1/* 2 * Implementation of the kernel access vector cache (AVC). 3 * 4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 8 * Replaced the avc_lock spinlock by RCU. 9 * 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2, 14 * as published by the Free Software Foundation. 15 */ 16#include <linux/types.h> 17#include <linux/stddef.h> 18#include <linux/kernel.h> 19#include <linux/slab.h> 20#include <linux/fs.h> 21#include <linux/dcache.h> 22#include <linux/init.h> 23#include <linux/skbuff.h> 24#include <linux/percpu.h> 25#include <net/sock.h> 26#include <linux/un.h> 27#include <net/af_unix.h> 28#include <linux/ip.h> 29#include <linux/audit.h> 30#include <linux/ipv6.h> 31#include <net/ipv6.h> 32#include "avc.h" 33#include "avc_ss.h" 34#include "classmap.h" 35 36#define AVC_CACHE_SLOTS 512 37#define AVC_DEF_CACHE_THRESHOLD 512 38#define AVC_CACHE_RECLAIM 16 39 40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 41#define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 42#else 43#define avc_cache_stats_incr(field) do {} while (0) 44#endif 45 46struct avc_entry { 47 u32 ssid; 48 u32 tsid; 49 u16 tclass; 50 struct av_decision avd; 51}; 52 53struct avc_node { 54 struct avc_entry ae; 55 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 56 struct rcu_head rhead; 57}; 58 59struct avc_cache { 60 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 61 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 62 atomic_t lru_hint; /* LRU hint for reclaim scan */ 63 atomic_t active_nodes; 64 u32 latest_notif; /* latest revocation notification */ 65}; 66 67struct avc_callback_node { 68 int (*callback) (u32 event); 69 u32 events; 70 struct avc_callback_node *next; 71}; 72 73/* Exported via selinufs */ 74unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 75 76#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 77DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 78#endif 79 80static struct avc_cache avc_cache; 81static struct avc_callback_node *avc_callbacks; 82static struct kmem_cache *avc_node_cachep; 83 84static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) 85{ 86 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 87} 88 89/** 90 * avc_dump_av - Display an access vector in human-readable form. 91 * @tclass: target security class 92 * @av: access vector 93 */ 94static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) 95{ 96 const char **perms; 97 int i, perm; 98 99 if (av == 0) { 100 audit_log_format(ab, " null"); 101 return; 102 } 103 104 perms = secclass_map[tclass-1].perms; 105 106 audit_log_format(ab, " {"); 107 i = 0; 108 perm = 1; 109 while (i < (sizeof(av) * 8)) { 110 if ((perm & av) && perms[i]) { 111 audit_log_format(ab, " %s", perms[i]); 112 av &= ~perm; 113 } 114 i++; 115 perm <<= 1; 116 } 117 118 if (av) 119 audit_log_format(ab, " 0x%x", av); 120 121 audit_log_format(ab, " }"); 122} 123 124/** 125 * avc_dump_query - Display a SID pair and a class in human-readable form. 126 * @ssid: source security identifier 127 * @tsid: target security identifier 128 * @tclass: target security class 129 */ 130static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass) 131{ 132 int rc; 133 char *scontext; 134 u32 scontext_len; 135 136 rc = security_sid_to_context(ssid, &scontext, &scontext_len); 137 if (rc) 138 audit_log_format(ab, "ssid=%d", ssid); 139 else { 140 audit_log_format(ab, "scontext=%s", scontext); 141 kfree(scontext); 142 } 143 144 rc = security_sid_to_context(tsid, &scontext, &scontext_len); 145 if (rc) 146 audit_log_format(ab, " tsid=%d", tsid); 147 else { 148 audit_log_format(ab, " tcontext=%s", scontext); 149 kfree(scontext); 150 } 151 152 BUG_ON(tclass >= ARRAY_SIZE(secclass_map)); 153 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name); 154} 155 156/** 157 * avc_init - Initialize the AVC. 158 * 159 * Initialize the access vector cache. 160 */ 161void __init avc_init(void) 162{ 163 int i; 164 165 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 166 INIT_HLIST_HEAD(&avc_cache.slots[i]); 167 spin_lock_init(&avc_cache.slots_lock[i]); 168 } 169 atomic_set(&avc_cache.active_nodes, 0); 170 atomic_set(&avc_cache.lru_hint, 0); 171 172 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 173 0, SLAB_PANIC, NULL); 174 175 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n"); 176} 177 178int avc_get_hash_stats(char *page) 179{ 180 int i, chain_len, max_chain_len, slots_used; 181 struct avc_node *node; 182 struct hlist_head *head; 183 184 rcu_read_lock(); 185 186 slots_used = 0; 187 max_chain_len = 0; 188 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 189 head = &avc_cache.slots[i]; 190 if (!hlist_empty(head)) { 191 slots_used++; 192 chain_len = 0; 193 hlist_for_each_entry_rcu(node, head, list) 194 chain_len++; 195 if (chain_len > max_chain_len) 196 max_chain_len = chain_len; 197 } 198 } 199 200 rcu_read_unlock(); 201 202 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 203 "longest chain: %d\n", 204 atomic_read(&avc_cache.active_nodes), 205 slots_used, AVC_CACHE_SLOTS, max_chain_len); 206} 207 208static void avc_node_free(struct rcu_head *rhead) 209{ 210 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 211 kmem_cache_free(avc_node_cachep, node); 212 avc_cache_stats_incr(frees); 213} 214 215static void avc_node_delete(struct avc_node *node) 216{ 217 hlist_del_rcu(&node->list); 218 call_rcu(&node->rhead, avc_node_free); 219 atomic_dec(&avc_cache.active_nodes); 220} 221 222static void avc_node_kill(struct avc_node *node) 223{ 224 kmem_cache_free(avc_node_cachep, node); 225 avc_cache_stats_incr(frees); 226 atomic_dec(&avc_cache.active_nodes); 227} 228 229static void avc_node_replace(struct avc_node *new, struct avc_node *old) 230{ 231 hlist_replace_rcu(&old->list, &new->list); 232 call_rcu(&old->rhead, avc_node_free); 233 atomic_dec(&avc_cache.active_nodes); 234} 235 236static inline int avc_reclaim_node(void) 237{ 238 struct avc_node *node; 239 int hvalue, try, ecx; 240 unsigned long flags; 241 struct hlist_head *head; 242 spinlock_t *lock; 243 244 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 245 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); 246 head = &avc_cache.slots[hvalue]; 247 lock = &avc_cache.slots_lock[hvalue]; 248 249 if (!spin_trylock_irqsave(lock, flags)) 250 continue; 251 252 rcu_read_lock(); 253 hlist_for_each_entry(node, head, list) { 254 avc_node_delete(node); 255 avc_cache_stats_incr(reclaims); 256 ecx++; 257 if (ecx >= AVC_CACHE_RECLAIM) { 258 rcu_read_unlock(); 259 spin_unlock_irqrestore(lock, flags); 260 goto out; 261 } 262 } 263 rcu_read_unlock(); 264 spin_unlock_irqrestore(lock, flags); 265 } 266out: 267 return ecx; 268} 269 270static struct avc_node *avc_alloc_node(void) 271{ 272 struct avc_node *node; 273 274 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC); 275 if (!node) 276 goto out; 277 278 INIT_HLIST_NODE(&node->list); 279 avc_cache_stats_incr(allocations); 280 281 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold) 282 avc_reclaim_node(); 283 284out: 285 return node; 286} 287 288static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 289{ 290 node->ae.ssid = ssid; 291 node->ae.tsid = tsid; 292 node->ae.tclass = tclass; 293 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 294} 295 296static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) 297{ 298 struct avc_node *node, *ret = NULL; 299 int hvalue; 300 struct hlist_head *head; 301 302 hvalue = avc_hash(ssid, tsid, tclass); 303 head = &avc_cache.slots[hvalue]; 304 hlist_for_each_entry_rcu(node, head, list) { 305 if (ssid == node->ae.ssid && 306 tclass == node->ae.tclass && 307 tsid == node->ae.tsid) { 308 ret = node; 309 break; 310 } 311 } 312 313 return ret; 314} 315 316/** 317 * avc_lookup - Look up an AVC entry. 318 * @ssid: source security identifier 319 * @tsid: target security identifier 320 * @tclass: target security class 321 * 322 * Look up an AVC entry that is valid for the 323 * (@ssid, @tsid), interpreting the permissions 324 * based on @tclass. If a valid AVC entry exists, 325 * then this function returns the avc_node. 326 * Otherwise, this function returns NULL. 327 */ 328static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass) 329{ 330 struct avc_node *node; 331 332 avc_cache_stats_incr(lookups); 333 node = avc_search_node(ssid, tsid, tclass); 334 335 if (node) 336 return node; 337 338 avc_cache_stats_incr(misses); 339 return NULL; 340} 341 342static int avc_latest_notif_update(int seqno, int is_insert) 343{ 344 int ret = 0; 345 static DEFINE_SPINLOCK(notif_lock); 346 unsigned long flag; 347 348 spin_lock_irqsave(¬if_lock, flag); 349 if (is_insert) { 350 if (seqno < avc_cache.latest_notif) { 351 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n", 352 seqno, avc_cache.latest_notif); 353 ret = -EAGAIN; 354 } 355 } else { 356 if (seqno > avc_cache.latest_notif) 357 avc_cache.latest_notif = seqno; 358 } 359 spin_unlock_irqrestore(¬if_lock, flag); 360 361 return ret; 362} 363 364/** 365 * avc_insert - Insert an AVC entry. 366 * @ssid: source security identifier 367 * @tsid: target security identifier 368 * @tclass: target security class 369 * @avd: resulting av decision 370 * 371 * Insert an AVC entry for the SID pair 372 * (@ssid, @tsid) and class @tclass. 373 * The access vectors and the sequence number are 374 * normally provided by the security server in 375 * response to a security_compute_av() call. If the 376 * sequence number @avd->seqno is not less than the latest 377 * revocation notification, then the function copies 378 * the access vectors into a cache entry, returns 379 * avc_node inserted. Otherwise, this function returns NULL. 380 */ 381static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 382{ 383 struct avc_node *pos, *node = NULL; 384 int hvalue; 385 unsigned long flag; 386 387 if (avc_latest_notif_update(avd->seqno, 1)) 388 goto out; 389 390 node = avc_alloc_node(); 391 if (node) { 392 struct hlist_head *head; 393 spinlock_t *lock; 394 395 hvalue = avc_hash(ssid, tsid, tclass); 396 avc_node_populate(node, ssid, tsid, tclass, avd); 397 398 head = &avc_cache.slots[hvalue]; 399 lock = &avc_cache.slots_lock[hvalue]; 400 401 spin_lock_irqsave(lock, flag); 402 hlist_for_each_entry(pos, head, list) { 403 if (pos->ae.ssid == ssid && 404 pos->ae.tsid == tsid && 405 pos->ae.tclass == tclass) { 406 avc_node_replace(node, pos); 407 goto found; 408 } 409 } 410 hlist_add_head_rcu(&node->list, head); 411found: 412 spin_unlock_irqrestore(lock, flag); 413 } 414out: 415 return node; 416} 417 418/** 419 * avc_audit_pre_callback - SELinux specific information 420 * will be called by generic audit code 421 * @ab: the audit buffer 422 * @a: audit_data 423 */ 424static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 425{ 426 struct common_audit_data *ad = a; 427 audit_log_format(ab, "avc: %s ", 428 ad->selinux_audit_data->denied ? "denied" : "granted"); 429 avc_dump_av(ab, ad->selinux_audit_data->tclass, 430 ad->selinux_audit_data->audited); 431 audit_log_format(ab, " for "); 432} 433 434/** 435 * avc_audit_post_callback - SELinux specific information 436 * will be called by generic audit code 437 * @ab: the audit buffer 438 * @a: audit_data 439 */ 440static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 441{ 442 struct common_audit_data *ad = a; 443 audit_log_format(ab, " "); 444 avc_dump_query(ab, ad->selinux_audit_data->ssid, 445 ad->selinux_audit_data->tsid, 446 ad->selinux_audit_data->tclass); 447 if (ad->selinux_audit_data->denied) { 448 audit_log_format(ab, " permissive=%u", 449 ad->selinux_audit_data->result ? 0 : 1); 450 } 451} 452 453/* This is the slow part of avc audit with big stack footprint */ 454noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass, 455 u32 requested, u32 audited, u32 denied, int result, 456 struct common_audit_data *a, 457 unsigned flags) 458{ 459 struct common_audit_data stack_data; 460 struct selinux_audit_data sad; 461 462 if (!a) { 463 a = &stack_data; 464 a->type = LSM_AUDIT_DATA_NONE; 465 } 466 467 /* 468 * When in a RCU walk do the audit on the RCU retry. This is because 469 * the collection of the dname in an inode audit message is not RCU 470 * safe. Note this may drop some audits when the situation changes 471 * during retry. However this is logically just as if the operation 472 * happened a little later. 473 */ 474 if ((a->type == LSM_AUDIT_DATA_INODE) && 475 (flags & MAY_NOT_BLOCK)) 476 return -ECHILD; 477 478 sad.tclass = tclass; 479 sad.requested = requested; 480 sad.ssid = ssid; 481 sad.tsid = tsid; 482 sad.audited = audited; 483 sad.denied = denied; 484 sad.result = result; 485 486 a->selinux_audit_data = &sad; 487 488 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); 489 return 0; 490} 491 492/** 493 * avc_add_callback - Register a callback for security events. 494 * @callback: callback function 495 * @events: security events 496 * 497 * Register a callback function for events in the set @events. 498 * Returns %0 on success or -%ENOMEM if insufficient memory 499 * exists to add the callback. 500 */ 501int __init avc_add_callback(int (*callback)(u32 event), u32 events) 502{ 503 struct avc_callback_node *c; 504 int rc = 0; 505 506 c = kmalloc(sizeof(*c), GFP_KERNEL); 507 if (!c) { 508 rc = -ENOMEM; 509 goto out; 510 } 511 512 c->callback = callback; 513 c->events = events; 514 c->next = avc_callbacks; 515 avc_callbacks = c; 516out: 517 return rc; 518} 519 520/** 521 * avc_update_node Update an AVC entry 522 * @event : Updating event 523 * @perms : Permission mask bits 524 * @ssid,@tsid,@tclass : identifier of an AVC entry 525 * @seqno : sequence number when decision was made 526 * 527 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 528 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 529 * otherwise, this function updates the AVC entry. The original AVC-entry object 530 * will release later by RCU. 531 */ 532static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass, 533 u32 seqno) 534{ 535 int hvalue, rc = 0; 536 unsigned long flag; 537 struct avc_node *pos, *node, *orig = NULL; 538 struct hlist_head *head; 539 spinlock_t *lock; 540 541 node = avc_alloc_node(); 542 if (!node) { 543 rc = -ENOMEM; 544 goto out; 545 } 546 547 /* Lock the target slot */ 548 hvalue = avc_hash(ssid, tsid, tclass); 549 550 head = &avc_cache.slots[hvalue]; 551 lock = &avc_cache.slots_lock[hvalue]; 552 553 spin_lock_irqsave(lock, flag); 554 555 hlist_for_each_entry(pos, head, list) { 556 if (ssid == pos->ae.ssid && 557 tsid == pos->ae.tsid && 558 tclass == pos->ae.tclass && 559 seqno == pos->ae.avd.seqno){ 560 orig = pos; 561 break; 562 } 563 } 564 565 if (!orig) { 566 rc = -ENOENT; 567 avc_node_kill(node); 568 goto out_unlock; 569 } 570 571 /* 572 * Copy and replace original node. 573 */ 574 575 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 576 577 switch (event) { 578 case AVC_CALLBACK_GRANT: 579 node->ae.avd.allowed |= perms; 580 break; 581 case AVC_CALLBACK_TRY_REVOKE: 582 case AVC_CALLBACK_REVOKE: 583 node->ae.avd.allowed &= ~perms; 584 break; 585 case AVC_CALLBACK_AUDITALLOW_ENABLE: 586 node->ae.avd.auditallow |= perms; 587 break; 588 case AVC_CALLBACK_AUDITALLOW_DISABLE: 589 node->ae.avd.auditallow &= ~perms; 590 break; 591 case AVC_CALLBACK_AUDITDENY_ENABLE: 592 node->ae.avd.auditdeny |= perms; 593 break; 594 case AVC_CALLBACK_AUDITDENY_DISABLE: 595 node->ae.avd.auditdeny &= ~perms; 596 break; 597 } 598 avc_node_replace(node, orig); 599out_unlock: 600 spin_unlock_irqrestore(lock, flag); 601out: 602 return rc; 603} 604 605/** 606 * avc_flush - Flush the cache 607 */ 608static void avc_flush(void) 609{ 610 struct hlist_head *head; 611 struct avc_node *node; 612 spinlock_t *lock; 613 unsigned long flag; 614 int i; 615 616 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 617 head = &avc_cache.slots[i]; 618 lock = &avc_cache.slots_lock[i]; 619 620 spin_lock_irqsave(lock, flag); 621 /* 622 * With preemptable RCU, the outer spinlock does not 623 * prevent RCU grace periods from ending. 624 */ 625 rcu_read_lock(); 626 hlist_for_each_entry(node, head, list) 627 avc_node_delete(node); 628 rcu_read_unlock(); 629 spin_unlock_irqrestore(lock, flag); 630 } 631} 632 633/** 634 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 635 * @seqno: policy sequence number 636 */ 637int avc_ss_reset(u32 seqno) 638{ 639 struct avc_callback_node *c; 640 int rc = 0, tmprc; 641 642 avc_flush(); 643 644 for (c = avc_callbacks; c; c = c->next) { 645 if (c->events & AVC_CALLBACK_RESET) { 646 tmprc = c->callback(AVC_CALLBACK_RESET); 647 /* save the first error encountered for the return 648 value and continue processing the callbacks */ 649 if (!rc) 650 rc = tmprc; 651 } 652 } 653 654 avc_latest_notif_update(seqno, 0); 655 return rc; 656} 657 658/* 659 * Slow-path helper function for avc_has_perm_noaudit, 660 * when the avc_node lookup fails. We get called with 661 * the RCU read lock held, and need to return with it 662 * still held, but drop if for the security compute. 663 * 664 * Don't inline this, since it's the slow-path and just 665 * results in a bigger stack frame. 666 */ 667static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid, 668 u16 tclass, struct av_decision *avd) 669{ 670 rcu_read_unlock(); 671 security_compute_av(ssid, tsid, tclass, avd); 672 rcu_read_lock(); 673 return avc_insert(ssid, tsid, tclass, avd); 674} 675 676static noinline int avc_denied(u32 ssid, u32 tsid, 677 u16 tclass, u32 requested, 678 unsigned flags, 679 struct av_decision *avd) 680{ 681 if (flags & AVC_STRICT) 682 return -EACCES; 683 684 if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE)) 685 return -EACCES; 686 687 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid, 688 tsid, tclass, avd->seqno); 689 return 0; 690} 691 692 693/** 694 * avc_has_perm_noaudit - Check permissions but perform no auditing. 695 * @ssid: source security identifier 696 * @tsid: target security identifier 697 * @tclass: target security class 698 * @requested: requested permissions, interpreted based on @tclass 699 * @flags: AVC_STRICT or 0 700 * @avd: access vector decisions 701 * 702 * Check the AVC to determine whether the @requested permissions are granted 703 * for the SID pair (@ssid, @tsid), interpreting the permissions 704 * based on @tclass, and call the security server on a cache miss to obtain 705 * a new decision and add it to the cache. Return a copy of the decisions 706 * in @avd. Return %0 if all @requested permissions are granted, 707 * -%EACCES if any permissions are denied, or another -errno upon 708 * other errors. This function is typically called by avc_has_perm(), 709 * but may also be called directly to separate permission checking from 710 * auditing, e.g. in cases where a lock must be held for the check but 711 * should be released for the auditing. 712 */ 713inline int avc_has_perm_noaudit(u32 ssid, u32 tsid, 714 u16 tclass, u32 requested, 715 unsigned flags, 716 struct av_decision *avd) 717{ 718 struct avc_node *node; 719 int rc = 0; 720 u32 denied; 721 722 BUG_ON(!requested); 723 724 rcu_read_lock(); 725 726 node = avc_lookup(ssid, tsid, tclass); 727 if (unlikely(!node)) 728 node = avc_compute_av(ssid, tsid, tclass, avd); 729 else 730 memcpy(avd, &node->ae.avd, sizeof(*avd)); 731 732 denied = requested & ~(avd->allowed); 733 if (unlikely(denied)) 734 rc = avc_denied(ssid, tsid, tclass, requested, flags, avd); 735 736 rcu_read_unlock(); 737 return rc; 738} 739 740/** 741 * avc_has_perm - Check permissions and perform any appropriate auditing. 742 * @ssid: source security identifier 743 * @tsid: target security identifier 744 * @tclass: target security class 745 * @requested: requested permissions, interpreted based on @tclass 746 * @auditdata: auxiliary audit data 747 * 748 * Check the AVC to determine whether the @requested permissions are granted 749 * for the SID pair (@ssid, @tsid), interpreting the permissions 750 * based on @tclass, and call the security server on a cache miss to obtain 751 * a new decision and add it to the cache. Audit the granting or denial of 752 * permissions in accordance with the policy. Return %0 if all @requested 753 * permissions are granted, -%EACCES if any permissions are denied, or 754 * another -errno upon other errors. 755 */ 756int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, 757 u32 requested, struct common_audit_data *auditdata) 758{ 759 struct av_decision avd; 760 int rc, rc2; 761 762 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd); 763 764 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata); 765 if (rc2) 766 return rc2; 767 return rc; 768} 769 770u32 avc_policy_seqno(void) 771{ 772 return avc_cache.latest_notif; 773} 774 775void avc_disable(void) 776{ 777 /* 778 * If you are looking at this because you have realized that we are 779 * not destroying the avc_node_cachep it might be easy to fix, but 780 * I don't know the memory barrier semantics well enough to know. It's 781 * possible that some other task dereferenced security_ops when 782 * it still pointed to selinux operations. If that is the case it's 783 * possible that it is about to use the avc and is about to need the 784 * avc_node_cachep. I know I could wrap the security.c security_ops call 785 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush 786 * the cache and get that memory back. 787 */ 788 if (avc_node_cachep) { 789 avc_flush(); 790 /* kmem_cache_destroy(avc_node_cachep); */ 791 } 792} 793