1/* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61#include <linux/mm.h> 62#include <linux/socket.h> 63#include <linux/file.h> 64#include <linux/net.h> 65#include <linux/interrupt.h> 66#include <linux/thread_info.h> 67#include <linux/rcupdate.h> 68#include <linux/netdevice.h> 69#include <linux/proc_fs.h> 70#include <linux/seq_file.h> 71#include <linux/mutex.h> 72#include <linux/if_bridge.h> 73#include <linux/if_frad.h> 74#include <linux/if_vlan.h> 75#include <linux/ptp_classify.h> 76#include <linux/init.h> 77#include <linux/poll.h> 78#include <linux/cache.h> 79#include <linux/module.h> 80#include <linux/highmem.h> 81#include <linux/mount.h> 82#include <linux/security.h> 83#include <linux/syscalls.h> 84#include <linux/compat.h> 85#include <linux/kmod.h> 86#include <linux/audit.h> 87#include <linux/wireless.h> 88#include <linux/nsproxy.h> 89#include <linux/magic.h> 90#include <linux/slab.h> 91#include <linux/xattr.h> 92 93#include <asm/uaccess.h> 94#include <asm/unistd.h> 95 96#include <net/compat.h> 97#include <net/wext.h> 98#include <net/cls_cgroup.h> 99 100#include <net/sock.h> 101#include <linux/netfilter.h> 102 103#include <linux/if_tun.h> 104#include <linux/ipv6_route.h> 105#include <linux/route.h> 106#include <linux/sockios.h> 107#include <linux/atalk.h> 108#include <net/busy_poll.h> 109#include <linux/errqueue.h> 110 111#ifdef CONFIG_NET_RX_BUSY_POLL 112unsigned int sysctl_net_busy_read __read_mostly; 113unsigned int sysctl_net_busy_poll __read_mostly; 114#endif 115 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120static int sock_close(struct inode *inode, struct file *file); 121static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124#ifdef CONFIG_COMPAT 125static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127#endif 128static int sock_fasync(int fd, struct file *filp, int on); 129static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135/* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147#ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149#endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156}; 157 158/* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162static DEFINE_SPINLOCK(net_family_lock); 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165/* 166 * Statistics counters of the socket lists 167 */ 168 169static DEFINE_PER_CPU(int, sockets_in_use); 170 171/* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177/** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189{ 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197} 198 199/** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218{ 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241} 242 243static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245static struct inode *sock_alloc_inode(struct super_block *sb) 246{ 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 RCU_INIT_POINTER(ei->socket.wq, wq); 261 262 ei->socket.state = SS_UNCONNECTED; 263 ei->socket.flags = 0; 264 ei->socket.ops = NULL; 265 ei->socket.sk = NULL; 266 ei->socket.file = NULL; 267 268 return &ei->vfs_inode; 269} 270 271static void sock_destroy_inode(struct inode *inode) 272{ 273 struct socket_alloc *ei; 274 struct socket_wq *wq; 275 276 ei = container_of(inode, struct socket_alloc, vfs_inode); 277 wq = rcu_dereference_protected(ei->socket.wq, 1); 278 kfree_rcu(wq, rcu); 279 kmem_cache_free(sock_inode_cachep, ei); 280} 281 282static void init_once(void *foo) 283{ 284 struct socket_alloc *ei = (struct socket_alloc *)foo; 285 286 inode_init_once(&ei->vfs_inode); 287} 288 289static int init_inodecache(void) 290{ 291 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 292 sizeof(struct socket_alloc), 293 0, 294 (SLAB_HWCACHE_ALIGN | 295 SLAB_RECLAIM_ACCOUNT | 296 SLAB_MEM_SPREAD), 297 init_once); 298 if (sock_inode_cachep == NULL) 299 return -ENOMEM; 300 return 0; 301} 302 303static const struct super_operations sockfs_ops = { 304 .alloc_inode = sock_alloc_inode, 305 .destroy_inode = sock_destroy_inode, 306 .statfs = simple_statfs, 307}; 308 309/* 310 * sockfs_dname() is called from d_path(). 311 */ 312static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 313{ 314 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 315 d_inode(dentry)->i_ino); 316} 317 318static const struct dentry_operations sockfs_dentry_operations = { 319 .d_dname = sockfs_dname, 320}; 321 322static struct dentry *sockfs_mount(struct file_system_type *fs_type, 323 int flags, const char *dev_name, void *data) 324{ 325 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 326 &sockfs_dentry_operations, SOCKFS_MAGIC); 327} 328 329static struct vfsmount *sock_mnt __read_mostly; 330 331static struct file_system_type sock_fs_type = { 332 .name = "sockfs", 333 .mount = sockfs_mount, 334 .kill_sb = kill_anon_super, 335}; 336 337/* 338 * Obtains the first available file descriptor and sets it up for use. 339 * 340 * These functions create file structures and maps them to fd space 341 * of the current process. On success it returns file descriptor 342 * and file struct implicitly stored in sock->file. 343 * Note that another thread may close file descriptor before we return 344 * from this function. We use the fact that now we do not refer 345 * to socket after mapping. If one day we will need it, this 346 * function will increment ref. count on file by 1. 347 * 348 * In any case returned fd MAY BE not valid! 349 * This race condition is unavoidable 350 * with shared fd spaces, we cannot solve it inside kernel, 351 * but we take care of internal coherence yet. 352 */ 353 354struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 355{ 356 struct qstr name = { .name = "" }; 357 struct path path; 358 struct file *file; 359 360 if (dname) { 361 name.name = dname; 362 name.len = strlen(name.name); 363 } else if (sock->sk) { 364 name.name = sock->sk->sk_prot_creator->name; 365 name.len = strlen(name.name); 366 } 367 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 368 if (unlikely(!path.dentry)) 369 return ERR_PTR(-ENOMEM); 370 path.mnt = mntget(sock_mnt); 371 372 d_instantiate(path.dentry, SOCK_INODE(sock)); 373 374 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 375 &socket_file_ops); 376 if (unlikely(IS_ERR(file))) { 377 /* drop dentry, keep inode */ 378 ihold(d_inode(path.dentry)); 379 path_put(&path); 380 return file; 381 } 382 383 sock->file = file; 384 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 385 file->private_data = sock; 386 return file; 387} 388EXPORT_SYMBOL(sock_alloc_file); 389 390static int sock_map_fd(struct socket *sock, int flags) 391{ 392 struct file *newfile; 393 int fd = get_unused_fd_flags(flags); 394 if (unlikely(fd < 0)) 395 return fd; 396 397 newfile = sock_alloc_file(sock, flags, NULL); 398 if (likely(!IS_ERR(newfile))) { 399 fd_install(fd, newfile); 400 return fd; 401 } 402 403 put_unused_fd(fd); 404 return PTR_ERR(newfile); 405} 406 407struct socket *sock_from_file(struct file *file, int *err) 408{ 409 if (file->f_op == &socket_file_ops) 410 return file->private_data; /* set in sock_map_fd */ 411 412 *err = -ENOTSOCK; 413 return NULL; 414} 415EXPORT_SYMBOL(sock_from_file); 416 417/** 418 * sockfd_lookup - Go from a file number to its socket slot 419 * @fd: file handle 420 * @err: pointer to an error code return 421 * 422 * The file handle passed in is locked and the socket it is bound 423 * too is returned. If an error occurs the err pointer is overwritten 424 * with a negative errno code and NULL is returned. The function checks 425 * for both invalid handles and passing a handle which is not a socket. 426 * 427 * On a success the socket object pointer is returned. 428 */ 429 430struct socket *sockfd_lookup(int fd, int *err) 431{ 432 struct file *file; 433 struct socket *sock; 434 435 file = fget(fd); 436 if (!file) { 437 *err = -EBADF; 438 return NULL; 439 } 440 441 sock = sock_from_file(file, err); 442 if (!sock) 443 fput(file); 444 return sock; 445} 446EXPORT_SYMBOL(sockfd_lookup); 447 448static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 449{ 450 struct fd f = fdget(fd); 451 struct socket *sock; 452 453 *err = -EBADF; 454 if (f.file) { 455 sock = sock_from_file(f.file, err); 456 if (likely(sock)) { 457 *fput_needed = f.flags; 458 return sock; 459 } 460 fdput(f); 461 } 462 return NULL; 463} 464 465#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 466#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 467#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 468static ssize_t sockfs_getxattr(struct dentry *dentry, 469 const char *name, void *value, size_t size) 470{ 471 const char *proto_name; 472 size_t proto_size; 473 int error; 474 475 error = -ENODATA; 476 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 477 proto_name = dentry->d_name.name; 478 proto_size = strlen(proto_name); 479 480 if (value) { 481 error = -ERANGE; 482 if (proto_size + 1 > size) 483 goto out; 484 485 strncpy(value, proto_name, proto_size + 1); 486 } 487 error = proto_size + 1; 488 } 489 490out: 491 return error; 492} 493 494static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 495 size_t size) 496{ 497 ssize_t len; 498 ssize_t used = 0; 499 500 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 501 if (len < 0) 502 return len; 503 used += len; 504 if (buffer) { 505 if (size < used) 506 return -ERANGE; 507 buffer += len; 508 } 509 510 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 511 used += len; 512 if (buffer) { 513 if (size < used) 514 return -ERANGE; 515 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 516 buffer += len; 517 } 518 519 return used; 520} 521 522static const struct inode_operations sockfs_inode_ops = { 523 .getxattr = sockfs_getxattr, 524 .listxattr = sockfs_listxattr, 525}; 526 527/** 528 * sock_alloc - allocate a socket 529 * 530 * Allocate a new inode and socket object. The two are bound together 531 * and initialised. The socket is then returned. If we are out of inodes 532 * NULL is returned. 533 */ 534 535static struct socket *sock_alloc(void) 536{ 537 struct inode *inode; 538 struct socket *sock; 539 540 inode = new_inode_pseudo(sock_mnt->mnt_sb); 541 if (!inode) 542 return NULL; 543 544 sock = SOCKET_I(inode); 545 546 kmemcheck_annotate_bitfield(sock, type); 547 inode->i_ino = get_next_ino(); 548 inode->i_mode = S_IFSOCK | S_IRWXUGO; 549 inode->i_uid = current_fsuid(); 550 inode->i_gid = current_fsgid(); 551 inode->i_op = &sockfs_inode_ops; 552 553 this_cpu_add(sockets_in_use, 1); 554 return sock; 555} 556 557/** 558 * sock_release - close a socket 559 * @sock: socket to close 560 * 561 * The socket is released from the protocol stack if it has a release 562 * callback, and the inode is then released if the socket is bound to 563 * an inode not a file. 564 */ 565 566void sock_release(struct socket *sock) 567{ 568 if (sock->ops) { 569 struct module *owner = sock->ops->owner; 570 571 sock->ops->release(sock); 572 sock->ops = NULL; 573 module_put(owner); 574 } 575 576 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 577 pr_err("%s: fasync list not empty!\n", __func__); 578 579 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 580 return; 581 582 this_cpu_sub(sockets_in_use, 1); 583 if (!sock->file) { 584 iput(SOCK_INODE(sock)); 585 return; 586 } 587 sock->file = NULL; 588} 589EXPORT_SYMBOL(sock_release); 590 591void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 592{ 593 u8 flags = *tx_flags; 594 595 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 596 flags |= SKBTX_HW_TSTAMP; 597 598 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 599 flags |= SKBTX_SW_TSTAMP; 600 601 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 602 flags |= SKBTX_SCHED_TSTAMP; 603 604 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 605 flags |= SKBTX_ACK_TSTAMP; 606 607 *tx_flags = flags; 608} 609EXPORT_SYMBOL(__sock_tx_timestamp); 610 611static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 612{ 613 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 614 BUG_ON(ret == -EIOCBQUEUED); 615 return ret; 616} 617 618int sock_sendmsg(struct socket *sock, struct msghdr *msg) 619{ 620 int err = security_socket_sendmsg(sock, msg, 621 msg_data_left(msg)); 622 623 return err ?: sock_sendmsg_nosec(sock, msg); 624} 625EXPORT_SYMBOL(sock_sendmsg); 626 627int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 628 struct kvec *vec, size_t num, size_t size) 629{ 630 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 631 return sock_sendmsg(sock, msg); 632} 633EXPORT_SYMBOL(kernel_sendmsg); 634 635/* 636 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 637 */ 638void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 639 struct sk_buff *skb) 640{ 641 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 642 struct scm_timestamping tss; 643 int empty = 1; 644 struct skb_shared_hwtstamps *shhwtstamps = 645 skb_hwtstamps(skb); 646 647 /* Race occurred between timestamp enabling and packet 648 receiving. Fill in the current time for now. */ 649 if (need_software_tstamp && skb->tstamp.tv64 == 0) 650 __net_timestamp(skb); 651 652 if (need_software_tstamp) { 653 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 654 struct timeval tv; 655 skb_get_timestamp(skb, &tv); 656 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 657 sizeof(tv), &tv); 658 } else { 659 struct timespec ts; 660 skb_get_timestampns(skb, &ts); 661 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 662 sizeof(ts), &ts); 663 } 664 } 665 666 memset(&tss, 0, sizeof(tss)); 667 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 668 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 669 empty = 0; 670 if (shhwtstamps && 671 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 672 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 673 empty = 0; 674 if (!empty) 675 put_cmsg(msg, SOL_SOCKET, 676 SCM_TIMESTAMPING, sizeof(tss), &tss); 677} 678EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 679 680void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 681 struct sk_buff *skb) 682{ 683 int ack; 684 685 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 686 return; 687 if (!skb->wifi_acked_valid) 688 return; 689 690 ack = skb->wifi_acked; 691 692 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 693} 694EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 695 696static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 697 struct sk_buff *skb) 698{ 699 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 700 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 701 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 702} 703 704void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 705 struct sk_buff *skb) 706{ 707 sock_recv_timestamp(msg, sk, skb); 708 sock_recv_drops(msg, sk, skb); 709} 710EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 711 712static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 713 size_t size, int flags) 714{ 715 return sock->ops->recvmsg(sock, msg, size, flags); 716} 717 718int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 719 int flags) 720{ 721 int err = security_socket_recvmsg(sock, msg, size, flags); 722 723 return err ?: sock_recvmsg_nosec(sock, msg, size, flags); 724} 725EXPORT_SYMBOL(sock_recvmsg); 726 727/** 728 * kernel_recvmsg - Receive a message from a socket (kernel space) 729 * @sock: The socket to receive the message from 730 * @msg: Received message 731 * @vec: Input s/g array for message data 732 * @num: Size of input s/g array 733 * @size: Number of bytes to read 734 * @flags: Message flags (MSG_DONTWAIT, etc...) 735 * 736 * On return the msg structure contains the scatter/gather array passed in the 737 * vec argument. The array is modified so that it consists of the unfilled 738 * portion of the original array. 739 * 740 * The returned value is the total number of bytes received, or an error. 741 */ 742int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 743 struct kvec *vec, size_t num, size_t size, int flags) 744{ 745 mm_segment_t oldfs = get_fs(); 746 int result; 747 748 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 749 set_fs(KERNEL_DS); 750 result = sock_recvmsg(sock, msg, size, flags); 751 set_fs(oldfs); 752 return result; 753} 754EXPORT_SYMBOL(kernel_recvmsg); 755 756static ssize_t sock_sendpage(struct file *file, struct page *page, 757 int offset, size_t size, loff_t *ppos, int more) 758{ 759 struct socket *sock; 760 int flags; 761 762 sock = file->private_data; 763 764 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 765 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 766 flags |= more; 767 768 return kernel_sendpage(sock, page, offset, size, flags); 769} 770 771static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 772 struct pipe_inode_info *pipe, size_t len, 773 unsigned int flags) 774{ 775 struct socket *sock = file->private_data; 776 777 if (unlikely(!sock->ops->splice_read)) 778 return -EINVAL; 779 780 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 781} 782 783static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 784{ 785 struct file *file = iocb->ki_filp; 786 struct socket *sock = file->private_data; 787 struct msghdr msg = {.msg_iter = *to, 788 .msg_iocb = iocb}; 789 ssize_t res; 790 791 if (file->f_flags & O_NONBLOCK) 792 msg.msg_flags = MSG_DONTWAIT; 793 794 if (iocb->ki_pos != 0) 795 return -ESPIPE; 796 797 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 798 return 0; 799 800 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags); 801 *to = msg.msg_iter; 802 return res; 803} 804 805static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 806{ 807 struct file *file = iocb->ki_filp; 808 struct socket *sock = file->private_data; 809 struct msghdr msg = {.msg_iter = *from, 810 .msg_iocb = iocb}; 811 ssize_t res; 812 813 if (iocb->ki_pos != 0) 814 return -ESPIPE; 815 816 if (file->f_flags & O_NONBLOCK) 817 msg.msg_flags = MSG_DONTWAIT; 818 819 if (sock->type == SOCK_SEQPACKET) 820 msg.msg_flags |= MSG_EOR; 821 822 res = sock_sendmsg(sock, &msg); 823 *from = msg.msg_iter; 824 return res; 825} 826 827/* 828 * Atomic setting of ioctl hooks to avoid race 829 * with module unload. 830 */ 831 832static DEFINE_MUTEX(br_ioctl_mutex); 833static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 834 835void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 836{ 837 mutex_lock(&br_ioctl_mutex); 838 br_ioctl_hook = hook; 839 mutex_unlock(&br_ioctl_mutex); 840} 841EXPORT_SYMBOL(brioctl_set); 842 843static DEFINE_MUTEX(vlan_ioctl_mutex); 844static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 845 846void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 847{ 848 mutex_lock(&vlan_ioctl_mutex); 849 vlan_ioctl_hook = hook; 850 mutex_unlock(&vlan_ioctl_mutex); 851} 852EXPORT_SYMBOL(vlan_ioctl_set); 853 854static DEFINE_MUTEX(dlci_ioctl_mutex); 855static int (*dlci_ioctl_hook) (unsigned int, void __user *); 856 857void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 858{ 859 mutex_lock(&dlci_ioctl_mutex); 860 dlci_ioctl_hook = hook; 861 mutex_unlock(&dlci_ioctl_mutex); 862} 863EXPORT_SYMBOL(dlci_ioctl_set); 864 865static long sock_do_ioctl(struct net *net, struct socket *sock, 866 unsigned int cmd, unsigned long arg) 867{ 868 int err; 869 void __user *argp = (void __user *)arg; 870 871 err = sock->ops->ioctl(sock, cmd, arg); 872 873 /* 874 * If this ioctl is unknown try to hand it down 875 * to the NIC driver. 876 */ 877 if (err == -ENOIOCTLCMD) 878 err = dev_ioctl(net, cmd, argp); 879 880 return err; 881} 882 883/* 884 * With an ioctl, arg may well be a user mode pointer, but we don't know 885 * what to do with it - that's up to the protocol still. 886 */ 887 888static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 889{ 890 struct socket *sock; 891 struct sock *sk; 892 void __user *argp = (void __user *)arg; 893 int pid, err; 894 struct net *net; 895 896 sock = file->private_data; 897 sk = sock->sk; 898 net = sock_net(sk); 899 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 900 err = dev_ioctl(net, cmd, argp); 901 } else 902#ifdef CONFIG_WEXT_CORE 903 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 904 err = dev_ioctl(net, cmd, argp); 905 } else 906#endif 907 switch (cmd) { 908 case FIOSETOWN: 909 case SIOCSPGRP: 910 err = -EFAULT; 911 if (get_user(pid, (int __user *)argp)) 912 break; 913 f_setown(sock->file, pid, 1); 914 err = 0; 915 break; 916 case FIOGETOWN: 917 case SIOCGPGRP: 918 err = put_user(f_getown(sock->file), 919 (int __user *)argp); 920 break; 921 case SIOCGIFBR: 922 case SIOCSIFBR: 923 case SIOCBRADDBR: 924 case SIOCBRDELBR: 925 err = -ENOPKG; 926 if (!br_ioctl_hook) 927 request_module("bridge"); 928 929 mutex_lock(&br_ioctl_mutex); 930 if (br_ioctl_hook) 931 err = br_ioctl_hook(net, cmd, argp); 932 mutex_unlock(&br_ioctl_mutex); 933 break; 934 case SIOCGIFVLAN: 935 case SIOCSIFVLAN: 936 err = -ENOPKG; 937 if (!vlan_ioctl_hook) 938 request_module("8021q"); 939 940 mutex_lock(&vlan_ioctl_mutex); 941 if (vlan_ioctl_hook) 942 err = vlan_ioctl_hook(net, argp); 943 mutex_unlock(&vlan_ioctl_mutex); 944 break; 945 case SIOCADDDLCI: 946 case SIOCDELDLCI: 947 err = -ENOPKG; 948 if (!dlci_ioctl_hook) 949 request_module("dlci"); 950 951 mutex_lock(&dlci_ioctl_mutex); 952 if (dlci_ioctl_hook) 953 err = dlci_ioctl_hook(cmd, argp); 954 mutex_unlock(&dlci_ioctl_mutex); 955 break; 956 default: 957 err = sock_do_ioctl(net, sock, cmd, arg); 958 break; 959 } 960 return err; 961} 962 963int sock_create_lite(int family, int type, int protocol, struct socket **res) 964{ 965 int err; 966 struct socket *sock = NULL; 967 968 err = security_socket_create(family, type, protocol, 1); 969 if (err) 970 goto out; 971 972 sock = sock_alloc(); 973 if (!sock) { 974 err = -ENOMEM; 975 goto out; 976 } 977 978 sock->type = type; 979 err = security_socket_post_create(sock, family, type, protocol, 1); 980 if (err) 981 goto out_release; 982 983out: 984 *res = sock; 985 return err; 986out_release: 987 sock_release(sock); 988 sock = NULL; 989 goto out; 990} 991EXPORT_SYMBOL(sock_create_lite); 992 993/* No kernel lock held - perfect */ 994static unsigned int sock_poll(struct file *file, poll_table *wait) 995{ 996 unsigned int busy_flag = 0; 997 struct socket *sock; 998 999 /* 1000 * We can't return errors to poll, so it's either yes or no. 1001 */ 1002 sock = file->private_data; 1003 1004 if (sk_can_busy_loop(sock->sk)) { 1005 /* this socket can poll_ll so tell the system call */ 1006 busy_flag = POLL_BUSY_LOOP; 1007 1008 /* once, only if requested by syscall */ 1009 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1010 sk_busy_loop(sock->sk, 1); 1011 } 1012 1013 return busy_flag | sock->ops->poll(file, sock, wait); 1014} 1015 1016static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1017{ 1018 struct socket *sock = file->private_data; 1019 1020 return sock->ops->mmap(file, sock, vma); 1021} 1022 1023static int sock_close(struct inode *inode, struct file *filp) 1024{ 1025 sock_release(SOCKET_I(inode)); 1026 return 0; 1027} 1028 1029/* 1030 * Update the socket async list 1031 * 1032 * Fasync_list locking strategy. 1033 * 1034 * 1. fasync_list is modified only under process context socket lock 1035 * i.e. under semaphore. 1036 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1037 * or under socket lock 1038 */ 1039 1040static int sock_fasync(int fd, struct file *filp, int on) 1041{ 1042 struct socket *sock = filp->private_data; 1043 struct sock *sk = sock->sk; 1044 struct socket_wq *wq; 1045 1046 if (sk == NULL) 1047 return -EINVAL; 1048 1049 lock_sock(sk); 1050 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1051 fasync_helper(fd, filp, on, &wq->fasync_list); 1052 1053 if (!wq->fasync_list) 1054 sock_reset_flag(sk, SOCK_FASYNC); 1055 else 1056 sock_set_flag(sk, SOCK_FASYNC); 1057 1058 release_sock(sk); 1059 return 0; 1060} 1061 1062/* This function may be called only under socket lock or callback_lock or rcu_lock */ 1063 1064int sock_wake_async(struct socket *sock, int how, int band) 1065{ 1066 struct socket_wq *wq; 1067 1068 if (!sock) 1069 return -1; 1070 rcu_read_lock(); 1071 wq = rcu_dereference(sock->wq); 1072 if (!wq || !wq->fasync_list) { 1073 rcu_read_unlock(); 1074 return -1; 1075 } 1076 switch (how) { 1077 case SOCK_WAKE_WAITD: 1078 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1079 break; 1080 goto call_kill; 1081 case SOCK_WAKE_SPACE: 1082 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1083 break; 1084 /* fall through */ 1085 case SOCK_WAKE_IO: 1086call_kill: 1087 kill_fasync(&wq->fasync_list, SIGIO, band); 1088 break; 1089 case SOCK_WAKE_URG: 1090 kill_fasync(&wq->fasync_list, SIGURG, band); 1091 } 1092 rcu_read_unlock(); 1093 return 0; 1094} 1095EXPORT_SYMBOL(sock_wake_async); 1096 1097int __sock_create(struct net *net, int family, int type, int protocol, 1098 struct socket **res, int kern) 1099{ 1100 int err; 1101 struct socket *sock; 1102 const struct net_proto_family *pf; 1103 1104 /* 1105 * Check protocol is in range 1106 */ 1107 if (family < 0 || family >= NPROTO) 1108 return -EAFNOSUPPORT; 1109 if (type < 0 || type >= SOCK_MAX) 1110 return -EINVAL; 1111 1112 /* Compatibility. 1113 1114 This uglymoron is moved from INET layer to here to avoid 1115 deadlock in module load. 1116 */ 1117 if (family == PF_INET && type == SOCK_PACKET) { 1118 static int warned; 1119 if (!warned) { 1120 warned = 1; 1121 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1122 current->comm); 1123 } 1124 family = PF_PACKET; 1125 } 1126 1127 err = security_socket_create(family, type, protocol, kern); 1128 if (err) 1129 return err; 1130 1131 /* 1132 * Allocate the socket and allow the family to set things up. if 1133 * the protocol is 0, the family is instructed to select an appropriate 1134 * default. 1135 */ 1136 sock = sock_alloc(); 1137 if (!sock) { 1138 net_warn_ratelimited("socket: no more sockets\n"); 1139 return -ENFILE; /* Not exactly a match, but its the 1140 closest posix thing */ 1141 } 1142 1143 sock->type = type; 1144 1145#ifdef CONFIG_MODULES 1146 /* Attempt to load a protocol module if the find failed. 1147 * 1148 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1149 * requested real, full-featured networking support upon configuration. 1150 * Otherwise module support will break! 1151 */ 1152 if (rcu_access_pointer(net_families[family]) == NULL) 1153 request_module("net-pf-%d", family); 1154#endif 1155 1156 rcu_read_lock(); 1157 pf = rcu_dereference(net_families[family]); 1158 err = -EAFNOSUPPORT; 1159 if (!pf) 1160 goto out_release; 1161 1162 /* 1163 * We will call the ->create function, that possibly is in a loadable 1164 * module, so we have to bump that loadable module refcnt first. 1165 */ 1166 if (!try_module_get(pf->owner)) 1167 goto out_release; 1168 1169 /* Now protected by module ref count */ 1170 rcu_read_unlock(); 1171 1172 err = pf->create(net, sock, protocol, kern); 1173 if (err < 0) 1174 goto out_module_put; 1175 1176 /* 1177 * Now to bump the refcnt of the [loadable] module that owns this 1178 * socket at sock_release time we decrement its refcnt. 1179 */ 1180 if (!try_module_get(sock->ops->owner)) 1181 goto out_module_busy; 1182 1183 /* 1184 * Now that we're done with the ->create function, the [loadable] 1185 * module can have its refcnt decremented 1186 */ 1187 module_put(pf->owner); 1188 err = security_socket_post_create(sock, family, type, protocol, kern); 1189 if (err) 1190 goto out_sock_release; 1191 *res = sock; 1192 1193 return 0; 1194 1195out_module_busy: 1196 err = -EAFNOSUPPORT; 1197out_module_put: 1198 sock->ops = NULL; 1199 module_put(pf->owner); 1200out_sock_release: 1201 sock_release(sock); 1202 return err; 1203 1204out_release: 1205 rcu_read_unlock(); 1206 goto out_sock_release; 1207} 1208EXPORT_SYMBOL(__sock_create); 1209 1210int sock_create(int family, int type, int protocol, struct socket **res) 1211{ 1212 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1213} 1214EXPORT_SYMBOL(sock_create); 1215 1216int sock_create_kern(int family, int type, int protocol, struct socket **res) 1217{ 1218 return __sock_create(&init_net, family, type, protocol, res, 1); 1219} 1220EXPORT_SYMBOL(sock_create_kern); 1221 1222SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1223{ 1224 int retval; 1225 struct socket *sock; 1226 int flags; 1227 1228 /* Check the SOCK_* constants for consistency. */ 1229 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1230 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1231 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1232 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1233 1234 flags = type & ~SOCK_TYPE_MASK; 1235 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1236 return -EINVAL; 1237 type &= SOCK_TYPE_MASK; 1238 1239 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1240 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1241 1242 retval = sock_create(family, type, protocol, &sock); 1243 if (retval < 0) 1244 goto out; 1245 1246 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1247 if (retval < 0) 1248 goto out_release; 1249 1250out: 1251 /* It may be already another descriptor 8) Not kernel problem. */ 1252 return retval; 1253 1254out_release: 1255 sock_release(sock); 1256 return retval; 1257} 1258 1259/* 1260 * Create a pair of connected sockets. 1261 */ 1262 1263SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1264 int __user *, usockvec) 1265{ 1266 struct socket *sock1, *sock2; 1267 int fd1, fd2, err; 1268 struct file *newfile1, *newfile2; 1269 int flags; 1270 1271 flags = type & ~SOCK_TYPE_MASK; 1272 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1273 return -EINVAL; 1274 type &= SOCK_TYPE_MASK; 1275 1276 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1277 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1278 1279 /* 1280 * Obtain the first socket and check if the underlying protocol 1281 * supports the socketpair call. 1282 */ 1283 1284 err = sock_create(family, type, protocol, &sock1); 1285 if (err < 0) 1286 goto out; 1287 1288 err = sock_create(family, type, protocol, &sock2); 1289 if (err < 0) 1290 goto out_release_1; 1291 1292 err = sock1->ops->socketpair(sock1, sock2); 1293 if (err < 0) 1294 goto out_release_both; 1295 1296 fd1 = get_unused_fd_flags(flags); 1297 if (unlikely(fd1 < 0)) { 1298 err = fd1; 1299 goto out_release_both; 1300 } 1301 1302 fd2 = get_unused_fd_flags(flags); 1303 if (unlikely(fd2 < 0)) { 1304 err = fd2; 1305 goto out_put_unused_1; 1306 } 1307 1308 newfile1 = sock_alloc_file(sock1, flags, NULL); 1309 if (unlikely(IS_ERR(newfile1))) { 1310 err = PTR_ERR(newfile1); 1311 goto out_put_unused_both; 1312 } 1313 1314 newfile2 = sock_alloc_file(sock2, flags, NULL); 1315 if (IS_ERR(newfile2)) { 1316 err = PTR_ERR(newfile2); 1317 goto out_fput_1; 1318 } 1319 1320 err = put_user(fd1, &usockvec[0]); 1321 if (err) 1322 goto out_fput_both; 1323 1324 err = put_user(fd2, &usockvec[1]); 1325 if (err) 1326 goto out_fput_both; 1327 1328 audit_fd_pair(fd1, fd2); 1329 1330 fd_install(fd1, newfile1); 1331 fd_install(fd2, newfile2); 1332 /* fd1 and fd2 may be already another descriptors. 1333 * Not kernel problem. 1334 */ 1335 1336 return 0; 1337 1338out_fput_both: 1339 fput(newfile2); 1340 fput(newfile1); 1341 put_unused_fd(fd2); 1342 put_unused_fd(fd1); 1343 goto out; 1344 1345out_fput_1: 1346 fput(newfile1); 1347 put_unused_fd(fd2); 1348 put_unused_fd(fd1); 1349 sock_release(sock2); 1350 goto out; 1351 1352out_put_unused_both: 1353 put_unused_fd(fd2); 1354out_put_unused_1: 1355 put_unused_fd(fd1); 1356out_release_both: 1357 sock_release(sock2); 1358out_release_1: 1359 sock_release(sock1); 1360out: 1361 return err; 1362} 1363 1364/* 1365 * Bind a name to a socket. Nothing much to do here since it's 1366 * the protocol's responsibility to handle the local address. 1367 * 1368 * We move the socket address to kernel space before we call 1369 * the protocol layer (having also checked the address is ok). 1370 */ 1371 1372SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1373{ 1374 struct socket *sock; 1375 struct sockaddr_storage address; 1376 int err, fput_needed; 1377 1378 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1379 if (sock) { 1380 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1381 if (err >= 0) { 1382 err = security_socket_bind(sock, 1383 (struct sockaddr *)&address, 1384 addrlen); 1385 if (!err) 1386 err = sock->ops->bind(sock, 1387 (struct sockaddr *) 1388 &address, addrlen); 1389 } 1390 fput_light(sock->file, fput_needed); 1391 } 1392 return err; 1393} 1394 1395/* 1396 * Perform a listen. Basically, we allow the protocol to do anything 1397 * necessary for a listen, and if that works, we mark the socket as 1398 * ready for listening. 1399 */ 1400 1401SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1402{ 1403 struct socket *sock; 1404 int err, fput_needed; 1405 int somaxconn; 1406 1407 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1408 if (sock) { 1409 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1410 if ((unsigned int)backlog > somaxconn) 1411 backlog = somaxconn; 1412 1413 err = security_socket_listen(sock, backlog); 1414 if (!err) 1415 err = sock->ops->listen(sock, backlog); 1416 1417 fput_light(sock->file, fput_needed); 1418 } 1419 return err; 1420} 1421 1422/* 1423 * For accept, we attempt to create a new socket, set up the link 1424 * with the client, wake up the client, then return the new 1425 * connected fd. We collect the address of the connector in kernel 1426 * space and move it to user at the very end. This is unclean because 1427 * we open the socket then return an error. 1428 * 1429 * 1003.1g adds the ability to recvmsg() to query connection pending 1430 * status to recvmsg. We need to add that support in a way thats 1431 * clean when we restucture accept also. 1432 */ 1433 1434SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1435 int __user *, upeer_addrlen, int, flags) 1436{ 1437 struct socket *sock, *newsock; 1438 struct file *newfile; 1439 int err, len, newfd, fput_needed; 1440 struct sockaddr_storage address; 1441 1442 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1443 return -EINVAL; 1444 1445 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1446 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1447 1448 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1449 if (!sock) 1450 goto out; 1451 1452 err = -ENFILE; 1453 newsock = sock_alloc(); 1454 if (!newsock) 1455 goto out_put; 1456 1457 newsock->type = sock->type; 1458 newsock->ops = sock->ops; 1459 1460 /* 1461 * We don't need try_module_get here, as the listening socket (sock) 1462 * has the protocol module (sock->ops->owner) held. 1463 */ 1464 __module_get(newsock->ops->owner); 1465 1466 newfd = get_unused_fd_flags(flags); 1467 if (unlikely(newfd < 0)) { 1468 err = newfd; 1469 sock_release(newsock); 1470 goto out_put; 1471 } 1472 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1473 if (unlikely(IS_ERR(newfile))) { 1474 err = PTR_ERR(newfile); 1475 put_unused_fd(newfd); 1476 sock_release(newsock); 1477 goto out_put; 1478 } 1479 1480 err = security_socket_accept(sock, newsock); 1481 if (err) 1482 goto out_fd; 1483 1484 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1485 if (err < 0) 1486 goto out_fd; 1487 1488 if (upeer_sockaddr) { 1489 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1490 &len, 2) < 0) { 1491 err = -ECONNABORTED; 1492 goto out_fd; 1493 } 1494 err = move_addr_to_user(&address, 1495 len, upeer_sockaddr, upeer_addrlen); 1496 if (err < 0) 1497 goto out_fd; 1498 } 1499 1500 /* File flags are not inherited via accept() unlike another OSes. */ 1501 1502 fd_install(newfd, newfile); 1503 err = newfd; 1504 1505out_put: 1506 fput_light(sock->file, fput_needed); 1507out: 1508 return err; 1509out_fd: 1510 fput(newfile); 1511 put_unused_fd(newfd); 1512 goto out_put; 1513} 1514 1515SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1516 int __user *, upeer_addrlen) 1517{ 1518 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1519} 1520 1521/* 1522 * Attempt to connect to a socket with the server address. The address 1523 * is in user space so we verify it is OK and move it to kernel space. 1524 * 1525 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1526 * break bindings 1527 * 1528 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1529 * other SEQPACKET protocols that take time to connect() as it doesn't 1530 * include the -EINPROGRESS status for such sockets. 1531 */ 1532 1533SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1534 int, addrlen) 1535{ 1536 struct socket *sock; 1537 struct sockaddr_storage address; 1538 int err, fput_needed; 1539 1540 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1541 if (!sock) 1542 goto out; 1543 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1544 if (err < 0) 1545 goto out_put; 1546 1547 err = 1548 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1549 if (err) 1550 goto out_put; 1551 1552 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1553 sock->file->f_flags); 1554out_put: 1555 fput_light(sock->file, fput_needed); 1556out: 1557 return err; 1558} 1559 1560/* 1561 * Get the local address ('name') of a socket object. Move the obtained 1562 * name to user space. 1563 */ 1564 1565SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1566 int __user *, usockaddr_len) 1567{ 1568 struct socket *sock; 1569 struct sockaddr_storage address; 1570 int len, err, fput_needed; 1571 1572 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1573 if (!sock) 1574 goto out; 1575 1576 err = security_socket_getsockname(sock); 1577 if (err) 1578 goto out_put; 1579 1580 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1581 if (err) 1582 goto out_put; 1583 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1584 1585out_put: 1586 fput_light(sock->file, fput_needed); 1587out: 1588 return err; 1589} 1590 1591/* 1592 * Get the remote address ('name') of a socket object. Move the obtained 1593 * name to user space. 1594 */ 1595 1596SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1597 int __user *, usockaddr_len) 1598{ 1599 struct socket *sock; 1600 struct sockaddr_storage address; 1601 int len, err, fput_needed; 1602 1603 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1604 if (sock != NULL) { 1605 err = security_socket_getpeername(sock); 1606 if (err) { 1607 fput_light(sock->file, fput_needed); 1608 return err; 1609 } 1610 1611 err = 1612 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1613 1); 1614 if (!err) 1615 err = move_addr_to_user(&address, len, usockaddr, 1616 usockaddr_len); 1617 fput_light(sock->file, fput_needed); 1618 } 1619 return err; 1620} 1621 1622/* 1623 * Send a datagram to a given address. We move the address into kernel 1624 * space and check the user space data area is readable before invoking 1625 * the protocol. 1626 */ 1627 1628SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1629 unsigned int, flags, struct sockaddr __user *, addr, 1630 int, addr_len) 1631{ 1632 struct socket *sock; 1633 struct sockaddr_storage address; 1634 int err; 1635 struct msghdr msg; 1636 struct iovec iov; 1637 int fput_needed; 1638 1639 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1640 if (unlikely(err)) 1641 return err; 1642 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1643 if (!sock) 1644 goto out; 1645 1646 msg.msg_name = NULL; 1647 msg.msg_control = NULL; 1648 msg.msg_controllen = 0; 1649 msg.msg_namelen = 0; 1650 if (addr) { 1651 err = move_addr_to_kernel(addr, addr_len, &address); 1652 if (err < 0) 1653 goto out_put; 1654 msg.msg_name = (struct sockaddr *)&address; 1655 msg.msg_namelen = addr_len; 1656 } 1657 if (sock->file->f_flags & O_NONBLOCK) 1658 flags |= MSG_DONTWAIT; 1659 msg.msg_flags = flags; 1660 err = sock_sendmsg(sock, &msg); 1661 1662out_put: 1663 fput_light(sock->file, fput_needed); 1664out: 1665 return err; 1666} 1667 1668/* 1669 * Send a datagram down a socket. 1670 */ 1671 1672SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1673 unsigned int, flags) 1674{ 1675 return sys_sendto(fd, buff, len, flags, NULL, 0); 1676} 1677 1678/* 1679 * Receive a frame from the socket and optionally record the address of the 1680 * sender. We verify the buffers are writable and if needed move the 1681 * sender address from kernel to user space. 1682 */ 1683 1684SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1685 unsigned int, flags, struct sockaddr __user *, addr, 1686 int __user *, addr_len) 1687{ 1688 struct socket *sock; 1689 struct iovec iov; 1690 struct msghdr msg; 1691 struct sockaddr_storage address; 1692 int err, err2; 1693 int fput_needed; 1694 1695 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1696 if (unlikely(err)) 1697 return err; 1698 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1699 if (!sock) 1700 goto out; 1701 1702 msg.msg_control = NULL; 1703 msg.msg_controllen = 0; 1704 /* Save some cycles and don't copy the address if not needed */ 1705 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1706 /* We assume all kernel code knows the size of sockaddr_storage */ 1707 msg.msg_namelen = 0; 1708 msg.msg_iocb = NULL; 1709 if (sock->file->f_flags & O_NONBLOCK) 1710 flags |= MSG_DONTWAIT; 1711 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags); 1712 1713 if (err >= 0 && addr != NULL) { 1714 err2 = move_addr_to_user(&address, 1715 msg.msg_namelen, addr, addr_len); 1716 if (err2 < 0) 1717 err = err2; 1718 } 1719 1720 fput_light(sock->file, fput_needed); 1721out: 1722 return err; 1723} 1724 1725/* 1726 * Receive a datagram from a socket. 1727 */ 1728 1729SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1730 unsigned int, flags) 1731{ 1732 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1733} 1734 1735/* 1736 * Set a socket option. Because we don't know the option lengths we have 1737 * to pass the user mode parameter for the protocols to sort out. 1738 */ 1739 1740SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1741 char __user *, optval, int, optlen) 1742{ 1743 int err, fput_needed; 1744 struct socket *sock; 1745 1746 if (optlen < 0) 1747 return -EINVAL; 1748 1749 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1750 if (sock != NULL) { 1751 err = security_socket_setsockopt(sock, level, optname); 1752 if (err) 1753 goto out_put; 1754 1755 if (level == SOL_SOCKET) 1756 err = 1757 sock_setsockopt(sock, level, optname, optval, 1758 optlen); 1759 else 1760 err = 1761 sock->ops->setsockopt(sock, level, optname, optval, 1762 optlen); 1763out_put: 1764 fput_light(sock->file, fput_needed); 1765 } 1766 return err; 1767} 1768 1769/* 1770 * Get a socket option. Because we don't know the option lengths we have 1771 * to pass a user mode parameter for the protocols to sort out. 1772 */ 1773 1774SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1775 char __user *, optval, int __user *, optlen) 1776{ 1777 int err, fput_needed; 1778 struct socket *sock; 1779 1780 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1781 if (sock != NULL) { 1782 err = security_socket_getsockopt(sock, level, optname); 1783 if (err) 1784 goto out_put; 1785 1786 if (level == SOL_SOCKET) 1787 err = 1788 sock_getsockopt(sock, level, optname, optval, 1789 optlen); 1790 else 1791 err = 1792 sock->ops->getsockopt(sock, level, optname, optval, 1793 optlen); 1794out_put: 1795 fput_light(sock->file, fput_needed); 1796 } 1797 return err; 1798} 1799 1800/* 1801 * Shutdown a socket. 1802 */ 1803 1804SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1805{ 1806 int err, fput_needed; 1807 struct socket *sock; 1808 1809 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1810 if (sock != NULL) { 1811 err = security_socket_shutdown(sock, how); 1812 if (!err) 1813 err = sock->ops->shutdown(sock, how); 1814 fput_light(sock->file, fput_needed); 1815 } 1816 return err; 1817} 1818 1819/* A couple of helpful macros for getting the address of the 32/64 bit 1820 * fields which are the same type (int / unsigned) on our platforms. 1821 */ 1822#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1823#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1824#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1825 1826struct used_address { 1827 struct sockaddr_storage name; 1828 unsigned int name_len; 1829}; 1830 1831static int copy_msghdr_from_user(struct msghdr *kmsg, 1832 struct user_msghdr __user *umsg, 1833 struct sockaddr __user **save_addr, 1834 struct iovec **iov) 1835{ 1836 struct sockaddr __user *uaddr; 1837 struct iovec __user *uiov; 1838 size_t nr_segs; 1839 ssize_t err; 1840 1841 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1842 __get_user(uaddr, &umsg->msg_name) || 1843 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1844 __get_user(uiov, &umsg->msg_iov) || 1845 __get_user(nr_segs, &umsg->msg_iovlen) || 1846 __get_user(kmsg->msg_control, &umsg->msg_control) || 1847 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1848 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1849 return -EFAULT; 1850 1851 if (!uaddr) 1852 kmsg->msg_namelen = 0; 1853 1854 if (kmsg->msg_namelen < 0) 1855 return -EINVAL; 1856 1857 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1858 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1859 1860 if (save_addr) 1861 *save_addr = uaddr; 1862 1863 if (uaddr && kmsg->msg_namelen) { 1864 if (!save_addr) { 1865 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1866 kmsg->msg_name); 1867 if (err < 0) 1868 return err; 1869 } 1870 } else { 1871 kmsg->msg_name = NULL; 1872 kmsg->msg_namelen = 0; 1873 } 1874 1875 if (nr_segs > UIO_MAXIOV) 1876 return -EMSGSIZE; 1877 1878 kmsg->msg_iocb = NULL; 1879 1880 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1881 UIO_FASTIOV, iov, &kmsg->msg_iter); 1882} 1883 1884static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1885 struct msghdr *msg_sys, unsigned int flags, 1886 struct used_address *used_address) 1887{ 1888 struct compat_msghdr __user *msg_compat = 1889 (struct compat_msghdr __user *)msg; 1890 struct sockaddr_storage address; 1891 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1892 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1893 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1894 /* 20 is size of ipv6_pktinfo */ 1895 unsigned char *ctl_buf = ctl; 1896 int ctl_len; 1897 ssize_t err; 1898 1899 msg_sys->msg_name = &address; 1900 1901 if (MSG_CMSG_COMPAT & flags) 1902 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1903 else 1904 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1905 if (err < 0) 1906 return err; 1907 1908 err = -ENOBUFS; 1909 1910 if (msg_sys->msg_controllen > INT_MAX) 1911 goto out_freeiov; 1912 ctl_len = msg_sys->msg_controllen; 1913 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1914 err = 1915 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1916 sizeof(ctl)); 1917 if (err) 1918 goto out_freeiov; 1919 ctl_buf = msg_sys->msg_control; 1920 ctl_len = msg_sys->msg_controllen; 1921 } else if (ctl_len) { 1922 if (ctl_len > sizeof(ctl)) { 1923 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1924 if (ctl_buf == NULL) 1925 goto out_freeiov; 1926 } 1927 err = -EFAULT; 1928 /* 1929 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1930 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1931 * checking falls down on this. 1932 */ 1933 if (copy_from_user(ctl_buf, 1934 (void __user __force *)msg_sys->msg_control, 1935 ctl_len)) 1936 goto out_freectl; 1937 msg_sys->msg_control = ctl_buf; 1938 } 1939 msg_sys->msg_flags = flags; 1940 1941 if (sock->file->f_flags & O_NONBLOCK) 1942 msg_sys->msg_flags |= MSG_DONTWAIT; 1943 /* 1944 * If this is sendmmsg() and current destination address is same as 1945 * previously succeeded address, omit asking LSM's decision. 1946 * used_address->name_len is initialized to UINT_MAX so that the first 1947 * destination address never matches. 1948 */ 1949 if (used_address && msg_sys->msg_name && 1950 used_address->name_len == msg_sys->msg_namelen && 1951 !memcmp(&used_address->name, msg_sys->msg_name, 1952 used_address->name_len)) { 1953 err = sock_sendmsg_nosec(sock, msg_sys); 1954 goto out_freectl; 1955 } 1956 err = sock_sendmsg(sock, msg_sys); 1957 /* 1958 * If this is sendmmsg() and sending to current destination address was 1959 * successful, remember it. 1960 */ 1961 if (used_address && err >= 0) { 1962 used_address->name_len = msg_sys->msg_namelen; 1963 if (msg_sys->msg_name) 1964 memcpy(&used_address->name, msg_sys->msg_name, 1965 used_address->name_len); 1966 } 1967 1968out_freectl: 1969 if (ctl_buf != ctl) 1970 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1971out_freeiov: 1972 kfree(iov); 1973 return err; 1974} 1975 1976/* 1977 * BSD sendmsg interface 1978 */ 1979 1980long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 1981{ 1982 int fput_needed, err; 1983 struct msghdr msg_sys; 1984 struct socket *sock; 1985 1986 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1987 if (!sock) 1988 goto out; 1989 1990 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 1991 1992 fput_light(sock->file, fput_needed); 1993out: 1994 return err; 1995} 1996 1997SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 1998{ 1999 if (flags & MSG_CMSG_COMPAT) 2000 return -EINVAL; 2001 return __sys_sendmsg(fd, msg, flags); 2002} 2003 2004/* 2005 * Linux sendmmsg interface 2006 */ 2007 2008int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2009 unsigned int flags) 2010{ 2011 int fput_needed, err, datagrams; 2012 struct socket *sock; 2013 struct mmsghdr __user *entry; 2014 struct compat_mmsghdr __user *compat_entry; 2015 struct msghdr msg_sys; 2016 struct used_address used_address; 2017 2018 if (vlen > UIO_MAXIOV) 2019 vlen = UIO_MAXIOV; 2020 2021 datagrams = 0; 2022 2023 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2024 if (!sock) 2025 return err; 2026 2027 used_address.name_len = UINT_MAX; 2028 entry = mmsg; 2029 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2030 err = 0; 2031 2032 while (datagrams < vlen) { 2033 if (MSG_CMSG_COMPAT & flags) { 2034 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2035 &msg_sys, flags, &used_address); 2036 if (err < 0) 2037 break; 2038 err = __put_user(err, &compat_entry->msg_len); 2039 ++compat_entry; 2040 } else { 2041 err = ___sys_sendmsg(sock, 2042 (struct user_msghdr __user *)entry, 2043 &msg_sys, flags, &used_address); 2044 if (err < 0) 2045 break; 2046 err = put_user(err, &entry->msg_len); 2047 ++entry; 2048 } 2049 2050 if (err) 2051 break; 2052 ++datagrams; 2053 } 2054 2055 fput_light(sock->file, fput_needed); 2056 2057 /* We only return an error if no datagrams were able to be sent */ 2058 if (datagrams != 0) 2059 return datagrams; 2060 2061 return err; 2062} 2063 2064SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2065 unsigned int, vlen, unsigned int, flags) 2066{ 2067 if (flags & MSG_CMSG_COMPAT) 2068 return -EINVAL; 2069 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2070} 2071 2072static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2073 struct msghdr *msg_sys, unsigned int flags, int nosec) 2074{ 2075 struct compat_msghdr __user *msg_compat = 2076 (struct compat_msghdr __user *)msg; 2077 struct iovec iovstack[UIO_FASTIOV]; 2078 struct iovec *iov = iovstack; 2079 unsigned long cmsg_ptr; 2080 int total_len, len; 2081 ssize_t err; 2082 2083 /* kernel mode address */ 2084 struct sockaddr_storage addr; 2085 2086 /* user mode address pointers */ 2087 struct sockaddr __user *uaddr; 2088 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2089 2090 msg_sys->msg_name = &addr; 2091 2092 if (MSG_CMSG_COMPAT & flags) 2093 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2094 else 2095 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2096 if (err < 0) 2097 return err; 2098 total_len = iov_iter_count(&msg_sys->msg_iter); 2099 2100 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2101 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2102 2103 /* We assume all kernel code knows the size of sockaddr_storage */ 2104 msg_sys->msg_namelen = 0; 2105 2106 if (sock->file->f_flags & O_NONBLOCK) 2107 flags |= MSG_DONTWAIT; 2108 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2109 total_len, flags); 2110 if (err < 0) 2111 goto out_freeiov; 2112 len = err; 2113 2114 if (uaddr != NULL) { 2115 err = move_addr_to_user(&addr, 2116 msg_sys->msg_namelen, uaddr, 2117 uaddr_len); 2118 if (err < 0) 2119 goto out_freeiov; 2120 } 2121 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2122 COMPAT_FLAGS(msg)); 2123 if (err) 2124 goto out_freeiov; 2125 if (MSG_CMSG_COMPAT & flags) 2126 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2127 &msg_compat->msg_controllen); 2128 else 2129 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2130 &msg->msg_controllen); 2131 if (err) 2132 goto out_freeiov; 2133 err = len; 2134 2135out_freeiov: 2136 kfree(iov); 2137 return err; 2138} 2139 2140/* 2141 * BSD recvmsg interface 2142 */ 2143 2144long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2145{ 2146 int fput_needed, err; 2147 struct msghdr msg_sys; 2148 struct socket *sock; 2149 2150 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2151 if (!sock) 2152 goto out; 2153 2154 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2155 2156 fput_light(sock->file, fput_needed); 2157out: 2158 return err; 2159} 2160 2161SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2162 unsigned int, flags) 2163{ 2164 if (flags & MSG_CMSG_COMPAT) 2165 return -EINVAL; 2166 return __sys_recvmsg(fd, msg, flags); 2167} 2168 2169/* 2170 * Linux recvmmsg interface 2171 */ 2172 2173int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2174 unsigned int flags, struct timespec *timeout) 2175{ 2176 int fput_needed, err, datagrams; 2177 struct socket *sock; 2178 struct mmsghdr __user *entry; 2179 struct compat_mmsghdr __user *compat_entry; 2180 struct msghdr msg_sys; 2181 struct timespec end_time; 2182 2183 if (timeout && 2184 poll_select_set_timeout(&end_time, timeout->tv_sec, 2185 timeout->tv_nsec)) 2186 return -EINVAL; 2187 2188 datagrams = 0; 2189 2190 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2191 if (!sock) 2192 return err; 2193 2194 err = sock_error(sock->sk); 2195 if (err) 2196 goto out_put; 2197 2198 entry = mmsg; 2199 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2200 2201 while (datagrams < vlen) { 2202 /* 2203 * No need to ask LSM for more than the first datagram. 2204 */ 2205 if (MSG_CMSG_COMPAT & flags) { 2206 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2207 &msg_sys, flags & ~MSG_WAITFORONE, 2208 datagrams); 2209 if (err < 0) 2210 break; 2211 err = __put_user(err, &compat_entry->msg_len); 2212 ++compat_entry; 2213 } else { 2214 err = ___sys_recvmsg(sock, 2215 (struct user_msghdr __user *)entry, 2216 &msg_sys, flags & ~MSG_WAITFORONE, 2217 datagrams); 2218 if (err < 0) 2219 break; 2220 err = put_user(err, &entry->msg_len); 2221 ++entry; 2222 } 2223 2224 if (err) 2225 break; 2226 ++datagrams; 2227 2228 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2229 if (flags & MSG_WAITFORONE) 2230 flags |= MSG_DONTWAIT; 2231 2232 if (timeout) { 2233 ktime_get_ts(timeout); 2234 *timeout = timespec_sub(end_time, *timeout); 2235 if (timeout->tv_sec < 0) { 2236 timeout->tv_sec = timeout->tv_nsec = 0; 2237 break; 2238 } 2239 2240 /* Timeout, return less than vlen datagrams */ 2241 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2242 break; 2243 } 2244 2245 /* Out of band data, return right away */ 2246 if (msg_sys.msg_flags & MSG_OOB) 2247 break; 2248 } 2249 2250out_put: 2251 fput_light(sock->file, fput_needed); 2252 2253 if (err == 0) 2254 return datagrams; 2255 2256 if (datagrams != 0) { 2257 /* 2258 * We may return less entries than requested (vlen) if the 2259 * sock is non block and there aren't enough datagrams... 2260 */ 2261 if (err != -EAGAIN) { 2262 /* 2263 * ... or if recvmsg returns an error after we 2264 * received some datagrams, where we record the 2265 * error to return on the next call or if the 2266 * app asks about it using getsockopt(SO_ERROR). 2267 */ 2268 sock->sk->sk_err = -err; 2269 } 2270 2271 return datagrams; 2272 } 2273 2274 return err; 2275} 2276 2277SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2278 unsigned int, vlen, unsigned int, flags, 2279 struct timespec __user *, timeout) 2280{ 2281 int datagrams; 2282 struct timespec timeout_sys; 2283 2284 if (flags & MSG_CMSG_COMPAT) 2285 return -EINVAL; 2286 2287 if (!timeout) 2288 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2289 2290 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2291 return -EFAULT; 2292 2293 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2294 2295 if (datagrams > 0 && 2296 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2297 datagrams = -EFAULT; 2298 2299 return datagrams; 2300} 2301 2302#ifdef __ARCH_WANT_SYS_SOCKETCALL 2303/* Argument list sizes for sys_socketcall */ 2304#define AL(x) ((x) * sizeof(unsigned long)) 2305static const unsigned char nargs[21] = { 2306 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2307 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2308 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2309 AL(4), AL(5), AL(4) 2310}; 2311 2312#undef AL 2313 2314/* 2315 * System call vectors. 2316 * 2317 * Argument checking cleaned up. Saved 20% in size. 2318 * This function doesn't need to set the kernel lock because 2319 * it is set by the callees. 2320 */ 2321 2322SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2323{ 2324 unsigned long a[AUDITSC_ARGS]; 2325 unsigned long a0, a1; 2326 int err; 2327 unsigned int len; 2328 2329 if (call < 1 || call > SYS_SENDMMSG) 2330 return -EINVAL; 2331 2332 len = nargs[call]; 2333 if (len > sizeof(a)) 2334 return -EINVAL; 2335 2336 /* copy_from_user should be SMP safe. */ 2337 if (copy_from_user(a, args, len)) 2338 return -EFAULT; 2339 2340 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2341 if (err) 2342 return err; 2343 2344 a0 = a[0]; 2345 a1 = a[1]; 2346 2347 switch (call) { 2348 case SYS_SOCKET: 2349 err = sys_socket(a0, a1, a[2]); 2350 break; 2351 case SYS_BIND: 2352 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2353 break; 2354 case SYS_CONNECT: 2355 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2356 break; 2357 case SYS_LISTEN: 2358 err = sys_listen(a0, a1); 2359 break; 2360 case SYS_ACCEPT: 2361 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2362 (int __user *)a[2], 0); 2363 break; 2364 case SYS_GETSOCKNAME: 2365 err = 2366 sys_getsockname(a0, (struct sockaddr __user *)a1, 2367 (int __user *)a[2]); 2368 break; 2369 case SYS_GETPEERNAME: 2370 err = 2371 sys_getpeername(a0, (struct sockaddr __user *)a1, 2372 (int __user *)a[2]); 2373 break; 2374 case SYS_SOCKETPAIR: 2375 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2376 break; 2377 case SYS_SEND: 2378 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2379 break; 2380 case SYS_SENDTO: 2381 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2382 (struct sockaddr __user *)a[4], a[5]); 2383 break; 2384 case SYS_RECV: 2385 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2386 break; 2387 case SYS_RECVFROM: 2388 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2389 (struct sockaddr __user *)a[4], 2390 (int __user *)a[5]); 2391 break; 2392 case SYS_SHUTDOWN: 2393 err = sys_shutdown(a0, a1); 2394 break; 2395 case SYS_SETSOCKOPT: 2396 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2397 break; 2398 case SYS_GETSOCKOPT: 2399 err = 2400 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2401 (int __user *)a[4]); 2402 break; 2403 case SYS_SENDMSG: 2404 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2405 break; 2406 case SYS_SENDMMSG: 2407 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2408 break; 2409 case SYS_RECVMSG: 2410 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2411 break; 2412 case SYS_RECVMMSG: 2413 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2414 (struct timespec __user *)a[4]); 2415 break; 2416 case SYS_ACCEPT4: 2417 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2418 (int __user *)a[2], a[3]); 2419 break; 2420 default: 2421 err = -EINVAL; 2422 break; 2423 } 2424 return err; 2425} 2426 2427#endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2428 2429/** 2430 * sock_register - add a socket protocol handler 2431 * @ops: description of protocol 2432 * 2433 * This function is called by a protocol handler that wants to 2434 * advertise its address family, and have it linked into the 2435 * socket interface. The value ops->family corresponds to the 2436 * socket system call protocol family. 2437 */ 2438int sock_register(const struct net_proto_family *ops) 2439{ 2440 int err; 2441 2442 if (ops->family >= NPROTO) { 2443 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2444 return -ENOBUFS; 2445 } 2446 2447 spin_lock(&net_family_lock); 2448 if (rcu_dereference_protected(net_families[ops->family], 2449 lockdep_is_held(&net_family_lock))) 2450 err = -EEXIST; 2451 else { 2452 rcu_assign_pointer(net_families[ops->family], ops); 2453 err = 0; 2454 } 2455 spin_unlock(&net_family_lock); 2456 2457 pr_info("NET: Registered protocol family %d\n", ops->family); 2458 return err; 2459} 2460EXPORT_SYMBOL(sock_register); 2461 2462/** 2463 * sock_unregister - remove a protocol handler 2464 * @family: protocol family to remove 2465 * 2466 * This function is called by a protocol handler that wants to 2467 * remove its address family, and have it unlinked from the 2468 * new socket creation. 2469 * 2470 * If protocol handler is a module, then it can use module reference 2471 * counts to protect against new references. If protocol handler is not 2472 * a module then it needs to provide its own protection in 2473 * the ops->create routine. 2474 */ 2475void sock_unregister(int family) 2476{ 2477 BUG_ON(family < 0 || family >= NPROTO); 2478 2479 spin_lock(&net_family_lock); 2480 RCU_INIT_POINTER(net_families[family], NULL); 2481 spin_unlock(&net_family_lock); 2482 2483 synchronize_rcu(); 2484 2485 pr_info("NET: Unregistered protocol family %d\n", family); 2486} 2487EXPORT_SYMBOL(sock_unregister); 2488 2489static int __init sock_init(void) 2490{ 2491 int err; 2492 /* 2493 * Initialize the network sysctl infrastructure. 2494 */ 2495 err = net_sysctl_init(); 2496 if (err) 2497 goto out; 2498 2499 /* 2500 * Initialize skbuff SLAB cache 2501 */ 2502 skb_init(); 2503 2504 /* 2505 * Initialize the protocols module. 2506 */ 2507 2508 init_inodecache(); 2509 2510 err = register_filesystem(&sock_fs_type); 2511 if (err) 2512 goto out_fs; 2513 sock_mnt = kern_mount(&sock_fs_type); 2514 if (IS_ERR(sock_mnt)) { 2515 err = PTR_ERR(sock_mnt); 2516 goto out_mount; 2517 } 2518 2519 /* The real protocol initialization is performed in later initcalls. 2520 */ 2521 2522#ifdef CONFIG_NETFILTER 2523 err = netfilter_init(); 2524 if (err) 2525 goto out; 2526#endif 2527 2528 ptp_classifier_init(); 2529 2530out: 2531 return err; 2532 2533out_mount: 2534 unregister_filesystem(&sock_fs_type); 2535out_fs: 2536 goto out; 2537} 2538 2539core_initcall(sock_init); /* early initcall */ 2540 2541#ifdef CONFIG_PROC_FS 2542void socket_seq_show(struct seq_file *seq) 2543{ 2544 int cpu; 2545 int counter = 0; 2546 2547 for_each_possible_cpu(cpu) 2548 counter += per_cpu(sockets_in_use, cpu); 2549 2550 /* It can be negative, by the way. 8) */ 2551 if (counter < 0) 2552 counter = 0; 2553 2554 seq_printf(seq, "sockets: used %d\n", counter); 2555} 2556#endif /* CONFIG_PROC_FS */ 2557 2558#ifdef CONFIG_COMPAT 2559static int do_siocgstamp(struct net *net, struct socket *sock, 2560 unsigned int cmd, void __user *up) 2561{ 2562 mm_segment_t old_fs = get_fs(); 2563 struct timeval ktv; 2564 int err; 2565 2566 set_fs(KERNEL_DS); 2567 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2568 set_fs(old_fs); 2569 if (!err) 2570 err = compat_put_timeval(&ktv, up); 2571 2572 return err; 2573} 2574 2575static int do_siocgstampns(struct net *net, struct socket *sock, 2576 unsigned int cmd, void __user *up) 2577{ 2578 mm_segment_t old_fs = get_fs(); 2579 struct timespec kts; 2580 int err; 2581 2582 set_fs(KERNEL_DS); 2583 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2584 set_fs(old_fs); 2585 if (!err) 2586 err = compat_put_timespec(&kts, up); 2587 2588 return err; 2589} 2590 2591static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2592{ 2593 struct ifreq __user *uifr; 2594 int err; 2595 2596 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2597 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2598 return -EFAULT; 2599 2600 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2601 if (err) 2602 return err; 2603 2604 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2605 return -EFAULT; 2606 2607 return 0; 2608} 2609 2610static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2611{ 2612 struct compat_ifconf ifc32; 2613 struct ifconf ifc; 2614 struct ifconf __user *uifc; 2615 struct compat_ifreq __user *ifr32; 2616 struct ifreq __user *ifr; 2617 unsigned int i, j; 2618 int err; 2619 2620 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2621 return -EFAULT; 2622 2623 memset(&ifc, 0, sizeof(ifc)); 2624 if (ifc32.ifcbuf == 0) { 2625 ifc32.ifc_len = 0; 2626 ifc.ifc_len = 0; 2627 ifc.ifc_req = NULL; 2628 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2629 } else { 2630 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2631 sizeof(struct ifreq); 2632 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2633 ifc.ifc_len = len; 2634 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2635 ifr32 = compat_ptr(ifc32.ifcbuf); 2636 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2637 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2638 return -EFAULT; 2639 ifr++; 2640 ifr32++; 2641 } 2642 } 2643 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2644 return -EFAULT; 2645 2646 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2647 if (err) 2648 return err; 2649 2650 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2651 return -EFAULT; 2652 2653 ifr = ifc.ifc_req; 2654 ifr32 = compat_ptr(ifc32.ifcbuf); 2655 for (i = 0, j = 0; 2656 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2657 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2658 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2659 return -EFAULT; 2660 ifr32++; 2661 ifr++; 2662 } 2663 2664 if (ifc32.ifcbuf == 0) { 2665 /* Translate from 64-bit structure multiple to 2666 * a 32-bit one. 2667 */ 2668 i = ifc.ifc_len; 2669 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2670 ifc32.ifc_len = i; 2671 } else { 2672 ifc32.ifc_len = i; 2673 } 2674 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2675 return -EFAULT; 2676 2677 return 0; 2678} 2679 2680static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2681{ 2682 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2683 bool convert_in = false, convert_out = false; 2684 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2685 struct ethtool_rxnfc __user *rxnfc; 2686 struct ifreq __user *ifr; 2687 u32 rule_cnt = 0, actual_rule_cnt; 2688 u32 ethcmd; 2689 u32 data; 2690 int ret; 2691 2692 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2693 return -EFAULT; 2694 2695 compat_rxnfc = compat_ptr(data); 2696 2697 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2698 return -EFAULT; 2699 2700 /* Most ethtool structures are defined without padding. 2701 * Unfortunately struct ethtool_rxnfc is an exception. 2702 */ 2703 switch (ethcmd) { 2704 default: 2705 break; 2706 case ETHTOOL_GRXCLSRLALL: 2707 /* Buffer size is variable */ 2708 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2709 return -EFAULT; 2710 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2711 return -ENOMEM; 2712 buf_size += rule_cnt * sizeof(u32); 2713 /* fall through */ 2714 case ETHTOOL_GRXRINGS: 2715 case ETHTOOL_GRXCLSRLCNT: 2716 case ETHTOOL_GRXCLSRULE: 2717 case ETHTOOL_SRXCLSRLINS: 2718 convert_out = true; 2719 /* fall through */ 2720 case ETHTOOL_SRXCLSRLDEL: 2721 buf_size += sizeof(struct ethtool_rxnfc); 2722 convert_in = true; 2723 break; 2724 } 2725 2726 ifr = compat_alloc_user_space(buf_size); 2727 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2728 2729 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2730 return -EFAULT; 2731 2732 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2733 &ifr->ifr_ifru.ifru_data)) 2734 return -EFAULT; 2735 2736 if (convert_in) { 2737 /* We expect there to be holes between fs.m_ext and 2738 * fs.ring_cookie and at the end of fs, but nowhere else. 2739 */ 2740 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2741 sizeof(compat_rxnfc->fs.m_ext) != 2742 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2743 sizeof(rxnfc->fs.m_ext)); 2744 BUILD_BUG_ON( 2745 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2746 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2747 offsetof(struct ethtool_rxnfc, fs.location) - 2748 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2749 2750 if (copy_in_user(rxnfc, compat_rxnfc, 2751 (void __user *)(&rxnfc->fs.m_ext + 1) - 2752 (void __user *)rxnfc) || 2753 copy_in_user(&rxnfc->fs.ring_cookie, 2754 &compat_rxnfc->fs.ring_cookie, 2755 (void __user *)(&rxnfc->fs.location + 1) - 2756 (void __user *)&rxnfc->fs.ring_cookie) || 2757 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2758 sizeof(rxnfc->rule_cnt))) 2759 return -EFAULT; 2760 } 2761 2762 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2763 if (ret) 2764 return ret; 2765 2766 if (convert_out) { 2767 if (copy_in_user(compat_rxnfc, rxnfc, 2768 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2769 (const void __user *)rxnfc) || 2770 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2771 &rxnfc->fs.ring_cookie, 2772 (const void __user *)(&rxnfc->fs.location + 1) - 2773 (const void __user *)&rxnfc->fs.ring_cookie) || 2774 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2775 sizeof(rxnfc->rule_cnt))) 2776 return -EFAULT; 2777 2778 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2779 /* As an optimisation, we only copy the actual 2780 * number of rules that the underlying 2781 * function returned. Since Mallory might 2782 * change the rule count in user memory, we 2783 * check that it is less than the rule count 2784 * originally given (as the user buffer size), 2785 * which has been range-checked. 2786 */ 2787 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2788 return -EFAULT; 2789 if (actual_rule_cnt < rule_cnt) 2790 rule_cnt = actual_rule_cnt; 2791 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2792 &rxnfc->rule_locs[0], 2793 rule_cnt * sizeof(u32))) 2794 return -EFAULT; 2795 } 2796 } 2797 2798 return 0; 2799} 2800 2801static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2802{ 2803 void __user *uptr; 2804 compat_uptr_t uptr32; 2805 struct ifreq __user *uifr; 2806 2807 uifr = compat_alloc_user_space(sizeof(*uifr)); 2808 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2809 return -EFAULT; 2810 2811 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2812 return -EFAULT; 2813 2814 uptr = compat_ptr(uptr32); 2815 2816 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2817 return -EFAULT; 2818 2819 return dev_ioctl(net, SIOCWANDEV, uifr); 2820} 2821 2822static int bond_ioctl(struct net *net, unsigned int cmd, 2823 struct compat_ifreq __user *ifr32) 2824{ 2825 struct ifreq kifr; 2826 mm_segment_t old_fs; 2827 int err; 2828 2829 switch (cmd) { 2830 case SIOCBONDENSLAVE: 2831 case SIOCBONDRELEASE: 2832 case SIOCBONDSETHWADDR: 2833 case SIOCBONDCHANGEACTIVE: 2834 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2835 return -EFAULT; 2836 2837 old_fs = get_fs(); 2838 set_fs(KERNEL_DS); 2839 err = dev_ioctl(net, cmd, 2840 (struct ifreq __user __force *) &kifr); 2841 set_fs(old_fs); 2842 2843 return err; 2844 default: 2845 return -ENOIOCTLCMD; 2846 } 2847} 2848 2849/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2850static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2851 struct compat_ifreq __user *u_ifreq32) 2852{ 2853 struct ifreq __user *u_ifreq64; 2854 char tmp_buf[IFNAMSIZ]; 2855 void __user *data64; 2856 u32 data32; 2857 2858 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2859 IFNAMSIZ)) 2860 return -EFAULT; 2861 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2862 return -EFAULT; 2863 data64 = compat_ptr(data32); 2864 2865 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2866 2867 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2868 IFNAMSIZ)) 2869 return -EFAULT; 2870 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2871 return -EFAULT; 2872 2873 return dev_ioctl(net, cmd, u_ifreq64); 2874} 2875 2876static int dev_ifsioc(struct net *net, struct socket *sock, 2877 unsigned int cmd, struct compat_ifreq __user *uifr32) 2878{ 2879 struct ifreq __user *uifr; 2880 int err; 2881 2882 uifr = compat_alloc_user_space(sizeof(*uifr)); 2883 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2884 return -EFAULT; 2885 2886 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2887 2888 if (!err) { 2889 switch (cmd) { 2890 case SIOCGIFFLAGS: 2891 case SIOCGIFMETRIC: 2892 case SIOCGIFMTU: 2893 case SIOCGIFMEM: 2894 case SIOCGIFHWADDR: 2895 case SIOCGIFINDEX: 2896 case SIOCGIFADDR: 2897 case SIOCGIFBRDADDR: 2898 case SIOCGIFDSTADDR: 2899 case SIOCGIFNETMASK: 2900 case SIOCGIFPFLAGS: 2901 case SIOCGIFTXQLEN: 2902 case SIOCGMIIPHY: 2903 case SIOCGMIIREG: 2904 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2905 err = -EFAULT; 2906 break; 2907 } 2908 } 2909 return err; 2910} 2911 2912static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2913 struct compat_ifreq __user *uifr32) 2914{ 2915 struct ifreq ifr; 2916 struct compat_ifmap __user *uifmap32; 2917 mm_segment_t old_fs; 2918 int err; 2919 2920 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2921 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2922 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2923 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2924 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2925 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2926 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2927 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2928 if (err) 2929 return -EFAULT; 2930 2931 old_fs = get_fs(); 2932 set_fs(KERNEL_DS); 2933 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2934 set_fs(old_fs); 2935 2936 if (cmd == SIOCGIFMAP && !err) { 2937 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2938 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2939 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2940 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2941 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2942 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2943 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2944 if (err) 2945 err = -EFAULT; 2946 } 2947 return err; 2948} 2949 2950struct rtentry32 { 2951 u32 rt_pad1; 2952 struct sockaddr rt_dst; /* target address */ 2953 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2954 struct sockaddr rt_genmask; /* target network mask (IP) */ 2955 unsigned short rt_flags; 2956 short rt_pad2; 2957 u32 rt_pad3; 2958 unsigned char rt_tos; 2959 unsigned char rt_class; 2960 short rt_pad4; 2961 short rt_metric; /* +1 for binary compatibility! */ 2962 /* char * */ u32 rt_dev; /* forcing the device at add */ 2963 u32 rt_mtu; /* per route MTU/Window */ 2964 u32 rt_window; /* Window clamping */ 2965 unsigned short rt_irtt; /* Initial RTT */ 2966}; 2967 2968struct in6_rtmsg32 { 2969 struct in6_addr rtmsg_dst; 2970 struct in6_addr rtmsg_src; 2971 struct in6_addr rtmsg_gateway; 2972 u32 rtmsg_type; 2973 u16 rtmsg_dst_len; 2974 u16 rtmsg_src_len; 2975 u32 rtmsg_metric; 2976 u32 rtmsg_info; 2977 u32 rtmsg_flags; 2978 s32 rtmsg_ifindex; 2979}; 2980 2981static int routing_ioctl(struct net *net, struct socket *sock, 2982 unsigned int cmd, void __user *argp) 2983{ 2984 int ret; 2985 void *r = NULL; 2986 struct in6_rtmsg r6; 2987 struct rtentry r4; 2988 char devname[16]; 2989 u32 rtdev; 2990 mm_segment_t old_fs = get_fs(); 2991 2992 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2993 struct in6_rtmsg32 __user *ur6 = argp; 2994 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2995 3 * sizeof(struct in6_addr)); 2996 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2997 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2998 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2999 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3000 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3001 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3002 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3003 3004 r = (void *) &r6; 3005 } else { /* ipv4 */ 3006 struct rtentry32 __user *ur4 = argp; 3007 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3008 3 * sizeof(struct sockaddr)); 3009 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3010 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3011 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3012 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3013 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3014 ret |= get_user(rtdev, &(ur4->rt_dev)); 3015 if (rtdev) { 3016 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3017 r4.rt_dev = (char __user __force *)devname; 3018 devname[15] = 0; 3019 } else 3020 r4.rt_dev = NULL; 3021 3022 r = (void *) &r4; 3023 } 3024 3025 if (ret) { 3026 ret = -EFAULT; 3027 goto out; 3028 } 3029 3030 set_fs(KERNEL_DS); 3031 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3032 set_fs(old_fs); 3033 3034out: 3035 return ret; 3036} 3037 3038/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3039 * for some operations; this forces use of the newer bridge-utils that 3040 * use compatible ioctls 3041 */ 3042static int old_bridge_ioctl(compat_ulong_t __user *argp) 3043{ 3044 compat_ulong_t tmp; 3045 3046 if (get_user(tmp, argp)) 3047 return -EFAULT; 3048 if (tmp == BRCTL_GET_VERSION) 3049 return BRCTL_VERSION + 1; 3050 return -EINVAL; 3051} 3052 3053static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3054 unsigned int cmd, unsigned long arg) 3055{ 3056 void __user *argp = compat_ptr(arg); 3057 struct sock *sk = sock->sk; 3058 struct net *net = sock_net(sk); 3059 3060 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3061 return compat_ifr_data_ioctl(net, cmd, argp); 3062 3063 switch (cmd) { 3064 case SIOCSIFBR: 3065 case SIOCGIFBR: 3066 return old_bridge_ioctl(argp); 3067 case SIOCGIFNAME: 3068 return dev_ifname32(net, argp); 3069 case SIOCGIFCONF: 3070 return dev_ifconf(net, argp); 3071 case SIOCETHTOOL: 3072 return ethtool_ioctl(net, argp); 3073 case SIOCWANDEV: 3074 return compat_siocwandev(net, argp); 3075 case SIOCGIFMAP: 3076 case SIOCSIFMAP: 3077 return compat_sioc_ifmap(net, cmd, argp); 3078 case SIOCBONDENSLAVE: 3079 case SIOCBONDRELEASE: 3080 case SIOCBONDSETHWADDR: 3081 case SIOCBONDCHANGEACTIVE: 3082 return bond_ioctl(net, cmd, argp); 3083 case SIOCADDRT: 3084 case SIOCDELRT: 3085 return routing_ioctl(net, sock, cmd, argp); 3086 case SIOCGSTAMP: 3087 return do_siocgstamp(net, sock, cmd, argp); 3088 case SIOCGSTAMPNS: 3089 return do_siocgstampns(net, sock, cmd, argp); 3090 case SIOCBONDSLAVEINFOQUERY: 3091 case SIOCBONDINFOQUERY: 3092 case SIOCSHWTSTAMP: 3093 case SIOCGHWTSTAMP: 3094 return compat_ifr_data_ioctl(net, cmd, argp); 3095 3096 case FIOSETOWN: 3097 case SIOCSPGRP: 3098 case FIOGETOWN: 3099 case SIOCGPGRP: 3100 case SIOCBRADDBR: 3101 case SIOCBRDELBR: 3102 case SIOCGIFVLAN: 3103 case SIOCSIFVLAN: 3104 case SIOCADDDLCI: 3105 case SIOCDELDLCI: 3106 return sock_ioctl(file, cmd, arg); 3107 3108 case SIOCGIFFLAGS: 3109 case SIOCSIFFLAGS: 3110 case SIOCGIFMETRIC: 3111 case SIOCSIFMETRIC: 3112 case SIOCGIFMTU: 3113 case SIOCSIFMTU: 3114 case SIOCGIFMEM: 3115 case SIOCSIFMEM: 3116 case SIOCGIFHWADDR: 3117 case SIOCSIFHWADDR: 3118 case SIOCADDMULTI: 3119 case SIOCDELMULTI: 3120 case SIOCGIFINDEX: 3121 case SIOCGIFADDR: 3122 case SIOCSIFADDR: 3123 case SIOCSIFHWBROADCAST: 3124 case SIOCDIFADDR: 3125 case SIOCGIFBRDADDR: 3126 case SIOCSIFBRDADDR: 3127 case SIOCGIFDSTADDR: 3128 case SIOCSIFDSTADDR: 3129 case SIOCGIFNETMASK: 3130 case SIOCSIFNETMASK: 3131 case SIOCSIFPFLAGS: 3132 case SIOCGIFPFLAGS: 3133 case SIOCGIFTXQLEN: 3134 case SIOCSIFTXQLEN: 3135 case SIOCBRADDIF: 3136 case SIOCBRDELIF: 3137 case SIOCSIFNAME: 3138 case SIOCGMIIPHY: 3139 case SIOCGMIIREG: 3140 case SIOCSMIIREG: 3141 return dev_ifsioc(net, sock, cmd, argp); 3142 3143 case SIOCSARP: 3144 case SIOCGARP: 3145 case SIOCDARP: 3146 case SIOCATMARK: 3147 return sock_do_ioctl(net, sock, cmd, arg); 3148 } 3149 3150 return -ENOIOCTLCMD; 3151} 3152 3153static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3154 unsigned long arg) 3155{ 3156 struct socket *sock = file->private_data; 3157 int ret = -ENOIOCTLCMD; 3158 struct sock *sk; 3159 struct net *net; 3160 3161 sk = sock->sk; 3162 net = sock_net(sk); 3163 3164 if (sock->ops->compat_ioctl) 3165 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3166 3167 if (ret == -ENOIOCTLCMD && 3168 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3169 ret = compat_wext_handle_ioctl(net, cmd, arg); 3170 3171 if (ret == -ENOIOCTLCMD) 3172 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3173 3174 return ret; 3175} 3176#endif 3177 3178int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3179{ 3180 return sock->ops->bind(sock, addr, addrlen); 3181} 3182EXPORT_SYMBOL(kernel_bind); 3183 3184int kernel_listen(struct socket *sock, int backlog) 3185{ 3186 return sock->ops->listen(sock, backlog); 3187} 3188EXPORT_SYMBOL(kernel_listen); 3189 3190int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3191{ 3192 struct sock *sk = sock->sk; 3193 int err; 3194 3195 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3196 newsock); 3197 if (err < 0) 3198 goto done; 3199 3200 err = sock->ops->accept(sock, *newsock, flags); 3201 if (err < 0) { 3202 sock_release(*newsock); 3203 *newsock = NULL; 3204 goto done; 3205 } 3206 3207 (*newsock)->ops = sock->ops; 3208 __module_get((*newsock)->ops->owner); 3209 3210done: 3211 return err; 3212} 3213EXPORT_SYMBOL(kernel_accept); 3214 3215int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3216 int flags) 3217{ 3218 return sock->ops->connect(sock, addr, addrlen, flags); 3219} 3220EXPORT_SYMBOL(kernel_connect); 3221 3222int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3223 int *addrlen) 3224{ 3225 return sock->ops->getname(sock, addr, addrlen, 0); 3226} 3227EXPORT_SYMBOL(kernel_getsockname); 3228 3229int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3230 int *addrlen) 3231{ 3232 return sock->ops->getname(sock, addr, addrlen, 1); 3233} 3234EXPORT_SYMBOL(kernel_getpeername); 3235 3236int kernel_getsockopt(struct socket *sock, int level, int optname, 3237 char *optval, int *optlen) 3238{ 3239 mm_segment_t oldfs = get_fs(); 3240 char __user *uoptval; 3241 int __user *uoptlen; 3242 int err; 3243 3244 uoptval = (char __user __force *) optval; 3245 uoptlen = (int __user __force *) optlen; 3246 3247 set_fs(KERNEL_DS); 3248 if (level == SOL_SOCKET) 3249 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3250 else 3251 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3252 uoptlen); 3253 set_fs(oldfs); 3254 return err; 3255} 3256EXPORT_SYMBOL(kernel_getsockopt); 3257 3258int kernel_setsockopt(struct socket *sock, int level, int optname, 3259 char *optval, unsigned int optlen) 3260{ 3261 mm_segment_t oldfs = get_fs(); 3262 char __user *uoptval; 3263 int err; 3264 3265 uoptval = (char __user __force *) optval; 3266 3267 set_fs(KERNEL_DS); 3268 if (level == SOL_SOCKET) 3269 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3270 else 3271 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3272 optlen); 3273 set_fs(oldfs); 3274 return err; 3275} 3276EXPORT_SYMBOL(kernel_setsockopt); 3277 3278int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3279 size_t size, int flags) 3280{ 3281 if (sock->ops->sendpage) 3282 return sock->ops->sendpage(sock, page, offset, size, flags); 3283 3284 return sock_no_sendpage(sock, page, offset, size, flags); 3285} 3286EXPORT_SYMBOL(kernel_sendpage); 3287 3288int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3289{ 3290 mm_segment_t oldfs = get_fs(); 3291 int err; 3292 3293 set_fs(KERNEL_DS); 3294 err = sock->ops->ioctl(sock, cmd, arg); 3295 set_fs(oldfs); 3296 3297 return err; 3298} 3299EXPORT_SYMBOL(kernel_sock_ioctl); 3300 3301int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3302{ 3303 return sock->ops->shutdown(sock, how); 3304} 3305EXPORT_SYMBOL(kernel_sock_shutdown); 3306