1/*
2 * NET		An implementation of the SOCKET network access protocol.
3 *
4 * Version:	@(#)socket.c	1.1.93	18/02/95
5 *
6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
7 *		Ross Biro
8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12 *					shutdown()
13 *		Alan Cox	:	verify_area() fixes
14 *		Alan Cox	:	Removed DDI
15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16 *		Alan Cox	:	Moved a load of checks to the very
17 *					top level.
18 *		Alan Cox	:	Move address structures to/from user
19 *					mode above the protocol layers.
20 *		Rob Janssen	:	Allow 0 length sends.
21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22 *					tty drivers).
23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24 *		Jeff Uphoff	:	Made max number of sockets command-line
25 *					configurable.
26 *		Matti Aarnio	:	Made the number of sockets dynamic,
27 *					to be allocated when needed, and mr.
28 *					Uphoff's max is used as max to be
29 *					allowed to allocate.
30 *		Linus		:	Argh. removed all the socket allocation
31 *					altogether: it's in the inode now.
32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
33 *					for NetROM and future kernel nfsd type
34 *					stuff.
35 *		Alan Cox	:	sendmsg/recvmsg basics.
36 *		Tom Dyas	:	Export net symbols.
37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38 *		Alan Cox	:	Added thread locking to sys_* calls
39 *					for sockets. May have errors at the
40 *					moment.
41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
42 *		Andi Kleen	:	Some small cleanups, optimizations,
43 *					and fixed a copy_from_user() bug.
44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46 *					protocol-independent
47 *
48 *
49 *		This program is free software; you can redistribute it and/or
50 *		modify it under the terms of the GNU General Public License
51 *		as published by the Free Software Foundation; either version
52 *		2 of the License, or (at your option) any later version.
53 *
54 *
55 *	This module is effectively the top level interface to the BSD socket
56 *	paradigm.
57 *
58 *	Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/ptp_classify.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90#include <linux/slab.h>
91#include <linux/xattr.h>
92
93#include <asm/uaccess.h>
94#include <asm/unistd.h>
95
96#include <net/compat.h>
97#include <net/wext.h>
98#include <net/cls_cgroup.h>
99
100#include <net/sock.h>
101#include <linux/netfilter.h>
102
103#include <linux/if_tun.h>
104#include <linux/ipv6_route.h>
105#include <linux/route.h>
106#include <linux/sockios.h>
107#include <linux/atalk.h>
108#include <net/busy_poll.h>
109#include <linux/errqueue.h>
110
111#ifdef CONFIG_NET_RX_BUSY_POLL
112unsigned int sysctl_net_busy_read __read_mostly;
113unsigned int sysctl_net_busy_poll __read_mostly;
114#endif
115
116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120static int sock_close(struct inode *inode, struct file *file);
121static unsigned int sock_poll(struct file *file,
122			      struct poll_table_struct *wait);
123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124#ifdef CONFIG_COMPAT
125static long compat_sock_ioctl(struct file *file,
126			      unsigned int cmd, unsigned long arg);
127#endif
128static int sock_fasync(int fd, struct file *filp, int on);
129static ssize_t sock_sendpage(struct file *file, struct page *page,
130			     int offset, size_t size, loff_t *ppos, int more);
131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132				struct pipe_inode_info *pipe, size_t len,
133				unsigned int flags);
134
135/*
136 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 *	in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140static const struct file_operations socket_file_ops = {
141	.owner =	THIS_MODULE,
142	.llseek =	no_llseek,
143	.read_iter =	sock_read_iter,
144	.write_iter =	sock_write_iter,
145	.poll =		sock_poll,
146	.unlocked_ioctl = sock_ioctl,
147#ifdef CONFIG_COMPAT
148	.compat_ioctl = compat_sock_ioctl,
149#endif
150	.mmap =		sock_mmap,
151	.release =	sock_close,
152	.fasync =	sock_fasync,
153	.sendpage =	sock_sendpage,
154	.splice_write = generic_splice_sendpage,
155	.splice_read =	sock_splice_read,
156};
157
158/*
159 *	The protocol list. Each protocol is registered in here.
160 */
161
162static DEFINE_SPINLOCK(net_family_lock);
163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165/*
166 *	Statistics counters of the socket lists
167 */
168
169static DEFINE_PER_CPU(int, sockets_in_use);
170
171/*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177/**
178 *	move_addr_to_kernel	-	copy a socket address into kernel space
179 *	@uaddr: Address in user space
180 *	@kaddr: Address in kernel space
181 *	@ulen: Length in user space
182 *
183 *	The address is copied into kernel space. If the provided address is
184 *	too long an error code of -EINVAL is returned. If the copy gives
185 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189{
190	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191		return -EINVAL;
192	if (ulen == 0)
193		return 0;
194	if (copy_from_user(kaddr, uaddr, ulen))
195		return -EFAULT;
196	return audit_sockaddr(ulen, kaddr);
197}
198
199/**
200 *	move_addr_to_user	-	copy an address to user space
201 *	@kaddr: kernel space address
202 *	@klen: length of address in kernel
203 *	@uaddr: user space address
204 *	@ulen: pointer to user length field
205 *
206 *	The value pointed to by ulen on entry is the buffer length available.
207 *	This is overwritten with the buffer space used. -EINVAL is returned
208 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209 *	is returned if either the buffer or the length field are not
210 *	accessible.
211 *	After copying the data up to the limit the user specifies, the true
212 *	length of the data is written over the length limit the user
213 *	specified. Zero is returned for a success.
214 */
215
216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217			     void __user *uaddr, int __user *ulen)
218{
219	int err;
220	int len;
221
222	BUG_ON(klen > sizeof(struct sockaddr_storage));
223	err = get_user(len, ulen);
224	if (err)
225		return err;
226	if (len > klen)
227		len = klen;
228	if (len < 0)
229		return -EINVAL;
230	if (len) {
231		if (audit_sockaddr(klen, kaddr))
232			return -ENOMEM;
233		if (copy_to_user(uaddr, kaddr, len))
234			return -EFAULT;
235	}
236	/*
237	 *      "fromlen shall refer to the value before truncation.."
238	 *                      1003.1g
239	 */
240	return __put_user(klen, ulen);
241}
242
243static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245static struct inode *sock_alloc_inode(struct super_block *sb)
246{
247	struct socket_alloc *ei;
248	struct socket_wq *wq;
249
250	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251	if (!ei)
252		return NULL;
253	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254	if (!wq) {
255		kmem_cache_free(sock_inode_cachep, ei);
256		return NULL;
257	}
258	init_waitqueue_head(&wq->wait);
259	wq->fasync_list = NULL;
260	RCU_INIT_POINTER(ei->socket.wq, wq);
261
262	ei->socket.state = SS_UNCONNECTED;
263	ei->socket.flags = 0;
264	ei->socket.ops = NULL;
265	ei->socket.sk = NULL;
266	ei->socket.file = NULL;
267
268	return &ei->vfs_inode;
269}
270
271static void sock_destroy_inode(struct inode *inode)
272{
273	struct socket_alloc *ei;
274	struct socket_wq *wq;
275
276	ei = container_of(inode, struct socket_alloc, vfs_inode);
277	wq = rcu_dereference_protected(ei->socket.wq, 1);
278	kfree_rcu(wq, rcu);
279	kmem_cache_free(sock_inode_cachep, ei);
280}
281
282static void init_once(void *foo)
283{
284	struct socket_alloc *ei = (struct socket_alloc *)foo;
285
286	inode_init_once(&ei->vfs_inode);
287}
288
289static int init_inodecache(void)
290{
291	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
292					      sizeof(struct socket_alloc),
293					      0,
294					      (SLAB_HWCACHE_ALIGN |
295					       SLAB_RECLAIM_ACCOUNT |
296					       SLAB_MEM_SPREAD),
297					      init_once);
298	if (sock_inode_cachep == NULL)
299		return -ENOMEM;
300	return 0;
301}
302
303static const struct super_operations sockfs_ops = {
304	.alloc_inode	= sock_alloc_inode,
305	.destroy_inode	= sock_destroy_inode,
306	.statfs		= simple_statfs,
307};
308
309/*
310 * sockfs_dname() is called from d_path().
311 */
312static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
313{
314	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
315				d_inode(dentry)->i_ino);
316}
317
318static const struct dentry_operations sockfs_dentry_operations = {
319	.d_dname  = sockfs_dname,
320};
321
322static struct dentry *sockfs_mount(struct file_system_type *fs_type,
323			 int flags, const char *dev_name, void *data)
324{
325	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
326		&sockfs_dentry_operations, SOCKFS_MAGIC);
327}
328
329static struct vfsmount *sock_mnt __read_mostly;
330
331static struct file_system_type sock_fs_type = {
332	.name =		"sockfs",
333	.mount =	sockfs_mount,
334	.kill_sb =	kill_anon_super,
335};
336
337/*
338 *	Obtains the first available file descriptor and sets it up for use.
339 *
340 *	These functions create file structures and maps them to fd space
341 *	of the current process. On success it returns file descriptor
342 *	and file struct implicitly stored in sock->file.
343 *	Note that another thread may close file descriptor before we return
344 *	from this function. We use the fact that now we do not refer
345 *	to socket after mapping. If one day we will need it, this
346 *	function will increment ref. count on file by 1.
347 *
348 *	In any case returned fd MAY BE not valid!
349 *	This race condition is unavoidable
350 *	with shared fd spaces, we cannot solve it inside kernel,
351 *	but we take care of internal coherence yet.
352 */
353
354struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
355{
356	struct qstr name = { .name = "" };
357	struct path path;
358	struct file *file;
359
360	if (dname) {
361		name.name = dname;
362		name.len = strlen(name.name);
363	} else if (sock->sk) {
364		name.name = sock->sk->sk_prot_creator->name;
365		name.len = strlen(name.name);
366	}
367	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
368	if (unlikely(!path.dentry))
369		return ERR_PTR(-ENOMEM);
370	path.mnt = mntget(sock_mnt);
371
372	d_instantiate(path.dentry, SOCK_INODE(sock));
373
374	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
375		  &socket_file_ops);
376	if (unlikely(IS_ERR(file))) {
377		/* drop dentry, keep inode */
378		ihold(d_inode(path.dentry));
379		path_put(&path);
380		return file;
381	}
382
383	sock->file = file;
384	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
385	file->private_data = sock;
386	return file;
387}
388EXPORT_SYMBOL(sock_alloc_file);
389
390static int sock_map_fd(struct socket *sock, int flags)
391{
392	struct file *newfile;
393	int fd = get_unused_fd_flags(flags);
394	if (unlikely(fd < 0))
395		return fd;
396
397	newfile = sock_alloc_file(sock, flags, NULL);
398	if (likely(!IS_ERR(newfile))) {
399		fd_install(fd, newfile);
400		return fd;
401	}
402
403	put_unused_fd(fd);
404	return PTR_ERR(newfile);
405}
406
407struct socket *sock_from_file(struct file *file, int *err)
408{
409	if (file->f_op == &socket_file_ops)
410		return file->private_data;	/* set in sock_map_fd */
411
412	*err = -ENOTSOCK;
413	return NULL;
414}
415EXPORT_SYMBOL(sock_from_file);
416
417/**
418 *	sockfd_lookup - Go from a file number to its socket slot
419 *	@fd: file handle
420 *	@err: pointer to an error code return
421 *
422 *	The file handle passed in is locked and the socket it is bound
423 *	too is returned. If an error occurs the err pointer is overwritten
424 *	with a negative errno code and NULL is returned. The function checks
425 *	for both invalid handles and passing a handle which is not a socket.
426 *
427 *	On a success the socket object pointer is returned.
428 */
429
430struct socket *sockfd_lookup(int fd, int *err)
431{
432	struct file *file;
433	struct socket *sock;
434
435	file = fget(fd);
436	if (!file) {
437		*err = -EBADF;
438		return NULL;
439	}
440
441	sock = sock_from_file(file, err);
442	if (!sock)
443		fput(file);
444	return sock;
445}
446EXPORT_SYMBOL(sockfd_lookup);
447
448static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
449{
450	struct fd f = fdget(fd);
451	struct socket *sock;
452
453	*err = -EBADF;
454	if (f.file) {
455		sock = sock_from_file(f.file, err);
456		if (likely(sock)) {
457			*fput_needed = f.flags;
458			return sock;
459		}
460		fdput(f);
461	}
462	return NULL;
463}
464
465#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
466#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
467#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
468static ssize_t sockfs_getxattr(struct dentry *dentry,
469			       const char *name, void *value, size_t size)
470{
471	const char *proto_name;
472	size_t proto_size;
473	int error;
474
475	error = -ENODATA;
476	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
477		proto_name = dentry->d_name.name;
478		proto_size = strlen(proto_name);
479
480		if (value) {
481			error = -ERANGE;
482			if (proto_size + 1 > size)
483				goto out;
484
485			strncpy(value, proto_name, proto_size + 1);
486		}
487		error = proto_size + 1;
488	}
489
490out:
491	return error;
492}
493
494static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
495				size_t size)
496{
497	ssize_t len;
498	ssize_t used = 0;
499
500	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
501	if (len < 0)
502		return len;
503	used += len;
504	if (buffer) {
505		if (size < used)
506			return -ERANGE;
507		buffer += len;
508	}
509
510	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
511	used += len;
512	if (buffer) {
513		if (size < used)
514			return -ERANGE;
515		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
516		buffer += len;
517	}
518
519	return used;
520}
521
522static const struct inode_operations sockfs_inode_ops = {
523	.getxattr = sockfs_getxattr,
524	.listxattr = sockfs_listxattr,
525};
526
527/**
528 *	sock_alloc	-	allocate a socket
529 *
530 *	Allocate a new inode and socket object. The two are bound together
531 *	and initialised. The socket is then returned. If we are out of inodes
532 *	NULL is returned.
533 */
534
535static struct socket *sock_alloc(void)
536{
537	struct inode *inode;
538	struct socket *sock;
539
540	inode = new_inode_pseudo(sock_mnt->mnt_sb);
541	if (!inode)
542		return NULL;
543
544	sock = SOCKET_I(inode);
545
546	kmemcheck_annotate_bitfield(sock, type);
547	inode->i_ino = get_next_ino();
548	inode->i_mode = S_IFSOCK | S_IRWXUGO;
549	inode->i_uid = current_fsuid();
550	inode->i_gid = current_fsgid();
551	inode->i_op = &sockfs_inode_ops;
552
553	this_cpu_add(sockets_in_use, 1);
554	return sock;
555}
556
557/**
558 *	sock_release	-	close a socket
559 *	@sock: socket to close
560 *
561 *	The socket is released from the protocol stack if it has a release
562 *	callback, and the inode is then released if the socket is bound to
563 *	an inode not a file.
564 */
565
566void sock_release(struct socket *sock)
567{
568	if (sock->ops) {
569		struct module *owner = sock->ops->owner;
570
571		sock->ops->release(sock);
572		sock->ops = NULL;
573		module_put(owner);
574	}
575
576	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
577		pr_err("%s: fasync list not empty!\n", __func__);
578
579	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
580		return;
581
582	this_cpu_sub(sockets_in_use, 1);
583	if (!sock->file) {
584		iput(SOCK_INODE(sock));
585		return;
586	}
587	sock->file = NULL;
588}
589EXPORT_SYMBOL(sock_release);
590
591void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
592{
593	u8 flags = *tx_flags;
594
595	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
596		flags |= SKBTX_HW_TSTAMP;
597
598	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
599		flags |= SKBTX_SW_TSTAMP;
600
601	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
602		flags |= SKBTX_SCHED_TSTAMP;
603
604	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
605		flags |= SKBTX_ACK_TSTAMP;
606
607	*tx_flags = flags;
608}
609EXPORT_SYMBOL(__sock_tx_timestamp);
610
611static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
612{
613	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
614	BUG_ON(ret == -EIOCBQUEUED);
615	return ret;
616}
617
618int sock_sendmsg(struct socket *sock, struct msghdr *msg)
619{
620	int err = security_socket_sendmsg(sock, msg,
621					  msg_data_left(msg));
622
623	return err ?: sock_sendmsg_nosec(sock, msg);
624}
625EXPORT_SYMBOL(sock_sendmsg);
626
627int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
628		   struct kvec *vec, size_t num, size_t size)
629{
630	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
631	return sock_sendmsg(sock, msg);
632}
633EXPORT_SYMBOL(kernel_sendmsg);
634
635/*
636 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
637 */
638void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
639	struct sk_buff *skb)
640{
641	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
642	struct scm_timestamping tss;
643	int empty = 1;
644	struct skb_shared_hwtstamps *shhwtstamps =
645		skb_hwtstamps(skb);
646
647	/* Race occurred between timestamp enabling and packet
648	   receiving.  Fill in the current time for now. */
649	if (need_software_tstamp && skb->tstamp.tv64 == 0)
650		__net_timestamp(skb);
651
652	if (need_software_tstamp) {
653		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
654			struct timeval tv;
655			skb_get_timestamp(skb, &tv);
656			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
657				 sizeof(tv), &tv);
658		} else {
659			struct timespec ts;
660			skb_get_timestampns(skb, &ts);
661			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
662				 sizeof(ts), &ts);
663		}
664	}
665
666	memset(&tss, 0, sizeof(tss));
667	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
668	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
669		empty = 0;
670	if (shhwtstamps &&
671	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
672	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
673		empty = 0;
674	if (!empty)
675		put_cmsg(msg, SOL_SOCKET,
676			 SCM_TIMESTAMPING, sizeof(tss), &tss);
677}
678EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
679
680void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
681	struct sk_buff *skb)
682{
683	int ack;
684
685	if (!sock_flag(sk, SOCK_WIFI_STATUS))
686		return;
687	if (!skb->wifi_acked_valid)
688		return;
689
690	ack = skb->wifi_acked;
691
692	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
693}
694EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
695
696static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
697				   struct sk_buff *skb)
698{
699	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
700		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
701			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
702}
703
704void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
705	struct sk_buff *skb)
706{
707	sock_recv_timestamp(msg, sk, skb);
708	sock_recv_drops(msg, sk, skb);
709}
710EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
711
712static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
713				     size_t size, int flags)
714{
715	return sock->ops->recvmsg(sock, msg, size, flags);
716}
717
718int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
719		 int flags)
720{
721	int err = security_socket_recvmsg(sock, msg, size, flags);
722
723	return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
724}
725EXPORT_SYMBOL(sock_recvmsg);
726
727/**
728 * kernel_recvmsg - Receive a message from a socket (kernel space)
729 * @sock:       The socket to receive the message from
730 * @msg:        Received message
731 * @vec:        Input s/g array for message data
732 * @num:        Size of input s/g array
733 * @size:       Number of bytes to read
734 * @flags:      Message flags (MSG_DONTWAIT, etc...)
735 *
736 * On return the msg structure contains the scatter/gather array passed in the
737 * vec argument. The array is modified so that it consists of the unfilled
738 * portion of the original array.
739 *
740 * The returned value is the total number of bytes received, or an error.
741 */
742int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
743		   struct kvec *vec, size_t num, size_t size, int flags)
744{
745	mm_segment_t oldfs = get_fs();
746	int result;
747
748	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
749	set_fs(KERNEL_DS);
750	result = sock_recvmsg(sock, msg, size, flags);
751	set_fs(oldfs);
752	return result;
753}
754EXPORT_SYMBOL(kernel_recvmsg);
755
756static ssize_t sock_sendpage(struct file *file, struct page *page,
757			     int offset, size_t size, loff_t *ppos, int more)
758{
759	struct socket *sock;
760	int flags;
761
762	sock = file->private_data;
763
764	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
765	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
766	flags |= more;
767
768	return kernel_sendpage(sock, page, offset, size, flags);
769}
770
771static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
772				struct pipe_inode_info *pipe, size_t len,
773				unsigned int flags)
774{
775	struct socket *sock = file->private_data;
776
777	if (unlikely(!sock->ops->splice_read))
778		return -EINVAL;
779
780	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
781}
782
783static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
784{
785	struct file *file = iocb->ki_filp;
786	struct socket *sock = file->private_data;
787	struct msghdr msg = {.msg_iter = *to,
788			     .msg_iocb = iocb};
789	ssize_t res;
790
791	if (file->f_flags & O_NONBLOCK)
792		msg.msg_flags = MSG_DONTWAIT;
793
794	if (iocb->ki_pos != 0)
795		return -ESPIPE;
796
797	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
798		return 0;
799
800	res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
801	*to = msg.msg_iter;
802	return res;
803}
804
805static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
806{
807	struct file *file = iocb->ki_filp;
808	struct socket *sock = file->private_data;
809	struct msghdr msg = {.msg_iter = *from,
810			     .msg_iocb = iocb};
811	ssize_t res;
812
813	if (iocb->ki_pos != 0)
814		return -ESPIPE;
815
816	if (file->f_flags & O_NONBLOCK)
817		msg.msg_flags = MSG_DONTWAIT;
818
819	if (sock->type == SOCK_SEQPACKET)
820		msg.msg_flags |= MSG_EOR;
821
822	res = sock_sendmsg(sock, &msg);
823	*from = msg.msg_iter;
824	return res;
825}
826
827/*
828 * Atomic setting of ioctl hooks to avoid race
829 * with module unload.
830 */
831
832static DEFINE_MUTEX(br_ioctl_mutex);
833static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
834
835void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
836{
837	mutex_lock(&br_ioctl_mutex);
838	br_ioctl_hook = hook;
839	mutex_unlock(&br_ioctl_mutex);
840}
841EXPORT_SYMBOL(brioctl_set);
842
843static DEFINE_MUTEX(vlan_ioctl_mutex);
844static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
845
846void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
847{
848	mutex_lock(&vlan_ioctl_mutex);
849	vlan_ioctl_hook = hook;
850	mutex_unlock(&vlan_ioctl_mutex);
851}
852EXPORT_SYMBOL(vlan_ioctl_set);
853
854static DEFINE_MUTEX(dlci_ioctl_mutex);
855static int (*dlci_ioctl_hook) (unsigned int, void __user *);
856
857void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
858{
859	mutex_lock(&dlci_ioctl_mutex);
860	dlci_ioctl_hook = hook;
861	mutex_unlock(&dlci_ioctl_mutex);
862}
863EXPORT_SYMBOL(dlci_ioctl_set);
864
865static long sock_do_ioctl(struct net *net, struct socket *sock,
866				 unsigned int cmd, unsigned long arg)
867{
868	int err;
869	void __user *argp = (void __user *)arg;
870
871	err = sock->ops->ioctl(sock, cmd, arg);
872
873	/*
874	 * If this ioctl is unknown try to hand it down
875	 * to the NIC driver.
876	 */
877	if (err == -ENOIOCTLCMD)
878		err = dev_ioctl(net, cmd, argp);
879
880	return err;
881}
882
883/*
884 *	With an ioctl, arg may well be a user mode pointer, but we don't know
885 *	what to do with it - that's up to the protocol still.
886 */
887
888static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
889{
890	struct socket *sock;
891	struct sock *sk;
892	void __user *argp = (void __user *)arg;
893	int pid, err;
894	struct net *net;
895
896	sock = file->private_data;
897	sk = sock->sk;
898	net = sock_net(sk);
899	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
900		err = dev_ioctl(net, cmd, argp);
901	} else
902#ifdef CONFIG_WEXT_CORE
903	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
904		err = dev_ioctl(net, cmd, argp);
905	} else
906#endif
907		switch (cmd) {
908		case FIOSETOWN:
909		case SIOCSPGRP:
910			err = -EFAULT;
911			if (get_user(pid, (int __user *)argp))
912				break;
913			f_setown(sock->file, pid, 1);
914			err = 0;
915			break;
916		case FIOGETOWN:
917		case SIOCGPGRP:
918			err = put_user(f_getown(sock->file),
919				       (int __user *)argp);
920			break;
921		case SIOCGIFBR:
922		case SIOCSIFBR:
923		case SIOCBRADDBR:
924		case SIOCBRDELBR:
925			err = -ENOPKG;
926			if (!br_ioctl_hook)
927				request_module("bridge");
928
929			mutex_lock(&br_ioctl_mutex);
930			if (br_ioctl_hook)
931				err = br_ioctl_hook(net, cmd, argp);
932			mutex_unlock(&br_ioctl_mutex);
933			break;
934		case SIOCGIFVLAN:
935		case SIOCSIFVLAN:
936			err = -ENOPKG;
937			if (!vlan_ioctl_hook)
938				request_module("8021q");
939
940			mutex_lock(&vlan_ioctl_mutex);
941			if (vlan_ioctl_hook)
942				err = vlan_ioctl_hook(net, argp);
943			mutex_unlock(&vlan_ioctl_mutex);
944			break;
945		case SIOCADDDLCI:
946		case SIOCDELDLCI:
947			err = -ENOPKG;
948			if (!dlci_ioctl_hook)
949				request_module("dlci");
950
951			mutex_lock(&dlci_ioctl_mutex);
952			if (dlci_ioctl_hook)
953				err = dlci_ioctl_hook(cmd, argp);
954			mutex_unlock(&dlci_ioctl_mutex);
955			break;
956		default:
957			err = sock_do_ioctl(net, sock, cmd, arg);
958			break;
959		}
960	return err;
961}
962
963int sock_create_lite(int family, int type, int protocol, struct socket **res)
964{
965	int err;
966	struct socket *sock = NULL;
967
968	err = security_socket_create(family, type, protocol, 1);
969	if (err)
970		goto out;
971
972	sock = sock_alloc();
973	if (!sock) {
974		err = -ENOMEM;
975		goto out;
976	}
977
978	sock->type = type;
979	err = security_socket_post_create(sock, family, type, protocol, 1);
980	if (err)
981		goto out_release;
982
983out:
984	*res = sock;
985	return err;
986out_release:
987	sock_release(sock);
988	sock = NULL;
989	goto out;
990}
991EXPORT_SYMBOL(sock_create_lite);
992
993/* No kernel lock held - perfect */
994static unsigned int sock_poll(struct file *file, poll_table *wait)
995{
996	unsigned int busy_flag = 0;
997	struct socket *sock;
998
999	/*
1000	 *      We can't return errors to poll, so it's either yes or no.
1001	 */
1002	sock = file->private_data;
1003
1004	if (sk_can_busy_loop(sock->sk)) {
1005		/* this socket can poll_ll so tell the system call */
1006		busy_flag = POLL_BUSY_LOOP;
1007
1008		/* once, only if requested by syscall */
1009		if (wait && (wait->_key & POLL_BUSY_LOOP))
1010			sk_busy_loop(sock->sk, 1);
1011	}
1012
1013	return busy_flag | sock->ops->poll(file, sock, wait);
1014}
1015
1016static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1017{
1018	struct socket *sock = file->private_data;
1019
1020	return sock->ops->mmap(file, sock, vma);
1021}
1022
1023static int sock_close(struct inode *inode, struct file *filp)
1024{
1025	sock_release(SOCKET_I(inode));
1026	return 0;
1027}
1028
1029/*
1030 *	Update the socket async list
1031 *
1032 *	Fasync_list locking strategy.
1033 *
1034 *	1. fasync_list is modified only under process context socket lock
1035 *	   i.e. under semaphore.
1036 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1037 *	   or under socket lock
1038 */
1039
1040static int sock_fasync(int fd, struct file *filp, int on)
1041{
1042	struct socket *sock = filp->private_data;
1043	struct sock *sk = sock->sk;
1044	struct socket_wq *wq;
1045
1046	if (sk == NULL)
1047		return -EINVAL;
1048
1049	lock_sock(sk);
1050	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1051	fasync_helper(fd, filp, on, &wq->fasync_list);
1052
1053	if (!wq->fasync_list)
1054		sock_reset_flag(sk, SOCK_FASYNC);
1055	else
1056		sock_set_flag(sk, SOCK_FASYNC);
1057
1058	release_sock(sk);
1059	return 0;
1060}
1061
1062/* This function may be called only under socket lock or callback_lock or rcu_lock */
1063
1064int sock_wake_async(struct socket *sock, int how, int band)
1065{
1066	struct socket_wq *wq;
1067
1068	if (!sock)
1069		return -1;
1070	rcu_read_lock();
1071	wq = rcu_dereference(sock->wq);
1072	if (!wq || !wq->fasync_list) {
1073		rcu_read_unlock();
1074		return -1;
1075	}
1076	switch (how) {
1077	case SOCK_WAKE_WAITD:
1078		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1079			break;
1080		goto call_kill;
1081	case SOCK_WAKE_SPACE:
1082		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1083			break;
1084		/* fall through */
1085	case SOCK_WAKE_IO:
1086call_kill:
1087		kill_fasync(&wq->fasync_list, SIGIO, band);
1088		break;
1089	case SOCK_WAKE_URG:
1090		kill_fasync(&wq->fasync_list, SIGURG, band);
1091	}
1092	rcu_read_unlock();
1093	return 0;
1094}
1095EXPORT_SYMBOL(sock_wake_async);
1096
1097int __sock_create(struct net *net, int family, int type, int protocol,
1098			 struct socket **res, int kern)
1099{
1100	int err;
1101	struct socket *sock;
1102	const struct net_proto_family *pf;
1103
1104	/*
1105	 *      Check protocol is in range
1106	 */
1107	if (family < 0 || family >= NPROTO)
1108		return -EAFNOSUPPORT;
1109	if (type < 0 || type >= SOCK_MAX)
1110		return -EINVAL;
1111
1112	/* Compatibility.
1113
1114	   This uglymoron is moved from INET layer to here to avoid
1115	   deadlock in module load.
1116	 */
1117	if (family == PF_INET && type == SOCK_PACKET) {
1118		static int warned;
1119		if (!warned) {
1120			warned = 1;
1121			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1122				current->comm);
1123		}
1124		family = PF_PACKET;
1125	}
1126
1127	err = security_socket_create(family, type, protocol, kern);
1128	if (err)
1129		return err;
1130
1131	/*
1132	 *	Allocate the socket and allow the family to set things up. if
1133	 *	the protocol is 0, the family is instructed to select an appropriate
1134	 *	default.
1135	 */
1136	sock = sock_alloc();
1137	if (!sock) {
1138		net_warn_ratelimited("socket: no more sockets\n");
1139		return -ENFILE;	/* Not exactly a match, but its the
1140				   closest posix thing */
1141	}
1142
1143	sock->type = type;
1144
1145#ifdef CONFIG_MODULES
1146	/* Attempt to load a protocol module if the find failed.
1147	 *
1148	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1149	 * requested real, full-featured networking support upon configuration.
1150	 * Otherwise module support will break!
1151	 */
1152	if (rcu_access_pointer(net_families[family]) == NULL)
1153		request_module("net-pf-%d", family);
1154#endif
1155
1156	rcu_read_lock();
1157	pf = rcu_dereference(net_families[family]);
1158	err = -EAFNOSUPPORT;
1159	if (!pf)
1160		goto out_release;
1161
1162	/*
1163	 * We will call the ->create function, that possibly is in a loadable
1164	 * module, so we have to bump that loadable module refcnt first.
1165	 */
1166	if (!try_module_get(pf->owner))
1167		goto out_release;
1168
1169	/* Now protected by module ref count */
1170	rcu_read_unlock();
1171
1172	err = pf->create(net, sock, protocol, kern);
1173	if (err < 0)
1174		goto out_module_put;
1175
1176	/*
1177	 * Now to bump the refcnt of the [loadable] module that owns this
1178	 * socket at sock_release time we decrement its refcnt.
1179	 */
1180	if (!try_module_get(sock->ops->owner))
1181		goto out_module_busy;
1182
1183	/*
1184	 * Now that we're done with the ->create function, the [loadable]
1185	 * module can have its refcnt decremented
1186	 */
1187	module_put(pf->owner);
1188	err = security_socket_post_create(sock, family, type, protocol, kern);
1189	if (err)
1190		goto out_sock_release;
1191	*res = sock;
1192
1193	return 0;
1194
1195out_module_busy:
1196	err = -EAFNOSUPPORT;
1197out_module_put:
1198	sock->ops = NULL;
1199	module_put(pf->owner);
1200out_sock_release:
1201	sock_release(sock);
1202	return err;
1203
1204out_release:
1205	rcu_read_unlock();
1206	goto out_sock_release;
1207}
1208EXPORT_SYMBOL(__sock_create);
1209
1210int sock_create(int family, int type, int protocol, struct socket **res)
1211{
1212	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1213}
1214EXPORT_SYMBOL(sock_create);
1215
1216int sock_create_kern(int family, int type, int protocol, struct socket **res)
1217{
1218	return __sock_create(&init_net, family, type, protocol, res, 1);
1219}
1220EXPORT_SYMBOL(sock_create_kern);
1221
1222SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1223{
1224	int retval;
1225	struct socket *sock;
1226	int flags;
1227
1228	/* Check the SOCK_* constants for consistency.  */
1229	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1230	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1231	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1232	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1233
1234	flags = type & ~SOCK_TYPE_MASK;
1235	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1236		return -EINVAL;
1237	type &= SOCK_TYPE_MASK;
1238
1239	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1240		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1241
1242	retval = sock_create(family, type, protocol, &sock);
1243	if (retval < 0)
1244		goto out;
1245
1246	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1247	if (retval < 0)
1248		goto out_release;
1249
1250out:
1251	/* It may be already another descriptor 8) Not kernel problem. */
1252	return retval;
1253
1254out_release:
1255	sock_release(sock);
1256	return retval;
1257}
1258
1259/*
1260 *	Create a pair of connected sockets.
1261 */
1262
1263SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1264		int __user *, usockvec)
1265{
1266	struct socket *sock1, *sock2;
1267	int fd1, fd2, err;
1268	struct file *newfile1, *newfile2;
1269	int flags;
1270
1271	flags = type & ~SOCK_TYPE_MASK;
1272	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1273		return -EINVAL;
1274	type &= SOCK_TYPE_MASK;
1275
1276	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1277		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1278
1279	/*
1280	 * Obtain the first socket and check if the underlying protocol
1281	 * supports the socketpair call.
1282	 */
1283
1284	err = sock_create(family, type, protocol, &sock1);
1285	if (err < 0)
1286		goto out;
1287
1288	err = sock_create(family, type, protocol, &sock2);
1289	if (err < 0)
1290		goto out_release_1;
1291
1292	err = sock1->ops->socketpair(sock1, sock2);
1293	if (err < 0)
1294		goto out_release_both;
1295
1296	fd1 = get_unused_fd_flags(flags);
1297	if (unlikely(fd1 < 0)) {
1298		err = fd1;
1299		goto out_release_both;
1300	}
1301
1302	fd2 = get_unused_fd_flags(flags);
1303	if (unlikely(fd2 < 0)) {
1304		err = fd2;
1305		goto out_put_unused_1;
1306	}
1307
1308	newfile1 = sock_alloc_file(sock1, flags, NULL);
1309	if (unlikely(IS_ERR(newfile1))) {
1310		err = PTR_ERR(newfile1);
1311		goto out_put_unused_both;
1312	}
1313
1314	newfile2 = sock_alloc_file(sock2, flags, NULL);
1315	if (IS_ERR(newfile2)) {
1316		err = PTR_ERR(newfile2);
1317		goto out_fput_1;
1318	}
1319
1320	err = put_user(fd1, &usockvec[0]);
1321	if (err)
1322		goto out_fput_both;
1323
1324	err = put_user(fd2, &usockvec[1]);
1325	if (err)
1326		goto out_fput_both;
1327
1328	audit_fd_pair(fd1, fd2);
1329
1330	fd_install(fd1, newfile1);
1331	fd_install(fd2, newfile2);
1332	/* fd1 and fd2 may be already another descriptors.
1333	 * Not kernel problem.
1334	 */
1335
1336	return 0;
1337
1338out_fput_both:
1339	fput(newfile2);
1340	fput(newfile1);
1341	put_unused_fd(fd2);
1342	put_unused_fd(fd1);
1343	goto out;
1344
1345out_fput_1:
1346	fput(newfile1);
1347	put_unused_fd(fd2);
1348	put_unused_fd(fd1);
1349	sock_release(sock2);
1350	goto out;
1351
1352out_put_unused_both:
1353	put_unused_fd(fd2);
1354out_put_unused_1:
1355	put_unused_fd(fd1);
1356out_release_both:
1357	sock_release(sock2);
1358out_release_1:
1359	sock_release(sock1);
1360out:
1361	return err;
1362}
1363
1364/*
1365 *	Bind a name to a socket. Nothing much to do here since it's
1366 *	the protocol's responsibility to handle the local address.
1367 *
1368 *	We move the socket address to kernel space before we call
1369 *	the protocol layer (having also checked the address is ok).
1370 */
1371
1372SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1373{
1374	struct socket *sock;
1375	struct sockaddr_storage address;
1376	int err, fput_needed;
1377
1378	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1379	if (sock) {
1380		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1381		if (err >= 0) {
1382			err = security_socket_bind(sock,
1383						   (struct sockaddr *)&address,
1384						   addrlen);
1385			if (!err)
1386				err = sock->ops->bind(sock,
1387						      (struct sockaddr *)
1388						      &address, addrlen);
1389		}
1390		fput_light(sock->file, fput_needed);
1391	}
1392	return err;
1393}
1394
1395/*
1396 *	Perform a listen. Basically, we allow the protocol to do anything
1397 *	necessary for a listen, and if that works, we mark the socket as
1398 *	ready for listening.
1399 */
1400
1401SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1402{
1403	struct socket *sock;
1404	int err, fput_needed;
1405	int somaxconn;
1406
1407	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1408	if (sock) {
1409		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1410		if ((unsigned int)backlog > somaxconn)
1411			backlog = somaxconn;
1412
1413		err = security_socket_listen(sock, backlog);
1414		if (!err)
1415			err = sock->ops->listen(sock, backlog);
1416
1417		fput_light(sock->file, fput_needed);
1418	}
1419	return err;
1420}
1421
1422/*
1423 *	For accept, we attempt to create a new socket, set up the link
1424 *	with the client, wake up the client, then return the new
1425 *	connected fd. We collect the address of the connector in kernel
1426 *	space and move it to user at the very end. This is unclean because
1427 *	we open the socket then return an error.
1428 *
1429 *	1003.1g adds the ability to recvmsg() to query connection pending
1430 *	status to recvmsg. We need to add that support in a way thats
1431 *	clean when we restucture accept also.
1432 */
1433
1434SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1435		int __user *, upeer_addrlen, int, flags)
1436{
1437	struct socket *sock, *newsock;
1438	struct file *newfile;
1439	int err, len, newfd, fput_needed;
1440	struct sockaddr_storage address;
1441
1442	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1443		return -EINVAL;
1444
1445	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1446		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1447
1448	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1449	if (!sock)
1450		goto out;
1451
1452	err = -ENFILE;
1453	newsock = sock_alloc();
1454	if (!newsock)
1455		goto out_put;
1456
1457	newsock->type = sock->type;
1458	newsock->ops = sock->ops;
1459
1460	/*
1461	 * We don't need try_module_get here, as the listening socket (sock)
1462	 * has the protocol module (sock->ops->owner) held.
1463	 */
1464	__module_get(newsock->ops->owner);
1465
1466	newfd = get_unused_fd_flags(flags);
1467	if (unlikely(newfd < 0)) {
1468		err = newfd;
1469		sock_release(newsock);
1470		goto out_put;
1471	}
1472	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1473	if (unlikely(IS_ERR(newfile))) {
1474		err = PTR_ERR(newfile);
1475		put_unused_fd(newfd);
1476		sock_release(newsock);
1477		goto out_put;
1478	}
1479
1480	err = security_socket_accept(sock, newsock);
1481	if (err)
1482		goto out_fd;
1483
1484	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1485	if (err < 0)
1486		goto out_fd;
1487
1488	if (upeer_sockaddr) {
1489		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1490					  &len, 2) < 0) {
1491			err = -ECONNABORTED;
1492			goto out_fd;
1493		}
1494		err = move_addr_to_user(&address,
1495					len, upeer_sockaddr, upeer_addrlen);
1496		if (err < 0)
1497			goto out_fd;
1498	}
1499
1500	/* File flags are not inherited via accept() unlike another OSes. */
1501
1502	fd_install(newfd, newfile);
1503	err = newfd;
1504
1505out_put:
1506	fput_light(sock->file, fput_needed);
1507out:
1508	return err;
1509out_fd:
1510	fput(newfile);
1511	put_unused_fd(newfd);
1512	goto out_put;
1513}
1514
1515SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1516		int __user *, upeer_addrlen)
1517{
1518	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1519}
1520
1521/*
1522 *	Attempt to connect to a socket with the server address.  The address
1523 *	is in user space so we verify it is OK and move it to kernel space.
1524 *
1525 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1526 *	break bindings
1527 *
1528 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1529 *	other SEQPACKET protocols that take time to connect() as it doesn't
1530 *	include the -EINPROGRESS status for such sockets.
1531 */
1532
1533SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1534		int, addrlen)
1535{
1536	struct socket *sock;
1537	struct sockaddr_storage address;
1538	int err, fput_needed;
1539
1540	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1541	if (!sock)
1542		goto out;
1543	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1544	if (err < 0)
1545		goto out_put;
1546
1547	err =
1548	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1549	if (err)
1550		goto out_put;
1551
1552	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1553				 sock->file->f_flags);
1554out_put:
1555	fput_light(sock->file, fput_needed);
1556out:
1557	return err;
1558}
1559
1560/*
1561 *	Get the local address ('name') of a socket object. Move the obtained
1562 *	name to user space.
1563 */
1564
1565SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1566		int __user *, usockaddr_len)
1567{
1568	struct socket *sock;
1569	struct sockaddr_storage address;
1570	int len, err, fput_needed;
1571
1572	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1573	if (!sock)
1574		goto out;
1575
1576	err = security_socket_getsockname(sock);
1577	if (err)
1578		goto out_put;
1579
1580	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1581	if (err)
1582		goto out_put;
1583	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1584
1585out_put:
1586	fput_light(sock->file, fput_needed);
1587out:
1588	return err;
1589}
1590
1591/*
1592 *	Get the remote address ('name') of a socket object. Move the obtained
1593 *	name to user space.
1594 */
1595
1596SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1597		int __user *, usockaddr_len)
1598{
1599	struct socket *sock;
1600	struct sockaddr_storage address;
1601	int len, err, fput_needed;
1602
1603	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604	if (sock != NULL) {
1605		err = security_socket_getpeername(sock);
1606		if (err) {
1607			fput_light(sock->file, fput_needed);
1608			return err;
1609		}
1610
1611		err =
1612		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1613				       1);
1614		if (!err)
1615			err = move_addr_to_user(&address, len, usockaddr,
1616						usockaddr_len);
1617		fput_light(sock->file, fput_needed);
1618	}
1619	return err;
1620}
1621
1622/*
1623 *	Send a datagram to a given address. We move the address into kernel
1624 *	space and check the user space data area is readable before invoking
1625 *	the protocol.
1626 */
1627
1628SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1629		unsigned int, flags, struct sockaddr __user *, addr,
1630		int, addr_len)
1631{
1632	struct socket *sock;
1633	struct sockaddr_storage address;
1634	int err;
1635	struct msghdr msg;
1636	struct iovec iov;
1637	int fput_needed;
1638
1639	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1640	if (unlikely(err))
1641		return err;
1642	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1643	if (!sock)
1644		goto out;
1645
1646	msg.msg_name = NULL;
1647	msg.msg_control = NULL;
1648	msg.msg_controllen = 0;
1649	msg.msg_namelen = 0;
1650	if (addr) {
1651		err = move_addr_to_kernel(addr, addr_len, &address);
1652		if (err < 0)
1653			goto out_put;
1654		msg.msg_name = (struct sockaddr *)&address;
1655		msg.msg_namelen = addr_len;
1656	}
1657	if (sock->file->f_flags & O_NONBLOCK)
1658		flags |= MSG_DONTWAIT;
1659	msg.msg_flags = flags;
1660	err = sock_sendmsg(sock, &msg);
1661
1662out_put:
1663	fput_light(sock->file, fput_needed);
1664out:
1665	return err;
1666}
1667
1668/*
1669 *	Send a datagram down a socket.
1670 */
1671
1672SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1673		unsigned int, flags)
1674{
1675	return sys_sendto(fd, buff, len, flags, NULL, 0);
1676}
1677
1678/*
1679 *	Receive a frame from the socket and optionally record the address of the
1680 *	sender. We verify the buffers are writable and if needed move the
1681 *	sender address from kernel to user space.
1682 */
1683
1684SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1685		unsigned int, flags, struct sockaddr __user *, addr,
1686		int __user *, addr_len)
1687{
1688	struct socket *sock;
1689	struct iovec iov;
1690	struct msghdr msg;
1691	struct sockaddr_storage address;
1692	int err, err2;
1693	int fput_needed;
1694
1695	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1696	if (unlikely(err))
1697		return err;
1698	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1699	if (!sock)
1700		goto out;
1701
1702	msg.msg_control = NULL;
1703	msg.msg_controllen = 0;
1704	/* Save some cycles and don't copy the address if not needed */
1705	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1706	/* We assume all kernel code knows the size of sockaddr_storage */
1707	msg.msg_namelen = 0;
1708	msg.msg_iocb = NULL;
1709	if (sock->file->f_flags & O_NONBLOCK)
1710		flags |= MSG_DONTWAIT;
1711	err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1712
1713	if (err >= 0 && addr != NULL) {
1714		err2 = move_addr_to_user(&address,
1715					 msg.msg_namelen, addr, addr_len);
1716		if (err2 < 0)
1717			err = err2;
1718	}
1719
1720	fput_light(sock->file, fput_needed);
1721out:
1722	return err;
1723}
1724
1725/*
1726 *	Receive a datagram from a socket.
1727 */
1728
1729SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1730		unsigned int, flags)
1731{
1732	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1733}
1734
1735/*
1736 *	Set a socket option. Because we don't know the option lengths we have
1737 *	to pass the user mode parameter for the protocols to sort out.
1738 */
1739
1740SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1741		char __user *, optval, int, optlen)
1742{
1743	int err, fput_needed;
1744	struct socket *sock;
1745
1746	if (optlen < 0)
1747		return -EINVAL;
1748
1749	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1750	if (sock != NULL) {
1751		err = security_socket_setsockopt(sock, level, optname);
1752		if (err)
1753			goto out_put;
1754
1755		if (level == SOL_SOCKET)
1756			err =
1757			    sock_setsockopt(sock, level, optname, optval,
1758					    optlen);
1759		else
1760			err =
1761			    sock->ops->setsockopt(sock, level, optname, optval,
1762						  optlen);
1763out_put:
1764		fput_light(sock->file, fput_needed);
1765	}
1766	return err;
1767}
1768
1769/*
1770 *	Get a socket option. Because we don't know the option lengths we have
1771 *	to pass a user mode parameter for the protocols to sort out.
1772 */
1773
1774SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1775		char __user *, optval, int __user *, optlen)
1776{
1777	int err, fput_needed;
1778	struct socket *sock;
1779
1780	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1781	if (sock != NULL) {
1782		err = security_socket_getsockopt(sock, level, optname);
1783		if (err)
1784			goto out_put;
1785
1786		if (level == SOL_SOCKET)
1787			err =
1788			    sock_getsockopt(sock, level, optname, optval,
1789					    optlen);
1790		else
1791			err =
1792			    sock->ops->getsockopt(sock, level, optname, optval,
1793						  optlen);
1794out_put:
1795		fput_light(sock->file, fput_needed);
1796	}
1797	return err;
1798}
1799
1800/*
1801 *	Shutdown a socket.
1802 */
1803
1804SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1805{
1806	int err, fput_needed;
1807	struct socket *sock;
1808
1809	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1810	if (sock != NULL) {
1811		err = security_socket_shutdown(sock, how);
1812		if (!err)
1813			err = sock->ops->shutdown(sock, how);
1814		fput_light(sock->file, fput_needed);
1815	}
1816	return err;
1817}
1818
1819/* A couple of helpful macros for getting the address of the 32/64 bit
1820 * fields which are the same type (int / unsigned) on our platforms.
1821 */
1822#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1823#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1824#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1825
1826struct used_address {
1827	struct sockaddr_storage name;
1828	unsigned int name_len;
1829};
1830
1831static int copy_msghdr_from_user(struct msghdr *kmsg,
1832				 struct user_msghdr __user *umsg,
1833				 struct sockaddr __user **save_addr,
1834				 struct iovec **iov)
1835{
1836	struct sockaddr __user *uaddr;
1837	struct iovec __user *uiov;
1838	size_t nr_segs;
1839	ssize_t err;
1840
1841	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1842	    __get_user(uaddr, &umsg->msg_name) ||
1843	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1844	    __get_user(uiov, &umsg->msg_iov) ||
1845	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1846	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1847	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1848	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1849		return -EFAULT;
1850
1851	if (!uaddr)
1852		kmsg->msg_namelen = 0;
1853
1854	if (kmsg->msg_namelen < 0)
1855		return -EINVAL;
1856
1857	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1858		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1859
1860	if (save_addr)
1861		*save_addr = uaddr;
1862
1863	if (uaddr && kmsg->msg_namelen) {
1864		if (!save_addr) {
1865			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1866						  kmsg->msg_name);
1867			if (err < 0)
1868				return err;
1869		}
1870	} else {
1871		kmsg->msg_name = NULL;
1872		kmsg->msg_namelen = 0;
1873	}
1874
1875	if (nr_segs > UIO_MAXIOV)
1876		return -EMSGSIZE;
1877
1878	kmsg->msg_iocb = NULL;
1879
1880	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1881			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1882}
1883
1884static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1885			 struct msghdr *msg_sys, unsigned int flags,
1886			 struct used_address *used_address)
1887{
1888	struct compat_msghdr __user *msg_compat =
1889	    (struct compat_msghdr __user *)msg;
1890	struct sockaddr_storage address;
1891	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1892	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1893	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1894	/* 20 is size of ipv6_pktinfo */
1895	unsigned char *ctl_buf = ctl;
1896	int ctl_len;
1897	ssize_t err;
1898
1899	msg_sys->msg_name = &address;
1900
1901	if (MSG_CMSG_COMPAT & flags)
1902		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1903	else
1904		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1905	if (err < 0)
1906		return err;
1907
1908	err = -ENOBUFS;
1909
1910	if (msg_sys->msg_controllen > INT_MAX)
1911		goto out_freeiov;
1912	ctl_len = msg_sys->msg_controllen;
1913	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1914		err =
1915		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1916						     sizeof(ctl));
1917		if (err)
1918			goto out_freeiov;
1919		ctl_buf = msg_sys->msg_control;
1920		ctl_len = msg_sys->msg_controllen;
1921	} else if (ctl_len) {
1922		if (ctl_len > sizeof(ctl)) {
1923			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1924			if (ctl_buf == NULL)
1925				goto out_freeiov;
1926		}
1927		err = -EFAULT;
1928		/*
1929		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1930		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1931		 * checking falls down on this.
1932		 */
1933		if (copy_from_user(ctl_buf,
1934				   (void __user __force *)msg_sys->msg_control,
1935				   ctl_len))
1936			goto out_freectl;
1937		msg_sys->msg_control = ctl_buf;
1938	}
1939	msg_sys->msg_flags = flags;
1940
1941	if (sock->file->f_flags & O_NONBLOCK)
1942		msg_sys->msg_flags |= MSG_DONTWAIT;
1943	/*
1944	 * If this is sendmmsg() and current destination address is same as
1945	 * previously succeeded address, omit asking LSM's decision.
1946	 * used_address->name_len is initialized to UINT_MAX so that the first
1947	 * destination address never matches.
1948	 */
1949	if (used_address && msg_sys->msg_name &&
1950	    used_address->name_len == msg_sys->msg_namelen &&
1951	    !memcmp(&used_address->name, msg_sys->msg_name,
1952		    used_address->name_len)) {
1953		err = sock_sendmsg_nosec(sock, msg_sys);
1954		goto out_freectl;
1955	}
1956	err = sock_sendmsg(sock, msg_sys);
1957	/*
1958	 * If this is sendmmsg() and sending to current destination address was
1959	 * successful, remember it.
1960	 */
1961	if (used_address && err >= 0) {
1962		used_address->name_len = msg_sys->msg_namelen;
1963		if (msg_sys->msg_name)
1964			memcpy(&used_address->name, msg_sys->msg_name,
1965			       used_address->name_len);
1966	}
1967
1968out_freectl:
1969	if (ctl_buf != ctl)
1970		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1971out_freeiov:
1972	kfree(iov);
1973	return err;
1974}
1975
1976/*
1977 *	BSD sendmsg interface
1978 */
1979
1980long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1981{
1982	int fput_needed, err;
1983	struct msghdr msg_sys;
1984	struct socket *sock;
1985
1986	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1987	if (!sock)
1988		goto out;
1989
1990	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1991
1992	fput_light(sock->file, fput_needed);
1993out:
1994	return err;
1995}
1996
1997SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1998{
1999	if (flags & MSG_CMSG_COMPAT)
2000		return -EINVAL;
2001	return __sys_sendmsg(fd, msg, flags);
2002}
2003
2004/*
2005 *	Linux sendmmsg interface
2006 */
2007
2008int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2009		   unsigned int flags)
2010{
2011	int fput_needed, err, datagrams;
2012	struct socket *sock;
2013	struct mmsghdr __user *entry;
2014	struct compat_mmsghdr __user *compat_entry;
2015	struct msghdr msg_sys;
2016	struct used_address used_address;
2017
2018	if (vlen > UIO_MAXIOV)
2019		vlen = UIO_MAXIOV;
2020
2021	datagrams = 0;
2022
2023	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2024	if (!sock)
2025		return err;
2026
2027	used_address.name_len = UINT_MAX;
2028	entry = mmsg;
2029	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2030	err = 0;
2031
2032	while (datagrams < vlen) {
2033		if (MSG_CMSG_COMPAT & flags) {
2034			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2035					     &msg_sys, flags, &used_address);
2036			if (err < 0)
2037				break;
2038			err = __put_user(err, &compat_entry->msg_len);
2039			++compat_entry;
2040		} else {
2041			err = ___sys_sendmsg(sock,
2042					     (struct user_msghdr __user *)entry,
2043					     &msg_sys, flags, &used_address);
2044			if (err < 0)
2045				break;
2046			err = put_user(err, &entry->msg_len);
2047			++entry;
2048		}
2049
2050		if (err)
2051			break;
2052		++datagrams;
2053	}
2054
2055	fput_light(sock->file, fput_needed);
2056
2057	/* We only return an error if no datagrams were able to be sent */
2058	if (datagrams != 0)
2059		return datagrams;
2060
2061	return err;
2062}
2063
2064SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2065		unsigned int, vlen, unsigned int, flags)
2066{
2067	if (flags & MSG_CMSG_COMPAT)
2068		return -EINVAL;
2069	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2070}
2071
2072static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2073			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2074{
2075	struct compat_msghdr __user *msg_compat =
2076	    (struct compat_msghdr __user *)msg;
2077	struct iovec iovstack[UIO_FASTIOV];
2078	struct iovec *iov = iovstack;
2079	unsigned long cmsg_ptr;
2080	int total_len, len;
2081	ssize_t err;
2082
2083	/* kernel mode address */
2084	struct sockaddr_storage addr;
2085
2086	/* user mode address pointers */
2087	struct sockaddr __user *uaddr;
2088	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2089
2090	msg_sys->msg_name = &addr;
2091
2092	if (MSG_CMSG_COMPAT & flags)
2093		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2094	else
2095		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2096	if (err < 0)
2097		return err;
2098	total_len = iov_iter_count(&msg_sys->msg_iter);
2099
2100	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2101	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2102
2103	/* We assume all kernel code knows the size of sockaddr_storage */
2104	msg_sys->msg_namelen = 0;
2105
2106	if (sock->file->f_flags & O_NONBLOCK)
2107		flags |= MSG_DONTWAIT;
2108	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2109							  total_len, flags);
2110	if (err < 0)
2111		goto out_freeiov;
2112	len = err;
2113
2114	if (uaddr != NULL) {
2115		err = move_addr_to_user(&addr,
2116					msg_sys->msg_namelen, uaddr,
2117					uaddr_len);
2118		if (err < 0)
2119			goto out_freeiov;
2120	}
2121	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2122			 COMPAT_FLAGS(msg));
2123	if (err)
2124		goto out_freeiov;
2125	if (MSG_CMSG_COMPAT & flags)
2126		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2127				 &msg_compat->msg_controllen);
2128	else
2129		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2130				 &msg->msg_controllen);
2131	if (err)
2132		goto out_freeiov;
2133	err = len;
2134
2135out_freeiov:
2136	kfree(iov);
2137	return err;
2138}
2139
2140/*
2141 *	BSD recvmsg interface
2142 */
2143
2144long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2145{
2146	int fput_needed, err;
2147	struct msghdr msg_sys;
2148	struct socket *sock;
2149
2150	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2151	if (!sock)
2152		goto out;
2153
2154	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2155
2156	fput_light(sock->file, fput_needed);
2157out:
2158	return err;
2159}
2160
2161SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2162		unsigned int, flags)
2163{
2164	if (flags & MSG_CMSG_COMPAT)
2165		return -EINVAL;
2166	return __sys_recvmsg(fd, msg, flags);
2167}
2168
2169/*
2170 *     Linux recvmmsg interface
2171 */
2172
2173int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2174		   unsigned int flags, struct timespec *timeout)
2175{
2176	int fput_needed, err, datagrams;
2177	struct socket *sock;
2178	struct mmsghdr __user *entry;
2179	struct compat_mmsghdr __user *compat_entry;
2180	struct msghdr msg_sys;
2181	struct timespec end_time;
2182
2183	if (timeout &&
2184	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2185				    timeout->tv_nsec))
2186		return -EINVAL;
2187
2188	datagrams = 0;
2189
2190	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2191	if (!sock)
2192		return err;
2193
2194	err = sock_error(sock->sk);
2195	if (err)
2196		goto out_put;
2197
2198	entry = mmsg;
2199	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2200
2201	while (datagrams < vlen) {
2202		/*
2203		 * No need to ask LSM for more than the first datagram.
2204		 */
2205		if (MSG_CMSG_COMPAT & flags) {
2206			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2207					     &msg_sys, flags & ~MSG_WAITFORONE,
2208					     datagrams);
2209			if (err < 0)
2210				break;
2211			err = __put_user(err, &compat_entry->msg_len);
2212			++compat_entry;
2213		} else {
2214			err = ___sys_recvmsg(sock,
2215					     (struct user_msghdr __user *)entry,
2216					     &msg_sys, flags & ~MSG_WAITFORONE,
2217					     datagrams);
2218			if (err < 0)
2219				break;
2220			err = put_user(err, &entry->msg_len);
2221			++entry;
2222		}
2223
2224		if (err)
2225			break;
2226		++datagrams;
2227
2228		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2229		if (flags & MSG_WAITFORONE)
2230			flags |= MSG_DONTWAIT;
2231
2232		if (timeout) {
2233			ktime_get_ts(timeout);
2234			*timeout = timespec_sub(end_time, *timeout);
2235			if (timeout->tv_sec < 0) {
2236				timeout->tv_sec = timeout->tv_nsec = 0;
2237				break;
2238			}
2239
2240			/* Timeout, return less than vlen datagrams */
2241			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2242				break;
2243		}
2244
2245		/* Out of band data, return right away */
2246		if (msg_sys.msg_flags & MSG_OOB)
2247			break;
2248	}
2249
2250out_put:
2251	fput_light(sock->file, fput_needed);
2252
2253	if (err == 0)
2254		return datagrams;
2255
2256	if (datagrams != 0) {
2257		/*
2258		 * We may return less entries than requested (vlen) if the
2259		 * sock is non block and there aren't enough datagrams...
2260		 */
2261		if (err != -EAGAIN) {
2262			/*
2263			 * ... or  if recvmsg returns an error after we
2264			 * received some datagrams, where we record the
2265			 * error to return on the next call or if the
2266			 * app asks about it using getsockopt(SO_ERROR).
2267			 */
2268			sock->sk->sk_err = -err;
2269		}
2270
2271		return datagrams;
2272	}
2273
2274	return err;
2275}
2276
2277SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2278		unsigned int, vlen, unsigned int, flags,
2279		struct timespec __user *, timeout)
2280{
2281	int datagrams;
2282	struct timespec timeout_sys;
2283
2284	if (flags & MSG_CMSG_COMPAT)
2285		return -EINVAL;
2286
2287	if (!timeout)
2288		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2289
2290	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2291		return -EFAULT;
2292
2293	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2294
2295	if (datagrams > 0 &&
2296	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2297		datagrams = -EFAULT;
2298
2299	return datagrams;
2300}
2301
2302#ifdef __ARCH_WANT_SYS_SOCKETCALL
2303/* Argument list sizes for sys_socketcall */
2304#define AL(x) ((x) * sizeof(unsigned long))
2305static const unsigned char nargs[21] = {
2306	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2307	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2308	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2309	AL(4), AL(5), AL(4)
2310};
2311
2312#undef AL
2313
2314/*
2315 *	System call vectors.
2316 *
2317 *	Argument checking cleaned up. Saved 20% in size.
2318 *  This function doesn't need to set the kernel lock because
2319 *  it is set by the callees.
2320 */
2321
2322SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2323{
2324	unsigned long a[AUDITSC_ARGS];
2325	unsigned long a0, a1;
2326	int err;
2327	unsigned int len;
2328
2329	if (call < 1 || call > SYS_SENDMMSG)
2330		return -EINVAL;
2331
2332	len = nargs[call];
2333	if (len > sizeof(a))
2334		return -EINVAL;
2335
2336	/* copy_from_user should be SMP safe. */
2337	if (copy_from_user(a, args, len))
2338		return -EFAULT;
2339
2340	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2341	if (err)
2342		return err;
2343
2344	a0 = a[0];
2345	a1 = a[1];
2346
2347	switch (call) {
2348	case SYS_SOCKET:
2349		err = sys_socket(a0, a1, a[2]);
2350		break;
2351	case SYS_BIND:
2352		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2353		break;
2354	case SYS_CONNECT:
2355		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2356		break;
2357	case SYS_LISTEN:
2358		err = sys_listen(a0, a1);
2359		break;
2360	case SYS_ACCEPT:
2361		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2362				  (int __user *)a[2], 0);
2363		break;
2364	case SYS_GETSOCKNAME:
2365		err =
2366		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2367				    (int __user *)a[2]);
2368		break;
2369	case SYS_GETPEERNAME:
2370		err =
2371		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2372				    (int __user *)a[2]);
2373		break;
2374	case SYS_SOCKETPAIR:
2375		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2376		break;
2377	case SYS_SEND:
2378		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2379		break;
2380	case SYS_SENDTO:
2381		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2382				 (struct sockaddr __user *)a[4], a[5]);
2383		break;
2384	case SYS_RECV:
2385		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2386		break;
2387	case SYS_RECVFROM:
2388		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2389				   (struct sockaddr __user *)a[4],
2390				   (int __user *)a[5]);
2391		break;
2392	case SYS_SHUTDOWN:
2393		err = sys_shutdown(a0, a1);
2394		break;
2395	case SYS_SETSOCKOPT:
2396		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2397		break;
2398	case SYS_GETSOCKOPT:
2399		err =
2400		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2401				   (int __user *)a[4]);
2402		break;
2403	case SYS_SENDMSG:
2404		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2405		break;
2406	case SYS_SENDMMSG:
2407		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2408		break;
2409	case SYS_RECVMSG:
2410		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2411		break;
2412	case SYS_RECVMMSG:
2413		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2414				   (struct timespec __user *)a[4]);
2415		break;
2416	case SYS_ACCEPT4:
2417		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2418				  (int __user *)a[2], a[3]);
2419		break;
2420	default:
2421		err = -EINVAL;
2422		break;
2423	}
2424	return err;
2425}
2426
2427#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2428
2429/**
2430 *	sock_register - add a socket protocol handler
2431 *	@ops: description of protocol
2432 *
2433 *	This function is called by a protocol handler that wants to
2434 *	advertise its address family, and have it linked into the
2435 *	socket interface. The value ops->family corresponds to the
2436 *	socket system call protocol family.
2437 */
2438int sock_register(const struct net_proto_family *ops)
2439{
2440	int err;
2441
2442	if (ops->family >= NPROTO) {
2443		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2444		return -ENOBUFS;
2445	}
2446
2447	spin_lock(&net_family_lock);
2448	if (rcu_dereference_protected(net_families[ops->family],
2449				      lockdep_is_held(&net_family_lock)))
2450		err = -EEXIST;
2451	else {
2452		rcu_assign_pointer(net_families[ops->family], ops);
2453		err = 0;
2454	}
2455	spin_unlock(&net_family_lock);
2456
2457	pr_info("NET: Registered protocol family %d\n", ops->family);
2458	return err;
2459}
2460EXPORT_SYMBOL(sock_register);
2461
2462/**
2463 *	sock_unregister - remove a protocol handler
2464 *	@family: protocol family to remove
2465 *
2466 *	This function is called by a protocol handler that wants to
2467 *	remove its address family, and have it unlinked from the
2468 *	new socket creation.
2469 *
2470 *	If protocol handler is a module, then it can use module reference
2471 *	counts to protect against new references. If protocol handler is not
2472 *	a module then it needs to provide its own protection in
2473 *	the ops->create routine.
2474 */
2475void sock_unregister(int family)
2476{
2477	BUG_ON(family < 0 || family >= NPROTO);
2478
2479	spin_lock(&net_family_lock);
2480	RCU_INIT_POINTER(net_families[family], NULL);
2481	spin_unlock(&net_family_lock);
2482
2483	synchronize_rcu();
2484
2485	pr_info("NET: Unregistered protocol family %d\n", family);
2486}
2487EXPORT_SYMBOL(sock_unregister);
2488
2489static int __init sock_init(void)
2490{
2491	int err;
2492	/*
2493	 *      Initialize the network sysctl infrastructure.
2494	 */
2495	err = net_sysctl_init();
2496	if (err)
2497		goto out;
2498
2499	/*
2500	 *      Initialize skbuff SLAB cache
2501	 */
2502	skb_init();
2503
2504	/*
2505	 *      Initialize the protocols module.
2506	 */
2507
2508	init_inodecache();
2509
2510	err = register_filesystem(&sock_fs_type);
2511	if (err)
2512		goto out_fs;
2513	sock_mnt = kern_mount(&sock_fs_type);
2514	if (IS_ERR(sock_mnt)) {
2515		err = PTR_ERR(sock_mnt);
2516		goto out_mount;
2517	}
2518
2519	/* The real protocol initialization is performed in later initcalls.
2520	 */
2521
2522#ifdef CONFIG_NETFILTER
2523	err = netfilter_init();
2524	if (err)
2525		goto out;
2526#endif
2527
2528	ptp_classifier_init();
2529
2530out:
2531	return err;
2532
2533out_mount:
2534	unregister_filesystem(&sock_fs_type);
2535out_fs:
2536	goto out;
2537}
2538
2539core_initcall(sock_init);	/* early initcall */
2540
2541#ifdef CONFIG_PROC_FS
2542void socket_seq_show(struct seq_file *seq)
2543{
2544	int cpu;
2545	int counter = 0;
2546
2547	for_each_possible_cpu(cpu)
2548	    counter += per_cpu(sockets_in_use, cpu);
2549
2550	/* It can be negative, by the way. 8) */
2551	if (counter < 0)
2552		counter = 0;
2553
2554	seq_printf(seq, "sockets: used %d\n", counter);
2555}
2556#endif				/* CONFIG_PROC_FS */
2557
2558#ifdef CONFIG_COMPAT
2559static int do_siocgstamp(struct net *net, struct socket *sock,
2560			 unsigned int cmd, void __user *up)
2561{
2562	mm_segment_t old_fs = get_fs();
2563	struct timeval ktv;
2564	int err;
2565
2566	set_fs(KERNEL_DS);
2567	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2568	set_fs(old_fs);
2569	if (!err)
2570		err = compat_put_timeval(&ktv, up);
2571
2572	return err;
2573}
2574
2575static int do_siocgstampns(struct net *net, struct socket *sock,
2576			   unsigned int cmd, void __user *up)
2577{
2578	mm_segment_t old_fs = get_fs();
2579	struct timespec kts;
2580	int err;
2581
2582	set_fs(KERNEL_DS);
2583	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2584	set_fs(old_fs);
2585	if (!err)
2586		err = compat_put_timespec(&kts, up);
2587
2588	return err;
2589}
2590
2591static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2592{
2593	struct ifreq __user *uifr;
2594	int err;
2595
2596	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2597	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2598		return -EFAULT;
2599
2600	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2601	if (err)
2602		return err;
2603
2604	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2605		return -EFAULT;
2606
2607	return 0;
2608}
2609
2610static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2611{
2612	struct compat_ifconf ifc32;
2613	struct ifconf ifc;
2614	struct ifconf __user *uifc;
2615	struct compat_ifreq __user *ifr32;
2616	struct ifreq __user *ifr;
2617	unsigned int i, j;
2618	int err;
2619
2620	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2621		return -EFAULT;
2622
2623	memset(&ifc, 0, sizeof(ifc));
2624	if (ifc32.ifcbuf == 0) {
2625		ifc32.ifc_len = 0;
2626		ifc.ifc_len = 0;
2627		ifc.ifc_req = NULL;
2628		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2629	} else {
2630		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2631			sizeof(struct ifreq);
2632		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2633		ifc.ifc_len = len;
2634		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2635		ifr32 = compat_ptr(ifc32.ifcbuf);
2636		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2637			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2638				return -EFAULT;
2639			ifr++;
2640			ifr32++;
2641		}
2642	}
2643	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2644		return -EFAULT;
2645
2646	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2647	if (err)
2648		return err;
2649
2650	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2651		return -EFAULT;
2652
2653	ifr = ifc.ifc_req;
2654	ifr32 = compat_ptr(ifc32.ifcbuf);
2655	for (i = 0, j = 0;
2656	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2657	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2658		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2659			return -EFAULT;
2660		ifr32++;
2661		ifr++;
2662	}
2663
2664	if (ifc32.ifcbuf == 0) {
2665		/* Translate from 64-bit structure multiple to
2666		 * a 32-bit one.
2667		 */
2668		i = ifc.ifc_len;
2669		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2670		ifc32.ifc_len = i;
2671	} else {
2672		ifc32.ifc_len = i;
2673	}
2674	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2675		return -EFAULT;
2676
2677	return 0;
2678}
2679
2680static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2681{
2682	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2683	bool convert_in = false, convert_out = false;
2684	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2685	struct ethtool_rxnfc __user *rxnfc;
2686	struct ifreq __user *ifr;
2687	u32 rule_cnt = 0, actual_rule_cnt;
2688	u32 ethcmd;
2689	u32 data;
2690	int ret;
2691
2692	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2693		return -EFAULT;
2694
2695	compat_rxnfc = compat_ptr(data);
2696
2697	if (get_user(ethcmd, &compat_rxnfc->cmd))
2698		return -EFAULT;
2699
2700	/* Most ethtool structures are defined without padding.
2701	 * Unfortunately struct ethtool_rxnfc is an exception.
2702	 */
2703	switch (ethcmd) {
2704	default:
2705		break;
2706	case ETHTOOL_GRXCLSRLALL:
2707		/* Buffer size is variable */
2708		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2709			return -EFAULT;
2710		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2711			return -ENOMEM;
2712		buf_size += rule_cnt * sizeof(u32);
2713		/* fall through */
2714	case ETHTOOL_GRXRINGS:
2715	case ETHTOOL_GRXCLSRLCNT:
2716	case ETHTOOL_GRXCLSRULE:
2717	case ETHTOOL_SRXCLSRLINS:
2718		convert_out = true;
2719		/* fall through */
2720	case ETHTOOL_SRXCLSRLDEL:
2721		buf_size += sizeof(struct ethtool_rxnfc);
2722		convert_in = true;
2723		break;
2724	}
2725
2726	ifr = compat_alloc_user_space(buf_size);
2727	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2728
2729	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2730		return -EFAULT;
2731
2732	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2733		     &ifr->ifr_ifru.ifru_data))
2734		return -EFAULT;
2735
2736	if (convert_in) {
2737		/* We expect there to be holes between fs.m_ext and
2738		 * fs.ring_cookie and at the end of fs, but nowhere else.
2739		 */
2740		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2741			     sizeof(compat_rxnfc->fs.m_ext) !=
2742			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2743			     sizeof(rxnfc->fs.m_ext));
2744		BUILD_BUG_ON(
2745			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2746			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2747			offsetof(struct ethtool_rxnfc, fs.location) -
2748			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2749
2750		if (copy_in_user(rxnfc, compat_rxnfc,
2751				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2752				 (void __user *)rxnfc) ||
2753		    copy_in_user(&rxnfc->fs.ring_cookie,
2754				 &compat_rxnfc->fs.ring_cookie,
2755				 (void __user *)(&rxnfc->fs.location + 1) -
2756				 (void __user *)&rxnfc->fs.ring_cookie) ||
2757		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2758				 sizeof(rxnfc->rule_cnt)))
2759			return -EFAULT;
2760	}
2761
2762	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2763	if (ret)
2764		return ret;
2765
2766	if (convert_out) {
2767		if (copy_in_user(compat_rxnfc, rxnfc,
2768				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2769				 (const void __user *)rxnfc) ||
2770		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2771				 &rxnfc->fs.ring_cookie,
2772				 (const void __user *)(&rxnfc->fs.location + 1) -
2773				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2774		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2775				 sizeof(rxnfc->rule_cnt)))
2776			return -EFAULT;
2777
2778		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2779			/* As an optimisation, we only copy the actual
2780			 * number of rules that the underlying
2781			 * function returned.  Since Mallory might
2782			 * change the rule count in user memory, we
2783			 * check that it is less than the rule count
2784			 * originally given (as the user buffer size),
2785			 * which has been range-checked.
2786			 */
2787			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2788				return -EFAULT;
2789			if (actual_rule_cnt < rule_cnt)
2790				rule_cnt = actual_rule_cnt;
2791			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2792					 &rxnfc->rule_locs[0],
2793					 rule_cnt * sizeof(u32)))
2794				return -EFAULT;
2795		}
2796	}
2797
2798	return 0;
2799}
2800
2801static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2802{
2803	void __user *uptr;
2804	compat_uptr_t uptr32;
2805	struct ifreq __user *uifr;
2806
2807	uifr = compat_alloc_user_space(sizeof(*uifr));
2808	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2809		return -EFAULT;
2810
2811	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2812		return -EFAULT;
2813
2814	uptr = compat_ptr(uptr32);
2815
2816	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2817		return -EFAULT;
2818
2819	return dev_ioctl(net, SIOCWANDEV, uifr);
2820}
2821
2822static int bond_ioctl(struct net *net, unsigned int cmd,
2823			 struct compat_ifreq __user *ifr32)
2824{
2825	struct ifreq kifr;
2826	mm_segment_t old_fs;
2827	int err;
2828
2829	switch (cmd) {
2830	case SIOCBONDENSLAVE:
2831	case SIOCBONDRELEASE:
2832	case SIOCBONDSETHWADDR:
2833	case SIOCBONDCHANGEACTIVE:
2834		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2835			return -EFAULT;
2836
2837		old_fs = get_fs();
2838		set_fs(KERNEL_DS);
2839		err = dev_ioctl(net, cmd,
2840				(struct ifreq __user __force *) &kifr);
2841		set_fs(old_fs);
2842
2843		return err;
2844	default:
2845		return -ENOIOCTLCMD;
2846	}
2847}
2848
2849/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2850static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2851				 struct compat_ifreq __user *u_ifreq32)
2852{
2853	struct ifreq __user *u_ifreq64;
2854	char tmp_buf[IFNAMSIZ];
2855	void __user *data64;
2856	u32 data32;
2857
2858	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2859			   IFNAMSIZ))
2860		return -EFAULT;
2861	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2862		return -EFAULT;
2863	data64 = compat_ptr(data32);
2864
2865	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2866
2867	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2868			 IFNAMSIZ))
2869		return -EFAULT;
2870	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2871		return -EFAULT;
2872
2873	return dev_ioctl(net, cmd, u_ifreq64);
2874}
2875
2876static int dev_ifsioc(struct net *net, struct socket *sock,
2877			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2878{
2879	struct ifreq __user *uifr;
2880	int err;
2881
2882	uifr = compat_alloc_user_space(sizeof(*uifr));
2883	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2884		return -EFAULT;
2885
2886	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2887
2888	if (!err) {
2889		switch (cmd) {
2890		case SIOCGIFFLAGS:
2891		case SIOCGIFMETRIC:
2892		case SIOCGIFMTU:
2893		case SIOCGIFMEM:
2894		case SIOCGIFHWADDR:
2895		case SIOCGIFINDEX:
2896		case SIOCGIFADDR:
2897		case SIOCGIFBRDADDR:
2898		case SIOCGIFDSTADDR:
2899		case SIOCGIFNETMASK:
2900		case SIOCGIFPFLAGS:
2901		case SIOCGIFTXQLEN:
2902		case SIOCGMIIPHY:
2903		case SIOCGMIIREG:
2904			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2905				err = -EFAULT;
2906			break;
2907		}
2908	}
2909	return err;
2910}
2911
2912static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2913			struct compat_ifreq __user *uifr32)
2914{
2915	struct ifreq ifr;
2916	struct compat_ifmap __user *uifmap32;
2917	mm_segment_t old_fs;
2918	int err;
2919
2920	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2921	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2922	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2923	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2924	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2925	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2926	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2927	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2928	if (err)
2929		return -EFAULT;
2930
2931	old_fs = get_fs();
2932	set_fs(KERNEL_DS);
2933	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2934	set_fs(old_fs);
2935
2936	if (cmd == SIOCGIFMAP && !err) {
2937		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2938		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2939		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2940		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2941		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2942		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2943		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2944		if (err)
2945			err = -EFAULT;
2946	}
2947	return err;
2948}
2949
2950struct rtentry32 {
2951	u32		rt_pad1;
2952	struct sockaddr rt_dst;         /* target address               */
2953	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2954	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2955	unsigned short	rt_flags;
2956	short		rt_pad2;
2957	u32		rt_pad3;
2958	unsigned char	rt_tos;
2959	unsigned char	rt_class;
2960	short		rt_pad4;
2961	short		rt_metric;      /* +1 for binary compatibility! */
2962	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2963	u32		rt_mtu;         /* per route MTU/Window         */
2964	u32		rt_window;      /* Window clamping              */
2965	unsigned short  rt_irtt;        /* Initial RTT                  */
2966};
2967
2968struct in6_rtmsg32 {
2969	struct in6_addr		rtmsg_dst;
2970	struct in6_addr		rtmsg_src;
2971	struct in6_addr		rtmsg_gateway;
2972	u32			rtmsg_type;
2973	u16			rtmsg_dst_len;
2974	u16			rtmsg_src_len;
2975	u32			rtmsg_metric;
2976	u32			rtmsg_info;
2977	u32			rtmsg_flags;
2978	s32			rtmsg_ifindex;
2979};
2980
2981static int routing_ioctl(struct net *net, struct socket *sock,
2982			 unsigned int cmd, void __user *argp)
2983{
2984	int ret;
2985	void *r = NULL;
2986	struct in6_rtmsg r6;
2987	struct rtentry r4;
2988	char devname[16];
2989	u32 rtdev;
2990	mm_segment_t old_fs = get_fs();
2991
2992	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2993		struct in6_rtmsg32 __user *ur6 = argp;
2994		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2995			3 * sizeof(struct in6_addr));
2996		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2997		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2998		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2999		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3000		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3001		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3002		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3003
3004		r = (void *) &r6;
3005	} else { /* ipv4 */
3006		struct rtentry32 __user *ur4 = argp;
3007		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3008					3 * sizeof(struct sockaddr));
3009		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3010		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3011		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3012		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3013		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3014		ret |= get_user(rtdev, &(ur4->rt_dev));
3015		if (rtdev) {
3016			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3017			r4.rt_dev = (char __user __force *)devname;
3018			devname[15] = 0;
3019		} else
3020			r4.rt_dev = NULL;
3021
3022		r = (void *) &r4;
3023	}
3024
3025	if (ret) {
3026		ret = -EFAULT;
3027		goto out;
3028	}
3029
3030	set_fs(KERNEL_DS);
3031	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3032	set_fs(old_fs);
3033
3034out:
3035	return ret;
3036}
3037
3038/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3039 * for some operations; this forces use of the newer bridge-utils that
3040 * use compatible ioctls
3041 */
3042static int old_bridge_ioctl(compat_ulong_t __user *argp)
3043{
3044	compat_ulong_t tmp;
3045
3046	if (get_user(tmp, argp))
3047		return -EFAULT;
3048	if (tmp == BRCTL_GET_VERSION)
3049		return BRCTL_VERSION + 1;
3050	return -EINVAL;
3051}
3052
3053static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3054			 unsigned int cmd, unsigned long arg)
3055{
3056	void __user *argp = compat_ptr(arg);
3057	struct sock *sk = sock->sk;
3058	struct net *net = sock_net(sk);
3059
3060	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3061		return compat_ifr_data_ioctl(net, cmd, argp);
3062
3063	switch (cmd) {
3064	case SIOCSIFBR:
3065	case SIOCGIFBR:
3066		return old_bridge_ioctl(argp);
3067	case SIOCGIFNAME:
3068		return dev_ifname32(net, argp);
3069	case SIOCGIFCONF:
3070		return dev_ifconf(net, argp);
3071	case SIOCETHTOOL:
3072		return ethtool_ioctl(net, argp);
3073	case SIOCWANDEV:
3074		return compat_siocwandev(net, argp);
3075	case SIOCGIFMAP:
3076	case SIOCSIFMAP:
3077		return compat_sioc_ifmap(net, cmd, argp);
3078	case SIOCBONDENSLAVE:
3079	case SIOCBONDRELEASE:
3080	case SIOCBONDSETHWADDR:
3081	case SIOCBONDCHANGEACTIVE:
3082		return bond_ioctl(net, cmd, argp);
3083	case SIOCADDRT:
3084	case SIOCDELRT:
3085		return routing_ioctl(net, sock, cmd, argp);
3086	case SIOCGSTAMP:
3087		return do_siocgstamp(net, sock, cmd, argp);
3088	case SIOCGSTAMPNS:
3089		return do_siocgstampns(net, sock, cmd, argp);
3090	case SIOCBONDSLAVEINFOQUERY:
3091	case SIOCBONDINFOQUERY:
3092	case SIOCSHWTSTAMP:
3093	case SIOCGHWTSTAMP:
3094		return compat_ifr_data_ioctl(net, cmd, argp);
3095
3096	case FIOSETOWN:
3097	case SIOCSPGRP:
3098	case FIOGETOWN:
3099	case SIOCGPGRP:
3100	case SIOCBRADDBR:
3101	case SIOCBRDELBR:
3102	case SIOCGIFVLAN:
3103	case SIOCSIFVLAN:
3104	case SIOCADDDLCI:
3105	case SIOCDELDLCI:
3106		return sock_ioctl(file, cmd, arg);
3107
3108	case SIOCGIFFLAGS:
3109	case SIOCSIFFLAGS:
3110	case SIOCGIFMETRIC:
3111	case SIOCSIFMETRIC:
3112	case SIOCGIFMTU:
3113	case SIOCSIFMTU:
3114	case SIOCGIFMEM:
3115	case SIOCSIFMEM:
3116	case SIOCGIFHWADDR:
3117	case SIOCSIFHWADDR:
3118	case SIOCADDMULTI:
3119	case SIOCDELMULTI:
3120	case SIOCGIFINDEX:
3121	case SIOCGIFADDR:
3122	case SIOCSIFADDR:
3123	case SIOCSIFHWBROADCAST:
3124	case SIOCDIFADDR:
3125	case SIOCGIFBRDADDR:
3126	case SIOCSIFBRDADDR:
3127	case SIOCGIFDSTADDR:
3128	case SIOCSIFDSTADDR:
3129	case SIOCGIFNETMASK:
3130	case SIOCSIFNETMASK:
3131	case SIOCSIFPFLAGS:
3132	case SIOCGIFPFLAGS:
3133	case SIOCGIFTXQLEN:
3134	case SIOCSIFTXQLEN:
3135	case SIOCBRADDIF:
3136	case SIOCBRDELIF:
3137	case SIOCSIFNAME:
3138	case SIOCGMIIPHY:
3139	case SIOCGMIIREG:
3140	case SIOCSMIIREG:
3141		return dev_ifsioc(net, sock, cmd, argp);
3142
3143	case SIOCSARP:
3144	case SIOCGARP:
3145	case SIOCDARP:
3146	case SIOCATMARK:
3147		return sock_do_ioctl(net, sock, cmd, arg);
3148	}
3149
3150	return -ENOIOCTLCMD;
3151}
3152
3153static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3154			      unsigned long arg)
3155{
3156	struct socket *sock = file->private_data;
3157	int ret = -ENOIOCTLCMD;
3158	struct sock *sk;
3159	struct net *net;
3160
3161	sk = sock->sk;
3162	net = sock_net(sk);
3163
3164	if (sock->ops->compat_ioctl)
3165		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3166
3167	if (ret == -ENOIOCTLCMD &&
3168	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3169		ret = compat_wext_handle_ioctl(net, cmd, arg);
3170
3171	if (ret == -ENOIOCTLCMD)
3172		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3173
3174	return ret;
3175}
3176#endif
3177
3178int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3179{
3180	return sock->ops->bind(sock, addr, addrlen);
3181}
3182EXPORT_SYMBOL(kernel_bind);
3183
3184int kernel_listen(struct socket *sock, int backlog)
3185{
3186	return sock->ops->listen(sock, backlog);
3187}
3188EXPORT_SYMBOL(kernel_listen);
3189
3190int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3191{
3192	struct sock *sk = sock->sk;
3193	int err;
3194
3195	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3196			       newsock);
3197	if (err < 0)
3198		goto done;
3199
3200	err = sock->ops->accept(sock, *newsock, flags);
3201	if (err < 0) {
3202		sock_release(*newsock);
3203		*newsock = NULL;
3204		goto done;
3205	}
3206
3207	(*newsock)->ops = sock->ops;
3208	__module_get((*newsock)->ops->owner);
3209
3210done:
3211	return err;
3212}
3213EXPORT_SYMBOL(kernel_accept);
3214
3215int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3216		   int flags)
3217{
3218	return sock->ops->connect(sock, addr, addrlen, flags);
3219}
3220EXPORT_SYMBOL(kernel_connect);
3221
3222int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3223			 int *addrlen)
3224{
3225	return sock->ops->getname(sock, addr, addrlen, 0);
3226}
3227EXPORT_SYMBOL(kernel_getsockname);
3228
3229int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3230			 int *addrlen)
3231{
3232	return sock->ops->getname(sock, addr, addrlen, 1);
3233}
3234EXPORT_SYMBOL(kernel_getpeername);
3235
3236int kernel_getsockopt(struct socket *sock, int level, int optname,
3237			char *optval, int *optlen)
3238{
3239	mm_segment_t oldfs = get_fs();
3240	char __user *uoptval;
3241	int __user *uoptlen;
3242	int err;
3243
3244	uoptval = (char __user __force *) optval;
3245	uoptlen = (int __user __force *) optlen;
3246
3247	set_fs(KERNEL_DS);
3248	if (level == SOL_SOCKET)
3249		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3250	else
3251		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3252					    uoptlen);
3253	set_fs(oldfs);
3254	return err;
3255}
3256EXPORT_SYMBOL(kernel_getsockopt);
3257
3258int kernel_setsockopt(struct socket *sock, int level, int optname,
3259			char *optval, unsigned int optlen)
3260{
3261	mm_segment_t oldfs = get_fs();
3262	char __user *uoptval;
3263	int err;
3264
3265	uoptval = (char __user __force *) optval;
3266
3267	set_fs(KERNEL_DS);
3268	if (level == SOL_SOCKET)
3269		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3270	else
3271		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3272					    optlen);
3273	set_fs(oldfs);
3274	return err;
3275}
3276EXPORT_SYMBOL(kernel_setsockopt);
3277
3278int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3279		    size_t size, int flags)
3280{
3281	if (sock->ops->sendpage)
3282		return sock->ops->sendpage(sock, page, offset, size, flags);
3283
3284	return sock_no_sendpage(sock, page, offset, size, flags);
3285}
3286EXPORT_SYMBOL(kernel_sendpage);
3287
3288int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3289{
3290	mm_segment_t oldfs = get_fs();
3291	int err;
3292
3293	set_fs(KERNEL_DS);
3294	err = sock->ops->ioctl(sock, cmd, arg);
3295	set_fs(oldfs);
3296
3297	return err;
3298}
3299EXPORT_SYMBOL(kernel_sock_ioctl);
3300
3301int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3302{
3303	return sock->ops->shutdown(sock, how);
3304}
3305EXPORT_SYMBOL(kernel_sock_shutdown);
3306