1/*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 */
15
16/* Implementation notes:
17 *
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
20 *
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
33 *
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
37 *
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the SS_LISTEN state.  When a connection
40 * request is received (the second kind of socket mentioned above), we create a
41 * new socket and refer to it as a pending socket.  These pending sockets are
42 * placed on the pending connection list of the listener socket.  When future
43 * packets are received for the address the listener socket is bound to, we
44 * check if the source of the packet is from one that has an existing pending
45 * connection.  If it does, we process the packet for the pending socket.  When
46 * that socket reaches the connected state, it is removed from the listener
47 * socket's pending list and enqueued in the listener socket's accept queue.
48 * Callers of accept(2) will accept connected sockets from the listener socket's
49 * accept queue.  If the socket cannot be accepted for some reason then it is
50 * marked rejected.  Once the connection is accepted, it is owned by the user
51 * process and the responsibility for cleanup falls with that user process.
52 *
53 * - It is possible that these pending sockets will never reach the connected
54 * state; in fact, we may never receive another packet after the connection
55 * request.  Because of this, we must schedule a cleanup function to run in the
56 * future, after some amount of time passes where a connection should have been
57 * established.  This function ensures that the socket is off all lists so it
58 * cannot be retrieved, then drops all references to the socket so it is cleaned
59 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
60 * function will also cleanup rejected sockets, those that reach the connected
61 * state but leave it before they have been accepted.
62 *
63 * - Sockets created by user action will be cleaned up when the user process
64 * calls close(2), causing our release implementation to be called. Our release
65 * implementation will perform some cleanup then drop the last reference so our
66 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
67 * perform additional cleanup that's common for both types of sockets.
68 *
69 * - A socket's reference count is what ensures that the structure won't be
70 * freed.  Each entry in a list (such as the "global" bound and connected tables
71 * and the listener socket's pending list and connected queue) ensures a
72 * reference.  When we defer work until process context and pass a socket as our
73 * argument, we must ensure the reference count is increased to ensure the
74 * socket isn't freed before the function is run; the deferred function will
75 * then drop the reference.
76 */
77
78#include <linux/types.h>
79#include <linux/bitops.h>
80#include <linux/cred.h>
81#include <linux/init.h>
82#include <linux/io.h>
83#include <linux/kernel.h>
84#include <linux/kmod.h>
85#include <linux/list.h>
86#include <linux/miscdevice.h>
87#include <linux/module.h>
88#include <linux/mutex.h>
89#include <linux/net.h>
90#include <linux/poll.h>
91#include <linux/skbuff.h>
92#include <linux/smp.h>
93#include <linux/socket.h>
94#include <linux/stddef.h>
95#include <linux/unistd.h>
96#include <linux/wait.h>
97#include <linux/workqueue.h>
98#include <net/sock.h>
99#include <net/af_vsock.h>
100
101static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
102static void vsock_sk_destruct(struct sock *sk);
103static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
104
105/* Protocol family. */
106static struct proto vsock_proto = {
107	.name = "AF_VSOCK",
108	.owner = THIS_MODULE,
109	.obj_size = sizeof(struct vsock_sock),
110};
111
112/* The default peer timeout indicates how long we will wait for a peer response
113 * to a control message.
114 */
115#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
116
117#define SS_LISTEN 255
118
119static const struct vsock_transport *transport;
120static DEFINE_MUTEX(vsock_register_mutex);
121
122/**** EXPORTS ****/
123
124/* Get the ID of the local context.  This is transport dependent. */
125
126int vm_sockets_get_local_cid(void)
127{
128	return transport->get_local_cid();
129}
130EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
131
132/**** UTILS ****/
133
134/* Each bound VSocket is stored in the bind hash table and each connected
135 * VSocket is stored in the connected hash table.
136 *
137 * Unbound sockets are all put on the same list attached to the end of the hash
138 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
139 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
140 * represents the list that addr hashes to).
141 *
142 * Specifically, we initialize the vsock_bind_table array to a size of
143 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
144 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
145 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
146 * mods with VSOCK_HASH_SIZE to ensure this.
147 */
148#define VSOCK_HASH_SIZE         251
149#define MAX_PORT_RETRIES        24
150
151#define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
152#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
153#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
154
155/* XXX This can probably be implemented in a better way. */
156#define VSOCK_CONN_HASH(src, dst)				\
157	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
158#define vsock_connected_sockets(src, dst)		\
159	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
160#define vsock_connected_sockets_vsk(vsk)				\
161	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
162
163static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
164static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
165static DEFINE_SPINLOCK(vsock_table_lock);
166
167/* Autobind this socket to the local address if necessary. */
168static int vsock_auto_bind(struct vsock_sock *vsk)
169{
170	struct sock *sk = sk_vsock(vsk);
171	struct sockaddr_vm local_addr;
172
173	if (vsock_addr_bound(&vsk->local_addr))
174		return 0;
175	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
176	return __vsock_bind(sk, &local_addr);
177}
178
179static void vsock_init_tables(void)
180{
181	int i;
182
183	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
184		INIT_LIST_HEAD(&vsock_bind_table[i]);
185
186	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
187		INIT_LIST_HEAD(&vsock_connected_table[i]);
188}
189
190static void __vsock_insert_bound(struct list_head *list,
191				 struct vsock_sock *vsk)
192{
193	sock_hold(&vsk->sk);
194	list_add(&vsk->bound_table, list);
195}
196
197static void __vsock_insert_connected(struct list_head *list,
198				     struct vsock_sock *vsk)
199{
200	sock_hold(&vsk->sk);
201	list_add(&vsk->connected_table, list);
202}
203
204static void __vsock_remove_bound(struct vsock_sock *vsk)
205{
206	list_del_init(&vsk->bound_table);
207	sock_put(&vsk->sk);
208}
209
210static void __vsock_remove_connected(struct vsock_sock *vsk)
211{
212	list_del_init(&vsk->connected_table);
213	sock_put(&vsk->sk);
214}
215
216static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
217{
218	struct vsock_sock *vsk;
219
220	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
221		if (addr->svm_port == vsk->local_addr.svm_port)
222			return sk_vsock(vsk);
223
224	return NULL;
225}
226
227static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
228						  struct sockaddr_vm *dst)
229{
230	struct vsock_sock *vsk;
231
232	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
233			    connected_table) {
234		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
235		    dst->svm_port == vsk->local_addr.svm_port) {
236			return sk_vsock(vsk);
237		}
238	}
239
240	return NULL;
241}
242
243static bool __vsock_in_bound_table(struct vsock_sock *vsk)
244{
245	return !list_empty(&vsk->bound_table);
246}
247
248static bool __vsock_in_connected_table(struct vsock_sock *vsk)
249{
250	return !list_empty(&vsk->connected_table);
251}
252
253static void vsock_insert_unbound(struct vsock_sock *vsk)
254{
255	spin_lock_bh(&vsock_table_lock);
256	__vsock_insert_bound(vsock_unbound_sockets, vsk);
257	spin_unlock_bh(&vsock_table_lock);
258}
259
260void vsock_insert_connected(struct vsock_sock *vsk)
261{
262	struct list_head *list = vsock_connected_sockets(
263		&vsk->remote_addr, &vsk->local_addr);
264
265	spin_lock_bh(&vsock_table_lock);
266	__vsock_insert_connected(list, vsk);
267	spin_unlock_bh(&vsock_table_lock);
268}
269EXPORT_SYMBOL_GPL(vsock_insert_connected);
270
271void vsock_remove_bound(struct vsock_sock *vsk)
272{
273	spin_lock_bh(&vsock_table_lock);
274	__vsock_remove_bound(vsk);
275	spin_unlock_bh(&vsock_table_lock);
276}
277EXPORT_SYMBOL_GPL(vsock_remove_bound);
278
279void vsock_remove_connected(struct vsock_sock *vsk)
280{
281	spin_lock_bh(&vsock_table_lock);
282	__vsock_remove_connected(vsk);
283	spin_unlock_bh(&vsock_table_lock);
284}
285EXPORT_SYMBOL_GPL(vsock_remove_connected);
286
287struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
288{
289	struct sock *sk;
290
291	spin_lock_bh(&vsock_table_lock);
292	sk = __vsock_find_bound_socket(addr);
293	if (sk)
294		sock_hold(sk);
295
296	spin_unlock_bh(&vsock_table_lock);
297
298	return sk;
299}
300EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
301
302struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
303					 struct sockaddr_vm *dst)
304{
305	struct sock *sk;
306
307	spin_lock_bh(&vsock_table_lock);
308	sk = __vsock_find_connected_socket(src, dst);
309	if (sk)
310		sock_hold(sk);
311
312	spin_unlock_bh(&vsock_table_lock);
313
314	return sk;
315}
316EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
317
318static bool vsock_in_bound_table(struct vsock_sock *vsk)
319{
320	bool ret;
321
322	spin_lock_bh(&vsock_table_lock);
323	ret = __vsock_in_bound_table(vsk);
324	spin_unlock_bh(&vsock_table_lock);
325
326	return ret;
327}
328
329static bool vsock_in_connected_table(struct vsock_sock *vsk)
330{
331	bool ret;
332
333	spin_lock_bh(&vsock_table_lock);
334	ret = __vsock_in_connected_table(vsk);
335	spin_unlock_bh(&vsock_table_lock);
336
337	return ret;
338}
339
340void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
341{
342	int i;
343
344	spin_lock_bh(&vsock_table_lock);
345
346	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
347		struct vsock_sock *vsk;
348		list_for_each_entry(vsk, &vsock_connected_table[i],
349				    connected_table)
350			fn(sk_vsock(vsk));
351	}
352
353	spin_unlock_bh(&vsock_table_lock);
354}
355EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
356
357void vsock_add_pending(struct sock *listener, struct sock *pending)
358{
359	struct vsock_sock *vlistener;
360	struct vsock_sock *vpending;
361
362	vlistener = vsock_sk(listener);
363	vpending = vsock_sk(pending);
364
365	sock_hold(pending);
366	sock_hold(listener);
367	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
368}
369EXPORT_SYMBOL_GPL(vsock_add_pending);
370
371void vsock_remove_pending(struct sock *listener, struct sock *pending)
372{
373	struct vsock_sock *vpending = vsock_sk(pending);
374
375	list_del_init(&vpending->pending_links);
376	sock_put(listener);
377	sock_put(pending);
378}
379EXPORT_SYMBOL_GPL(vsock_remove_pending);
380
381void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
382{
383	struct vsock_sock *vlistener;
384	struct vsock_sock *vconnected;
385
386	vlistener = vsock_sk(listener);
387	vconnected = vsock_sk(connected);
388
389	sock_hold(connected);
390	sock_hold(listener);
391	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
392}
393EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
394
395static struct sock *vsock_dequeue_accept(struct sock *listener)
396{
397	struct vsock_sock *vlistener;
398	struct vsock_sock *vconnected;
399
400	vlistener = vsock_sk(listener);
401
402	if (list_empty(&vlistener->accept_queue))
403		return NULL;
404
405	vconnected = list_entry(vlistener->accept_queue.next,
406				struct vsock_sock, accept_queue);
407
408	list_del_init(&vconnected->accept_queue);
409	sock_put(listener);
410	/* The caller will need a reference on the connected socket so we let
411	 * it call sock_put().
412	 */
413
414	return sk_vsock(vconnected);
415}
416
417static bool vsock_is_accept_queue_empty(struct sock *sk)
418{
419	struct vsock_sock *vsk = vsock_sk(sk);
420	return list_empty(&vsk->accept_queue);
421}
422
423static bool vsock_is_pending(struct sock *sk)
424{
425	struct vsock_sock *vsk = vsock_sk(sk);
426	return !list_empty(&vsk->pending_links);
427}
428
429static int vsock_send_shutdown(struct sock *sk, int mode)
430{
431	return transport->shutdown(vsock_sk(sk), mode);
432}
433
434void vsock_pending_work(struct work_struct *work)
435{
436	struct sock *sk;
437	struct sock *listener;
438	struct vsock_sock *vsk;
439	bool cleanup;
440
441	vsk = container_of(work, struct vsock_sock, dwork.work);
442	sk = sk_vsock(vsk);
443	listener = vsk->listener;
444	cleanup = true;
445
446	lock_sock(listener);
447	lock_sock(sk);
448
449	if (vsock_is_pending(sk)) {
450		vsock_remove_pending(listener, sk);
451	} else if (!vsk->rejected) {
452		/* We are not on the pending list and accept() did not reject
453		 * us, so we must have been accepted by our user process.  We
454		 * just need to drop our references to the sockets and be on
455		 * our way.
456		 */
457		cleanup = false;
458		goto out;
459	}
460
461	listener->sk_ack_backlog--;
462
463	/* We need to remove ourself from the global connected sockets list so
464	 * incoming packets can't find this socket, and to reduce the reference
465	 * count.
466	 */
467	if (vsock_in_connected_table(vsk))
468		vsock_remove_connected(vsk);
469
470	sk->sk_state = SS_FREE;
471
472out:
473	release_sock(sk);
474	release_sock(listener);
475	if (cleanup)
476		sock_put(sk);
477
478	sock_put(sk);
479	sock_put(listener);
480}
481EXPORT_SYMBOL_GPL(vsock_pending_work);
482
483/**** SOCKET OPERATIONS ****/
484
485static int __vsock_bind_stream(struct vsock_sock *vsk,
486			       struct sockaddr_vm *addr)
487{
488	static u32 port = LAST_RESERVED_PORT + 1;
489	struct sockaddr_vm new_addr;
490
491	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
492
493	if (addr->svm_port == VMADDR_PORT_ANY) {
494		bool found = false;
495		unsigned int i;
496
497		for (i = 0; i < MAX_PORT_RETRIES; i++) {
498			if (port <= LAST_RESERVED_PORT)
499				port = LAST_RESERVED_PORT + 1;
500
501			new_addr.svm_port = port++;
502
503			if (!__vsock_find_bound_socket(&new_addr)) {
504				found = true;
505				break;
506			}
507		}
508
509		if (!found)
510			return -EADDRNOTAVAIL;
511	} else {
512		/* If port is in reserved range, ensure caller
513		 * has necessary privileges.
514		 */
515		if (addr->svm_port <= LAST_RESERVED_PORT &&
516		    !capable(CAP_NET_BIND_SERVICE)) {
517			return -EACCES;
518		}
519
520		if (__vsock_find_bound_socket(&new_addr))
521			return -EADDRINUSE;
522	}
523
524	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
525
526	/* Remove stream sockets from the unbound list and add them to the hash
527	 * table for easy lookup by its address.  The unbound list is simply an
528	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
529	 */
530	__vsock_remove_bound(vsk);
531	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
532
533	return 0;
534}
535
536static int __vsock_bind_dgram(struct vsock_sock *vsk,
537			      struct sockaddr_vm *addr)
538{
539	return transport->dgram_bind(vsk, addr);
540}
541
542static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
543{
544	struct vsock_sock *vsk = vsock_sk(sk);
545	u32 cid;
546	int retval;
547
548	/* First ensure this socket isn't already bound. */
549	if (vsock_addr_bound(&vsk->local_addr))
550		return -EINVAL;
551
552	/* Now bind to the provided address or select appropriate values if
553	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
554	 * like AF_INET prevents binding to a non-local IP address (in most
555	 * cases), we only allow binding to the local CID.
556	 */
557	cid = transport->get_local_cid();
558	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
559		return -EADDRNOTAVAIL;
560
561	switch (sk->sk_socket->type) {
562	case SOCK_STREAM:
563		spin_lock_bh(&vsock_table_lock);
564		retval = __vsock_bind_stream(vsk, addr);
565		spin_unlock_bh(&vsock_table_lock);
566		break;
567
568	case SOCK_DGRAM:
569		retval = __vsock_bind_dgram(vsk, addr);
570		break;
571
572	default:
573		retval = -EINVAL;
574		break;
575	}
576
577	return retval;
578}
579
580struct sock *__vsock_create(struct net *net,
581			    struct socket *sock,
582			    struct sock *parent,
583			    gfp_t priority,
584			    unsigned short type)
585{
586	struct sock *sk;
587	struct vsock_sock *psk;
588	struct vsock_sock *vsk;
589
590	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto);
591	if (!sk)
592		return NULL;
593
594	sock_init_data(sock, sk);
595
596	/* sk->sk_type is normally set in sock_init_data, but only if sock is
597	 * non-NULL. We make sure that our sockets always have a type by
598	 * setting it here if needed.
599	 */
600	if (!sock)
601		sk->sk_type = type;
602
603	vsk = vsock_sk(sk);
604	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
605	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
606
607	sk->sk_destruct = vsock_sk_destruct;
608	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
609	sk->sk_state = 0;
610	sock_reset_flag(sk, SOCK_DONE);
611
612	INIT_LIST_HEAD(&vsk->bound_table);
613	INIT_LIST_HEAD(&vsk->connected_table);
614	vsk->listener = NULL;
615	INIT_LIST_HEAD(&vsk->pending_links);
616	INIT_LIST_HEAD(&vsk->accept_queue);
617	vsk->rejected = false;
618	vsk->sent_request = false;
619	vsk->ignore_connecting_rst = false;
620	vsk->peer_shutdown = 0;
621
622	psk = parent ? vsock_sk(parent) : NULL;
623	if (parent) {
624		vsk->trusted = psk->trusted;
625		vsk->owner = get_cred(psk->owner);
626		vsk->connect_timeout = psk->connect_timeout;
627	} else {
628		vsk->trusted = capable(CAP_NET_ADMIN);
629		vsk->owner = get_current_cred();
630		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
631	}
632
633	if (transport->init(vsk, psk) < 0) {
634		sk_free(sk);
635		return NULL;
636	}
637
638	if (sock)
639		vsock_insert_unbound(vsk);
640
641	return sk;
642}
643EXPORT_SYMBOL_GPL(__vsock_create);
644
645static void __vsock_release(struct sock *sk)
646{
647	if (sk) {
648		struct sk_buff *skb;
649		struct sock *pending;
650		struct vsock_sock *vsk;
651
652		vsk = vsock_sk(sk);
653		pending = NULL;	/* Compiler warning. */
654
655		if (vsock_in_bound_table(vsk))
656			vsock_remove_bound(vsk);
657
658		if (vsock_in_connected_table(vsk))
659			vsock_remove_connected(vsk);
660
661		transport->release(vsk);
662
663		lock_sock(sk);
664		sock_orphan(sk);
665		sk->sk_shutdown = SHUTDOWN_MASK;
666
667		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
668			kfree_skb(skb);
669
670		/* Clean up any sockets that never were accepted. */
671		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
672			__vsock_release(pending);
673			sock_put(pending);
674		}
675
676		release_sock(sk);
677		sock_put(sk);
678	}
679}
680
681static void vsock_sk_destruct(struct sock *sk)
682{
683	struct vsock_sock *vsk = vsock_sk(sk);
684
685	transport->destruct(vsk);
686
687	/* When clearing these addresses, there's no need to set the family and
688	 * possibly register the address family with the kernel.
689	 */
690	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
691	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
692
693	put_cred(vsk->owner);
694}
695
696static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
697{
698	int err;
699
700	err = sock_queue_rcv_skb(sk, skb);
701	if (err)
702		kfree_skb(skb);
703
704	return err;
705}
706
707s64 vsock_stream_has_data(struct vsock_sock *vsk)
708{
709	return transport->stream_has_data(vsk);
710}
711EXPORT_SYMBOL_GPL(vsock_stream_has_data);
712
713s64 vsock_stream_has_space(struct vsock_sock *vsk)
714{
715	return transport->stream_has_space(vsk);
716}
717EXPORT_SYMBOL_GPL(vsock_stream_has_space);
718
719static int vsock_release(struct socket *sock)
720{
721	__vsock_release(sock->sk);
722	sock->sk = NULL;
723	sock->state = SS_FREE;
724
725	return 0;
726}
727
728static int
729vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
730{
731	int err;
732	struct sock *sk;
733	struct sockaddr_vm *vm_addr;
734
735	sk = sock->sk;
736
737	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
738		return -EINVAL;
739
740	lock_sock(sk);
741	err = __vsock_bind(sk, vm_addr);
742	release_sock(sk);
743
744	return err;
745}
746
747static int vsock_getname(struct socket *sock,
748			 struct sockaddr *addr, int *addr_len, int peer)
749{
750	int err;
751	struct sock *sk;
752	struct vsock_sock *vsk;
753	struct sockaddr_vm *vm_addr;
754
755	sk = sock->sk;
756	vsk = vsock_sk(sk);
757	err = 0;
758
759	lock_sock(sk);
760
761	if (peer) {
762		if (sock->state != SS_CONNECTED) {
763			err = -ENOTCONN;
764			goto out;
765		}
766		vm_addr = &vsk->remote_addr;
767	} else {
768		vm_addr = &vsk->local_addr;
769	}
770
771	if (!vm_addr) {
772		err = -EINVAL;
773		goto out;
774	}
775
776	/* sys_getsockname() and sys_getpeername() pass us a
777	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
778	 * that macro is defined in socket.c instead of .h, so we hardcode its
779	 * value here.
780	 */
781	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
782	memcpy(addr, vm_addr, sizeof(*vm_addr));
783	*addr_len = sizeof(*vm_addr);
784
785out:
786	release_sock(sk);
787	return err;
788}
789
790static int vsock_shutdown(struct socket *sock, int mode)
791{
792	int err;
793	struct sock *sk;
794
795	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
796	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
797	 * here like the other address families do.  Note also that the
798	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
799	 * which is what we want.
800	 */
801	mode++;
802
803	if ((mode & ~SHUTDOWN_MASK) || !mode)
804		return -EINVAL;
805
806	/* If this is a STREAM socket and it is not connected then bail out
807	 * immediately.  If it is a DGRAM socket then we must first kick the
808	 * socket so that it wakes up from any sleeping calls, for example
809	 * recv(), and then afterwards return the error.
810	 */
811
812	sk = sock->sk;
813	if (sock->state == SS_UNCONNECTED) {
814		err = -ENOTCONN;
815		if (sk->sk_type == SOCK_STREAM)
816			return err;
817	} else {
818		sock->state = SS_DISCONNECTING;
819		err = 0;
820	}
821
822	/* Receive and send shutdowns are treated alike. */
823	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
824	if (mode) {
825		lock_sock(sk);
826		sk->sk_shutdown |= mode;
827		sk->sk_state_change(sk);
828		release_sock(sk);
829
830		if (sk->sk_type == SOCK_STREAM) {
831			sock_reset_flag(sk, SOCK_DONE);
832			vsock_send_shutdown(sk, mode);
833		}
834	}
835
836	return err;
837}
838
839static unsigned int vsock_poll(struct file *file, struct socket *sock,
840			       poll_table *wait)
841{
842	struct sock *sk;
843	unsigned int mask;
844	struct vsock_sock *vsk;
845
846	sk = sock->sk;
847	vsk = vsock_sk(sk);
848
849	poll_wait(file, sk_sleep(sk), wait);
850	mask = 0;
851
852	if (sk->sk_err)
853		/* Signify that there has been an error on this socket. */
854		mask |= POLLERR;
855
856	/* INET sockets treat local write shutdown and peer write shutdown as a
857	 * case of POLLHUP set.
858	 */
859	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
860	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
861	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
862		mask |= POLLHUP;
863	}
864
865	if (sk->sk_shutdown & RCV_SHUTDOWN ||
866	    vsk->peer_shutdown & SEND_SHUTDOWN) {
867		mask |= POLLRDHUP;
868	}
869
870	if (sock->type == SOCK_DGRAM) {
871		/* For datagram sockets we can read if there is something in
872		 * the queue and write as long as the socket isn't shutdown for
873		 * sending.
874		 */
875		if (!skb_queue_empty(&sk->sk_receive_queue) ||
876		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
877			mask |= POLLIN | POLLRDNORM;
878		}
879
880		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
881			mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
882
883	} else if (sock->type == SOCK_STREAM) {
884		lock_sock(sk);
885
886		/* Listening sockets that have connections in their accept
887		 * queue can be read.
888		 */
889		if (sk->sk_state == SS_LISTEN
890		    && !vsock_is_accept_queue_empty(sk))
891			mask |= POLLIN | POLLRDNORM;
892
893		/* If there is something in the queue then we can read. */
894		if (transport->stream_is_active(vsk) &&
895		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
896			bool data_ready_now = false;
897			int ret = transport->notify_poll_in(
898					vsk, 1, &data_ready_now);
899			if (ret < 0) {
900				mask |= POLLERR;
901			} else {
902				if (data_ready_now)
903					mask |= POLLIN | POLLRDNORM;
904
905			}
906		}
907
908		/* Sockets whose connections have been closed, reset, or
909		 * terminated should also be considered read, and we check the
910		 * shutdown flag for that.
911		 */
912		if (sk->sk_shutdown & RCV_SHUTDOWN ||
913		    vsk->peer_shutdown & SEND_SHUTDOWN) {
914			mask |= POLLIN | POLLRDNORM;
915		}
916
917		/* Connected sockets that can produce data can be written. */
918		if (sk->sk_state == SS_CONNECTED) {
919			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
920				bool space_avail_now = false;
921				int ret = transport->notify_poll_out(
922						vsk, 1, &space_avail_now);
923				if (ret < 0) {
924					mask |= POLLERR;
925				} else {
926					if (space_avail_now)
927						/* Remove POLLWRBAND since INET
928						 * sockets are not setting it.
929						 */
930						mask |= POLLOUT | POLLWRNORM;
931
932				}
933			}
934		}
935
936		/* Simulate INET socket poll behaviors, which sets
937		 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
938		 * but local send is not shutdown.
939		 */
940		if (sk->sk_state == SS_UNCONNECTED) {
941			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
942				mask |= POLLOUT | POLLWRNORM;
943
944		}
945
946		release_sock(sk);
947	}
948
949	return mask;
950}
951
952static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
953			       size_t len)
954{
955	int err;
956	struct sock *sk;
957	struct vsock_sock *vsk;
958	struct sockaddr_vm *remote_addr;
959
960	if (msg->msg_flags & MSG_OOB)
961		return -EOPNOTSUPP;
962
963	/* For now, MSG_DONTWAIT is always assumed... */
964	err = 0;
965	sk = sock->sk;
966	vsk = vsock_sk(sk);
967
968	lock_sock(sk);
969
970	err = vsock_auto_bind(vsk);
971	if (err)
972		goto out;
973
974
975	/* If the provided message contains an address, use that.  Otherwise
976	 * fall back on the socket's remote handle (if it has been connected).
977	 */
978	if (msg->msg_name &&
979	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
980			    &remote_addr) == 0) {
981		/* Ensure this address is of the right type and is a valid
982		 * destination.
983		 */
984
985		if (remote_addr->svm_cid == VMADDR_CID_ANY)
986			remote_addr->svm_cid = transport->get_local_cid();
987
988		if (!vsock_addr_bound(remote_addr)) {
989			err = -EINVAL;
990			goto out;
991		}
992	} else if (sock->state == SS_CONNECTED) {
993		remote_addr = &vsk->remote_addr;
994
995		if (remote_addr->svm_cid == VMADDR_CID_ANY)
996			remote_addr->svm_cid = transport->get_local_cid();
997
998		/* XXX Should connect() or this function ensure remote_addr is
999		 * bound?
1000		 */
1001		if (!vsock_addr_bound(&vsk->remote_addr)) {
1002			err = -EINVAL;
1003			goto out;
1004		}
1005	} else {
1006		err = -EINVAL;
1007		goto out;
1008	}
1009
1010	if (!transport->dgram_allow(remote_addr->svm_cid,
1011				    remote_addr->svm_port)) {
1012		err = -EINVAL;
1013		goto out;
1014	}
1015
1016	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1017
1018out:
1019	release_sock(sk);
1020	return err;
1021}
1022
1023static int vsock_dgram_connect(struct socket *sock,
1024			       struct sockaddr *addr, int addr_len, int flags)
1025{
1026	int err;
1027	struct sock *sk;
1028	struct vsock_sock *vsk;
1029	struct sockaddr_vm *remote_addr;
1030
1031	sk = sock->sk;
1032	vsk = vsock_sk(sk);
1033
1034	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1035	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1036		lock_sock(sk);
1037		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1038				VMADDR_PORT_ANY);
1039		sock->state = SS_UNCONNECTED;
1040		release_sock(sk);
1041		return 0;
1042	} else if (err != 0)
1043		return -EINVAL;
1044
1045	lock_sock(sk);
1046
1047	err = vsock_auto_bind(vsk);
1048	if (err)
1049		goto out;
1050
1051	if (!transport->dgram_allow(remote_addr->svm_cid,
1052				    remote_addr->svm_port)) {
1053		err = -EINVAL;
1054		goto out;
1055	}
1056
1057	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1058	sock->state = SS_CONNECTED;
1059
1060out:
1061	release_sock(sk);
1062	return err;
1063}
1064
1065static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1066			       size_t len, int flags)
1067{
1068	return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1069}
1070
1071static const struct proto_ops vsock_dgram_ops = {
1072	.family = PF_VSOCK,
1073	.owner = THIS_MODULE,
1074	.release = vsock_release,
1075	.bind = vsock_bind,
1076	.connect = vsock_dgram_connect,
1077	.socketpair = sock_no_socketpair,
1078	.accept = sock_no_accept,
1079	.getname = vsock_getname,
1080	.poll = vsock_poll,
1081	.ioctl = sock_no_ioctl,
1082	.listen = sock_no_listen,
1083	.shutdown = vsock_shutdown,
1084	.setsockopt = sock_no_setsockopt,
1085	.getsockopt = sock_no_getsockopt,
1086	.sendmsg = vsock_dgram_sendmsg,
1087	.recvmsg = vsock_dgram_recvmsg,
1088	.mmap = sock_no_mmap,
1089	.sendpage = sock_no_sendpage,
1090};
1091
1092static void vsock_connect_timeout(struct work_struct *work)
1093{
1094	struct sock *sk;
1095	struct vsock_sock *vsk;
1096
1097	vsk = container_of(work, struct vsock_sock, dwork.work);
1098	sk = sk_vsock(vsk);
1099
1100	lock_sock(sk);
1101	if (sk->sk_state == SS_CONNECTING &&
1102	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1103		sk->sk_state = SS_UNCONNECTED;
1104		sk->sk_err = ETIMEDOUT;
1105		sk->sk_error_report(sk);
1106	}
1107	release_sock(sk);
1108
1109	sock_put(sk);
1110}
1111
1112static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1113				int addr_len, int flags)
1114{
1115	int err;
1116	struct sock *sk;
1117	struct vsock_sock *vsk;
1118	struct sockaddr_vm *remote_addr;
1119	long timeout;
1120	DEFINE_WAIT(wait);
1121
1122	err = 0;
1123	sk = sock->sk;
1124	vsk = vsock_sk(sk);
1125
1126	lock_sock(sk);
1127
1128	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1129	switch (sock->state) {
1130	case SS_CONNECTED:
1131		err = -EISCONN;
1132		goto out;
1133	case SS_DISCONNECTING:
1134		err = -EINVAL;
1135		goto out;
1136	case SS_CONNECTING:
1137		/* This continues on so we can move sock into the SS_CONNECTED
1138		 * state once the connection has completed (at which point err
1139		 * will be set to zero also).  Otherwise, we will either wait
1140		 * for the connection or return -EALREADY should this be a
1141		 * non-blocking call.
1142		 */
1143		err = -EALREADY;
1144		break;
1145	default:
1146		if ((sk->sk_state == SS_LISTEN) ||
1147		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1148			err = -EINVAL;
1149			goto out;
1150		}
1151
1152		/* The hypervisor and well-known contexts do not have socket
1153		 * endpoints.
1154		 */
1155		if (!transport->stream_allow(remote_addr->svm_cid,
1156					     remote_addr->svm_port)) {
1157			err = -ENETUNREACH;
1158			goto out;
1159		}
1160
1161		/* Set the remote address that we are connecting to. */
1162		memcpy(&vsk->remote_addr, remote_addr,
1163		       sizeof(vsk->remote_addr));
1164
1165		err = vsock_auto_bind(vsk);
1166		if (err)
1167			goto out;
1168
1169		sk->sk_state = SS_CONNECTING;
1170
1171		err = transport->connect(vsk);
1172		if (err < 0)
1173			goto out;
1174
1175		/* Mark sock as connecting and set the error code to in
1176		 * progress in case this is a non-blocking connect.
1177		 */
1178		sock->state = SS_CONNECTING;
1179		err = -EINPROGRESS;
1180	}
1181
1182	/* The receive path will handle all communication until we are able to
1183	 * enter the connected state.  Here we wait for the connection to be
1184	 * completed or a notification of an error.
1185	 */
1186	timeout = vsk->connect_timeout;
1187	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1188
1189	while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1190		if (flags & O_NONBLOCK) {
1191			/* If we're not going to block, we schedule a timeout
1192			 * function to generate a timeout on the connection
1193			 * attempt, in case the peer doesn't respond in a
1194			 * timely manner. We hold on to the socket until the
1195			 * timeout fires.
1196			 */
1197			sock_hold(sk);
1198			INIT_DELAYED_WORK(&vsk->dwork,
1199					  vsock_connect_timeout);
1200			schedule_delayed_work(&vsk->dwork, timeout);
1201
1202			/* Skip ahead to preserve error code set above. */
1203			goto out_wait;
1204		}
1205
1206		release_sock(sk);
1207		timeout = schedule_timeout(timeout);
1208		lock_sock(sk);
1209
1210		if (signal_pending(current)) {
1211			err = sock_intr_errno(timeout);
1212			goto out_wait_error;
1213		} else if (timeout == 0) {
1214			err = -ETIMEDOUT;
1215			goto out_wait_error;
1216		}
1217
1218		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1219	}
1220
1221	if (sk->sk_err) {
1222		err = -sk->sk_err;
1223		goto out_wait_error;
1224	} else
1225		err = 0;
1226
1227out_wait:
1228	finish_wait(sk_sleep(sk), &wait);
1229out:
1230	release_sock(sk);
1231	return err;
1232
1233out_wait_error:
1234	sk->sk_state = SS_UNCONNECTED;
1235	sock->state = SS_UNCONNECTED;
1236	goto out_wait;
1237}
1238
1239static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1240{
1241	struct sock *listener;
1242	int err;
1243	struct sock *connected;
1244	struct vsock_sock *vconnected;
1245	long timeout;
1246	DEFINE_WAIT(wait);
1247
1248	err = 0;
1249	listener = sock->sk;
1250
1251	lock_sock(listener);
1252
1253	if (sock->type != SOCK_STREAM) {
1254		err = -EOPNOTSUPP;
1255		goto out;
1256	}
1257
1258	if (listener->sk_state != SS_LISTEN) {
1259		err = -EINVAL;
1260		goto out;
1261	}
1262
1263	/* Wait for children sockets to appear; these are the new sockets
1264	 * created upon connection establishment.
1265	 */
1266	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1267	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1268
1269	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1270	       listener->sk_err == 0) {
1271		release_sock(listener);
1272		timeout = schedule_timeout(timeout);
1273		lock_sock(listener);
1274
1275		if (signal_pending(current)) {
1276			err = sock_intr_errno(timeout);
1277			goto out_wait;
1278		} else if (timeout == 0) {
1279			err = -EAGAIN;
1280			goto out_wait;
1281		}
1282
1283		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1284	}
1285
1286	if (listener->sk_err)
1287		err = -listener->sk_err;
1288
1289	if (connected) {
1290		listener->sk_ack_backlog--;
1291
1292		lock_sock(connected);
1293		vconnected = vsock_sk(connected);
1294
1295		/* If the listener socket has received an error, then we should
1296		 * reject this socket and return.  Note that we simply mark the
1297		 * socket rejected, drop our reference, and let the cleanup
1298		 * function handle the cleanup; the fact that we found it in
1299		 * the listener's accept queue guarantees that the cleanup
1300		 * function hasn't run yet.
1301		 */
1302		if (err) {
1303			vconnected->rejected = true;
1304			release_sock(connected);
1305			sock_put(connected);
1306			goto out_wait;
1307		}
1308
1309		newsock->state = SS_CONNECTED;
1310		sock_graft(connected, newsock);
1311		release_sock(connected);
1312		sock_put(connected);
1313	}
1314
1315out_wait:
1316	finish_wait(sk_sleep(listener), &wait);
1317out:
1318	release_sock(listener);
1319	return err;
1320}
1321
1322static int vsock_listen(struct socket *sock, int backlog)
1323{
1324	int err;
1325	struct sock *sk;
1326	struct vsock_sock *vsk;
1327
1328	sk = sock->sk;
1329
1330	lock_sock(sk);
1331
1332	if (sock->type != SOCK_STREAM) {
1333		err = -EOPNOTSUPP;
1334		goto out;
1335	}
1336
1337	if (sock->state != SS_UNCONNECTED) {
1338		err = -EINVAL;
1339		goto out;
1340	}
1341
1342	vsk = vsock_sk(sk);
1343
1344	if (!vsock_addr_bound(&vsk->local_addr)) {
1345		err = -EINVAL;
1346		goto out;
1347	}
1348
1349	sk->sk_max_ack_backlog = backlog;
1350	sk->sk_state = SS_LISTEN;
1351
1352	err = 0;
1353
1354out:
1355	release_sock(sk);
1356	return err;
1357}
1358
1359static int vsock_stream_setsockopt(struct socket *sock,
1360				   int level,
1361				   int optname,
1362				   char __user *optval,
1363				   unsigned int optlen)
1364{
1365	int err;
1366	struct sock *sk;
1367	struct vsock_sock *vsk;
1368	u64 val;
1369
1370	if (level != AF_VSOCK)
1371		return -ENOPROTOOPT;
1372
1373#define COPY_IN(_v)                                       \
1374	do {						  \
1375		if (optlen < sizeof(_v)) {		  \
1376			err = -EINVAL;			  \
1377			goto exit;			  \
1378		}					  \
1379		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1380			err = -EFAULT;					\
1381			goto exit;					\
1382		}							\
1383	} while (0)
1384
1385	err = 0;
1386	sk = sock->sk;
1387	vsk = vsock_sk(sk);
1388
1389	lock_sock(sk);
1390
1391	switch (optname) {
1392	case SO_VM_SOCKETS_BUFFER_SIZE:
1393		COPY_IN(val);
1394		transport->set_buffer_size(vsk, val);
1395		break;
1396
1397	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1398		COPY_IN(val);
1399		transport->set_max_buffer_size(vsk, val);
1400		break;
1401
1402	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1403		COPY_IN(val);
1404		transport->set_min_buffer_size(vsk, val);
1405		break;
1406
1407	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1408		struct timeval tv;
1409		COPY_IN(tv);
1410		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1411		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1412			vsk->connect_timeout = tv.tv_sec * HZ +
1413			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1414			if (vsk->connect_timeout == 0)
1415				vsk->connect_timeout =
1416				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1417
1418		} else {
1419			err = -ERANGE;
1420		}
1421		break;
1422	}
1423
1424	default:
1425		err = -ENOPROTOOPT;
1426		break;
1427	}
1428
1429#undef COPY_IN
1430
1431exit:
1432	release_sock(sk);
1433	return err;
1434}
1435
1436static int vsock_stream_getsockopt(struct socket *sock,
1437				   int level, int optname,
1438				   char __user *optval,
1439				   int __user *optlen)
1440{
1441	int err;
1442	int len;
1443	struct sock *sk;
1444	struct vsock_sock *vsk;
1445	u64 val;
1446
1447	if (level != AF_VSOCK)
1448		return -ENOPROTOOPT;
1449
1450	err = get_user(len, optlen);
1451	if (err != 0)
1452		return err;
1453
1454#define COPY_OUT(_v)                            \
1455	do {					\
1456		if (len < sizeof(_v))		\
1457			return -EINVAL;		\
1458						\
1459		len = sizeof(_v);		\
1460		if (copy_to_user(optval, &_v, len) != 0)	\
1461			return -EFAULT;				\
1462								\
1463	} while (0)
1464
1465	err = 0;
1466	sk = sock->sk;
1467	vsk = vsock_sk(sk);
1468
1469	switch (optname) {
1470	case SO_VM_SOCKETS_BUFFER_SIZE:
1471		val = transport->get_buffer_size(vsk);
1472		COPY_OUT(val);
1473		break;
1474
1475	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1476		val = transport->get_max_buffer_size(vsk);
1477		COPY_OUT(val);
1478		break;
1479
1480	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1481		val = transport->get_min_buffer_size(vsk);
1482		COPY_OUT(val);
1483		break;
1484
1485	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1486		struct timeval tv;
1487		tv.tv_sec = vsk->connect_timeout / HZ;
1488		tv.tv_usec =
1489		    (vsk->connect_timeout -
1490		     tv.tv_sec * HZ) * (1000000 / HZ);
1491		COPY_OUT(tv);
1492		break;
1493	}
1494	default:
1495		return -ENOPROTOOPT;
1496	}
1497
1498	err = put_user(len, optlen);
1499	if (err != 0)
1500		return -EFAULT;
1501
1502#undef COPY_OUT
1503
1504	return 0;
1505}
1506
1507static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1508				size_t len)
1509{
1510	struct sock *sk;
1511	struct vsock_sock *vsk;
1512	ssize_t total_written;
1513	long timeout;
1514	int err;
1515	struct vsock_transport_send_notify_data send_data;
1516
1517	DEFINE_WAIT(wait);
1518
1519	sk = sock->sk;
1520	vsk = vsock_sk(sk);
1521	total_written = 0;
1522	err = 0;
1523
1524	if (msg->msg_flags & MSG_OOB)
1525		return -EOPNOTSUPP;
1526
1527	lock_sock(sk);
1528
1529	/* Callers should not provide a destination with stream sockets. */
1530	if (msg->msg_namelen) {
1531		err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1532		goto out;
1533	}
1534
1535	/* Send data only if both sides are not shutdown in the direction. */
1536	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1537	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1538		err = -EPIPE;
1539		goto out;
1540	}
1541
1542	if (sk->sk_state != SS_CONNECTED ||
1543	    !vsock_addr_bound(&vsk->local_addr)) {
1544		err = -ENOTCONN;
1545		goto out;
1546	}
1547
1548	if (!vsock_addr_bound(&vsk->remote_addr)) {
1549		err = -EDESTADDRREQ;
1550		goto out;
1551	}
1552
1553	/* Wait for room in the produce queue to enqueue our user's data. */
1554	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1555
1556	err = transport->notify_send_init(vsk, &send_data);
1557	if (err < 0)
1558		goto out;
1559
1560	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1561
1562	while (total_written < len) {
1563		ssize_t written;
1564
1565		while (vsock_stream_has_space(vsk) == 0 &&
1566		       sk->sk_err == 0 &&
1567		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1568		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1569
1570			/* Don't wait for non-blocking sockets. */
1571			if (timeout == 0) {
1572				err = -EAGAIN;
1573				goto out_wait;
1574			}
1575
1576			err = transport->notify_send_pre_block(vsk, &send_data);
1577			if (err < 0)
1578				goto out_wait;
1579
1580			release_sock(sk);
1581			timeout = schedule_timeout(timeout);
1582			lock_sock(sk);
1583			if (signal_pending(current)) {
1584				err = sock_intr_errno(timeout);
1585				goto out_wait;
1586			} else if (timeout == 0) {
1587				err = -EAGAIN;
1588				goto out_wait;
1589			}
1590
1591			prepare_to_wait(sk_sleep(sk), &wait,
1592					TASK_INTERRUPTIBLE);
1593		}
1594
1595		/* These checks occur both as part of and after the loop
1596		 * conditional since we need to check before and after
1597		 * sleeping.
1598		 */
1599		if (sk->sk_err) {
1600			err = -sk->sk_err;
1601			goto out_wait;
1602		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1603			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1604			err = -EPIPE;
1605			goto out_wait;
1606		}
1607
1608		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1609		if (err < 0)
1610			goto out_wait;
1611
1612		/* Note that enqueue will only write as many bytes as are free
1613		 * in the produce queue, so we don't need to ensure len is
1614		 * smaller than the queue size.  It is the caller's
1615		 * responsibility to check how many bytes we were able to send.
1616		 */
1617
1618		written = transport->stream_enqueue(
1619				vsk, msg,
1620				len - total_written);
1621		if (written < 0) {
1622			err = -ENOMEM;
1623			goto out_wait;
1624		}
1625
1626		total_written += written;
1627
1628		err = transport->notify_send_post_enqueue(
1629				vsk, written, &send_data);
1630		if (err < 0)
1631			goto out_wait;
1632
1633	}
1634
1635out_wait:
1636	if (total_written > 0)
1637		err = total_written;
1638	finish_wait(sk_sleep(sk), &wait);
1639out:
1640	release_sock(sk);
1641	return err;
1642}
1643
1644
1645static int
1646vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1647		     int flags)
1648{
1649	struct sock *sk;
1650	struct vsock_sock *vsk;
1651	int err;
1652	size_t target;
1653	ssize_t copied;
1654	long timeout;
1655	struct vsock_transport_recv_notify_data recv_data;
1656
1657	DEFINE_WAIT(wait);
1658
1659	sk = sock->sk;
1660	vsk = vsock_sk(sk);
1661	err = 0;
1662
1663	lock_sock(sk);
1664
1665	if (sk->sk_state != SS_CONNECTED) {
1666		/* Recvmsg is supposed to return 0 if a peer performs an
1667		 * orderly shutdown. Differentiate between that case and when a
1668		 * peer has not connected or a local shutdown occured with the
1669		 * SOCK_DONE flag.
1670		 */
1671		if (sock_flag(sk, SOCK_DONE))
1672			err = 0;
1673		else
1674			err = -ENOTCONN;
1675
1676		goto out;
1677	}
1678
1679	if (flags & MSG_OOB) {
1680		err = -EOPNOTSUPP;
1681		goto out;
1682	}
1683
1684	/* We don't check peer_shutdown flag here since peer may actually shut
1685	 * down, but there can be data in the queue that a local socket can
1686	 * receive.
1687	 */
1688	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1689		err = 0;
1690		goto out;
1691	}
1692
1693	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1694	 * is not an error.  We may as well bail out now.
1695	 */
1696	if (!len) {
1697		err = 0;
1698		goto out;
1699	}
1700
1701	/* We must not copy less than target bytes into the user's buffer
1702	 * before returning successfully, so we wait for the consume queue to
1703	 * have that much data to consume before dequeueing.  Note that this
1704	 * makes it impossible to handle cases where target is greater than the
1705	 * queue size.
1706	 */
1707	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1708	if (target >= transport->stream_rcvhiwat(vsk)) {
1709		err = -ENOMEM;
1710		goto out;
1711	}
1712	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1713	copied = 0;
1714
1715	err = transport->notify_recv_init(vsk, target, &recv_data);
1716	if (err < 0)
1717		goto out;
1718
1719	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1720
1721	while (1) {
1722		s64 ready = vsock_stream_has_data(vsk);
1723
1724		if (ready < 0) {
1725			/* Invalid queue pair content. XXX This should be
1726			 * changed to a connection reset in a later change.
1727			 */
1728
1729			err = -ENOMEM;
1730			goto out_wait;
1731		} else if (ready > 0) {
1732			ssize_t read;
1733
1734			err = transport->notify_recv_pre_dequeue(
1735					vsk, target, &recv_data);
1736			if (err < 0)
1737				break;
1738
1739			read = transport->stream_dequeue(
1740					vsk, msg,
1741					len - copied, flags);
1742			if (read < 0) {
1743				err = -ENOMEM;
1744				break;
1745			}
1746
1747			copied += read;
1748
1749			err = transport->notify_recv_post_dequeue(
1750					vsk, target, read,
1751					!(flags & MSG_PEEK), &recv_data);
1752			if (err < 0)
1753				goto out_wait;
1754
1755			if (read >= target || flags & MSG_PEEK)
1756				break;
1757
1758			target -= read;
1759		} else {
1760			if (sk->sk_err != 0 || (sk->sk_shutdown & RCV_SHUTDOWN)
1761			    || (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1762				break;
1763			}
1764			/* Don't wait for non-blocking sockets. */
1765			if (timeout == 0) {
1766				err = -EAGAIN;
1767				break;
1768			}
1769
1770			err = transport->notify_recv_pre_block(
1771					vsk, target, &recv_data);
1772			if (err < 0)
1773				break;
1774
1775			release_sock(sk);
1776			timeout = schedule_timeout(timeout);
1777			lock_sock(sk);
1778
1779			if (signal_pending(current)) {
1780				err = sock_intr_errno(timeout);
1781				break;
1782			} else if (timeout == 0) {
1783				err = -EAGAIN;
1784				break;
1785			}
1786
1787			prepare_to_wait(sk_sleep(sk), &wait,
1788					TASK_INTERRUPTIBLE);
1789		}
1790	}
1791
1792	if (sk->sk_err)
1793		err = -sk->sk_err;
1794	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1795		err = 0;
1796
1797	if (copied > 0) {
1798		/* We only do these additional bookkeeping/notification steps
1799		 * if we actually copied something out of the queue pair
1800		 * instead of just peeking ahead.
1801		 */
1802
1803		if (!(flags & MSG_PEEK)) {
1804			/* If the other side has shutdown for sending and there
1805			 * is nothing more to read, then modify the socket
1806			 * state.
1807			 */
1808			if (vsk->peer_shutdown & SEND_SHUTDOWN) {
1809				if (vsock_stream_has_data(vsk) <= 0) {
1810					sk->sk_state = SS_UNCONNECTED;
1811					sock_set_flag(sk, SOCK_DONE);
1812					sk->sk_state_change(sk);
1813				}
1814			}
1815		}
1816		err = copied;
1817	}
1818
1819out_wait:
1820	finish_wait(sk_sleep(sk), &wait);
1821out:
1822	release_sock(sk);
1823	return err;
1824}
1825
1826static const struct proto_ops vsock_stream_ops = {
1827	.family = PF_VSOCK,
1828	.owner = THIS_MODULE,
1829	.release = vsock_release,
1830	.bind = vsock_bind,
1831	.connect = vsock_stream_connect,
1832	.socketpair = sock_no_socketpair,
1833	.accept = vsock_accept,
1834	.getname = vsock_getname,
1835	.poll = vsock_poll,
1836	.ioctl = sock_no_ioctl,
1837	.listen = vsock_listen,
1838	.shutdown = vsock_shutdown,
1839	.setsockopt = vsock_stream_setsockopt,
1840	.getsockopt = vsock_stream_getsockopt,
1841	.sendmsg = vsock_stream_sendmsg,
1842	.recvmsg = vsock_stream_recvmsg,
1843	.mmap = sock_no_mmap,
1844	.sendpage = sock_no_sendpage,
1845};
1846
1847static int vsock_create(struct net *net, struct socket *sock,
1848			int protocol, int kern)
1849{
1850	if (!sock)
1851		return -EINVAL;
1852
1853	if (protocol && protocol != PF_VSOCK)
1854		return -EPROTONOSUPPORT;
1855
1856	switch (sock->type) {
1857	case SOCK_DGRAM:
1858		sock->ops = &vsock_dgram_ops;
1859		break;
1860	case SOCK_STREAM:
1861		sock->ops = &vsock_stream_ops;
1862		break;
1863	default:
1864		return -ESOCKTNOSUPPORT;
1865	}
1866
1867	sock->state = SS_UNCONNECTED;
1868
1869	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0) ? 0 : -ENOMEM;
1870}
1871
1872static const struct net_proto_family vsock_family_ops = {
1873	.family = AF_VSOCK,
1874	.create = vsock_create,
1875	.owner = THIS_MODULE,
1876};
1877
1878static long vsock_dev_do_ioctl(struct file *filp,
1879			       unsigned int cmd, void __user *ptr)
1880{
1881	u32 __user *p = ptr;
1882	int retval = 0;
1883
1884	switch (cmd) {
1885	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1886		if (put_user(transport->get_local_cid(), p) != 0)
1887			retval = -EFAULT;
1888		break;
1889
1890	default:
1891		pr_err("Unknown ioctl %d\n", cmd);
1892		retval = -EINVAL;
1893	}
1894
1895	return retval;
1896}
1897
1898static long vsock_dev_ioctl(struct file *filp,
1899			    unsigned int cmd, unsigned long arg)
1900{
1901	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1902}
1903
1904#ifdef CONFIG_COMPAT
1905static long vsock_dev_compat_ioctl(struct file *filp,
1906				   unsigned int cmd, unsigned long arg)
1907{
1908	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1909}
1910#endif
1911
1912static const struct file_operations vsock_device_ops = {
1913	.owner		= THIS_MODULE,
1914	.unlocked_ioctl	= vsock_dev_ioctl,
1915#ifdef CONFIG_COMPAT
1916	.compat_ioctl	= vsock_dev_compat_ioctl,
1917#endif
1918	.open		= nonseekable_open,
1919};
1920
1921static struct miscdevice vsock_device = {
1922	.name		= "vsock",
1923	.fops		= &vsock_device_ops,
1924};
1925
1926int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1927{
1928	int err = mutex_lock_interruptible(&vsock_register_mutex);
1929
1930	if (err)
1931		return err;
1932
1933	if (transport) {
1934		err = -EBUSY;
1935		goto err_busy;
1936	}
1937
1938	/* Transport must be the owner of the protocol so that it can't
1939	 * unload while there are open sockets.
1940	 */
1941	vsock_proto.owner = owner;
1942	transport = t;
1943
1944	vsock_init_tables();
1945
1946	vsock_device.minor = MISC_DYNAMIC_MINOR;
1947	err = misc_register(&vsock_device);
1948	if (err) {
1949		pr_err("Failed to register misc device\n");
1950		return -ENOENT;
1951	}
1952
1953	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1954	if (err) {
1955		pr_err("Cannot register vsock protocol\n");
1956		goto err_misc_deregister;
1957	}
1958
1959	err = sock_register(&vsock_family_ops);
1960	if (err) {
1961		pr_err("could not register af_vsock (%d) address family: %d\n",
1962		       AF_VSOCK, err);
1963		goto err_unregister_proto;
1964	}
1965
1966	mutex_unlock(&vsock_register_mutex);
1967	return 0;
1968
1969err_unregister_proto:
1970	proto_unregister(&vsock_proto);
1971err_misc_deregister:
1972	misc_deregister(&vsock_device);
1973	transport = NULL;
1974err_busy:
1975	mutex_unlock(&vsock_register_mutex);
1976	return err;
1977}
1978EXPORT_SYMBOL_GPL(__vsock_core_init);
1979
1980void vsock_core_exit(void)
1981{
1982	mutex_lock(&vsock_register_mutex);
1983
1984	misc_deregister(&vsock_device);
1985	sock_unregister(AF_VSOCK);
1986	proto_unregister(&vsock_proto);
1987
1988	/* We do not want the assignment below re-ordered. */
1989	mb();
1990	transport = NULL;
1991
1992	mutex_unlock(&vsock_register_mutex);
1993}
1994EXPORT_SYMBOL_GPL(vsock_core_exit);
1995
1996MODULE_AUTHOR("VMware, Inc.");
1997MODULE_DESCRIPTION("VMware Virtual Socket Family");
1998MODULE_VERSION("1.0.1.0-k");
1999MODULE_LICENSE("GPL v2");
2000