1/*
2 * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
3 *
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5 * Copyright (c) 2012 Paolo Valente.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/bitops.h>
15#include <linux/errno.h>
16#include <linux/netdevice.h>
17#include <linux/pkt_sched.h>
18#include <net/sch_generic.h>
19#include <net/pkt_sched.h>
20#include <net/pkt_cls.h>
21
22
23/*  Quick Fair Queueing Plus
24    ========================
25
26    Sources:
27
28    [1] Paolo Valente,
29    "Reducing the Execution Time of Fair-Queueing Schedulers."
30    http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31
32    Sources for QFQ:
33
34    [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35    Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36
37    See also:
38    http://retis.sssup.it/~fabio/linux/qfq/
39 */
40
41/*
42
43  QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44  classes. Each aggregate is timestamped with a virtual start time S
45  and a virtual finish time F, and scheduled according to its
46  timestamps. S and F are computed as a function of a system virtual
47  time function V. The classes within each aggregate are instead
48  scheduled with DRR.
49
50  To speed up operations, QFQ+ divides also aggregates into a limited
51  number of groups. Which group a class belongs to depends on the
52  ratio between the maximum packet length for the class and the weight
53  of the class. Groups have their own S and F. In the end, QFQ+
54  schedules groups, then aggregates within groups, then classes within
55  aggregates. See [1] and [2] for a full description.
56
57  Virtual time computations.
58
59  S, F and V are all computed in fixed point arithmetic with
60  FRAC_BITS decimal bits.
61
62  QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63	one bit per index.
64  QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65
66  The layout of the bits is as below:
67
68                   [ MTU_SHIFT ][      FRAC_BITS    ]
69                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
70				 ^.__grp->index = 0
71				 *.__grp->slot_shift
72
73  where MIN_SLOT_SHIFT is derived by difference from the others.
74
75  The max group index corresponds to Lmax/w_min, where
76  Lmax=1<<MTU_SHIFT, w_min = 1 .
77  From this, and knowing how many groups (MAX_INDEX) we want,
78  we can derive the shift corresponding to each group.
79
80  Because we often need to compute
81	F = S + len/w_i  and V = V + len/wsum
82  instead of storing w_i store the value
83	inv_w = (1<<FRAC_BITS)/w_i
84  so we can do F = S + len * inv_w * wsum.
85  We use W_TOT in the formulas so we can easily move between
86  static and adaptive weight sum.
87
88  The per-scheduler-instance data contain all the data structures
89  for the scheduler: bitmaps and bucket lists.
90
91 */
92
93/*
94 * Maximum number of consecutive slots occupied by backlogged classes
95 * inside a group.
96 */
97#define QFQ_MAX_SLOTS	32
98
99/*
100 * Shifts used for aggregate<->group mapping.  We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102 * group with the smallest index that can support the L_i / r_i configured
103 * for the classes in the aggregate.
104 *
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
107 */
108#define QFQ_MAX_INDEX		24
109#define QFQ_MAX_WSHIFT		10
110
111#define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112#define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
113
114#define FRAC_BITS		30	/* fixed point arithmetic */
115#define ONE_FP			(1UL << FRAC_BITS)
116
117#define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
118#define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
119
120#define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
121
122/*
123 * Possible group states.  These values are used as indexes for the bitmaps
124 * array of struct qfq_queue.
125 */
126enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127
128struct qfq_group;
129
130struct qfq_aggregate;
131
132struct qfq_class {
133	struct Qdisc_class_common common;
134
135	unsigned int refcnt;
136	unsigned int filter_cnt;
137
138	struct gnet_stats_basic_packed bstats;
139	struct gnet_stats_queue qstats;
140	struct gnet_stats_rate_est64 rate_est;
141	struct Qdisc *qdisc;
142	struct list_head alist;		/* Link for active-classes list. */
143	struct qfq_aggregate *agg;	/* Parent aggregate. */
144	int deficit;			/* DRR deficit counter. */
145};
146
147struct qfq_aggregate {
148	struct hlist_node next;	/* Link for the slot list. */
149	u64 S, F;		/* flow timestamps (exact) */
150
151	/* group we belong to. In principle we would need the index,
152	 * which is log_2(lmax/weight), but we never reference it
153	 * directly, only the group.
154	 */
155	struct qfq_group *grp;
156
157	/* these are copied from the flowset. */
158	u32	class_weight; /* Weight of each class in this aggregate. */
159	/* Max pkt size for the classes in this aggregate, DRR quantum. */
160	int	lmax;
161
162	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
163	u32	budgetmax;  /* Max budget for this aggregate. */
164	u32	initial_budget, budget;     /* Initial and current budget. */
165
166	int		  num_classes;	/* Number of classes in this aggr. */
167	struct list_head  active;	/* DRR queue of active classes. */
168
169	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
170};
171
172struct qfq_group {
173	u64 S, F;			/* group timestamps (approx). */
174	unsigned int slot_shift;	/* Slot shift. */
175	unsigned int index;		/* Group index. */
176	unsigned int front;		/* Index of the front slot. */
177	unsigned long full_slots;	/* non-empty slots */
178
179	/* Array of RR lists of active aggregates. */
180	struct hlist_head slots[QFQ_MAX_SLOTS];
181};
182
183struct qfq_sched {
184	struct tcf_proto __rcu *filter_list;
185	struct Qdisc_class_hash clhash;
186
187	u64			oldV, V;	/* Precise virtual times. */
188	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
189	u32			num_active_agg; /* Num. of active aggregates */
190	u32			wsum;		/* weight sum */
191	u32			iwsum;		/* inverse weight sum */
192
193	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
194	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
195	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
196
197	u32 max_agg_classes;		/* Max number of classes per aggr. */
198	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
199};
200
201/*
202 * Possible reasons why the timestamps of an aggregate are updated
203 * enqueue: the aggregate switches from idle to active and must scheduled
204 *	    for service
205 * requeue: the aggregate finishes its budget, so it stops being served and
206 *	    must be rescheduled for service
207 */
208enum update_reason {enqueue, requeue};
209
210static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211{
212	struct qfq_sched *q = qdisc_priv(sch);
213	struct Qdisc_class_common *clc;
214
215	clc = qdisc_class_find(&q->clhash, classid);
216	if (clc == NULL)
217		return NULL;
218	return container_of(clc, struct qfq_class, common);
219}
220
221static void qfq_purge_queue(struct qfq_class *cl)
222{
223	unsigned int len = cl->qdisc->q.qlen;
224
225	qdisc_reset(cl->qdisc);
226	qdisc_tree_decrease_qlen(cl->qdisc, len);
227}
228
229static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
232};
233
234/*
235 * Calculate a flow index, given its weight and maximum packet length.
236 * index = log_2(maxlen/weight) but we need to apply the scaling.
237 * This is used only once at flow creation.
238 */
239static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240{
241	u64 slot_size = (u64)maxlen * inv_w;
242	unsigned long size_map;
243	int index = 0;
244
245	size_map = slot_size >> min_slot_shift;
246	if (!size_map)
247		goto out;
248
249	index = __fls(size_map) + 1;	/* basically a log_2 */
250	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251
252	if (index < 0)
253		index = 0;
254out:
255	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256		 (unsigned long) ONE_FP/inv_w, maxlen, index);
257
258	return index;
259}
260
261static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263			     enum update_reason);
264
265static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266			 u32 lmax, u32 weight)
267{
268	INIT_LIST_HEAD(&agg->active);
269	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270
271	agg->lmax = lmax;
272	agg->class_weight = weight;
273}
274
275static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276					  u32 lmax, u32 weight)
277{
278	struct qfq_aggregate *agg;
279
280	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281		if (agg->lmax == lmax && agg->class_weight == weight)
282			return agg;
283
284	return NULL;
285}
286
287
288/* Update aggregate as a function of the new number of classes. */
289static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290			   int new_num_classes)
291{
292	u32 new_agg_weight;
293
294	if (new_num_classes == q->max_agg_classes)
295		hlist_del_init(&agg->nonfull_next);
296
297	if (agg->num_classes > new_num_classes &&
298	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300
301	/* The next assignment may let
302	 * agg->initial_budget > agg->budgetmax
303	 * hold, we will take it into account in charge_actual_service().
304	 */
305	agg->budgetmax = new_num_classes * agg->lmax;
306	new_agg_weight = agg->class_weight * new_num_classes;
307	agg->inv_w = ONE_FP/new_agg_weight;
308
309	if (agg->grp == NULL) {
310		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311				       q->min_slot_shift);
312		agg->grp = &q->groups[i];
313	}
314
315	q->wsum +=
316		(int) agg->class_weight * (new_num_classes - agg->num_classes);
317	q->iwsum = ONE_FP / q->wsum;
318
319	agg->num_classes = new_num_classes;
320}
321
322/* Add class to aggregate. */
323static void qfq_add_to_agg(struct qfq_sched *q,
324			   struct qfq_aggregate *agg,
325			   struct qfq_class *cl)
326{
327	cl->agg = agg;
328
329	qfq_update_agg(q, agg, agg->num_classes+1);
330	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
331		list_add_tail(&cl->alist, &agg->active);
332		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
333		    cl && q->in_serv_agg != agg) /* agg was inactive */
334			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
335	}
336}
337
338static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
339
340static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
341{
342	if (!hlist_unhashed(&agg->nonfull_next))
343		hlist_del_init(&agg->nonfull_next);
344	q->wsum -= agg->class_weight;
345	if (q->wsum != 0)
346		q->iwsum = ONE_FP / q->wsum;
347
348	if (q->in_serv_agg == agg)
349		q->in_serv_agg = qfq_choose_next_agg(q);
350	kfree(agg);
351}
352
353/* Deschedule class from within its parent aggregate. */
354static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
355{
356	struct qfq_aggregate *agg = cl->agg;
357
358
359	list_del(&cl->alist); /* remove from RR queue of the aggregate */
360	if (list_empty(&agg->active)) /* agg is now inactive */
361		qfq_deactivate_agg(q, agg);
362}
363
364/* Remove class from its parent aggregate. */
365static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
366{
367	struct qfq_aggregate *agg = cl->agg;
368
369	cl->agg = NULL;
370	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
371		qfq_destroy_agg(q, agg);
372		return;
373	}
374	qfq_update_agg(q, agg, agg->num_classes-1);
375}
376
377/* Deschedule class and remove it from its parent aggregate. */
378static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
379{
380	if (cl->qdisc->q.qlen > 0) /* class is active */
381		qfq_deactivate_class(q, cl);
382
383	qfq_rm_from_agg(q, cl);
384}
385
386/* Move class to a new aggregate, matching the new class weight and/or lmax */
387static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
388			   u32 lmax)
389{
390	struct qfq_sched *q = qdisc_priv(sch);
391	struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
392
393	if (new_agg == NULL) { /* create new aggregate */
394		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
395		if (new_agg == NULL)
396			return -ENOBUFS;
397		qfq_init_agg(q, new_agg, lmax, weight);
398	}
399	qfq_deact_rm_from_agg(q, cl);
400	qfq_add_to_agg(q, new_agg, cl);
401
402	return 0;
403}
404
405static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
406			    struct nlattr **tca, unsigned long *arg)
407{
408	struct qfq_sched *q = qdisc_priv(sch);
409	struct qfq_class *cl = (struct qfq_class *)*arg;
410	bool existing = false;
411	struct nlattr *tb[TCA_QFQ_MAX + 1];
412	struct qfq_aggregate *new_agg = NULL;
413	u32 weight, lmax, inv_w;
414	int err;
415	int delta_w;
416
417	if (tca[TCA_OPTIONS] == NULL) {
418		pr_notice("qfq: no options\n");
419		return -EINVAL;
420	}
421
422	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
423	if (err < 0)
424		return err;
425
426	if (tb[TCA_QFQ_WEIGHT]) {
427		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
428		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
429			pr_notice("qfq: invalid weight %u\n", weight);
430			return -EINVAL;
431		}
432	} else
433		weight = 1;
434
435	if (tb[TCA_QFQ_LMAX]) {
436		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
437		if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
438			pr_notice("qfq: invalid max length %u\n", lmax);
439			return -EINVAL;
440		}
441	} else
442		lmax = psched_mtu(qdisc_dev(sch));
443
444	inv_w = ONE_FP / weight;
445	weight = ONE_FP / inv_w;
446
447	if (cl != NULL &&
448	    lmax == cl->agg->lmax &&
449	    weight == cl->agg->class_weight)
450		return 0; /* nothing to change */
451
452	delta_w = weight - (cl ? cl->agg->class_weight : 0);
453
454	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
455		pr_notice("qfq: total weight out of range (%d + %u)\n",
456			  delta_w, q->wsum);
457		return -EINVAL;
458	}
459
460	if (cl != NULL) { /* modify existing class */
461		if (tca[TCA_RATE]) {
462			err = gen_replace_estimator(&cl->bstats, NULL,
463						    &cl->rate_est,
464						    qdisc_root_sleeping_lock(sch),
465						    tca[TCA_RATE]);
466			if (err)
467				return err;
468		}
469		existing = true;
470		goto set_change_agg;
471	}
472
473	/* create and init new class */
474	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
475	if (cl == NULL)
476		return -ENOBUFS;
477
478	cl->refcnt = 1;
479	cl->common.classid = classid;
480	cl->deficit = lmax;
481
482	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
483				      &pfifo_qdisc_ops, classid);
484	if (cl->qdisc == NULL)
485		cl->qdisc = &noop_qdisc;
486
487	if (tca[TCA_RATE]) {
488		err = gen_new_estimator(&cl->bstats, NULL,
489					&cl->rate_est,
490					qdisc_root_sleeping_lock(sch),
491					tca[TCA_RATE]);
492		if (err)
493			goto destroy_class;
494	}
495
496	sch_tree_lock(sch);
497	qdisc_class_hash_insert(&q->clhash, &cl->common);
498	sch_tree_unlock(sch);
499
500	qdisc_class_hash_grow(sch, &q->clhash);
501
502set_change_agg:
503	sch_tree_lock(sch);
504	new_agg = qfq_find_agg(q, lmax, weight);
505	if (new_agg == NULL) { /* create new aggregate */
506		sch_tree_unlock(sch);
507		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
508		if (new_agg == NULL) {
509			err = -ENOBUFS;
510			gen_kill_estimator(&cl->bstats, &cl->rate_est);
511			goto destroy_class;
512		}
513		sch_tree_lock(sch);
514		qfq_init_agg(q, new_agg, lmax, weight);
515	}
516	if (existing)
517		qfq_deact_rm_from_agg(q, cl);
518	qfq_add_to_agg(q, new_agg, cl);
519	sch_tree_unlock(sch);
520
521	*arg = (unsigned long)cl;
522	return 0;
523
524destroy_class:
525	qdisc_destroy(cl->qdisc);
526	kfree(cl);
527	return err;
528}
529
530static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
531{
532	struct qfq_sched *q = qdisc_priv(sch);
533
534	qfq_rm_from_agg(q, cl);
535	gen_kill_estimator(&cl->bstats, &cl->rate_est);
536	qdisc_destroy(cl->qdisc);
537	kfree(cl);
538}
539
540static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
541{
542	struct qfq_sched *q = qdisc_priv(sch);
543	struct qfq_class *cl = (struct qfq_class *)arg;
544
545	if (cl->filter_cnt > 0)
546		return -EBUSY;
547
548	sch_tree_lock(sch);
549
550	qfq_purge_queue(cl);
551	qdisc_class_hash_remove(&q->clhash, &cl->common);
552
553	BUG_ON(--cl->refcnt == 0);
554	/*
555	 * This shouldn't happen: we "hold" one cops->get() when called
556	 * from tc_ctl_tclass; the destroy method is done from cops->put().
557	 */
558
559	sch_tree_unlock(sch);
560	return 0;
561}
562
563static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
564{
565	struct qfq_class *cl = qfq_find_class(sch, classid);
566
567	if (cl != NULL)
568		cl->refcnt++;
569
570	return (unsigned long)cl;
571}
572
573static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
574{
575	struct qfq_class *cl = (struct qfq_class *)arg;
576
577	if (--cl->refcnt == 0)
578		qfq_destroy_class(sch, cl);
579}
580
581static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch,
582					      unsigned long cl)
583{
584	struct qfq_sched *q = qdisc_priv(sch);
585
586	if (cl)
587		return NULL;
588
589	return &q->filter_list;
590}
591
592static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
593				  u32 classid)
594{
595	struct qfq_class *cl = qfq_find_class(sch, classid);
596
597	if (cl != NULL)
598		cl->filter_cnt++;
599
600	return (unsigned long)cl;
601}
602
603static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
604{
605	struct qfq_class *cl = (struct qfq_class *)arg;
606
607	cl->filter_cnt--;
608}
609
610static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
611			   struct Qdisc *new, struct Qdisc **old)
612{
613	struct qfq_class *cl = (struct qfq_class *)arg;
614
615	if (new == NULL) {
616		new = qdisc_create_dflt(sch->dev_queue,
617					&pfifo_qdisc_ops, cl->common.classid);
618		if (new == NULL)
619			new = &noop_qdisc;
620	}
621
622	sch_tree_lock(sch);
623	qfq_purge_queue(cl);
624	*old = cl->qdisc;
625	cl->qdisc = new;
626	sch_tree_unlock(sch);
627	return 0;
628}
629
630static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
631{
632	struct qfq_class *cl = (struct qfq_class *)arg;
633
634	return cl->qdisc;
635}
636
637static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
638			  struct sk_buff *skb, struct tcmsg *tcm)
639{
640	struct qfq_class *cl = (struct qfq_class *)arg;
641	struct nlattr *nest;
642
643	tcm->tcm_parent	= TC_H_ROOT;
644	tcm->tcm_handle	= cl->common.classid;
645	tcm->tcm_info	= cl->qdisc->handle;
646
647	nest = nla_nest_start(skb, TCA_OPTIONS);
648	if (nest == NULL)
649		goto nla_put_failure;
650	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
651	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
652		goto nla_put_failure;
653	return nla_nest_end(skb, nest);
654
655nla_put_failure:
656	nla_nest_cancel(skb, nest);
657	return -EMSGSIZE;
658}
659
660static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
661				struct gnet_dump *d)
662{
663	struct qfq_class *cl = (struct qfq_class *)arg;
664	struct tc_qfq_stats xstats;
665
666	memset(&xstats, 0, sizeof(xstats));
667
668	xstats.weight = cl->agg->class_weight;
669	xstats.lmax = cl->agg->lmax;
670
671	if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 ||
672	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
673	    gnet_stats_copy_queue(d, NULL,
674				  &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
675		return -1;
676
677	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
678}
679
680static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
681{
682	struct qfq_sched *q = qdisc_priv(sch);
683	struct qfq_class *cl;
684	unsigned int i;
685
686	if (arg->stop)
687		return;
688
689	for (i = 0; i < q->clhash.hashsize; i++) {
690		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
691			if (arg->count < arg->skip) {
692				arg->count++;
693				continue;
694			}
695			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
696				arg->stop = 1;
697				return;
698			}
699			arg->count++;
700		}
701	}
702}
703
704static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
705				      int *qerr)
706{
707	struct qfq_sched *q = qdisc_priv(sch);
708	struct qfq_class *cl;
709	struct tcf_result res;
710	struct tcf_proto *fl;
711	int result;
712
713	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
714		pr_debug("qfq_classify: found %d\n", skb->priority);
715		cl = qfq_find_class(sch, skb->priority);
716		if (cl != NULL)
717			return cl;
718	}
719
720	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
721	fl = rcu_dereference_bh(q->filter_list);
722	result = tc_classify(skb, fl, &res);
723	if (result >= 0) {
724#ifdef CONFIG_NET_CLS_ACT
725		switch (result) {
726		case TC_ACT_QUEUED:
727		case TC_ACT_STOLEN:
728			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
729		case TC_ACT_SHOT:
730			return NULL;
731		}
732#endif
733		cl = (struct qfq_class *)res.class;
734		if (cl == NULL)
735			cl = qfq_find_class(sch, res.classid);
736		return cl;
737	}
738
739	return NULL;
740}
741
742/* Generic comparison function, handling wraparound. */
743static inline int qfq_gt(u64 a, u64 b)
744{
745	return (s64)(a - b) > 0;
746}
747
748/* Round a precise timestamp to its slotted value. */
749static inline u64 qfq_round_down(u64 ts, unsigned int shift)
750{
751	return ts & ~((1ULL << shift) - 1);
752}
753
754/* return the pointer to the group with lowest index in the bitmap */
755static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
756					unsigned long bitmap)
757{
758	int index = __ffs(bitmap);
759	return &q->groups[index];
760}
761/* Calculate a mask to mimic what would be ffs_from(). */
762static inline unsigned long mask_from(unsigned long bitmap, int from)
763{
764	return bitmap & ~((1UL << from) - 1);
765}
766
767/*
768 * The state computation relies on ER=0, IR=1, EB=2, IB=3
769 * First compute eligibility comparing grp->S, q->V,
770 * then check if someone is blocking us and possibly add EB
771 */
772static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
773{
774	/* if S > V we are not eligible */
775	unsigned int state = qfq_gt(grp->S, q->V);
776	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
777	struct qfq_group *next;
778
779	if (mask) {
780		next = qfq_ffs(q, mask);
781		if (qfq_gt(grp->F, next->F))
782			state |= EB;
783	}
784
785	return state;
786}
787
788
789/*
790 * In principle
791 *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
792 *	q->bitmaps[src] &= ~mask;
793 * but we should make sure that src != dst
794 */
795static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
796				   int src, int dst)
797{
798	q->bitmaps[dst] |= q->bitmaps[src] & mask;
799	q->bitmaps[src] &= ~mask;
800}
801
802static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
803{
804	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
805	struct qfq_group *next;
806
807	if (mask) {
808		next = qfq_ffs(q, mask);
809		if (!qfq_gt(next->F, old_F))
810			return;
811	}
812
813	mask = (1UL << index) - 1;
814	qfq_move_groups(q, mask, EB, ER);
815	qfq_move_groups(q, mask, IB, IR);
816}
817
818/*
819 * perhaps
820 *
821	old_V ^= q->V;
822	old_V >>= q->min_slot_shift;
823	if (old_V) {
824		...
825	}
826 *
827 */
828static void qfq_make_eligible(struct qfq_sched *q)
829{
830	unsigned long vslot = q->V >> q->min_slot_shift;
831	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
832
833	if (vslot != old_vslot) {
834		unsigned long mask;
835		int last_flip_pos = fls(vslot ^ old_vslot);
836
837		if (last_flip_pos > 31) /* higher than the number of groups */
838			mask = ~0UL;    /* make all groups eligible */
839		else
840			mask = (1UL << last_flip_pos) - 1;
841
842		qfq_move_groups(q, mask, IR, ER);
843		qfq_move_groups(q, mask, IB, EB);
844	}
845}
846
847/*
848 * The index of the slot in which the input aggregate agg is to be
849 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
850 * and not a '-1' because the start time of the group may be moved
851 * backward by one slot after the aggregate has been inserted, and
852 * this would cause non-empty slots to be right-shifted by one
853 * position.
854 *
855 * QFQ+ fully satisfies this bound to the slot index if the parameters
856 * of the classes are not changed dynamically, and if QFQ+ never
857 * happens to postpone the service of agg unjustly, i.e., it never
858 * happens that the aggregate becomes backlogged and eligible, or just
859 * eligible, while an aggregate with a higher approximated finish time
860 * is being served. In particular, in this case QFQ+ guarantees that
861 * the timestamps of agg are low enough that the slot index is never
862 * higher than 2. Unfortunately, QFQ+ cannot provide the same
863 * guarantee if it happens to unjustly postpone the service of agg, or
864 * if the parameters of some class are changed.
865 *
866 * As for the first event, i.e., an out-of-order service, the
867 * upper bound to the slot index guaranteed by QFQ+ grows to
868 * 2 +
869 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
870 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
871 *
872 * The following function deals with this problem by backward-shifting
873 * the timestamps of agg, if needed, so as to guarantee that the slot
874 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
875 * cause the service of other aggregates to be postponed, yet the
876 * worst-case guarantees of these aggregates are not violated.  In
877 * fact, in case of no out-of-order service, the timestamps of agg
878 * would have been even lower than they are after the backward shift,
879 * because QFQ+ would have guaranteed a maximum value equal to 2 for
880 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
881 * service is postponed because of the backward-shift would have
882 * however waited for the service of agg before being served.
883 *
884 * The other event that may cause the slot index to be higher than 2
885 * for agg is a recent change of the parameters of some class. If the
886 * weight of a class is increased or the lmax (max_pkt_size) of the
887 * class is decreased, then a new aggregate with smaller slot size
888 * than the original parent aggregate of the class may happen to be
889 * activated. The activation of this aggregate should be properly
890 * delayed to when the service of the class has finished in the ideal
891 * system tracked by QFQ+. If the activation of the aggregate is not
892 * delayed to this reference time instant, then this aggregate may be
893 * unjustly served before other aggregates waiting for service. This
894 * may cause the above bound to the slot index to be violated for some
895 * of these unlucky aggregates.
896 *
897 * Instead of delaying the activation of the new aggregate, which is
898 * quite complex, the above-discussed capping of the slot index is
899 * used to handle also the consequences of a change of the parameters
900 * of a class.
901 */
902static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
903			    u64 roundedS)
904{
905	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
906	unsigned int i; /* slot index in the bucket list */
907
908	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
909		u64 deltaS = roundedS - grp->S -
910			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
911		agg->S -= deltaS;
912		agg->F -= deltaS;
913		slot = QFQ_MAX_SLOTS - 2;
914	}
915
916	i = (grp->front + slot) % QFQ_MAX_SLOTS;
917
918	hlist_add_head(&agg->next, &grp->slots[i]);
919	__set_bit(slot, &grp->full_slots);
920}
921
922/* Maybe introduce hlist_first_entry?? */
923static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
924{
925	return hlist_entry(grp->slots[grp->front].first,
926			   struct qfq_aggregate, next);
927}
928
929/*
930 * remove the entry from the slot
931 */
932static void qfq_front_slot_remove(struct qfq_group *grp)
933{
934	struct qfq_aggregate *agg = qfq_slot_head(grp);
935
936	BUG_ON(!agg);
937	hlist_del(&agg->next);
938	if (hlist_empty(&grp->slots[grp->front]))
939		__clear_bit(0, &grp->full_slots);
940}
941
942/*
943 * Returns the first aggregate in the first non-empty bucket of the
944 * group. As a side effect, adjusts the bucket list so the first
945 * non-empty bucket is at position 0 in full_slots.
946 */
947static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
948{
949	unsigned int i;
950
951	pr_debug("qfq slot_scan: grp %u full %#lx\n",
952		 grp->index, grp->full_slots);
953
954	if (grp->full_slots == 0)
955		return NULL;
956
957	i = __ffs(grp->full_slots);  /* zero based */
958	if (i > 0) {
959		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
960		grp->full_slots >>= i;
961	}
962
963	return qfq_slot_head(grp);
964}
965
966/*
967 * adjust the bucket list. When the start time of a group decreases,
968 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
969 * move the objects. The mask of occupied slots must be shifted
970 * because we use ffs() to find the first non-empty slot.
971 * This covers decreases in the group's start time, but what about
972 * increases of the start time ?
973 * Here too we should make sure that i is less than 32
974 */
975static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
976{
977	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
978
979	grp->full_slots <<= i;
980	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
981}
982
983static void qfq_update_eligible(struct qfq_sched *q)
984{
985	struct qfq_group *grp;
986	unsigned long ineligible;
987
988	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
989	if (ineligible) {
990		if (!q->bitmaps[ER]) {
991			grp = qfq_ffs(q, ineligible);
992			if (qfq_gt(grp->S, q->V))
993				q->V = grp->S;
994		}
995		qfq_make_eligible(q);
996	}
997}
998
999/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
1000static void agg_dequeue(struct qfq_aggregate *agg,
1001			struct qfq_class *cl, unsigned int len)
1002{
1003	qdisc_dequeue_peeked(cl->qdisc);
1004
1005	cl->deficit -= (int) len;
1006
1007	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1008		list_del(&cl->alist);
1009	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1010		cl->deficit += agg->lmax;
1011		list_move_tail(&cl->alist, &agg->active);
1012	}
1013}
1014
1015static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1016					   struct qfq_class **cl,
1017					   unsigned int *len)
1018{
1019	struct sk_buff *skb;
1020
1021	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
1022	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1023	if (skb == NULL)
1024		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1025	else
1026		*len = qdisc_pkt_len(skb);
1027
1028	return skb;
1029}
1030
1031/* Update F according to the actual service received by the aggregate. */
1032static inline void charge_actual_service(struct qfq_aggregate *agg)
1033{
1034	/* Compute the service received by the aggregate, taking into
1035	 * account that, after decreasing the number of classes in
1036	 * agg, it may happen that
1037	 * agg->initial_budget - agg->budget > agg->bugdetmax
1038	 */
1039	u32 service_received = min(agg->budgetmax,
1040				   agg->initial_budget - agg->budget);
1041
1042	agg->F = agg->S + (u64)service_received * agg->inv_w;
1043}
1044
1045/* Assign a reasonable start time for a new aggregate in group i.
1046 * Admissible values for \hat(F) are multiples of \sigma_i
1047 * no greater than V+\sigma_i . Larger values mean that
1048 * we had a wraparound so we consider the timestamp to be stale.
1049 *
1050 * If F is not stale and F >= V then we set S = F.
1051 * Otherwise we should assign S = V, but this may violate
1052 * the ordering in EB (see [2]). So, if we have groups in ER,
1053 * set S to the F_j of the first group j which would be blocking us.
1054 * We are guaranteed not to move S backward because
1055 * otherwise our group i would still be blocked.
1056 */
1057static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1058{
1059	unsigned long mask;
1060	u64 limit, roundedF;
1061	int slot_shift = agg->grp->slot_shift;
1062
1063	roundedF = qfq_round_down(agg->F, slot_shift);
1064	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1065
1066	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1067		/* timestamp was stale */
1068		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1069		if (mask) {
1070			struct qfq_group *next = qfq_ffs(q, mask);
1071			if (qfq_gt(roundedF, next->F)) {
1072				if (qfq_gt(limit, next->F))
1073					agg->S = next->F;
1074				else /* preserve timestamp correctness */
1075					agg->S = limit;
1076				return;
1077			}
1078		}
1079		agg->S = q->V;
1080	} else  /* timestamp is not stale */
1081		agg->S = agg->F;
1082}
1083
1084/* Update the timestamps of agg before scheduling/rescheduling it for
1085 * service.  In particular, assign to agg->F its maximum possible
1086 * value, i.e., the virtual finish time with which the aggregate
1087 * should be labeled if it used all its budget once in service.
1088 */
1089static inline void
1090qfq_update_agg_ts(struct qfq_sched *q,
1091		    struct qfq_aggregate *agg, enum update_reason reason)
1092{
1093	if (reason != requeue)
1094		qfq_update_start(q, agg);
1095	else /* just charge agg for the service received */
1096		agg->S = agg->F;
1097
1098	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1099}
1100
1101static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1102
1103static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1104{
1105	struct qfq_sched *q = qdisc_priv(sch);
1106	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1107	struct qfq_class *cl;
1108	struct sk_buff *skb = NULL;
1109	/* next-packet len, 0 means no more active classes in in-service agg */
1110	unsigned int len = 0;
1111
1112	if (in_serv_agg == NULL)
1113		return NULL;
1114
1115	if (!list_empty(&in_serv_agg->active))
1116		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1117
1118	/*
1119	 * If there are no active classes in the in-service aggregate,
1120	 * or if the aggregate has not enough budget to serve its next
1121	 * class, then choose the next aggregate to serve.
1122	 */
1123	if (len == 0 || in_serv_agg->budget < len) {
1124		charge_actual_service(in_serv_agg);
1125
1126		/* recharge the budget of the aggregate */
1127		in_serv_agg->initial_budget = in_serv_agg->budget =
1128			in_serv_agg->budgetmax;
1129
1130		if (!list_empty(&in_serv_agg->active)) {
1131			/*
1132			 * Still active: reschedule for
1133			 * service. Possible optimization: if no other
1134			 * aggregate is active, then there is no point
1135			 * in rescheduling this aggregate, and we can
1136			 * just keep it as the in-service one. This
1137			 * should be however a corner case, and to
1138			 * handle it, we would need to maintain an
1139			 * extra num_active_aggs field.
1140			*/
1141			qfq_update_agg_ts(q, in_serv_agg, requeue);
1142			qfq_schedule_agg(q, in_serv_agg);
1143		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1144			q->in_serv_agg = NULL;
1145			return NULL;
1146		}
1147
1148		/*
1149		 * If we get here, there are other aggregates queued:
1150		 * choose the new aggregate to serve.
1151		 */
1152		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1153		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1154	}
1155	if (!skb)
1156		return NULL;
1157
1158	sch->q.qlen--;
1159	qdisc_bstats_update(sch, skb);
1160
1161	agg_dequeue(in_serv_agg, cl, len);
1162	/* If lmax is lowered, through qfq_change_class, for a class
1163	 * owning pending packets with larger size than the new value
1164	 * of lmax, then the following condition may hold.
1165	 */
1166	if (unlikely(in_serv_agg->budget < len))
1167		in_serv_agg->budget = 0;
1168	else
1169		in_serv_agg->budget -= len;
1170
1171	q->V += (u64)len * q->iwsum;
1172	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1173		 len, (unsigned long long) in_serv_agg->F,
1174		 (unsigned long long) q->V);
1175
1176	return skb;
1177}
1178
1179static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1180{
1181	struct qfq_group *grp;
1182	struct qfq_aggregate *agg, *new_front_agg;
1183	u64 old_F;
1184
1185	qfq_update_eligible(q);
1186	q->oldV = q->V;
1187
1188	if (!q->bitmaps[ER])
1189		return NULL;
1190
1191	grp = qfq_ffs(q, q->bitmaps[ER]);
1192	old_F = grp->F;
1193
1194	agg = qfq_slot_head(grp);
1195
1196	/* agg starts to be served, remove it from schedule */
1197	qfq_front_slot_remove(grp);
1198
1199	new_front_agg = qfq_slot_scan(grp);
1200
1201	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1202		__clear_bit(grp->index, &q->bitmaps[ER]);
1203	else {
1204		u64 roundedS = qfq_round_down(new_front_agg->S,
1205					      grp->slot_shift);
1206		unsigned int s;
1207
1208		if (grp->S == roundedS)
1209			return agg;
1210		grp->S = roundedS;
1211		grp->F = roundedS + (2ULL << grp->slot_shift);
1212		__clear_bit(grp->index, &q->bitmaps[ER]);
1213		s = qfq_calc_state(q, grp);
1214		__set_bit(grp->index, &q->bitmaps[s]);
1215	}
1216
1217	qfq_unblock_groups(q, grp->index, old_F);
1218
1219	return agg;
1220}
1221
1222static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1223{
1224	struct qfq_sched *q = qdisc_priv(sch);
1225	struct qfq_class *cl;
1226	struct qfq_aggregate *agg;
1227	int err = 0;
1228
1229	cl = qfq_classify(skb, sch, &err);
1230	if (cl == NULL) {
1231		if (err & __NET_XMIT_BYPASS)
1232			qdisc_qstats_drop(sch);
1233		kfree_skb(skb);
1234		return err;
1235	}
1236	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1237
1238	if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1239		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1240			 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1241		err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1242				     qdisc_pkt_len(skb));
1243		if (err)
1244			return err;
1245	}
1246
1247	err = qdisc_enqueue(skb, cl->qdisc);
1248	if (unlikely(err != NET_XMIT_SUCCESS)) {
1249		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1250		if (net_xmit_drop_count(err)) {
1251			cl->qstats.drops++;
1252			qdisc_qstats_drop(sch);
1253		}
1254		return err;
1255	}
1256
1257	bstats_update(&cl->bstats, skb);
1258	++sch->q.qlen;
1259
1260	agg = cl->agg;
1261	/* if the queue was not empty, then done here */
1262	if (cl->qdisc->q.qlen != 1) {
1263		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1264		    list_first_entry(&agg->active, struct qfq_class, alist)
1265		    == cl && cl->deficit < qdisc_pkt_len(skb))
1266			list_move_tail(&cl->alist, &agg->active);
1267
1268		return err;
1269	}
1270
1271	/* schedule class for service within the aggregate */
1272	cl->deficit = agg->lmax;
1273	list_add_tail(&cl->alist, &agg->active);
1274
1275	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1276	    q->in_serv_agg == agg)
1277		return err; /* non-empty or in service, nothing else to do */
1278
1279	qfq_activate_agg(q, agg, enqueue);
1280
1281	return err;
1282}
1283
1284/*
1285 * Schedule aggregate according to its timestamps.
1286 */
1287static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1288{
1289	struct qfq_group *grp = agg->grp;
1290	u64 roundedS;
1291	int s;
1292
1293	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1294
1295	/*
1296	 * Insert agg in the correct bucket.
1297	 * If agg->S >= grp->S we don't need to adjust the
1298	 * bucket list and simply go to the insertion phase.
1299	 * Otherwise grp->S is decreasing, we must make room
1300	 * in the bucket list, and also recompute the group state.
1301	 * Finally, if there were no flows in this group and nobody
1302	 * was in ER make sure to adjust V.
1303	 */
1304	if (grp->full_slots) {
1305		if (!qfq_gt(grp->S, agg->S))
1306			goto skip_update;
1307
1308		/* create a slot for this agg->S */
1309		qfq_slot_rotate(grp, roundedS);
1310		/* group was surely ineligible, remove */
1311		__clear_bit(grp->index, &q->bitmaps[IR]);
1312		__clear_bit(grp->index, &q->bitmaps[IB]);
1313	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1314		   q->in_serv_agg == NULL)
1315		q->V = roundedS;
1316
1317	grp->S = roundedS;
1318	grp->F = roundedS + (2ULL << grp->slot_shift);
1319	s = qfq_calc_state(q, grp);
1320	__set_bit(grp->index, &q->bitmaps[s]);
1321
1322	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1323		 s, q->bitmaps[s],
1324		 (unsigned long long) agg->S,
1325		 (unsigned long long) agg->F,
1326		 (unsigned long long) q->V);
1327
1328skip_update:
1329	qfq_slot_insert(grp, agg, roundedS);
1330}
1331
1332
1333/* Update agg ts and schedule agg for service */
1334static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1335			     enum update_reason reason)
1336{
1337	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1338
1339	qfq_update_agg_ts(q, agg, reason);
1340	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1341		q->in_serv_agg = agg; /* start serving this aggregate */
1342		 /* update V: to be in service, agg must be eligible */
1343		q->oldV = q->V = agg->S;
1344	} else if (agg != q->in_serv_agg)
1345		qfq_schedule_agg(q, agg);
1346}
1347
1348static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1349			    struct qfq_aggregate *agg)
1350{
1351	unsigned int i, offset;
1352	u64 roundedS;
1353
1354	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1355	offset = (roundedS - grp->S) >> grp->slot_shift;
1356
1357	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1358
1359	hlist_del(&agg->next);
1360	if (hlist_empty(&grp->slots[i]))
1361		__clear_bit(offset, &grp->full_slots);
1362}
1363
1364/*
1365 * Called to forcibly deschedule an aggregate.  If the aggregate is
1366 * not in the front bucket, or if the latter has other aggregates in
1367 * the front bucket, we can simply remove the aggregate with no other
1368 * side effects.
1369 * Otherwise we must propagate the event up.
1370 */
1371static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1372{
1373	struct qfq_group *grp = agg->grp;
1374	unsigned long mask;
1375	u64 roundedS;
1376	int s;
1377
1378	if (agg == q->in_serv_agg) {
1379		charge_actual_service(agg);
1380		q->in_serv_agg = qfq_choose_next_agg(q);
1381		return;
1382	}
1383
1384	agg->F = agg->S;
1385	qfq_slot_remove(q, grp, agg);
1386
1387	if (!grp->full_slots) {
1388		__clear_bit(grp->index, &q->bitmaps[IR]);
1389		__clear_bit(grp->index, &q->bitmaps[EB]);
1390		__clear_bit(grp->index, &q->bitmaps[IB]);
1391
1392		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1393		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1394			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1395			if (mask)
1396				mask = ~((1UL << __fls(mask)) - 1);
1397			else
1398				mask = ~0UL;
1399			qfq_move_groups(q, mask, EB, ER);
1400			qfq_move_groups(q, mask, IB, IR);
1401		}
1402		__clear_bit(grp->index, &q->bitmaps[ER]);
1403	} else if (hlist_empty(&grp->slots[grp->front])) {
1404		agg = qfq_slot_scan(grp);
1405		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1406		if (grp->S != roundedS) {
1407			__clear_bit(grp->index, &q->bitmaps[ER]);
1408			__clear_bit(grp->index, &q->bitmaps[IR]);
1409			__clear_bit(grp->index, &q->bitmaps[EB]);
1410			__clear_bit(grp->index, &q->bitmaps[IB]);
1411			grp->S = roundedS;
1412			grp->F = roundedS + (2ULL << grp->slot_shift);
1413			s = qfq_calc_state(q, grp);
1414			__set_bit(grp->index, &q->bitmaps[s]);
1415		}
1416	}
1417}
1418
1419static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1420{
1421	struct qfq_sched *q = qdisc_priv(sch);
1422	struct qfq_class *cl = (struct qfq_class *)arg;
1423
1424	if (cl->qdisc->q.qlen == 0)
1425		qfq_deactivate_class(q, cl);
1426}
1427
1428static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1429				       struct hlist_head *slot)
1430{
1431	struct qfq_aggregate *agg;
1432	struct qfq_class *cl;
1433	unsigned int len;
1434
1435	hlist_for_each_entry(agg, slot, next) {
1436		list_for_each_entry(cl, &agg->active, alist) {
1437
1438			if (!cl->qdisc->ops->drop)
1439				continue;
1440
1441			len = cl->qdisc->ops->drop(cl->qdisc);
1442			if (len > 0) {
1443				if (cl->qdisc->q.qlen == 0)
1444					qfq_deactivate_class(q, cl);
1445
1446				return len;
1447			}
1448		}
1449	}
1450	return 0;
1451}
1452
1453static unsigned int qfq_drop(struct Qdisc *sch)
1454{
1455	struct qfq_sched *q = qdisc_priv(sch);
1456	struct qfq_group *grp;
1457	unsigned int i, j, len;
1458
1459	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1460		grp = &q->groups[i];
1461		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1462			len = qfq_drop_from_slot(q, &grp->slots[j]);
1463			if (len > 0) {
1464				sch->q.qlen--;
1465				return len;
1466			}
1467		}
1468
1469	}
1470
1471	return 0;
1472}
1473
1474static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1475{
1476	struct qfq_sched *q = qdisc_priv(sch);
1477	struct qfq_group *grp;
1478	int i, j, err;
1479	u32 max_cl_shift, maxbudg_shift, max_classes;
1480
1481	err = qdisc_class_hash_init(&q->clhash);
1482	if (err < 0)
1483		return err;
1484
1485	if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1486		max_classes = QFQ_MAX_AGG_CLASSES;
1487	else
1488		max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1489	/* max_cl_shift = floor(log_2(max_classes)) */
1490	max_cl_shift = __fls(max_classes);
1491	q->max_agg_classes = 1<<max_cl_shift;
1492
1493	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1494	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1495	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1496
1497	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1498		grp = &q->groups[i];
1499		grp->index = i;
1500		grp->slot_shift = q->min_slot_shift + i;
1501		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1502			INIT_HLIST_HEAD(&grp->slots[j]);
1503	}
1504
1505	INIT_HLIST_HEAD(&q->nonfull_aggs);
1506
1507	return 0;
1508}
1509
1510static void qfq_reset_qdisc(struct Qdisc *sch)
1511{
1512	struct qfq_sched *q = qdisc_priv(sch);
1513	struct qfq_class *cl;
1514	unsigned int i;
1515
1516	for (i = 0; i < q->clhash.hashsize; i++) {
1517		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1518			if (cl->qdisc->q.qlen > 0)
1519				qfq_deactivate_class(q, cl);
1520
1521			qdisc_reset(cl->qdisc);
1522		}
1523	}
1524	sch->q.qlen = 0;
1525}
1526
1527static void qfq_destroy_qdisc(struct Qdisc *sch)
1528{
1529	struct qfq_sched *q = qdisc_priv(sch);
1530	struct qfq_class *cl;
1531	struct hlist_node *next;
1532	unsigned int i;
1533
1534	tcf_destroy_chain(&q->filter_list);
1535
1536	for (i = 0; i < q->clhash.hashsize; i++) {
1537		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1538					  common.hnode) {
1539			qfq_destroy_class(sch, cl);
1540		}
1541	}
1542	qdisc_class_hash_destroy(&q->clhash);
1543}
1544
1545static const struct Qdisc_class_ops qfq_class_ops = {
1546	.change		= qfq_change_class,
1547	.delete		= qfq_delete_class,
1548	.get		= qfq_get_class,
1549	.put		= qfq_put_class,
1550	.tcf_chain	= qfq_tcf_chain,
1551	.bind_tcf	= qfq_bind_tcf,
1552	.unbind_tcf	= qfq_unbind_tcf,
1553	.graft		= qfq_graft_class,
1554	.leaf		= qfq_class_leaf,
1555	.qlen_notify	= qfq_qlen_notify,
1556	.dump		= qfq_dump_class,
1557	.dump_stats	= qfq_dump_class_stats,
1558	.walk		= qfq_walk,
1559};
1560
1561static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1562	.cl_ops		= &qfq_class_ops,
1563	.id		= "qfq",
1564	.priv_size	= sizeof(struct qfq_sched),
1565	.enqueue	= qfq_enqueue,
1566	.dequeue	= qfq_dequeue,
1567	.peek		= qdisc_peek_dequeued,
1568	.drop		= qfq_drop,
1569	.init		= qfq_init_qdisc,
1570	.reset		= qfq_reset_qdisc,
1571	.destroy	= qfq_destroy_qdisc,
1572	.owner		= THIS_MODULE,
1573};
1574
1575static int __init qfq_init(void)
1576{
1577	return register_qdisc(&qfq_qdisc_ops);
1578}
1579
1580static void __exit qfq_exit(void)
1581{
1582	unregister_qdisc(&qfq_qdisc_ops);
1583}
1584
1585module_init(qfq_init);
1586module_exit(qfq_exit);
1587MODULE_LICENSE("GPL");
1588