1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shmem_fs.h>
18#include <linux/blkdev.h>
19#include <linux/random.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
28#include <linux/mutex.h>
29#include <linux/capability.h>
30#include <linux/syscalls.h>
31#include <linux/memcontrol.h>
32#include <linux/poll.h>
33#include <linux/oom.h>
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
36#include <linux/export.h>
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
41#include <linux/swap_cgroup.h>
42
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44				 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48DEFINE_SPINLOCK(swap_lock);
49static unsigned int nr_swapfiles;
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52long total_swap_pages;
53static int least_priority;
54
55static const char Bad_file[] = "Bad swap file entry ";
56static const char Unused_file[] = "Unused swap file entry ";
57static const char Bad_offset[] = "Bad swap offset entry ";
58static const char Unused_offset[] = "Unused swap offset entry ";
59
60/*
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
63 */
64PLIST_HEAD(swap_active_head);
65
66/*
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
77 */
78static PLIST_HEAD(swap_avail_head);
79static DEFINE_SPINLOCK(swap_avail_lock);
80
81struct swap_info_struct *swap_info[MAX_SWAPFILES];
82
83static DEFINE_MUTEX(swapon_mutex);
84
85static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86/* Activity counter to indicate that a swapon or swapoff has occurred */
87static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
89static inline unsigned char swap_count(unsigned char ent)
90{
91	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
92}
93
94/* returns 1 if swap entry is freed */
95static int
96__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97{
98	swp_entry_t entry = swp_entry(si->type, offset);
99	struct page *page;
100	int ret = 0;
101
102	page = find_get_page(swap_address_space(entry), entry.val);
103	if (!page)
104		return 0;
105	/*
106	 * This function is called from scan_swap_map() and it's called
107	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108	 * We have to use trylock for avoiding deadlock. This is a special
109	 * case and you should use try_to_free_swap() with explicit lock_page()
110	 * in usual operations.
111	 */
112	if (trylock_page(page)) {
113		ret = try_to_free_swap(page);
114		unlock_page(page);
115	}
116	page_cache_release(page);
117	return ret;
118}
119
120/*
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
123 */
124static int discard_swap(struct swap_info_struct *si)
125{
126	struct swap_extent *se;
127	sector_t start_block;
128	sector_t nr_blocks;
129	int err = 0;
130
131	/* Do not discard the swap header page! */
132	se = &si->first_swap_extent;
133	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135	if (nr_blocks) {
136		err = blkdev_issue_discard(si->bdev, start_block,
137				nr_blocks, GFP_KERNEL, 0);
138		if (err)
139			return err;
140		cond_resched();
141	}
142
143	list_for_each_entry(se, &si->first_swap_extent.list, list) {
144		start_block = se->start_block << (PAGE_SHIFT - 9);
145		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146
147		err = blkdev_issue_discard(si->bdev, start_block,
148				nr_blocks, GFP_KERNEL, 0);
149		if (err)
150			break;
151
152		cond_resched();
153	}
154	return err;		/* That will often be -EOPNOTSUPP */
155}
156
157/*
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
160 */
161static void discard_swap_cluster(struct swap_info_struct *si,
162				 pgoff_t start_page, pgoff_t nr_pages)
163{
164	struct swap_extent *se = si->curr_swap_extent;
165	int found_extent = 0;
166
167	while (nr_pages) {
168		struct list_head *lh;
169
170		if (se->start_page <= start_page &&
171		    start_page < se->start_page + se->nr_pages) {
172			pgoff_t offset = start_page - se->start_page;
173			sector_t start_block = se->start_block + offset;
174			sector_t nr_blocks = se->nr_pages - offset;
175
176			if (nr_blocks > nr_pages)
177				nr_blocks = nr_pages;
178			start_page += nr_blocks;
179			nr_pages -= nr_blocks;
180
181			if (!found_extent++)
182				si->curr_swap_extent = se;
183
184			start_block <<= PAGE_SHIFT - 9;
185			nr_blocks <<= PAGE_SHIFT - 9;
186			if (blkdev_issue_discard(si->bdev, start_block,
187				    nr_blocks, GFP_NOIO, 0))
188				break;
189		}
190
191		lh = se->list.next;
192		se = list_entry(lh, struct swap_extent, list);
193	}
194}
195
196#define SWAPFILE_CLUSTER	256
197#define LATENCY_LIMIT		256
198
199static inline void cluster_set_flag(struct swap_cluster_info *info,
200	unsigned int flag)
201{
202	info->flags = flag;
203}
204
205static inline unsigned int cluster_count(struct swap_cluster_info *info)
206{
207	return info->data;
208}
209
210static inline void cluster_set_count(struct swap_cluster_info *info,
211				     unsigned int c)
212{
213	info->data = c;
214}
215
216static inline void cluster_set_count_flag(struct swap_cluster_info *info,
217					 unsigned int c, unsigned int f)
218{
219	info->flags = f;
220	info->data = c;
221}
222
223static inline unsigned int cluster_next(struct swap_cluster_info *info)
224{
225	return info->data;
226}
227
228static inline void cluster_set_next(struct swap_cluster_info *info,
229				    unsigned int n)
230{
231	info->data = n;
232}
233
234static inline void cluster_set_next_flag(struct swap_cluster_info *info,
235					 unsigned int n, unsigned int f)
236{
237	info->flags = f;
238	info->data = n;
239}
240
241static inline bool cluster_is_free(struct swap_cluster_info *info)
242{
243	return info->flags & CLUSTER_FLAG_FREE;
244}
245
246static inline bool cluster_is_null(struct swap_cluster_info *info)
247{
248	return info->flags & CLUSTER_FLAG_NEXT_NULL;
249}
250
251static inline void cluster_set_null(struct swap_cluster_info *info)
252{
253	info->flags = CLUSTER_FLAG_NEXT_NULL;
254	info->data = 0;
255}
256
257/* Add a cluster to discard list and schedule it to do discard */
258static void swap_cluster_schedule_discard(struct swap_info_struct *si,
259		unsigned int idx)
260{
261	/*
262	 * If scan_swap_map() can't find a free cluster, it will check
263	 * si->swap_map directly. To make sure the discarding cluster isn't
264	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265	 * will be cleared after discard
266	 */
267	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
268			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
269
270	if (cluster_is_null(&si->discard_cluster_head)) {
271		cluster_set_next_flag(&si->discard_cluster_head,
272						idx, 0);
273		cluster_set_next_flag(&si->discard_cluster_tail,
274						idx, 0);
275	} else {
276		unsigned int tail = cluster_next(&si->discard_cluster_tail);
277		cluster_set_next(&si->cluster_info[tail], idx);
278		cluster_set_next_flag(&si->discard_cluster_tail,
279						idx, 0);
280	}
281
282	schedule_work(&si->discard_work);
283}
284
285/*
286 * Doing discard actually. After a cluster discard is finished, the cluster
287 * will be added to free cluster list. caller should hold si->lock.
288*/
289static void swap_do_scheduled_discard(struct swap_info_struct *si)
290{
291	struct swap_cluster_info *info;
292	unsigned int idx;
293
294	info = si->cluster_info;
295
296	while (!cluster_is_null(&si->discard_cluster_head)) {
297		idx = cluster_next(&si->discard_cluster_head);
298
299		cluster_set_next_flag(&si->discard_cluster_head,
300						cluster_next(&info[idx]), 0);
301		if (cluster_next(&si->discard_cluster_tail) == idx) {
302			cluster_set_null(&si->discard_cluster_head);
303			cluster_set_null(&si->discard_cluster_tail);
304		}
305		spin_unlock(&si->lock);
306
307		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
308				SWAPFILE_CLUSTER);
309
310		spin_lock(&si->lock);
311		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
312		if (cluster_is_null(&si->free_cluster_head)) {
313			cluster_set_next_flag(&si->free_cluster_head,
314						idx, 0);
315			cluster_set_next_flag(&si->free_cluster_tail,
316						idx, 0);
317		} else {
318			unsigned int tail;
319
320			tail = cluster_next(&si->free_cluster_tail);
321			cluster_set_next(&info[tail], idx);
322			cluster_set_next_flag(&si->free_cluster_tail,
323						idx, 0);
324		}
325		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
326				0, SWAPFILE_CLUSTER);
327	}
328}
329
330static void swap_discard_work(struct work_struct *work)
331{
332	struct swap_info_struct *si;
333
334	si = container_of(work, struct swap_info_struct, discard_work);
335
336	spin_lock(&si->lock);
337	swap_do_scheduled_discard(si);
338	spin_unlock(&si->lock);
339}
340
341/*
342 * The cluster corresponding to page_nr will be used. The cluster will be
343 * removed from free cluster list and its usage counter will be increased.
344 */
345static void inc_cluster_info_page(struct swap_info_struct *p,
346	struct swap_cluster_info *cluster_info, unsigned long page_nr)
347{
348	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
349
350	if (!cluster_info)
351		return;
352	if (cluster_is_free(&cluster_info[idx])) {
353		VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
354		cluster_set_next_flag(&p->free_cluster_head,
355			cluster_next(&cluster_info[idx]), 0);
356		if (cluster_next(&p->free_cluster_tail) == idx) {
357			cluster_set_null(&p->free_cluster_tail);
358			cluster_set_null(&p->free_cluster_head);
359		}
360		cluster_set_count_flag(&cluster_info[idx], 0, 0);
361	}
362
363	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
364	cluster_set_count(&cluster_info[idx],
365		cluster_count(&cluster_info[idx]) + 1);
366}
367
368/*
369 * The cluster corresponding to page_nr decreases one usage. If the usage
370 * counter becomes 0, which means no page in the cluster is in using, we can
371 * optionally discard the cluster and add it to free cluster list.
372 */
373static void dec_cluster_info_page(struct swap_info_struct *p,
374	struct swap_cluster_info *cluster_info, unsigned long page_nr)
375{
376	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
377
378	if (!cluster_info)
379		return;
380
381	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
382	cluster_set_count(&cluster_info[idx],
383		cluster_count(&cluster_info[idx]) - 1);
384
385	if (cluster_count(&cluster_info[idx]) == 0) {
386		/*
387		 * If the swap is discardable, prepare discard the cluster
388		 * instead of free it immediately. The cluster will be freed
389		 * after discard.
390		 */
391		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
392				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
393			swap_cluster_schedule_discard(p, idx);
394			return;
395		}
396
397		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
398		if (cluster_is_null(&p->free_cluster_head)) {
399			cluster_set_next_flag(&p->free_cluster_head, idx, 0);
400			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
401		} else {
402			unsigned int tail = cluster_next(&p->free_cluster_tail);
403			cluster_set_next(&cluster_info[tail], idx);
404			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
405		}
406	}
407}
408
409/*
410 * It's possible scan_swap_map() uses a free cluster in the middle of free
411 * cluster list. Avoiding such abuse to avoid list corruption.
412 */
413static bool
414scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
415	unsigned long offset)
416{
417	struct percpu_cluster *percpu_cluster;
418	bool conflict;
419
420	offset /= SWAPFILE_CLUSTER;
421	conflict = !cluster_is_null(&si->free_cluster_head) &&
422		offset != cluster_next(&si->free_cluster_head) &&
423		cluster_is_free(&si->cluster_info[offset]);
424
425	if (!conflict)
426		return false;
427
428	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
429	cluster_set_null(&percpu_cluster->index);
430	return true;
431}
432
433/*
434 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435 * might involve allocating a new cluster for current CPU too.
436 */
437static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
438	unsigned long *offset, unsigned long *scan_base)
439{
440	struct percpu_cluster *cluster;
441	bool found_free;
442	unsigned long tmp;
443
444new_cluster:
445	cluster = this_cpu_ptr(si->percpu_cluster);
446	if (cluster_is_null(&cluster->index)) {
447		if (!cluster_is_null(&si->free_cluster_head)) {
448			cluster->index = si->free_cluster_head;
449			cluster->next = cluster_next(&cluster->index) *
450					SWAPFILE_CLUSTER;
451		} else if (!cluster_is_null(&si->discard_cluster_head)) {
452			/*
453			 * we don't have free cluster but have some clusters in
454			 * discarding, do discard now and reclaim them
455			 */
456			swap_do_scheduled_discard(si);
457			*scan_base = *offset = si->cluster_next;
458			goto new_cluster;
459		} else
460			return;
461	}
462
463	found_free = false;
464
465	/*
466	 * Other CPUs can use our cluster if they can't find a free cluster,
467	 * check if there is still free entry in the cluster
468	 */
469	tmp = cluster->next;
470	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
471	       SWAPFILE_CLUSTER) {
472		if (!si->swap_map[tmp]) {
473			found_free = true;
474			break;
475		}
476		tmp++;
477	}
478	if (!found_free) {
479		cluster_set_null(&cluster->index);
480		goto new_cluster;
481	}
482	cluster->next = tmp + 1;
483	*offset = tmp;
484	*scan_base = tmp;
485}
486
487static unsigned long scan_swap_map(struct swap_info_struct *si,
488				   unsigned char usage)
489{
490	unsigned long offset;
491	unsigned long scan_base;
492	unsigned long last_in_cluster = 0;
493	int latency_ration = LATENCY_LIMIT;
494
495	/*
496	 * We try to cluster swap pages by allocating them sequentially
497	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
498	 * way, however, we resort to first-free allocation, starting
499	 * a new cluster.  This prevents us from scattering swap pages
500	 * all over the entire swap partition, so that we reduce
501	 * overall disk seek times between swap pages.  -- sct
502	 * But we do now try to find an empty cluster.  -Andrea
503	 * And we let swap pages go all over an SSD partition.  Hugh
504	 */
505
506	si->flags += SWP_SCANNING;
507	scan_base = offset = si->cluster_next;
508
509	/* SSD algorithm */
510	if (si->cluster_info) {
511		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
512		goto checks;
513	}
514
515	if (unlikely(!si->cluster_nr--)) {
516		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
517			si->cluster_nr = SWAPFILE_CLUSTER - 1;
518			goto checks;
519		}
520
521		spin_unlock(&si->lock);
522
523		/*
524		 * If seek is expensive, start searching for new cluster from
525		 * start of partition, to minimize the span of allocated swap.
526		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
527		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
528		 */
529		scan_base = offset = si->lowest_bit;
530		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
531
532		/* Locate the first empty (unaligned) cluster */
533		for (; last_in_cluster <= si->highest_bit; offset++) {
534			if (si->swap_map[offset])
535				last_in_cluster = offset + SWAPFILE_CLUSTER;
536			else if (offset == last_in_cluster) {
537				spin_lock(&si->lock);
538				offset -= SWAPFILE_CLUSTER - 1;
539				si->cluster_next = offset;
540				si->cluster_nr = SWAPFILE_CLUSTER - 1;
541				goto checks;
542			}
543			if (unlikely(--latency_ration < 0)) {
544				cond_resched();
545				latency_ration = LATENCY_LIMIT;
546			}
547		}
548
549		offset = scan_base;
550		spin_lock(&si->lock);
551		si->cluster_nr = SWAPFILE_CLUSTER - 1;
552	}
553
554checks:
555	if (si->cluster_info) {
556		while (scan_swap_map_ssd_cluster_conflict(si, offset))
557			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
558	}
559	if (!(si->flags & SWP_WRITEOK))
560		goto no_page;
561	if (!si->highest_bit)
562		goto no_page;
563	if (offset > si->highest_bit)
564		scan_base = offset = si->lowest_bit;
565
566	/* reuse swap entry of cache-only swap if not busy. */
567	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
568		int swap_was_freed;
569		spin_unlock(&si->lock);
570		swap_was_freed = __try_to_reclaim_swap(si, offset);
571		spin_lock(&si->lock);
572		/* entry was freed successfully, try to use this again */
573		if (swap_was_freed)
574			goto checks;
575		goto scan; /* check next one */
576	}
577
578	if (si->swap_map[offset])
579		goto scan;
580
581	if (offset == si->lowest_bit)
582		si->lowest_bit++;
583	if (offset == si->highest_bit)
584		si->highest_bit--;
585	si->inuse_pages++;
586	if (si->inuse_pages == si->pages) {
587		si->lowest_bit = si->max;
588		si->highest_bit = 0;
589		spin_lock(&swap_avail_lock);
590		plist_del(&si->avail_list, &swap_avail_head);
591		spin_unlock(&swap_avail_lock);
592	}
593	si->swap_map[offset] = usage;
594	inc_cluster_info_page(si, si->cluster_info, offset);
595	si->cluster_next = offset + 1;
596	si->flags -= SWP_SCANNING;
597
598	return offset;
599
600scan:
601	spin_unlock(&si->lock);
602	while (++offset <= si->highest_bit) {
603		if (!si->swap_map[offset]) {
604			spin_lock(&si->lock);
605			goto checks;
606		}
607		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
608			spin_lock(&si->lock);
609			goto checks;
610		}
611		if (unlikely(--latency_ration < 0)) {
612			cond_resched();
613			latency_ration = LATENCY_LIMIT;
614		}
615	}
616	offset = si->lowest_bit;
617	while (offset < scan_base) {
618		if (!si->swap_map[offset]) {
619			spin_lock(&si->lock);
620			goto checks;
621		}
622		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
623			spin_lock(&si->lock);
624			goto checks;
625		}
626		if (unlikely(--latency_ration < 0)) {
627			cond_resched();
628			latency_ration = LATENCY_LIMIT;
629		}
630		offset++;
631	}
632	spin_lock(&si->lock);
633
634no_page:
635	si->flags -= SWP_SCANNING;
636	return 0;
637}
638
639swp_entry_t get_swap_page(void)
640{
641	struct swap_info_struct *si, *next;
642	pgoff_t offset;
643
644	if (atomic_long_read(&nr_swap_pages) <= 0)
645		goto noswap;
646	atomic_long_dec(&nr_swap_pages);
647
648	spin_lock(&swap_avail_lock);
649
650start_over:
651	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
652		/* requeue si to after same-priority siblings */
653		plist_requeue(&si->avail_list, &swap_avail_head);
654		spin_unlock(&swap_avail_lock);
655		spin_lock(&si->lock);
656		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
657			spin_lock(&swap_avail_lock);
658			if (plist_node_empty(&si->avail_list)) {
659				spin_unlock(&si->lock);
660				goto nextsi;
661			}
662			WARN(!si->highest_bit,
663			     "swap_info %d in list but !highest_bit\n",
664			     si->type);
665			WARN(!(si->flags & SWP_WRITEOK),
666			     "swap_info %d in list but !SWP_WRITEOK\n",
667			     si->type);
668			plist_del(&si->avail_list, &swap_avail_head);
669			spin_unlock(&si->lock);
670			goto nextsi;
671		}
672
673		/* This is called for allocating swap entry for cache */
674		offset = scan_swap_map(si, SWAP_HAS_CACHE);
675		spin_unlock(&si->lock);
676		if (offset)
677			return swp_entry(si->type, offset);
678		pr_debug("scan_swap_map of si %d failed to find offset\n",
679		       si->type);
680		spin_lock(&swap_avail_lock);
681nextsi:
682		/*
683		 * if we got here, it's likely that si was almost full before,
684		 * and since scan_swap_map() can drop the si->lock, multiple
685		 * callers probably all tried to get a page from the same si
686		 * and it filled up before we could get one; or, the si filled
687		 * up between us dropping swap_avail_lock and taking si->lock.
688		 * Since we dropped the swap_avail_lock, the swap_avail_head
689		 * list may have been modified; so if next is still in the
690		 * swap_avail_head list then try it, otherwise start over.
691		 */
692		if (plist_node_empty(&next->avail_list))
693			goto start_over;
694	}
695
696	spin_unlock(&swap_avail_lock);
697
698	atomic_long_inc(&nr_swap_pages);
699noswap:
700	return (swp_entry_t) {0};
701}
702
703/* The only caller of this function is now suspend routine */
704swp_entry_t get_swap_page_of_type(int type)
705{
706	struct swap_info_struct *si;
707	pgoff_t offset;
708
709	si = swap_info[type];
710	spin_lock(&si->lock);
711	if (si && (si->flags & SWP_WRITEOK)) {
712		atomic_long_dec(&nr_swap_pages);
713		/* This is called for allocating swap entry, not cache */
714		offset = scan_swap_map(si, 1);
715		if (offset) {
716			spin_unlock(&si->lock);
717			return swp_entry(type, offset);
718		}
719		atomic_long_inc(&nr_swap_pages);
720	}
721	spin_unlock(&si->lock);
722	return (swp_entry_t) {0};
723}
724
725static struct swap_info_struct *swap_info_get(swp_entry_t entry)
726{
727	struct swap_info_struct *p;
728	unsigned long offset, type;
729
730	if (!entry.val)
731		goto out;
732	type = swp_type(entry);
733	if (type >= nr_swapfiles)
734		goto bad_nofile;
735	p = swap_info[type];
736	if (!(p->flags & SWP_USED))
737		goto bad_device;
738	offset = swp_offset(entry);
739	if (offset >= p->max)
740		goto bad_offset;
741	if (!p->swap_map[offset])
742		goto bad_free;
743	spin_lock(&p->lock);
744	return p;
745
746bad_free:
747	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
748	goto out;
749bad_offset:
750	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
751	goto out;
752bad_device:
753	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
754	goto out;
755bad_nofile:
756	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
757out:
758	return NULL;
759}
760
761static unsigned char swap_entry_free(struct swap_info_struct *p,
762				     swp_entry_t entry, unsigned char usage)
763{
764	unsigned long offset = swp_offset(entry);
765	unsigned char count;
766	unsigned char has_cache;
767
768	count = p->swap_map[offset];
769	has_cache = count & SWAP_HAS_CACHE;
770	count &= ~SWAP_HAS_CACHE;
771
772	if (usage == SWAP_HAS_CACHE) {
773		VM_BUG_ON(!has_cache);
774		has_cache = 0;
775	} else if (count == SWAP_MAP_SHMEM) {
776		/*
777		 * Or we could insist on shmem.c using a special
778		 * swap_shmem_free() and free_shmem_swap_and_cache()...
779		 */
780		count = 0;
781	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
782		if (count == COUNT_CONTINUED) {
783			if (swap_count_continued(p, offset, count))
784				count = SWAP_MAP_MAX | COUNT_CONTINUED;
785			else
786				count = SWAP_MAP_MAX;
787		} else
788			count--;
789	}
790
791	if (!count)
792		mem_cgroup_uncharge_swap(entry);
793
794	usage = count | has_cache;
795	p->swap_map[offset] = usage;
796
797	/* free if no reference */
798	if (!usage) {
799		dec_cluster_info_page(p, p->cluster_info, offset);
800		if (offset < p->lowest_bit)
801			p->lowest_bit = offset;
802		if (offset > p->highest_bit) {
803			bool was_full = !p->highest_bit;
804			p->highest_bit = offset;
805			if (was_full && (p->flags & SWP_WRITEOK)) {
806				spin_lock(&swap_avail_lock);
807				WARN_ON(!plist_node_empty(&p->avail_list));
808				if (plist_node_empty(&p->avail_list))
809					plist_add(&p->avail_list,
810						  &swap_avail_head);
811				spin_unlock(&swap_avail_lock);
812			}
813		}
814		atomic_long_inc(&nr_swap_pages);
815		p->inuse_pages--;
816		frontswap_invalidate_page(p->type, offset);
817		if (p->flags & SWP_BLKDEV) {
818			struct gendisk *disk = p->bdev->bd_disk;
819			if (disk->fops->swap_slot_free_notify)
820				disk->fops->swap_slot_free_notify(p->bdev,
821								  offset);
822		}
823	}
824
825	return usage;
826}
827
828/*
829 * Caller has made sure that the swap device corresponding to entry
830 * is still around or has not been recycled.
831 */
832void swap_free(swp_entry_t entry)
833{
834	struct swap_info_struct *p;
835
836	p = swap_info_get(entry);
837	if (p) {
838		swap_entry_free(p, entry, 1);
839		spin_unlock(&p->lock);
840	}
841}
842
843/*
844 * Called after dropping swapcache to decrease refcnt to swap entries.
845 */
846void swapcache_free(swp_entry_t entry)
847{
848	struct swap_info_struct *p;
849
850	p = swap_info_get(entry);
851	if (p) {
852		swap_entry_free(p, entry, SWAP_HAS_CACHE);
853		spin_unlock(&p->lock);
854	}
855}
856
857/*
858 * How many references to page are currently swapped out?
859 * This does not give an exact answer when swap count is continued,
860 * but does include the high COUNT_CONTINUED flag to allow for that.
861 */
862int page_swapcount(struct page *page)
863{
864	int count = 0;
865	struct swap_info_struct *p;
866	swp_entry_t entry;
867
868	entry.val = page_private(page);
869	p = swap_info_get(entry);
870	if (p) {
871		count = swap_count(p->swap_map[swp_offset(entry)]);
872		spin_unlock(&p->lock);
873	}
874	return count;
875}
876
877/*
878 * We can write to an anon page without COW if there are no other references
879 * to it.  And as a side-effect, free up its swap: because the old content
880 * on disk will never be read, and seeking back there to write new content
881 * later would only waste time away from clustering.
882 */
883int reuse_swap_page(struct page *page)
884{
885	int count;
886
887	VM_BUG_ON_PAGE(!PageLocked(page), page);
888	if (unlikely(PageKsm(page)))
889		return 0;
890	count = page_mapcount(page);
891	if (count <= 1 && PageSwapCache(page)) {
892		count += page_swapcount(page);
893		if (count == 1 && !PageWriteback(page)) {
894			delete_from_swap_cache(page);
895			SetPageDirty(page);
896		}
897	}
898	return count <= 1;
899}
900
901/*
902 * If swap is getting full, or if there are no more mappings of this page,
903 * then try_to_free_swap is called to free its swap space.
904 */
905int try_to_free_swap(struct page *page)
906{
907	VM_BUG_ON_PAGE(!PageLocked(page), page);
908
909	if (!PageSwapCache(page))
910		return 0;
911	if (PageWriteback(page))
912		return 0;
913	if (page_swapcount(page))
914		return 0;
915
916	/*
917	 * Once hibernation has begun to create its image of memory,
918	 * there's a danger that one of the calls to try_to_free_swap()
919	 * - most probably a call from __try_to_reclaim_swap() while
920	 * hibernation is allocating its own swap pages for the image,
921	 * but conceivably even a call from memory reclaim - will free
922	 * the swap from a page which has already been recorded in the
923	 * image as a clean swapcache page, and then reuse its swap for
924	 * another page of the image.  On waking from hibernation, the
925	 * original page might be freed under memory pressure, then
926	 * later read back in from swap, now with the wrong data.
927	 *
928	 * Hibernation suspends storage while it is writing the image
929	 * to disk so check that here.
930	 */
931	if (pm_suspended_storage())
932		return 0;
933
934	delete_from_swap_cache(page);
935	SetPageDirty(page);
936	return 1;
937}
938
939/*
940 * Free the swap entry like above, but also try to
941 * free the page cache entry if it is the last user.
942 */
943int free_swap_and_cache(swp_entry_t entry)
944{
945	struct swap_info_struct *p;
946	struct page *page = NULL;
947
948	if (non_swap_entry(entry))
949		return 1;
950
951	p = swap_info_get(entry);
952	if (p) {
953		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
954			page = find_get_page(swap_address_space(entry),
955						entry.val);
956			if (page && !trylock_page(page)) {
957				page_cache_release(page);
958				page = NULL;
959			}
960		}
961		spin_unlock(&p->lock);
962	}
963	if (page) {
964		/*
965		 * Not mapped elsewhere, or swap space full? Free it!
966		 * Also recheck PageSwapCache now page is locked (above).
967		 */
968		if (PageSwapCache(page) && !PageWriteback(page) &&
969				(!page_mapped(page) || vm_swap_full())) {
970			delete_from_swap_cache(page);
971			SetPageDirty(page);
972		}
973		unlock_page(page);
974		page_cache_release(page);
975	}
976	return p != NULL;
977}
978
979#ifdef CONFIG_HIBERNATION
980/*
981 * Find the swap type that corresponds to given device (if any).
982 *
983 * @offset - number of the PAGE_SIZE-sized block of the device, starting
984 * from 0, in which the swap header is expected to be located.
985 *
986 * This is needed for the suspend to disk (aka swsusp).
987 */
988int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
989{
990	struct block_device *bdev = NULL;
991	int type;
992
993	if (device)
994		bdev = bdget(device);
995
996	spin_lock(&swap_lock);
997	for (type = 0; type < nr_swapfiles; type++) {
998		struct swap_info_struct *sis = swap_info[type];
999
1000		if (!(sis->flags & SWP_WRITEOK))
1001			continue;
1002
1003		if (!bdev) {
1004			if (bdev_p)
1005				*bdev_p = bdgrab(sis->bdev);
1006
1007			spin_unlock(&swap_lock);
1008			return type;
1009		}
1010		if (bdev == sis->bdev) {
1011			struct swap_extent *se = &sis->first_swap_extent;
1012
1013			if (se->start_block == offset) {
1014				if (bdev_p)
1015					*bdev_p = bdgrab(sis->bdev);
1016
1017				spin_unlock(&swap_lock);
1018				bdput(bdev);
1019				return type;
1020			}
1021		}
1022	}
1023	spin_unlock(&swap_lock);
1024	if (bdev)
1025		bdput(bdev);
1026
1027	return -ENODEV;
1028}
1029
1030/*
1031 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1032 * corresponding to given index in swap_info (swap type).
1033 */
1034sector_t swapdev_block(int type, pgoff_t offset)
1035{
1036	struct block_device *bdev;
1037
1038	if ((unsigned int)type >= nr_swapfiles)
1039		return 0;
1040	if (!(swap_info[type]->flags & SWP_WRITEOK))
1041		return 0;
1042	return map_swap_entry(swp_entry(type, offset), &bdev);
1043}
1044
1045/*
1046 * Return either the total number of swap pages of given type, or the number
1047 * of free pages of that type (depending on @free)
1048 *
1049 * This is needed for software suspend
1050 */
1051unsigned int count_swap_pages(int type, int free)
1052{
1053	unsigned int n = 0;
1054
1055	spin_lock(&swap_lock);
1056	if ((unsigned int)type < nr_swapfiles) {
1057		struct swap_info_struct *sis = swap_info[type];
1058
1059		spin_lock(&sis->lock);
1060		if (sis->flags & SWP_WRITEOK) {
1061			n = sis->pages;
1062			if (free)
1063				n -= sis->inuse_pages;
1064		}
1065		spin_unlock(&sis->lock);
1066	}
1067	spin_unlock(&swap_lock);
1068	return n;
1069}
1070#endif /* CONFIG_HIBERNATION */
1071
1072static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1073{
1074#ifdef CONFIG_MEM_SOFT_DIRTY
1075	/*
1076	 * When pte keeps soft dirty bit the pte generated
1077	 * from swap entry does not has it, still it's same
1078	 * pte from logical point of view.
1079	 */
1080	pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1081	return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1082#else
1083	return pte_same(pte, swp_pte);
1084#endif
1085}
1086
1087/*
1088 * No need to decide whether this PTE shares the swap entry with others,
1089 * just let do_wp_page work it out if a write is requested later - to
1090 * force COW, vm_page_prot omits write permission from any private vma.
1091 */
1092static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1093		unsigned long addr, swp_entry_t entry, struct page *page)
1094{
1095	struct page *swapcache;
1096	struct mem_cgroup *memcg;
1097	spinlock_t *ptl;
1098	pte_t *pte;
1099	int ret = 1;
1100
1101	swapcache = page;
1102	page = ksm_might_need_to_copy(page, vma, addr);
1103	if (unlikely(!page))
1104		return -ENOMEM;
1105
1106	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg)) {
1107		ret = -ENOMEM;
1108		goto out_nolock;
1109	}
1110
1111	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1112	if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1113		mem_cgroup_cancel_charge(page, memcg);
1114		ret = 0;
1115		goto out;
1116	}
1117
1118	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1119	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1120	get_page(page);
1121	set_pte_at(vma->vm_mm, addr, pte,
1122		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1123	if (page == swapcache) {
1124		page_add_anon_rmap(page, vma, addr);
1125		mem_cgroup_commit_charge(page, memcg, true);
1126	} else { /* ksm created a completely new copy */
1127		page_add_new_anon_rmap(page, vma, addr);
1128		mem_cgroup_commit_charge(page, memcg, false);
1129		lru_cache_add_active_or_unevictable(page, vma);
1130	}
1131	swap_free(entry);
1132	/*
1133	 * Move the page to the active list so it is not
1134	 * immediately swapped out again after swapon.
1135	 */
1136	activate_page(page);
1137out:
1138	pte_unmap_unlock(pte, ptl);
1139out_nolock:
1140	if (page != swapcache) {
1141		unlock_page(page);
1142		put_page(page);
1143	}
1144	return ret;
1145}
1146
1147static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1148				unsigned long addr, unsigned long end,
1149				swp_entry_t entry, struct page *page)
1150{
1151	pte_t swp_pte = swp_entry_to_pte(entry);
1152	pte_t *pte;
1153	int ret = 0;
1154
1155	/*
1156	 * We don't actually need pte lock while scanning for swp_pte: since
1157	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1158	 * page table while we're scanning; though it could get zapped, and on
1159	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1160	 * of unmatched parts which look like swp_pte, so unuse_pte must
1161	 * recheck under pte lock.  Scanning without pte lock lets it be
1162	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1163	 */
1164	pte = pte_offset_map(pmd, addr);
1165	do {
1166		/*
1167		 * swapoff spends a _lot_ of time in this loop!
1168		 * Test inline before going to call unuse_pte.
1169		 */
1170		if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1171			pte_unmap(pte);
1172			ret = unuse_pte(vma, pmd, addr, entry, page);
1173			if (ret)
1174				goto out;
1175			pte = pte_offset_map(pmd, addr);
1176		}
1177	} while (pte++, addr += PAGE_SIZE, addr != end);
1178	pte_unmap(pte - 1);
1179out:
1180	return ret;
1181}
1182
1183static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1184				unsigned long addr, unsigned long end,
1185				swp_entry_t entry, struct page *page)
1186{
1187	pmd_t *pmd;
1188	unsigned long next;
1189	int ret;
1190
1191	pmd = pmd_offset(pud, addr);
1192	do {
1193		next = pmd_addr_end(addr, end);
1194		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1195			continue;
1196		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1197		if (ret)
1198			return ret;
1199	} while (pmd++, addr = next, addr != end);
1200	return 0;
1201}
1202
1203static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1204				unsigned long addr, unsigned long end,
1205				swp_entry_t entry, struct page *page)
1206{
1207	pud_t *pud;
1208	unsigned long next;
1209	int ret;
1210
1211	pud = pud_offset(pgd, addr);
1212	do {
1213		next = pud_addr_end(addr, end);
1214		if (pud_none_or_clear_bad(pud))
1215			continue;
1216		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1217		if (ret)
1218			return ret;
1219	} while (pud++, addr = next, addr != end);
1220	return 0;
1221}
1222
1223static int unuse_vma(struct vm_area_struct *vma,
1224				swp_entry_t entry, struct page *page)
1225{
1226	pgd_t *pgd;
1227	unsigned long addr, end, next;
1228	int ret;
1229
1230	if (page_anon_vma(page)) {
1231		addr = page_address_in_vma(page, vma);
1232		if (addr == -EFAULT)
1233			return 0;
1234		else
1235			end = addr + PAGE_SIZE;
1236	} else {
1237		addr = vma->vm_start;
1238		end = vma->vm_end;
1239	}
1240
1241	pgd = pgd_offset(vma->vm_mm, addr);
1242	do {
1243		next = pgd_addr_end(addr, end);
1244		if (pgd_none_or_clear_bad(pgd))
1245			continue;
1246		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1247		if (ret)
1248			return ret;
1249	} while (pgd++, addr = next, addr != end);
1250	return 0;
1251}
1252
1253static int unuse_mm(struct mm_struct *mm,
1254				swp_entry_t entry, struct page *page)
1255{
1256	struct vm_area_struct *vma;
1257	int ret = 0;
1258
1259	if (!down_read_trylock(&mm->mmap_sem)) {
1260		/*
1261		 * Activate page so shrink_inactive_list is unlikely to unmap
1262		 * its ptes while lock is dropped, so swapoff can make progress.
1263		 */
1264		activate_page(page);
1265		unlock_page(page);
1266		down_read(&mm->mmap_sem);
1267		lock_page(page);
1268	}
1269	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1270		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1271			break;
1272	}
1273	up_read(&mm->mmap_sem);
1274	return (ret < 0)? ret: 0;
1275}
1276
1277/*
1278 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1279 * from current position to next entry still in use.
1280 * Recycle to start on reaching the end, returning 0 when empty.
1281 */
1282static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1283					unsigned int prev, bool frontswap)
1284{
1285	unsigned int max = si->max;
1286	unsigned int i = prev;
1287	unsigned char count;
1288
1289	/*
1290	 * No need for swap_lock here: we're just looking
1291	 * for whether an entry is in use, not modifying it; false
1292	 * hits are okay, and sys_swapoff() has already prevented new
1293	 * allocations from this area (while holding swap_lock).
1294	 */
1295	for (;;) {
1296		if (++i >= max) {
1297			if (!prev) {
1298				i = 0;
1299				break;
1300			}
1301			/*
1302			 * No entries in use at top of swap_map,
1303			 * loop back to start and recheck there.
1304			 */
1305			max = prev + 1;
1306			prev = 0;
1307			i = 1;
1308		}
1309		if (frontswap) {
1310			if (frontswap_test(si, i))
1311				break;
1312			else
1313				continue;
1314		}
1315		count = READ_ONCE(si->swap_map[i]);
1316		if (count && swap_count(count) != SWAP_MAP_BAD)
1317			break;
1318	}
1319	return i;
1320}
1321
1322/*
1323 * We completely avoid races by reading each swap page in advance,
1324 * and then search for the process using it.  All the necessary
1325 * page table adjustments can then be made atomically.
1326 *
1327 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1328 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1329 */
1330int try_to_unuse(unsigned int type, bool frontswap,
1331		 unsigned long pages_to_unuse)
1332{
1333	struct swap_info_struct *si = swap_info[type];
1334	struct mm_struct *start_mm;
1335	volatile unsigned char *swap_map; /* swap_map is accessed without
1336					   * locking. Mark it as volatile
1337					   * to prevent compiler doing
1338					   * something odd.
1339					   */
1340	unsigned char swcount;
1341	struct page *page;
1342	swp_entry_t entry;
1343	unsigned int i = 0;
1344	int retval = 0;
1345
1346	/*
1347	 * When searching mms for an entry, a good strategy is to
1348	 * start at the first mm we freed the previous entry from
1349	 * (though actually we don't notice whether we or coincidence
1350	 * freed the entry).  Initialize this start_mm with a hold.
1351	 *
1352	 * A simpler strategy would be to start at the last mm we
1353	 * freed the previous entry from; but that would take less
1354	 * advantage of mmlist ordering, which clusters forked mms
1355	 * together, child after parent.  If we race with dup_mmap(), we
1356	 * prefer to resolve parent before child, lest we miss entries
1357	 * duplicated after we scanned child: using last mm would invert
1358	 * that.
1359	 */
1360	start_mm = &init_mm;
1361	atomic_inc(&init_mm.mm_users);
1362
1363	/*
1364	 * Keep on scanning until all entries have gone.  Usually,
1365	 * one pass through swap_map is enough, but not necessarily:
1366	 * there are races when an instance of an entry might be missed.
1367	 */
1368	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1369		if (signal_pending(current)) {
1370			retval = -EINTR;
1371			break;
1372		}
1373
1374		/*
1375		 * Get a page for the entry, using the existing swap
1376		 * cache page if there is one.  Otherwise, get a clean
1377		 * page and read the swap into it.
1378		 */
1379		swap_map = &si->swap_map[i];
1380		entry = swp_entry(type, i);
1381		page = read_swap_cache_async(entry,
1382					GFP_HIGHUSER_MOVABLE, NULL, 0);
1383		if (!page) {
1384			/*
1385			 * Either swap_duplicate() failed because entry
1386			 * has been freed independently, and will not be
1387			 * reused since sys_swapoff() already disabled
1388			 * allocation from here, or alloc_page() failed.
1389			 */
1390			swcount = *swap_map;
1391			/*
1392			 * We don't hold lock here, so the swap entry could be
1393			 * SWAP_MAP_BAD (when the cluster is discarding).
1394			 * Instead of fail out, We can just skip the swap
1395			 * entry because swapoff will wait for discarding
1396			 * finish anyway.
1397			 */
1398			if (!swcount || swcount == SWAP_MAP_BAD)
1399				continue;
1400			retval = -ENOMEM;
1401			break;
1402		}
1403
1404		/*
1405		 * Don't hold on to start_mm if it looks like exiting.
1406		 */
1407		if (atomic_read(&start_mm->mm_users) == 1) {
1408			mmput(start_mm);
1409			start_mm = &init_mm;
1410			atomic_inc(&init_mm.mm_users);
1411		}
1412
1413		/*
1414		 * Wait for and lock page.  When do_swap_page races with
1415		 * try_to_unuse, do_swap_page can handle the fault much
1416		 * faster than try_to_unuse can locate the entry.  This
1417		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1418		 * defer to do_swap_page in such a case - in some tests,
1419		 * do_swap_page and try_to_unuse repeatedly compete.
1420		 */
1421		wait_on_page_locked(page);
1422		wait_on_page_writeback(page);
1423		lock_page(page);
1424		wait_on_page_writeback(page);
1425
1426		/*
1427		 * Remove all references to entry.
1428		 */
1429		swcount = *swap_map;
1430		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1431			retval = shmem_unuse(entry, page);
1432			/* page has already been unlocked and released */
1433			if (retval < 0)
1434				break;
1435			continue;
1436		}
1437		if (swap_count(swcount) && start_mm != &init_mm)
1438			retval = unuse_mm(start_mm, entry, page);
1439
1440		if (swap_count(*swap_map)) {
1441			int set_start_mm = (*swap_map >= swcount);
1442			struct list_head *p = &start_mm->mmlist;
1443			struct mm_struct *new_start_mm = start_mm;
1444			struct mm_struct *prev_mm = start_mm;
1445			struct mm_struct *mm;
1446
1447			atomic_inc(&new_start_mm->mm_users);
1448			atomic_inc(&prev_mm->mm_users);
1449			spin_lock(&mmlist_lock);
1450			while (swap_count(*swap_map) && !retval &&
1451					(p = p->next) != &start_mm->mmlist) {
1452				mm = list_entry(p, struct mm_struct, mmlist);
1453				if (!atomic_inc_not_zero(&mm->mm_users))
1454					continue;
1455				spin_unlock(&mmlist_lock);
1456				mmput(prev_mm);
1457				prev_mm = mm;
1458
1459				cond_resched();
1460
1461				swcount = *swap_map;
1462				if (!swap_count(swcount)) /* any usage ? */
1463					;
1464				else if (mm == &init_mm)
1465					set_start_mm = 1;
1466				else
1467					retval = unuse_mm(mm, entry, page);
1468
1469				if (set_start_mm && *swap_map < swcount) {
1470					mmput(new_start_mm);
1471					atomic_inc(&mm->mm_users);
1472					new_start_mm = mm;
1473					set_start_mm = 0;
1474				}
1475				spin_lock(&mmlist_lock);
1476			}
1477			spin_unlock(&mmlist_lock);
1478			mmput(prev_mm);
1479			mmput(start_mm);
1480			start_mm = new_start_mm;
1481		}
1482		if (retval) {
1483			unlock_page(page);
1484			page_cache_release(page);
1485			break;
1486		}
1487
1488		/*
1489		 * If a reference remains (rare), we would like to leave
1490		 * the page in the swap cache; but try_to_unmap could
1491		 * then re-duplicate the entry once we drop page lock,
1492		 * so we might loop indefinitely; also, that page could
1493		 * not be swapped out to other storage meanwhile.  So:
1494		 * delete from cache even if there's another reference,
1495		 * after ensuring that the data has been saved to disk -
1496		 * since if the reference remains (rarer), it will be
1497		 * read from disk into another page.  Splitting into two
1498		 * pages would be incorrect if swap supported "shared
1499		 * private" pages, but they are handled by tmpfs files.
1500		 *
1501		 * Given how unuse_vma() targets one particular offset
1502		 * in an anon_vma, once the anon_vma has been determined,
1503		 * this splitting happens to be just what is needed to
1504		 * handle where KSM pages have been swapped out: re-reading
1505		 * is unnecessarily slow, but we can fix that later on.
1506		 */
1507		if (swap_count(*swap_map) &&
1508		     PageDirty(page) && PageSwapCache(page)) {
1509			struct writeback_control wbc = {
1510				.sync_mode = WB_SYNC_NONE,
1511			};
1512
1513			swap_writepage(page, &wbc);
1514			lock_page(page);
1515			wait_on_page_writeback(page);
1516		}
1517
1518		/*
1519		 * It is conceivable that a racing task removed this page from
1520		 * swap cache just before we acquired the page lock at the top,
1521		 * or while we dropped it in unuse_mm().  The page might even
1522		 * be back in swap cache on another swap area: that we must not
1523		 * delete, since it may not have been written out to swap yet.
1524		 */
1525		if (PageSwapCache(page) &&
1526		    likely(page_private(page) == entry.val))
1527			delete_from_swap_cache(page);
1528
1529		/*
1530		 * So we could skip searching mms once swap count went
1531		 * to 1, we did not mark any present ptes as dirty: must
1532		 * mark page dirty so shrink_page_list will preserve it.
1533		 */
1534		SetPageDirty(page);
1535		unlock_page(page);
1536		page_cache_release(page);
1537
1538		/*
1539		 * Make sure that we aren't completely killing
1540		 * interactive performance.
1541		 */
1542		cond_resched();
1543		if (frontswap && pages_to_unuse > 0) {
1544			if (!--pages_to_unuse)
1545				break;
1546		}
1547	}
1548
1549	mmput(start_mm);
1550	return retval;
1551}
1552
1553/*
1554 * After a successful try_to_unuse, if no swap is now in use, we know
1555 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1556 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1557 * added to the mmlist just after page_duplicate - before would be racy.
1558 */
1559static void drain_mmlist(void)
1560{
1561	struct list_head *p, *next;
1562	unsigned int type;
1563
1564	for (type = 0; type < nr_swapfiles; type++)
1565		if (swap_info[type]->inuse_pages)
1566			return;
1567	spin_lock(&mmlist_lock);
1568	list_for_each_safe(p, next, &init_mm.mmlist)
1569		list_del_init(p);
1570	spin_unlock(&mmlist_lock);
1571}
1572
1573/*
1574 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1575 * corresponds to page offset for the specified swap entry.
1576 * Note that the type of this function is sector_t, but it returns page offset
1577 * into the bdev, not sector offset.
1578 */
1579static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1580{
1581	struct swap_info_struct *sis;
1582	struct swap_extent *start_se;
1583	struct swap_extent *se;
1584	pgoff_t offset;
1585
1586	sis = swap_info[swp_type(entry)];
1587	*bdev = sis->bdev;
1588
1589	offset = swp_offset(entry);
1590	start_se = sis->curr_swap_extent;
1591	se = start_se;
1592
1593	for ( ; ; ) {
1594		struct list_head *lh;
1595
1596		if (se->start_page <= offset &&
1597				offset < (se->start_page + se->nr_pages)) {
1598			return se->start_block + (offset - se->start_page);
1599		}
1600		lh = se->list.next;
1601		se = list_entry(lh, struct swap_extent, list);
1602		sis->curr_swap_extent = se;
1603		BUG_ON(se == start_se);		/* It *must* be present */
1604	}
1605}
1606
1607/*
1608 * Returns the page offset into bdev for the specified page's swap entry.
1609 */
1610sector_t map_swap_page(struct page *page, struct block_device **bdev)
1611{
1612	swp_entry_t entry;
1613	entry.val = page_private(page);
1614	return map_swap_entry(entry, bdev);
1615}
1616
1617/*
1618 * Free all of a swapdev's extent information
1619 */
1620static void destroy_swap_extents(struct swap_info_struct *sis)
1621{
1622	while (!list_empty(&sis->first_swap_extent.list)) {
1623		struct swap_extent *se;
1624
1625		se = list_entry(sis->first_swap_extent.list.next,
1626				struct swap_extent, list);
1627		list_del(&se->list);
1628		kfree(se);
1629	}
1630
1631	if (sis->flags & SWP_FILE) {
1632		struct file *swap_file = sis->swap_file;
1633		struct address_space *mapping = swap_file->f_mapping;
1634
1635		sis->flags &= ~SWP_FILE;
1636		mapping->a_ops->swap_deactivate(swap_file);
1637	}
1638}
1639
1640/*
1641 * Add a block range (and the corresponding page range) into this swapdev's
1642 * extent list.  The extent list is kept sorted in page order.
1643 *
1644 * This function rather assumes that it is called in ascending page order.
1645 */
1646int
1647add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1648		unsigned long nr_pages, sector_t start_block)
1649{
1650	struct swap_extent *se;
1651	struct swap_extent *new_se;
1652	struct list_head *lh;
1653
1654	if (start_page == 0) {
1655		se = &sis->first_swap_extent;
1656		sis->curr_swap_extent = se;
1657		se->start_page = 0;
1658		se->nr_pages = nr_pages;
1659		se->start_block = start_block;
1660		return 1;
1661	} else {
1662		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1663		se = list_entry(lh, struct swap_extent, list);
1664		BUG_ON(se->start_page + se->nr_pages != start_page);
1665		if (se->start_block + se->nr_pages == start_block) {
1666			/* Merge it */
1667			se->nr_pages += nr_pages;
1668			return 0;
1669		}
1670	}
1671
1672	/*
1673	 * No merge.  Insert a new extent, preserving ordering.
1674	 */
1675	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1676	if (new_se == NULL)
1677		return -ENOMEM;
1678	new_se->start_page = start_page;
1679	new_se->nr_pages = nr_pages;
1680	new_se->start_block = start_block;
1681
1682	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1683	return 1;
1684}
1685
1686/*
1687 * A `swap extent' is a simple thing which maps a contiguous range of pages
1688 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1689 * is built at swapon time and is then used at swap_writepage/swap_readpage
1690 * time for locating where on disk a page belongs.
1691 *
1692 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1693 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1694 * swap files identically.
1695 *
1696 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1697 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1698 * swapfiles are handled *identically* after swapon time.
1699 *
1700 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1701 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1702 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1703 * requirements, they are simply tossed out - we will never use those blocks
1704 * for swapping.
1705 *
1706 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1707 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1708 * which will scribble on the fs.
1709 *
1710 * The amount of disk space which a single swap extent represents varies.
1711 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1712 * extents in the list.  To avoid much list walking, we cache the previous
1713 * search location in `curr_swap_extent', and start new searches from there.
1714 * This is extremely effective.  The average number of iterations in
1715 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1716 */
1717static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1718{
1719	struct file *swap_file = sis->swap_file;
1720	struct address_space *mapping = swap_file->f_mapping;
1721	struct inode *inode = mapping->host;
1722	int ret;
1723
1724	if (S_ISBLK(inode->i_mode)) {
1725		ret = add_swap_extent(sis, 0, sis->max, 0);
1726		*span = sis->pages;
1727		return ret;
1728	}
1729
1730	if (mapping->a_ops->swap_activate) {
1731		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1732		if (!ret) {
1733			sis->flags |= SWP_FILE;
1734			ret = add_swap_extent(sis, 0, sis->max, 0);
1735			*span = sis->pages;
1736		}
1737		return ret;
1738	}
1739
1740	return generic_swapfile_activate(sis, swap_file, span);
1741}
1742
1743static void _enable_swap_info(struct swap_info_struct *p, int prio,
1744				unsigned char *swap_map,
1745				struct swap_cluster_info *cluster_info)
1746{
1747	if (prio >= 0)
1748		p->prio = prio;
1749	else
1750		p->prio = --least_priority;
1751	/*
1752	 * the plist prio is negated because plist ordering is
1753	 * low-to-high, while swap ordering is high-to-low
1754	 */
1755	p->list.prio = -p->prio;
1756	p->avail_list.prio = -p->prio;
1757	p->swap_map = swap_map;
1758	p->cluster_info = cluster_info;
1759	p->flags |= SWP_WRITEOK;
1760	atomic_long_add(p->pages, &nr_swap_pages);
1761	total_swap_pages += p->pages;
1762
1763	assert_spin_locked(&swap_lock);
1764	/*
1765	 * both lists are plists, and thus priority ordered.
1766	 * swap_active_head needs to be priority ordered for swapoff(),
1767	 * which on removal of any swap_info_struct with an auto-assigned
1768	 * (i.e. negative) priority increments the auto-assigned priority
1769	 * of any lower-priority swap_info_structs.
1770	 * swap_avail_head needs to be priority ordered for get_swap_page(),
1771	 * which allocates swap pages from the highest available priority
1772	 * swap_info_struct.
1773	 */
1774	plist_add(&p->list, &swap_active_head);
1775	spin_lock(&swap_avail_lock);
1776	plist_add(&p->avail_list, &swap_avail_head);
1777	spin_unlock(&swap_avail_lock);
1778}
1779
1780static void enable_swap_info(struct swap_info_struct *p, int prio,
1781				unsigned char *swap_map,
1782				struct swap_cluster_info *cluster_info,
1783				unsigned long *frontswap_map)
1784{
1785	frontswap_init(p->type, frontswap_map);
1786	spin_lock(&swap_lock);
1787	spin_lock(&p->lock);
1788	 _enable_swap_info(p, prio, swap_map, cluster_info);
1789	spin_unlock(&p->lock);
1790	spin_unlock(&swap_lock);
1791}
1792
1793static void reinsert_swap_info(struct swap_info_struct *p)
1794{
1795	spin_lock(&swap_lock);
1796	spin_lock(&p->lock);
1797	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1798	spin_unlock(&p->lock);
1799	spin_unlock(&swap_lock);
1800}
1801
1802SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1803{
1804	struct swap_info_struct *p = NULL;
1805	unsigned char *swap_map;
1806	struct swap_cluster_info *cluster_info;
1807	unsigned long *frontswap_map;
1808	struct file *swap_file, *victim;
1809	struct address_space *mapping;
1810	struct inode *inode;
1811	struct filename *pathname;
1812	int err, found = 0;
1813	unsigned int old_block_size;
1814
1815	if (!capable(CAP_SYS_ADMIN))
1816		return -EPERM;
1817
1818	BUG_ON(!current->mm);
1819
1820	pathname = getname(specialfile);
1821	if (IS_ERR(pathname))
1822		return PTR_ERR(pathname);
1823
1824	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1825	err = PTR_ERR(victim);
1826	if (IS_ERR(victim))
1827		goto out;
1828
1829	mapping = victim->f_mapping;
1830	spin_lock(&swap_lock);
1831	plist_for_each_entry(p, &swap_active_head, list) {
1832		if (p->flags & SWP_WRITEOK) {
1833			if (p->swap_file->f_mapping == mapping) {
1834				found = 1;
1835				break;
1836			}
1837		}
1838	}
1839	if (!found) {
1840		err = -EINVAL;
1841		spin_unlock(&swap_lock);
1842		goto out_dput;
1843	}
1844	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1845		vm_unacct_memory(p->pages);
1846	else {
1847		err = -ENOMEM;
1848		spin_unlock(&swap_lock);
1849		goto out_dput;
1850	}
1851	spin_lock(&swap_avail_lock);
1852	plist_del(&p->avail_list, &swap_avail_head);
1853	spin_unlock(&swap_avail_lock);
1854	spin_lock(&p->lock);
1855	if (p->prio < 0) {
1856		struct swap_info_struct *si = p;
1857
1858		plist_for_each_entry_continue(si, &swap_active_head, list) {
1859			si->prio++;
1860			si->list.prio--;
1861			si->avail_list.prio--;
1862		}
1863		least_priority++;
1864	}
1865	plist_del(&p->list, &swap_active_head);
1866	atomic_long_sub(p->pages, &nr_swap_pages);
1867	total_swap_pages -= p->pages;
1868	p->flags &= ~SWP_WRITEOK;
1869	spin_unlock(&p->lock);
1870	spin_unlock(&swap_lock);
1871
1872	set_current_oom_origin();
1873	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1874	clear_current_oom_origin();
1875
1876	if (err) {
1877		/* re-insert swap space back into swap_list */
1878		reinsert_swap_info(p);
1879		goto out_dput;
1880	}
1881
1882	flush_work(&p->discard_work);
1883
1884	destroy_swap_extents(p);
1885	if (p->flags & SWP_CONTINUED)
1886		free_swap_count_continuations(p);
1887
1888	mutex_lock(&swapon_mutex);
1889	spin_lock(&swap_lock);
1890	spin_lock(&p->lock);
1891	drain_mmlist();
1892
1893	/* wait for anyone still in scan_swap_map */
1894	p->highest_bit = 0;		/* cuts scans short */
1895	while (p->flags >= SWP_SCANNING) {
1896		spin_unlock(&p->lock);
1897		spin_unlock(&swap_lock);
1898		schedule_timeout_uninterruptible(1);
1899		spin_lock(&swap_lock);
1900		spin_lock(&p->lock);
1901	}
1902
1903	swap_file = p->swap_file;
1904	old_block_size = p->old_block_size;
1905	p->swap_file = NULL;
1906	p->max = 0;
1907	swap_map = p->swap_map;
1908	p->swap_map = NULL;
1909	cluster_info = p->cluster_info;
1910	p->cluster_info = NULL;
1911	frontswap_map = frontswap_map_get(p);
1912	spin_unlock(&p->lock);
1913	spin_unlock(&swap_lock);
1914	frontswap_invalidate_area(p->type);
1915	frontswap_map_set(p, NULL);
1916	mutex_unlock(&swapon_mutex);
1917	free_percpu(p->percpu_cluster);
1918	p->percpu_cluster = NULL;
1919	vfree(swap_map);
1920	vfree(cluster_info);
1921	vfree(frontswap_map);
1922	/* Destroy swap account information */
1923	swap_cgroup_swapoff(p->type);
1924
1925	inode = mapping->host;
1926	if (S_ISBLK(inode->i_mode)) {
1927		struct block_device *bdev = I_BDEV(inode);
1928		set_blocksize(bdev, old_block_size);
1929		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1930	} else {
1931		mutex_lock(&inode->i_mutex);
1932		inode->i_flags &= ~S_SWAPFILE;
1933		mutex_unlock(&inode->i_mutex);
1934	}
1935	filp_close(swap_file, NULL);
1936
1937	/*
1938	 * Clear the SWP_USED flag after all resources are freed so that swapon
1939	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1940	 * not hold p->lock after we cleared its SWP_WRITEOK.
1941	 */
1942	spin_lock(&swap_lock);
1943	p->flags = 0;
1944	spin_unlock(&swap_lock);
1945
1946	err = 0;
1947	atomic_inc(&proc_poll_event);
1948	wake_up_interruptible(&proc_poll_wait);
1949
1950out_dput:
1951	filp_close(victim, NULL);
1952out:
1953	putname(pathname);
1954	return err;
1955}
1956
1957#ifdef CONFIG_PROC_FS
1958static unsigned swaps_poll(struct file *file, poll_table *wait)
1959{
1960	struct seq_file *seq = file->private_data;
1961
1962	poll_wait(file, &proc_poll_wait, wait);
1963
1964	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1965		seq->poll_event = atomic_read(&proc_poll_event);
1966		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1967	}
1968
1969	return POLLIN | POLLRDNORM;
1970}
1971
1972/* iterator */
1973static void *swap_start(struct seq_file *swap, loff_t *pos)
1974{
1975	struct swap_info_struct *si;
1976	int type;
1977	loff_t l = *pos;
1978
1979	mutex_lock(&swapon_mutex);
1980
1981	if (!l)
1982		return SEQ_START_TOKEN;
1983
1984	for (type = 0; type < nr_swapfiles; type++) {
1985		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1986		si = swap_info[type];
1987		if (!(si->flags & SWP_USED) || !si->swap_map)
1988			continue;
1989		if (!--l)
1990			return si;
1991	}
1992
1993	return NULL;
1994}
1995
1996static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1997{
1998	struct swap_info_struct *si = v;
1999	int type;
2000
2001	if (v == SEQ_START_TOKEN)
2002		type = 0;
2003	else
2004		type = si->type + 1;
2005
2006	for (; type < nr_swapfiles; type++) {
2007		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2008		si = swap_info[type];
2009		if (!(si->flags & SWP_USED) || !si->swap_map)
2010			continue;
2011		++*pos;
2012		return si;
2013	}
2014
2015	return NULL;
2016}
2017
2018static void swap_stop(struct seq_file *swap, void *v)
2019{
2020	mutex_unlock(&swapon_mutex);
2021}
2022
2023static int swap_show(struct seq_file *swap, void *v)
2024{
2025	struct swap_info_struct *si = v;
2026	struct file *file;
2027	int len;
2028
2029	if (si == SEQ_START_TOKEN) {
2030		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2031		return 0;
2032	}
2033
2034	file = si->swap_file;
2035	len = seq_path(swap, &file->f_path, " \t\n\\");
2036	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2037			len < 40 ? 40 - len : 1, " ",
2038			S_ISBLK(file_inode(file)->i_mode) ?
2039				"partition" : "file\t",
2040			si->pages << (PAGE_SHIFT - 10),
2041			si->inuse_pages << (PAGE_SHIFT - 10),
2042			si->prio);
2043	return 0;
2044}
2045
2046static const struct seq_operations swaps_op = {
2047	.start =	swap_start,
2048	.next =		swap_next,
2049	.stop =		swap_stop,
2050	.show =		swap_show
2051};
2052
2053static int swaps_open(struct inode *inode, struct file *file)
2054{
2055	struct seq_file *seq;
2056	int ret;
2057
2058	ret = seq_open(file, &swaps_op);
2059	if (ret)
2060		return ret;
2061
2062	seq = file->private_data;
2063	seq->poll_event = atomic_read(&proc_poll_event);
2064	return 0;
2065}
2066
2067static const struct file_operations proc_swaps_operations = {
2068	.open		= swaps_open,
2069	.read		= seq_read,
2070	.llseek		= seq_lseek,
2071	.release	= seq_release,
2072	.poll		= swaps_poll,
2073};
2074
2075static int __init procswaps_init(void)
2076{
2077	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2078	return 0;
2079}
2080__initcall(procswaps_init);
2081#endif /* CONFIG_PROC_FS */
2082
2083#ifdef MAX_SWAPFILES_CHECK
2084static int __init max_swapfiles_check(void)
2085{
2086	MAX_SWAPFILES_CHECK();
2087	return 0;
2088}
2089late_initcall(max_swapfiles_check);
2090#endif
2091
2092static struct swap_info_struct *alloc_swap_info(void)
2093{
2094	struct swap_info_struct *p;
2095	unsigned int type;
2096
2097	p = kzalloc(sizeof(*p), GFP_KERNEL);
2098	if (!p)
2099		return ERR_PTR(-ENOMEM);
2100
2101	spin_lock(&swap_lock);
2102	for (type = 0; type < nr_swapfiles; type++) {
2103		if (!(swap_info[type]->flags & SWP_USED))
2104			break;
2105	}
2106	if (type >= MAX_SWAPFILES) {
2107		spin_unlock(&swap_lock);
2108		kfree(p);
2109		return ERR_PTR(-EPERM);
2110	}
2111	if (type >= nr_swapfiles) {
2112		p->type = type;
2113		swap_info[type] = p;
2114		/*
2115		 * Write swap_info[type] before nr_swapfiles, in case a
2116		 * racing procfs swap_start() or swap_next() is reading them.
2117		 * (We never shrink nr_swapfiles, we never free this entry.)
2118		 */
2119		smp_wmb();
2120		nr_swapfiles++;
2121	} else {
2122		kfree(p);
2123		p = swap_info[type];
2124		/*
2125		 * Do not memset this entry: a racing procfs swap_next()
2126		 * would be relying on p->type to remain valid.
2127		 */
2128	}
2129	INIT_LIST_HEAD(&p->first_swap_extent.list);
2130	plist_node_init(&p->list, 0);
2131	plist_node_init(&p->avail_list, 0);
2132	p->flags = SWP_USED;
2133	spin_unlock(&swap_lock);
2134	spin_lock_init(&p->lock);
2135
2136	return p;
2137}
2138
2139static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2140{
2141	int error;
2142
2143	if (S_ISBLK(inode->i_mode)) {
2144		p->bdev = bdgrab(I_BDEV(inode));
2145		error = blkdev_get(p->bdev,
2146				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2147				   sys_swapon);
2148		if (error < 0) {
2149			p->bdev = NULL;
2150			return -EINVAL;
2151		}
2152		p->old_block_size = block_size(p->bdev);
2153		error = set_blocksize(p->bdev, PAGE_SIZE);
2154		if (error < 0)
2155			return error;
2156		p->flags |= SWP_BLKDEV;
2157	} else if (S_ISREG(inode->i_mode)) {
2158		p->bdev = inode->i_sb->s_bdev;
2159		mutex_lock(&inode->i_mutex);
2160		if (IS_SWAPFILE(inode))
2161			return -EBUSY;
2162	} else
2163		return -EINVAL;
2164
2165	return 0;
2166}
2167
2168static unsigned long read_swap_header(struct swap_info_struct *p,
2169					union swap_header *swap_header,
2170					struct inode *inode)
2171{
2172	int i;
2173	unsigned long maxpages;
2174	unsigned long swapfilepages;
2175	unsigned long last_page;
2176
2177	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2178		pr_err("Unable to find swap-space signature\n");
2179		return 0;
2180	}
2181
2182	/* swap partition endianess hack... */
2183	if (swab32(swap_header->info.version) == 1) {
2184		swab32s(&swap_header->info.version);
2185		swab32s(&swap_header->info.last_page);
2186		swab32s(&swap_header->info.nr_badpages);
2187		for (i = 0; i < swap_header->info.nr_badpages; i++)
2188			swab32s(&swap_header->info.badpages[i]);
2189	}
2190	/* Check the swap header's sub-version */
2191	if (swap_header->info.version != 1) {
2192		pr_warn("Unable to handle swap header version %d\n",
2193			swap_header->info.version);
2194		return 0;
2195	}
2196
2197	p->lowest_bit  = 1;
2198	p->cluster_next = 1;
2199	p->cluster_nr = 0;
2200
2201	/*
2202	 * Find out how many pages are allowed for a single swap
2203	 * device. There are two limiting factors: 1) the number
2204	 * of bits for the swap offset in the swp_entry_t type, and
2205	 * 2) the number of bits in the swap pte as defined by the
2206	 * different architectures. In order to find the
2207	 * largest possible bit mask, a swap entry with swap type 0
2208	 * and swap offset ~0UL is created, encoded to a swap pte,
2209	 * decoded to a swp_entry_t again, and finally the swap
2210	 * offset is extracted. This will mask all the bits from
2211	 * the initial ~0UL mask that can't be encoded in either
2212	 * the swp_entry_t or the architecture definition of a
2213	 * swap pte.
2214	 */
2215	maxpages = swp_offset(pte_to_swp_entry(
2216			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2217	last_page = swap_header->info.last_page;
2218	if (last_page > maxpages) {
2219		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2220			maxpages << (PAGE_SHIFT - 10),
2221			last_page << (PAGE_SHIFT - 10));
2222	}
2223	if (maxpages > last_page) {
2224		maxpages = last_page + 1;
2225		/* p->max is an unsigned int: don't overflow it */
2226		if ((unsigned int)maxpages == 0)
2227			maxpages = UINT_MAX;
2228	}
2229	p->highest_bit = maxpages - 1;
2230
2231	if (!maxpages)
2232		return 0;
2233	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2234	if (swapfilepages && maxpages > swapfilepages) {
2235		pr_warn("Swap area shorter than signature indicates\n");
2236		return 0;
2237	}
2238	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2239		return 0;
2240	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2241		return 0;
2242
2243	return maxpages;
2244}
2245
2246static int setup_swap_map_and_extents(struct swap_info_struct *p,
2247					union swap_header *swap_header,
2248					unsigned char *swap_map,
2249					struct swap_cluster_info *cluster_info,
2250					unsigned long maxpages,
2251					sector_t *span)
2252{
2253	int i;
2254	unsigned int nr_good_pages;
2255	int nr_extents;
2256	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2257	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2258
2259	nr_good_pages = maxpages - 1;	/* omit header page */
2260
2261	cluster_set_null(&p->free_cluster_head);
2262	cluster_set_null(&p->free_cluster_tail);
2263	cluster_set_null(&p->discard_cluster_head);
2264	cluster_set_null(&p->discard_cluster_tail);
2265
2266	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2267		unsigned int page_nr = swap_header->info.badpages[i];
2268		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2269			return -EINVAL;
2270		if (page_nr < maxpages) {
2271			swap_map[page_nr] = SWAP_MAP_BAD;
2272			nr_good_pages--;
2273			/*
2274			 * Haven't marked the cluster free yet, no list
2275			 * operation involved
2276			 */
2277			inc_cluster_info_page(p, cluster_info, page_nr);
2278		}
2279	}
2280
2281	/* Haven't marked the cluster free yet, no list operation involved */
2282	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2283		inc_cluster_info_page(p, cluster_info, i);
2284
2285	if (nr_good_pages) {
2286		swap_map[0] = SWAP_MAP_BAD;
2287		/*
2288		 * Not mark the cluster free yet, no list
2289		 * operation involved
2290		 */
2291		inc_cluster_info_page(p, cluster_info, 0);
2292		p->max = maxpages;
2293		p->pages = nr_good_pages;
2294		nr_extents = setup_swap_extents(p, span);
2295		if (nr_extents < 0)
2296			return nr_extents;
2297		nr_good_pages = p->pages;
2298	}
2299	if (!nr_good_pages) {
2300		pr_warn("Empty swap-file\n");
2301		return -EINVAL;
2302	}
2303
2304	if (!cluster_info)
2305		return nr_extents;
2306
2307	for (i = 0; i < nr_clusters; i++) {
2308		if (!cluster_count(&cluster_info[idx])) {
2309			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2310			if (cluster_is_null(&p->free_cluster_head)) {
2311				cluster_set_next_flag(&p->free_cluster_head,
2312								idx, 0);
2313				cluster_set_next_flag(&p->free_cluster_tail,
2314								idx, 0);
2315			} else {
2316				unsigned int tail;
2317
2318				tail = cluster_next(&p->free_cluster_tail);
2319				cluster_set_next(&cluster_info[tail], idx);
2320				cluster_set_next_flag(&p->free_cluster_tail,
2321								idx, 0);
2322			}
2323		}
2324		idx++;
2325		if (idx == nr_clusters)
2326			idx = 0;
2327	}
2328	return nr_extents;
2329}
2330
2331/*
2332 * Helper to sys_swapon determining if a given swap
2333 * backing device queue supports DISCARD operations.
2334 */
2335static bool swap_discardable(struct swap_info_struct *si)
2336{
2337	struct request_queue *q = bdev_get_queue(si->bdev);
2338
2339	if (!q || !blk_queue_discard(q))
2340		return false;
2341
2342	return true;
2343}
2344
2345SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2346{
2347	struct swap_info_struct *p;
2348	struct filename *name;
2349	struct file *swap_file = NULL;
2350	struct address_space *mapping;
2351	int i;
2352	int prio;
2353	int error;
2354	union swap_header *swap_header;
2355	int nr_extents;
2356	sector_t span;
2357	unsigned long maxpages;
2358	unsigned char *swap_map = NULL;
2359	struct swap_cluster_info *cluster_info = NULL;
2360	unsigned long *frontswap_map = NULL;
2361	struct page *page = NULL;
2362	struct inode *inode = NULL;
2363
2364	if (swap_flags & ~SWAP_FLAGS_VALID)
2365		return -EINVAL;
2366
2367	if (!capable(CAP_SYS_ADMIN))
2368		return -EPERM;
2369
2370	p = alloc_swap_info();
2371	if (IS_ERR(p))
2372		return PTR_ERR(p);
2373
2374	INIT_WORK(&p->discard_work, swap_discard_work);
2375
2376	name = getname(specialfile);
2377	if (IS_ERR(name)) {
2378		error = PTR_ERR(name);
2379		name = NULL;
2380		goto bad_swap;
2381	}
2382	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2383	if (IS_ERR(swap_file)) {
2384		error = PTR_ERR(swap_file);
2385		swap_file = NULL;
2386		goto bad_swap;
2387	}
2388
2389	p->swap_file = swap_file;
2390	mapping = swap_file->f_mapping;
2391
2392	for (i = 0; i < nr_swapfiles; i++) {
2393		struct swap_info_struct *q = swap_info[i];
2394
2395		if (q == p || !q->swap_file)
2396			continue;
2397		if (mapping == q->swap_file->f_mapping) {
2398			error = -EBUSY;
2399			goto bad_swap;
2400		}
2401	}
2402
2403	inode = mapping->host;
2404	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2405	error = claim_swapfile(p, inode);
2406	if (unlikely(error))
2407		goto bad_swap;
2408
2409	/*
2410	 * Read the swap header.
2411	 */
2412	if (!mapping->a_ops->readpage) {
2413		error = -EINVAL;
2414		goto bad_swap;
2415	}
2416	page = read_mapping_page(mapping, 0, swap_file);
2417	if (IS_ERR(page)) {
2418		error = PTR_ERR(page);
2419		goto bad_swap;
2420	}
2421	swap_header = kmap(page);
2422
2423	maxpages = read_swap_header(p, swap_header, inode);
2424	if (unlikely(!maxpages)) {
2425		error = -EINVAL;
2426		goto bad_swap;
2427	}
2428
2429	/* OK, set up the swap map and apply the bad block list */
2430	swap_map = vzalloc(maxpages);
2431	if (!swap_map) {
2432		error = -ENOMEM;
2433		goto bad_swap;
2434	}
2435	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2436		p->flags |= SWP_SOLIDSTATE;
2437		/*
2438		 * select a random position to start with to help wear leveling
2439		 * SSD
2440		 */
2441		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2442
2443		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2444			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2445		if (!cluster_info) {
2446			error = -ENOMEM;
2447			goto bad_swap;
2448		}
2449		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2450		if (!p->percpu_cluster) {
2451			error = -ENOMEM;
2452			goto bad_swap;
2453		}
2454		for_each_possible_cpu(i) {
2455			struct percpu_cluster *cluster;
2456			cluster = per_cpu_ptr(p->percpu_cluster, i);
2457			cluster_set_null(&cluster->index);
2458		}
2459	}
2460
2461	error = swap_cgroup_swapon(p->type, maxpages);
2462	if (error)
2463		goto bad_swap;
2464
2465	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2466		cluster_info, maxpages, &span);
2467	if (unlikely(nr_extents < 0)) {
2468		error = nr_extents;
2469		goto bad_swap;
2470	}
2471	/* frontswap enabled? set up bit-per-page map for frontswap */
2472	if (frontswap_enabled)
2473		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2474
2475	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2476		/*
2477		 * When discard is enabled for swap with no particular
2478		 * policy flagged, we set all swap discard flags here in
2479		 * order to sustain backward compatibility with older
2480		 * swapon(8) releases.
2481		 */
2482		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2483			     SWP_PAGE_DISCARD);
2484
2485		/*
2486		 * By flagging sys_swapon, a sysadmin can tell us to
2487		 * either do single-time area discards only, or to just
2488		 * perform discards for released swap page-clusters.
2489		 * Now it's time to adjust the p->flags accordingly.
2490		 */
2491		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2492			p->flags &= ~SWP_PAGE_DISCARD;
2493		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2494			p->flags &= ~SWP_AREA_DISCARD;
2495
2496		/* issue a swapon-time discard if it's still required */
2497		if (p->flags & SWP_AREA_DISCARD) {
2498			int err = discard_swap(p);
2499			if (unlikely(err))
2500				pr_err("swapon: discard_swap(%p): %d\n",
2501					p, err);
2502		}
2503	}
2504
2505	mutex_lock(&swapon_mutex);
2506	prio = -1;
2507	if (swap_flags & SWAP_FLAG_PREFER)
2508		prio =
2509		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2510	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2511
2512	pr_info("Adding %uk swap on %s.  "
2513			"Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2514		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2515		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2516		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2517		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2518		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2519		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2520		(frontswap_map) ? "FS" : "");
2521
2522	mutex_unlock(&swapon_mutex);
2523	atomic_inc(&proc_poll_event);
2524	wake_up_interruptible(&proc_poll_wait);
2525
2526	if (S_ISREG(inode->i_mode))
2527		inode->i_flags |= S_SWAPFILE;
2528	error = 0;
2529	goto out;
2530bad_swap:
2531	free_percpu(p->percpu_cluster);
2532	p->percpu_cluster = NULL;
2533	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2534		set_blocksize(p->bdev, p->old_block_size);
2535		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2536	}
2537	destroy_swap_extents(p);
2538	swap_cgroup_swapoff(p->type);
2539	spin_lock(&swap_lock);
2540	p->swap_file = NULL;
2541	p->flags = 0;
2542	spin_unlock(&swap_lock);
2543	vfree(swap_map);
2544	vfree(cluster_info);
2545	if (swap_file) {
2546		if (inode && S_ISREG(inode->i_mode)) {
2547			mutex_unlock(&inode->i_mutex);
2548			inode = NULL;
2549		}
2550		filp_close(swap_file, NULL);
2551	}
2552out:
2553	if (page && !IS_ERR(page)) {
2554		kunmap(page);
2555		page_cache_release(page);
2556	}
2557	if (name)
2558		putname(name);
2559	if (inode && S_ISREG(inode->i_mode))
2560		mutex_unlock(&inode->i_mutex);
2561	return error;
2562}
2563
2564void si_swapinfo(struct sysinfo *val)
2565{
2566	unsigned int type;
2567	unsigned long nr_to_be_unused = 0;
2568
2569	spin_lock(&swap_lock);
2570	for (type = 0; type < nr_swapfiles; type++) {
2571		struct swap_info_struct *si = swap_info[type];
2572
2573		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2574			nr_to_be_unused += si->inuse_pages;
2575	}
2576	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2577	val->totalswap = total_swap_pages + nr_to_be_unused;
2578	spin_unlock(&swap_lock);
2579}
2580
2581/*
2582 * Verify that a swap entry is valid and increment its swap map count.
2583 *
2584 * Returns error code in following case.
2585 * - success -> 0
2586 * - swp_entry is invalid -> EINVAL
2587 * - swp_entry is migration entry -> EINVAL
2588 * - swap-cache reference is requested but there is already one. -> EEXIST
2589 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2590 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2591 */
2592static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2593{
2594	struct swap_info_struct *p;
2595	unsigned long offset, type;
2596	unsigned char count;
2597	unsigned char has_cache;
2598	int err = -EINVAL;
2599
2600	if (non_swap_entry(entry))
2601		goto out;
2602
2603	type = swp_type(entry);
2604	if (type >= nr_swapfiles)
2605		goto bad_file;
2606	p = swap_info[type];
2607	offset = swp_offset(entry);
2608
2609	spin_lock(&p->lock);
2610	if (unlikely(offset >= p->max))
2611		goto unlock_out;
2612
2613	count = p->swap_map[offset];
2614
2615	/*
2616	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2617	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2618	 */
2619	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2620		err = -ENOENT;
2621		goto unlock_out;
2622	}
2623
2624	has_cache = count & SWAP_HAS_CACHE;
2625	count &= ~SWAP_HAS_CACHE;
2626	err = 0;
2627
2628	if (usage == SWAP_HAS_CACHE) {
2629
2630		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2631		if (!has_cache && count)
2632			has_cache = SWAP_HAS_CACHE;
2633		else if (has_cache)		/* someone else added cache */
2634			err = -EEXIST;
2635		else				/* no users remaining */
2636			err = -ENOENT;
2637
2638	} else if (count || has_cache) {
2639
2640		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2641			count += usage;
2642		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2643			err = -EINVAL;
2644		else if (swap_count_continued(p, offset, count))
2645			count = COUNT_CONTINUED;
2646		else
2647			err = -ENOMEM;
2648	} else
2649		err = -ENOENT;			/* unused swap entry */
2650
2651	p->swap_map[offset] = count | has_cache;
2652
2653unlock_out:
2654	spin_unlock(&p->lock);
2655out:
2656	return err;
2657
2658bad_file:
2659	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2660	goto out;
2661}
2662
2663/*
2664 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2665 * (in which case its reference count is never incremented).
2666 */
2667void swap_shmem_alloc(swp_entry_t entry)
2668{
2669	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2670}
2671
2672/*
2673 * Increase reference count of swap entry by 1.
2674 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2675 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2676 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2677 * might occur if a page table entry has got corrupted.
2678 */
2679int swap_duplicate(swp_entry_t entry)
2680{
2681	int err = 0;
2682
2683	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2684		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2685	return err;
2686}
2687
2688/*
2689 * @entry: swap entry for which we allocate swap cache.
2690 *
2691 * Called when allocating swap cache for existing swap entry,
2692 * This can return error codes. Returns 0 at success.
2693 * -EBUSY means there is a swap cache.
2694 * Note: return code is different from swap_duplicate().
2695 */
2696int swapcache_prepare(swp_entry_t entry)
2697{
2698	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2699}
2700
2701struct swap_info_struct *page_swap_info(struct page *page)
2702{
2703	swp_entry_t swap = { .val = page_private(page) };
2704	BUG_ON(!PageSwapCache(page));
2705	return swap_info[swp_type(swap)];
2706}
2707
2708/*
2709 * out-of-line __page_file_ methods to avoid include hell.
2710 */
2711struct address_space *__page_file_mapping(struct page *page)
2712{
2713	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2714	return page_swap_info(page)->swap_file->f_mapping;
2715}
2716EXPORT_SYMBOL_GPL(__page_file_mapping);
2717
2718pgoff_t __page_file_index(struct page *page)
2719{
2720	swp_entry_t swap = { .val = page_private(page) };
2721	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2722	return swp_offset(swap);
2723}
2724EXPORT_SYMBOL_GPL(__page_file_index);
2725
2726/*
2727 * add_swap_count_continuation - called when a swap count is duplicated
2728 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2729 * page of the original vmalloc'ed swap_map, to hold the continuation count
2730 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2731 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2732 *
2733 * These continuation pages are seldom referenced: the common paths all work
2734 * on the original swap_map, only referring to a continuation page when the
2735 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2736 *
2737 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2738 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2739 * can be called after dropping locks.
2740 */
2741int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2742{
2743	struct swap_info_struct *si;
2744	struct page *head;
2745	struct page *page;
2746	struct page *list_page;
2747	pgoff_t offset;
2748	unsigned char count;
2749
2750	/*
2751	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2752	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2753	 */
2754	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2755
2756	si = swap_info_get(entry);
2757	if (!si) {
2758		/*
2759		 * An acceptable race has occurred since the failing
2760		 * __swap_duplicate(): the swap entry has been freed,
2761		 * perhaps even the whole swap_map cleared for swapoff.
2762		 */
2763		goto outer;
2764	}
2765
2766	offset = swp_offset(entry);
2767	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2768
2769	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2770		/*
2771		 * The higher the swap count, the more likely it is that tasks
2772		 * will race to add swap count continuation: we need to avoid
2773		 * over-provisioning.
2774		 */
2775		goto out;
2776	}
2777
2778	if (!page) {
2779		spin_unlock(&si->lock);
2780		return -ENOMEM;
2781	}
2782
2783	/*
2784	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2785	 * no architecture is using highmem pages for kernel page tables: so it
2786	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2787	 */
2788	head = vmalloc_to_page(si->swap_map + offset);
2789	offset &= ~PAGE_MASK;
2790
2791	/*
2792	 * Page allocation does not initialize the page's lru field,
2793	 * but it does always reset its private field.
2794	 */
2795	if (!page_private(head)) {
2796		BUG_ON(count & COUNT_CONTINUED);
2797		INIT_LIST_HEAD(&head->lru);
2798		set_page_private(head, SWP_CONTINUED);
2799		si->flags |= SWP_CONTINUED;
2800	}
2801
2802	list_for_each_entry(list_page, &head->lru, lru) {
2803		unsigned char *map;
2804
2805		/*
2806		 * If the previous map said no continuation, but we've found
2807		 * a continuation page, free our allocation and use this one.
2808		 */
2809		if (!(count & COUNT_CONTINUED))
2810			goto out;
2811
2812		map = kmap_atomic(list_page) + offset;
2813		count = *map;
2814		kunmap_atomic(map);
2815
2816		/*
2817		 * If this continuation count now has some space in it,
2818		 * free our allocation and use this one.
2819		 */
2820		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2821			goto out;
2822	}
2823
2824	list_add_tail(&page->lru, &head->lru);
2825	page = NULL;			/* now it's attached, don't free it */
2826out:
2827	spin_unlock(&si->lock);
2828outer:
2829	if (page)
2830		__free_page(page);
2831	return 0;
2832}
2833
2834/*
2835 * swap_count_continued - when the original swap_map count is incremented
2836 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2837 * into, carry if so, or else fail until a new continuation page is allocated;
2838 * when the original swap_map count is decremented from 0 with continuation,
2839 * borrow from the continuation and report whether it still holds more.
2840 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2841 */
2842static bool swap_count_continued(struct swap_info_struct *si,
2843				 pgoff_t offset, unsigned char count)
2844{
2845	struct page *head;
2846	struct page *page;
2847	unsigned char *map;
2848
2849	head = vmalloc_to_page(si->swap_map + offset);
2850	if (page_private(head) != SWP_CONTINUED) {
2851		BUG_ON(count & COUNT_CONTINUED);
2852		return false;		/* need to add count continuation */
2853	}
2854
2855	offset &= ~PAGE_MASK;
2856	page = list_entry(head->lru.next, struct page, lru);
2857	map = kmap_atomic(page) + offset;
2858
2859	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2860		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2861
2862	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2863		/*
2864		 * Think of how you add 1 to 999
2865		 */
2866		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2867			kunmap_atomic(map);
2868			page = list_entry(page->lru.next, struct page, lru);
2869			BUG_ON(page == head);
2870			map = kmap_atomic(page) + offset;
2871		}
2872		if (*map == SWAP_CONT_MAX) {
2873			kunmap_atomic(map);
2874			page = list_entry(page->lru.next, struct page, lru);
2875			if (page == head)
2876				return false;	/* add count continuation */
2877			map = kmap_atomic(page) + offset;
2878init_map:		*map = 0;		/* we didn't zero the page */
2879		}
2880		*map += 1;
2881		kunmap_atomic(map);
2882		page = list_entry(page->lru.prev, struct page, lru);
2883		while (page != head) {
2884			map = kmap_atomic(page) + offset;
2885			*map = COUNT_CONTINUED;
2886			kunmap_atomic(map);
2887			page = list_entry(page->lru.prev, struct page, lru);
2888		}
2889		return true;			/* incremented */
2890
2891	} else {				/* decrementing */
2892		/*
2893		 * Think of how you subtract 1 from 1000
2894		 */
2895		BUG_ON(count != COUNT_CONTINUED);
2896		while (*map == COUNT_CONTINUED) {
2897			kunmap_atomic(map);
2898			page = list_entry(page->lru.next, struct page, lru);
2899			BUG_ON(page == head);
2900			map = kmap_atomic(page) + offset;
2901		}
2902		BUG_ON(*map == 0);
2903		*map -= 1;
2904		if (*map == 0)
2905			count = 0;
2906		kunmap_atomic(map);
2907		page = list_entry(page->lru.prev, struct page, lru);
2908		while (page != head) {
2909			map = kmap_atomic(page) + offset;
2910			*map = SWAP_CONT_MAX | count;
2911			count = COUNT_CONTINUED;
2912			kunmap_atomic(map);
2913			page = list_entry(page->lru.prev, struct page, lru);
2914		}
2915		return count == COUNT_CONTINUED;
2916	}
2917}
2918
2919/*
2920 * free_swap_count_continuations - swapoff free all the continuation pages
2921 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2922 */
2923static void free_swap_count_continuations(struct swap_info_struct *si)
2924{
2925	pgoff_t offset;
2926
2927	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2928		struct page *head;
2929		head = vmalloc_to_page(si->swap_map + offset);
2930		if (page_private(head)) {
2931			struct list_head *this, *next;
2932			list_for_each_safe(this, next, &head->lru) {
2933				struct page *page;
2934				page = list_entry(this, struct page, lru);
2935				list_del(this);
2936				__free_page(page);
2937			}
2938		}
2939	}
2940}
2941