		count_vm_event(UNEVICTABLE_PGMLOCKED);
729	}
730	add_page_to_unevictable_list(page);
731}
732
733/*
734 * If the page can not be invalidated, it is moved to the
735 * inactive list to speed up its reclaim.  It is moved to the
736 * head of the list, rather than the tail, to give the flusher
737 * threads some time to write it out, as this is much more
738 * effective than the single-page writeout from reclaim.
739 *
740 * If the page isn't page_mapped and dirty/writeback, the page
741 * could reclaim asap using PG_reclaim.
742 *
743 * 1. active, mapped page -> none
744 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
745 * 3. inactive, mapped page -> none
746 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
747 * 5. inactive, clean -> inactive, tail
748 * 6. Others -> none
749 *
750 * In 4, why it moves inactive's head, the VM expects the page would
751 * be write it out by flusher threads as this is much more effective
752 * than the single-page writeout from reclaim.
753 */
754static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
755			      void *arg)
756{
757	int lru, file;
758	bool active;
759
760	if (!PageLRU(page))
761		return;
762
763	if (PageUnevictable(page))
764		return;
765
766	/* Some processes are using the page */
767	if (page_mapped(page))
768		return;
769
770	active = PageActive(page);
771	file = page_is_file_cache(page);
772	lru = page_lru_base_type(page);
773
774	del_page_from_lru_list(page, lruvec, lru + active);
775	ClearPageActive(page);
776	ClearPageReferenced(page);
777	add_page_to_lru_list(page, lruvec, lru);
778
779	if (PageWriteback(page) || PageDirty(page)) {
780		/*
781		 * PG_reclaim could be raced with end_page_writeback
782		 * It can make readahead confusing.  But race window
783		 * is _really_ small and  it's non-critical problem.
784		 */
785		SetPageReclaim(page);
786	} else {
787		/*
788		 * The page's writeback ends up during pagevec
789		 * We moves tha page into tail of inactive.
790		 */
791		list_move_tail(&page->lru, &lruvec->lists[lru]);
792		__count_vm_event(PGROTATED);
793	}
794
795	if (active)
796		__count_vm_event(PGDEACTIVATE);
797	update_page_reclaim_stat(lruvec, file, 0);
798}
799
800/*
801 * Drain pages out of the cpu's pagevecs.
802 * Either "cpu" is the current CPU, and preemption has already been
803 * disabled; or "cpu" is being hot-unplugged, and is already dead.
804 */
805void lru_add_drain_cpu(int cpu)
806{
807	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
808
809	if (pagevec_count(pvec))
810		__pagevec_lru_add(pvec);
811
812	pvec = &per_cpu(lru_rotate_pvecs, cpu);
813	if (pagevec_count(pvec)) {
814		unsigned long flags;
815
816		/* No harm done if a racing interrupt already did this */
817		local_irq_save(flags);
818		pagevec_move_tail(pvec);
819		local_irq_restore(flags);
820	}
821
822	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
823	if (pagevec_count(pvec))
824		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
825
826	activate_page_drain(cpu);
827}
828
829/**
830 * deactivate_file_page - forcefully deactivate a file page
831 * @page: page to deactivate
832 *
833 * This function hints the VM that @page is a good reclaim candidate,
834 * for example if its invalidation fails due to the page being dirty
835 * or under writeback.
836 */
837void deactivate_file_page(struct page *page)
838{
839	/*
840	 * In a workload with many unevictable page such as mprotect,
841	 * unevictable page deactivation for accelerating reclaim is pointless.
842	 */
843	if (PageUnevictable(page))
844		return;
845
846	if (likely(get_page_unless_zero(page))) {
847		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
848
849		if (!pagevec_add(pvec, page))
850			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
851		put_cpu_var(lru_deactivate_file_pvecs);
852	}
853}
854
855void lru_add_drain(void)
856{
857	lru_add_drain_cpu(get_cpu());
858	put_cpu();
859}
860
861static void lru_add_drain_per_cpu(struct work_struct *dummy)
862{
863	lru_add_drain();
864}
865
866static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
867
868void lru_add_drain_all(void)
869{
870	static DEFINE_MUTEX(lock);
871	static struct cpumask has_work;
872	int cpu;
873
874	mutex_lock(&lock);
875	get_online_cpus();
876	cpumask_clear(&has_work);
877
878	for_each_online_cpu(cpu) {
879		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
880
881		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
882		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
883		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
884		    need_activate_page_drain(cpu)) {
885			INIT_WORK(work, lru_add_drain_per_cpu);
886			schedule_work_on(cpu, work);
887			cpumask_set_cpu(cpu, &has_work);
888		}
889	}
890
891	for_each_cpu(cpu, &has_work)
892		flush_work(&per_cpu(lru_add_drain_work, cpu));
893
894	put_online_cpus();
895	mutex_unlock(&lock);
896}
897
898/**
899 * release_pages - batched page_cache_release()
900 * @pages: array of pages to release
901 * @nr: number of pages
902 * @cold: whether the pages are cache cold
903 *
904 * Decrement the reference count on all the pages in @pages.  If it
905 * fell to zero, remove the page from the LRU and free it.
906 */
907void release_pages(struct page **pages, int nr, bool cold)
908{
909	int i;
910	LIST_HEAD(pages_to_free);
911	struct zone *zone = NULL;
912	struct lruvec *lruvec;
913	unsigned long uninitialized_var(flags);
914	unsigned int uninitialized_var(lock_batch);
915
916	for (i = 0; i < nr; i++) {
917		struct page *page = pages[i];
918
919		if (unlikely(PageCompound(page))) {
920			if (zone) {
921				spin_unlock_irqrestore(&zone->lru_lock, flags);
922				zone = NULL;
923			}
924			put_compound_page(page);
925			continue;
926		}
927
928		/*
929		 * Make sure the IRQ-safe lock-holding time does not get
930		 * excessive with a continuous string of pages from the
931		 * same zone. The lock is held only if zone != NULL.
932		 */
933		if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
934			spin_unlock_irqrestore(&zone->lru_lock, flags);
935			zone = NULL;
936		}
937
938		if (!put_page_testzero(page))
939			continue;
940
941		if (PageLRU(page)) {
942			struct zone *pagezone = page_zone(page);
943
944			if (pagezone != zone) {
945				if (zone)
946					spin_unlock_irqrestore(&zone->lru_lock,
947									flags);
948				lock_batch = 0;
949				zone = pagezone;
950				spin_lock_irqsave(&zone->lru_lock, flags);
951			}
952
953			lruvec = mem_cgroup_page_lruvec(page, zone);
954			VM_BUG_ON_PAGE(!PageLRU(page), page);
955			__ClearPageLRU(page);
956			del_page_from_lru_list(page, lruvec, page_off_lru(page));
957		}
958
959		/* Clear Active bit in case of parallel mark_page_accessed */
960		__ClearPageActive(page);
961
962		list_add(&page->lru, &pages_to_free);
963	}
964	if (zone)
965		spin_unlock_irqrestore(&zone->lru_lock, flags);
966
967	mem_cgroup_uncharge_list(&pages_to_free);
968	free_hot_cold_page_list(&pages_to_free, cold);
969}
970EXPORT_SYMBOL(release_pages);
971
972/*
973 * The pages which we're about to release may be in the deferred lru-addition
974 * queues.  That would prevent them from really being freed right now.  That's
975 * OK from a correctness point of view but is inefficient - those pages may be
976 * cache-warm and we want to give them back to the page allocator ASAP.
977 *
978 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
979 * and __pagevec_lru_add_active() call release_pages() directly to avoid
980 * mutual recursion.
981 */
982void __pagevec_release(struct pagevec *pvec)
983{
984	lru_add_drain();
985	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
986	pagevec_reinit(pvec);
987}
988EXPORT_SYMBOL(__pagevec_release);
989
990#ifdef CONFIG_TRANSPARENT_HUGEPAGE
991/* used by __split_huge_page_refcount() */
992void lru_add_page_tail(struct page *page, struct page *page_tail,
993		       struct lruvec *lruvec, struct list_head *list)
994{
995	const int file = 0;
996
997	VM_BUG_ON_PAGE(!PageHead(page), page);
998	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
999	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
1000	VM_BUG_ON(NR_CPUS != 1 &&
1001		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
1002
1003	if (!list)
1004		SetPageLRU(page_tail);
1005
1006	if (likely(PageLRU(page)))
1007		list_add_tail(&page_tail->lru, &page->lru);
1008	else if (list) {
1009		/* page reclaim is reclaiming a huge page */
1010		get_page(page_tail);
1011		list_add_tail(&page_tail->lru, list);
1012	} else {
1013		struct list_head *list_head;
1014		/*
1015		 * Head page has not yet been counted, as an hpage,
1016		 * so we must account for each subpage individually.
1017		 *
1018		 * Use the standard add function to put page_tail on the list,
1019		 * but then correct its position so they all end up in order.
1020		 */
1021		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
1022		list_head = page_tail->lru.prev;
1023		list_move_tail(&page_tail->lru, list_head);
1024	}
1025
1026	if (!PageUnevictable(page))
1027		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
1028}
1029#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1030
1031static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1032				 void *arg)
1033{
1034	int file = page_is_file_cache(page);
1035	int active = PageActive(page);
1036	enum lru_list lru = page_lru(page);
1037
1038	VM_BUG_ON_PAGE(PageLRU(page), page);
1039
1040	SetPageLRU(page);
1041	add_page_to_lru_list(page, lruvec, lru);
1042	update_page_reclaim_stat(lruvec, file, active);
1043	trace_mm_lru_insertion(page, lru);
1044}
1045
1046/*
1047 * Add the passed pages to the LRU, then drop the caller's refcount
1048 * on them.  Reinitialises the caller's pagevec.
1049 */
1050void __pagevec_lru_add(struct pagevec *pvec)
1051{
1052	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1053}
1054EXPORT_SYMBOL(__pagevec_lru_add);
1055
1056/**
1057 * pagevec_lookup_entries - gang pagecache lookup
1058 * @pvec:	Where the resulting entries are placed
1059 * @mapping:	The address_space to search
1060 * @start:	The starting entry index
1061 * @nr_entries:	The maximum number of entries
1062 * @indices:	The cache indices corresponding to the entries in @pvec
1063 *
1064 * pagevec_lookup_entries() will search for and return a group of up
1065 * to @nr_entries pages and shadow entries in the mapping.  All
1066 * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1067 * reference against actual pages in @pvec.
1068 *
1069 * The search returns a group of mapping-contiguous entries with
1070 * ascending indexes.  There may be holes in the indices due to
1071 * not-present entries.
1072 *
1073 * pagevec_lookup_entries() returns the number of entries which were
1074 * found.
1075 */
1076unsigned pagevec_lookup_entries(struct pagevec *pvec,
1077				struct address_space *mapping,
1078				pgoff_t start, unsigned nr_pages,
1079				pgoff_t *indices)
1080{
1081	pvec->nr = find_get_entries(mapping, start, nr_pages,
1082				    pvec->pages, indices);
1083	return pagevec_count(pvec);
1084}
1085
1086/**
1087 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1088 * @pvec:	The pagevec to prune
1089 *
1090 * pagevec_lookup_entries() fills both pages and exceptional radix
1091 * tree entries into the pagevec.  This function prunes all
1092 * exceptionals from @pvec without leaving holes, so that it can be
1093 * passed on to page-only pagevec operations.
1094 */
1095void pagevec_remove_exceptionals(struct pagevec *pvec)
1096{
1097	int i, j;
1098
1099	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1100		struct page *page = pvec->pages[i];
1101		if (!radix_tree_exceptional_entry(page))
1102			pvec->pages[j++] = page;
1103	}
1104	pvec->nr = j;
1105}
1106
1107/**
1108 * pagevec_lookup - gang pagecache lookup
1109 * @pvec:	Where the resulting pages are placed
1110 * @mapping:	The address_space to search
1111 * @start:	The starting page index
1112 * @nr_pages:	The maximum number of pages
1113 *
1114 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1115 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
1116 * reference against the pages in @pvec.
1117 *
1118 * The search returns a group of mapping-contiguous pages with ascending
1119 * indexes.  There may be holes in the indices due to not-present pages.
1120 *
1121 * pagevec_lookup() returns the number of pages which were found.
1122 */
1123unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1124		pgoff_t start, unsigned nr_pages)
1125{
1126	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1127	return pagevec_count(pvec);
1128}
1129EXPORT_SYMBOL(pagevec_lookup);
1130
1131unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1132		pgoff_t *index, int tag, unsigned nr_pages)
1133{
1134	pvec->nr = find_get_pages_tag(mapping, index, tag,
1135					nr_pages, pvec->pages);
1136	return pagevec_count(pvec);
1137}
1138EXPORT_SYMBOL(pagevec_lookup_tag);
1139
1140/*
1141 * Perform any setup for the swap system
1142 */
1143void __init swap_setup(void)
1144{
1145	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1146#ifdef CONFIG_SWAP
1147	int i;
1148
1149	for (i = 0; i < MAX_SWAPFILES; i++)
1150		spin_lock_init(&swapper_spaces[i].tree_lock);
1151#endif
1152
1153	/* Use a smaller cluster for small-memory machines */
1154	if (megs < 16)
1155		page_cluster = 2;
1156	else
1157		page_cluster = 3;
1158	/*
1159	 * Right now other parts of the system means that we
1160	 * _really_ don't want to cluster much more
1161	 */
1162}
1163