1/*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5 *	     James Morris <jmorris@redhat.com>
6 *
7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 *	Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 *	This program is free software; you can redistribute it and/or modify
13 *	it under the terms of the GNU General Public License version 2,
14 *	as published by the Free Software Foundation.
15 */
16#include <linux/types.h>
17#include <linux/stddef.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/dcache.h>
22#include <linux/init.h>
23#include <linux/skbuff.h>
24#include <linux/percpu.h>
25#include <net/sock.h>
26#include <linux/un.h>
27#include <net/af_unix.h>
28#include <linux/ip.h>
29#include <linux/audit.h>
30#include <linux/ipv6.h>
31#include <net/ipv6.h>
32#include "avc.h"
33#include "avc_ss.h"
34#include "classmap.h"
35
36#define AVC_CACHE_SLOTS			512
37#define AVC_DEF_CACHE_THRESHOLD		512
38#define AVC_CACHE_RECLAIM		16
39
40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
42#else
43#define avc_cache_stats_incr(field)	do {} while (0)
44#endif
45
46struct avc_entry {
47	u32			ssid;
48	u32			tsid;
49	u16			tclass;
50	struct av_decision	avd;
51};
52
53struct avc_node {
54	struct avc_entry	ae;
55	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
56	struct rcu_head		rhead;
57};
58
59struct avc_cache {
60	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
61	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
62	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
63	atomic_t		active_nodes;
64	u32			latest_notif;	/* latest revocation notification */
65};
66
67struct avc_callback_node {
68	int (*callback) (u32 event);
69	u32 events;
70	struct avc_callback_node *next;
71};
72
73/* Exported via selinufs */
74unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
75
76#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
77DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
78#endif
79
80static struct avc_cache avc_cache;
81static struct avc_callback_node *avc_callbacks;
82static struct kmem_cache *avc_node_cachep;
83
84static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
85{
86	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
87}
88
89/**
90 * avc_dump_av - Display an access vector in human-readable form.
91 * @tclass: target security class
92 * @av: access vector
93 */
94static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
95{
96	const char **perms;
97	int i, perm;
98
99	if (av == 0) {
100		audit_log_format(ab, " null");
101		return;
102	}
103
104	perms = secclass_map[tclass-1].perms;
105
106	audit_log_format(ab, " {");
107	i = 0;
108	perm = 1;
109	while (i < (sizeof(av) * 8)) {
110		if ((perm & av) && perms[i]) {
111			audit_log_format(ab, " %s", perms[i]);
112			av &= ~perm;
113		}
114		i++;
115		perm <<= 1;
116	}
117
118	if (av)
119		audit_log_format(ab, " 0x%x", av);
120
121	audit_log_format(ab, " }");
122}
123
124/**
125 * avc_dump_query - Display a SID pair and a class in human-readable form.
126 * @ssid: source security identifier
127 * @tsid: target security identifier
128 * @tclass: target security class
129 */
130static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
131{
132	int rc;
133	char *scontext;
134	u32 scontext_len;
135
136	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
137	if (rc)
138		audit_log_format(ab, "ssid=%d", ssid);
139	else {
140		audit_log_format(ab, "scontext=%s", scontext);
141		kfree(scontext);
142	}
143
144	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
145	if (rc)
146		audit_log_format(ab, " tsid=%d", tsid);
147	else {
148		audit_log_format(ab, " tcontext=%s", scontext);
149		kfree(scontext);
150	}
151
152	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
153	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
154}
155
156/**
157 * avc_init - Initialize the AVC.
158 *
159 * Initialize the access vector cache.
160 */
161void __init avc_init(void)
162{
163	int i;
164
165	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
166		INIT_HLIST_HEAD(&avc_cache.slots[i]);
167		spin_lock_init(&avc_cache.slots_lock[i]);
168	}
169	atomic_set(&avc_cache.active_nodes, 0);
170	atomic_set(&avc_cache.lru_hint, 0);
171
172	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
173					     0, SLAB_PANIC, NULL);
174
175	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
176}
177
178int avc_get_hash_stats(char *page)
179{
180	int i, chain_len, max_chain_len, slots_used;
181	struct avc_node *node;
182	struct hlist_head *head;
183
184	rcu_read_lock();
185
186	slots_used = 0;
187	max_chain_len = 0;
188	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
189		head = &avc_cache.slots[i];
190		if (!hlist_empty(head)) {
191			slots_used++;
192			chain_len = 0;
193			hlist_for_each_entry_rcu(node, head, list)
194				chain_len++;
195			if (chain_len > max_chain_len)
196				max_chain_len = chain_len;
197		}
198	}
199
200	rcu_read_unlock();
201
202	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
203			 "longest chain: %d\n",
204			 atomic_read(&avc_cache.active_nodes),
205			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
206}
207
208static void avc_node_free(struct rcu_head *rhead)
209{
210	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
211	kmem_cache_free(avc_node_cachep, node);
212	avc_cache_stats_incr(frees);
213}
214
215static void avc_node_delete(struct avc_node *node)
216{
217	hlist_del_rcu(&node->list);
218	call_rcu(&node->rhead, avc_node_free);
219	atomic_dec(&avc_cache.active_nodes);
220}
221
222static void avc_node_kill(struct avc_node *node)
223{
224	kmem_cache_free(avc_node_cachep, node);
225	avc_cache_stats_incr(frees);
226	atomic_dec(&avc_cache.active_nodes);
227}
228
229static void avc_node_replace(struct avc_node *new, struct avc_node *old)
230{
231	hlist_replace_rcu(&old->list, &new->list);
232	call_rcu(&old->rhead, avc_node_free);
233	atomic_dec(&avc_cache.active_nodes);
234}
235
236static inline int avc_reclaim_node(void)
237{
238	struct avc_node *node;
239	int hvalue, try, ecx;
240	unsigned long flags;
241	struct hlist_head *head;
242	spinlock_t *lock;
243
244	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
245		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
246		head = &avc_cache.slots[hvalue];
247		lock = &avc_cache.slots_lock[hvalue];
248
249		if (!spin_trylock_irqsave(lock, flags))
250			continue;
251
252		rcu_read_lock();
253		hlist_for_each_entry(node, head, list) {
254			avc_node_delete(node);
255			avc_cache_stats_incr(reclaims);
256			ecx++;
257			if (ecx >= AVC_CACHE_RECLAIM) {
258				rcu_read_unlock();
259				spin_unlock_irqrestore(lock, flags);
260				goto out;
261			}
262		}
263		rcu_read_unlock();
264		spin_unlock_irqrestore(lock, flags);
265	}
266out:
267	return ecx;
268}
269
270static struct avc_node *avc_alloc_node(void)
271{
272	struct avc_node *node;
273
274	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC);
275	if (!node)
276		goto out;
277
278	INIT_HLIST_NODE(&node->list);
279	avc_cache_stats_incr(allocations);
280
281	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
282		avc_reclaim_node();
283
284out:
285	return node;
286}
287
288static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
289{
290	node->ae.ssid = ssid;
291	node->ae.tsid = tsid;
292	node->ae.tclass = tclass;
293	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
294}
295
296static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
297{
298	struct avc_node *node, *ret = NULL;
299	int hvalue;
300	struct hlist_head *head;
301
302	hvalue = avc_hash(ssid, tsid, tclass);
303	head = &avc_cache.slots[hvalue];
304	hlist_for_each_entry_rcu(node, head, list) {
305		if (ssid == node->ae.ssid &&
306		    tclass == node->ae.tclass &&
307		    tsid == node->ae.tsid) {
308			ret = node;
309			break;
310		}
311	}
312
313	return ret;
314}
315
316/**
317 * avc_lookup - Look up an AVC entry.
318 * @ssid: source security identifier
319 * @tsid: target security identifier
320 * @tclass: target security class
321 *
322 * Look up an AVC entry that is valid for the
323 * (@ssid, @tsid), interpreting the permissions
324 * based on @tclass.  If a valid AVC entry exists,
325 * then this function returns the avc_node.
326 * Otherwise, this function returns NULL.
327 */
328static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
329{
330	struct avc_node *node;
331
332	avc_cache_stats_incr(lookups);
333	node = avc_search_node(ssid, tsid, tclass);
334
335	if (node)
336		return node;
337
338	avc_cache_stats_incr(misses);
339	return NULL;
340}
341
342static int avc_latest_notif_update(int seqno, int is_insert)
343{
344	int ret = 0;
345	static DEFINE_SPINLOCK(notif_lock);
346	unsigned long flag;
347
348	spin_lock_irqsave(&notif_lock, flag);
349	if (is_insert) {
350		if (seqno < avc_cache.latest_notif) {
351			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
352			       seqno, avc_cache.latest_notif);
353			ret = -EAGAIN;
354		}
355	} else {
356		if (seqno > avc_cache.latest_notif)
357			avc_cache.latest_notif = seqno;
358	}
359	spin_unlock_irqrestore(&notif_lock, flag);
360
361	return ret;
362}
363
364/**
365 * avc_insert - Insert an AVC entry.
366 * @ssid: source security identifier
367 * @tsid: target security identifier
368 * @tclass: target security class
369 * @avd: resulting av decision
370 *
371 * Insert an AVC entry for the SID pair
372 * (@ssid, @tsid) and class @tclass.
373 * The access vectors and the sequence number are
374 * normally provided by the security server in
375 * response to a security_compute_av() call.  If the
376 * sequence number @avd->seqno is not less than the latest
377 * revocation notification, then the function copies
378 * the access vectors into a cache entry, returns
379 * avc_node inserted. Otherwise, this function returns NULL.
380 */
381static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
382{
383	struct avc_node *pos, *node = NULL;
384	int hvalue;
385	unsigned long flag;
386
387	if (avc_latest_notif_update(avd->seqno, 1))
388		goto out;
389
390	node = avc_alloc_node();
391	if (node) {
392		struct hlist_head *head;
393		spinlock_t *lock;
394
395		hvalue = avc_hash(ssid, tsid, tclass);
396		avc_node_populate(node, ssid, tsid, tclass, avd);
397
398		head = &avc_cache.slots[hvalue];
399		lock = &avc_cache.slots_lock[hvalue];
400
401		spin_lock_irqsave(lock, flag);
402		hlist_for_each_entry(pos, head, list) {
403			if (pos->ae.ssid == ssid &&
404			    pos->ae.tsid == tsid &&
405			    pos->ae.tclass == tclass) {
406				avc_node_replace(node, pos);
407				goto found;
408			}
409		}
410		hlist_add_head_rcu(&node->list, head);
411found:
412		spin_unlock_irqrestore(lock, flag);
413	}
414out:
415	return node;
416}
417
418/**
419 * avc_audit_pre_callback - SELinux specific information
420 * will be called by generic audit code
421 * @ab: the audit buffer
422 * @a: audit_data
423 */
424static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
425{
426	struct common_audit_data *ad = a;
427	audit_log_format(ab, "avc:  %s ",
428			 ad->selinux_audit_data->denied ? "denied" : "granted");
429	avc_dump_av(ab, ad->selinux_audit_data->tclass,
430			ad->selinux_audit_data->audited);
431	audit_log_format(ab, " for ");
432}
433
434/**
435 * avc_audit_post_callback - SELinux specific information
436 * will be called by generic audit code
437 * @ab: the audit buffer
438 * @a: audit_data
439 */
440static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
441{
442	struct common_audit_data *ad = a;
443	audit_log_format(ab, " ");
444	avc_dump_query(ab, ad->selinux_audit_data->ssid,
445			   ad->selinux_audit_data->tsid,
446			   ad->selinux_audit_data->tclass);
447	if (ad->selinux_audit_data->denied) {
448		audit_log_format(ab, " permissive=%u",
449				 ad->selinux_audit_data->result ? 0 : 1);
450	}
451}
452
453/* This is the slow part of avc audit with big stack footprint */
454noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
455		u32 requested, u32 audited, u32 denied, int result,
456		struct common_audit_data *a,
457		unsigned flags)
458{
459	struct common_audit_data stack_data;
460	struct selinux_audit_data sad;
461
462	if (!a) {
463		a = &stack_data;
464		a->type = LSM_AUDIT_DATA_NONE;
465	}
466
467	/*
468	 * When in a RCU walk do the audit on the RCU retry.  This is because
469	 * the collection of the dname in an inode audit message is not RCU
470	 * safe.  Note this may drop some audits when the situation changes
471	 * during retry. However this is logically just as if the operation
472	 * happened a little later.
473	 */
474	if ((a->type == LSM_AUDIT_DATA_INODE) &&
475	    (flags & MAY_NOT_BLOCK))
476		return -ECHILD;
477
478	sad.tclass = tclass;
479	sad.requested = requested;
480	sad.ssid = ssid;
481	sad.tsid = tsid;
482	sad.audited = audited;
483	sad.denied = denied;
484	sad.result = result;
485
486	a->selinux_audit_data = &sad;
487
488	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
489	return 0;
490}
491
492/**
493 * avc_add_callback - Register a callback for security events.
494 * @callback: callback function
495 * @events: security events
496 *
497 * Register a callback function for events in the set @events.
498 * Returns %0 on success or -%ENOMEM if insufficient memory
499 * exists to add the callback.
500 */
501int __init avc_add_callback(int (*callback)(u32 event), u32 events)
502{
503	struct avc_callback_node *c;
504	int rc = 0;
505
506	c = kmalloc(sizeof(*c), GFP_KERNEL);
507	if (!c) {
508		rc = -ENOMEM;
509		goto out;
510	}
511
512	c->callback = callback;
513	c->events = events;
514	c->next = avc_callbacks;
515	avc_callbacks = c;
516out:
517	return rc;
518}
519
520/**
521 * avc_update_node Update an AVC entry
522 * @event : Updating event
523 * @perms : Permission mask bits
524 * @ssid,@tsid,@tclass : identifier of an AVC entry
525 * @seqno : sequence number when decision was made
526 *
527 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
528 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
529 * otherwise, this function updates the AVC entry. The original AVC-entry object
530 * will release later by RCU.
531 */
532static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
533			   u32 seqno)
534{
535	int hvalue, rc = 0;
536	unsigned long flag;
537	struct avc_node *pos, *node, *orig = NULL;
538	struct hlist_head *head;
539	spinlock_t *lock;
540
541	node = avc_alloc_node();
542	if (!node) {
543		rc = -ENOMEM;
544		goto out;
545	}
546
547	/* Lock the target slot */
548	hvalue = avc_hash(ssid, tsid, tclass);
549
550	head = &avc_cache.slots[hvalue];
551	lock = &avc_cache.slots_lock[hvalue];
552
553	spin_lock_irqsave(lock, flag);
554
555	hlist_for_each_entry(pos, head, list) {
556		if (ssid == pos->ae.ssid &&
557		    tsid == pos->ae.tsid &&
558		    tclass == pos->ae.tclass &&
559		    seqno == pos->ae.avd.seqno){
560			orig = pos;
561			break;
562		}
563	}
564
565	if (!orig) {
566		rc = -ENOENT;
567		avc_node_kill(node);
568		goto out_unlock;
569	}
570
571	/*
572	 * Copy and replace original node.
573	 */
574
575	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
576
577	switch (event) {
578	case AVC_CALLBACK_GRANT:
579		node->ae.avd.allowed |= perms;
580		break;
581	case AVC_CALLBACK_TRY_REVOKE:
582	case AVC_CALLBACK_REVOKE:
583		node->ae.avd.allowed &= ~perms;
584		break;
585	case AVC_CALLBACK_AUDITALLOW_ENABLE:
586		node->ae.avd.auditallow |= perms;
587		break;
588	case AVC_CALLBACK_AUDITALLOW_DISABLE:
589		node->ae.avd.auditallow &= ~perms;
590		break;
591	case AVC_CALLBACK_AUDITDENY_ENABLE:
592		node->ae.avd.auditdeny |= perms;
593		break;
594	case AVC_CALLBACK_AUDITDENY_DISABLE:
595		node->ae.avd.auditdeny &= ~perms;
596		break;
597	}
598	avc_node_replace(node, orig);
599out_unlock:
600	spin_unlock_irqrestore(lock, flag);
601out:
602	return rc;
603}
604
605/**
606 * avc_flush - Flush the cache
607 */
608static void avc_flush(void)
609{
610	struct hlist_head *head;
611	struct avc_node *node;
612	spinlock_t *lock;
613	unsigned long flag;
614	int i;
615
616	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
617		head = &avc_cache.slots[i];
618		lock = &avc_cache.slots_lock[i];
619
620		spin_lock_irqsave(lock, flag);
621		/*
622		 * With preemptable RCU, the outer spinlock does not
623		 * prevent RCU grace periods from ending.
624		 */
625		rcu_read_lock();
626		hlist_for_each_entry(node, head, list)
627			avc_node_delete(node);
628		rcu_read_unlock();
629		spin_unlock_irqrestore(lock, flag);
630	}
631}
632
633/**
634 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
635 * @seqno: policy sequence number
636 */
637int avc_ss_reset(u32 seqno)
638{
639	struct avc_callback_node *c;
640	int rc = 0, tmprc;
641
642	avc_flush();
643
644	for (c = avc_callbacks; c; c = c->next) {
645		if (c->events & AVC_CALLBACK_RESET) {
646			tmprc = c->callback(AVC_CALLBACK_RESET);
647			/* save the first error encountered for the return
648			   value and continue processing the callbacks */
649			if (!rc)
650				rc = tmprc;
651		}
652	}
653
654	avc_latest_notif_update(seqno, 0);
655	return rc;
656}
657
658/*
659 * Slow-path helper function for avc_has_perm_noaudit,
660 * when the avc_node lookup fails. We get called with
661 * the RCU read lock held, and need to return with it
662 * still held, but drop if for the security compute.
663 *
664 * Don't inline this, since it's the slow-path and just
665 * results in a bigger stack frame.
666 */
667static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
668			 u16 tclass, struct av_decision *avd)
669{
670	rcu_read_unlock();
671	security_compute_av(ssid, tsid, tclass, avd);
672	rcu_read_lock();
673	return avc_insert(ssid, tsid, tclass, avd);
674}
675
676static noinline int avc_denied(u32 ssid, u32 tsid,
677			 u16 tclass, u32 requested,
678			 unsigned flags,
679			 struct av_decision *avd)
680{
681	if (flags & AVC_STRICT)
682		return -EACCES;
683
684	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
685		return -EACCES;
686
687	avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
688				tsid, tclass, avd->seqno);
689	return 0;
690}
691
692
693/**
694 * avc_has_perm_noaudit - Check permissions but perform no auditing.
695 * @ssid: source security identifier
696 * @tsid: target security identifier
697 * @tclass: target security class
698 * @requested: requested permissions, interpreted based on @tclass
699 * @flags:  AVC_STRICT or 0
700 * @avd: access vector decisions
701 *
702 * Check the AVC to determine whether the @requested permissions are granted
703 * for the SID pair (@ssid, @tsid), interpreting the permissions
704 * based on @tclass, and call the security server on a cache miss to obtain
705 * a new decision and add it to the cache.  Return a copy of the decisions
706 * in @avd.  Return %0 if all @requested permissions are granted,
707 * -%EACCES if any permissions are denied, or another -errno upon
708 * other errors.  This function is typically called by avc_has_perm(),
709 * but may also be called directly to separate permission checking from
710 * auditing, e.g. in cases where a lock must be held for the check but
711 * should be released for the auditing.
712 */
713inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
714			 u16 tclass, u32 requested,
715			 unsigned flags,
716			 struct av_decision *avd)
717{
718	struct avc_node *node;
719	int rc = 0;
720	u32 denied;
721
722	BUG_ON(!requested);
723
724	rcu_read_lock();
725
726	node = avc_lookup(ssid, tsid, tclass);
727	if (unlikely(!node))
728		node = avc_compute_av(ssid, tsid, tclass, avd);
729	else
730		memcpy(avd, &node->ae.avd, sizeof(*avd));
731
732	denied = requested & ~(avd->allowed);
733	if (unlikely(denied))
734		rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
735
736	rcu_read_unlock();
737	return rc;
738}
739
740/**
741 * avc_has_perm - Check permissions and perform any appropriate auditing.
742 * @ssid: source security identifier
743 * @tsid: target security identifier
744 * @tclass: target security class
745 * @requested: requested permissions, interpreted based on @tclass
746 * @auditdata: auxiliary audit data
747 *
748 * Check the AVC to determine whether the @requested permissions are granted
749 * for the SID pair (@ssid, @tsid), interpreting the permissions
750 * based on @tclass, and call the security server on a cache miss to obtain
751 * a new decision and add it to the cache.  Audit the granting or denial of
752 * permissions in accordance with the policy.  Return %0 if all @requested
753 * permissions are granted, -%EACCES if any permissions are denied, or
754 * another -errno upon other errors.
755 */
756int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
757		 u32 requested, struct common_audit_data *auditdata)
758{
759	struct av_decision avd;
760	int rc, rc2;
761
762	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
763
764	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
765	if (rc2)
766		return rc2;
767	return rc;
768}
769
770u32 avc_policy_seqno(void)
771{
772	return avc_cache.latest_notif;
773}
774
775void avc_disable(void)
776{
777	/*
778	 * If you are looking at this because you have realized that we are
779	 * not destroying the avc_node_cachep it might be easy to fix, but
780	 * I don't know the memory barrier semantics well enough to know.  It's
781	 * possible that some other task dereferenced security_ops when
782	 * it still pointed to selinux operations.  If that is the case it's
783	 * possible that it is about to use the avc and is about to need the
784	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
785	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
786	 * the cache and get that memory back.
787	 */
788	if (avc_node_cachep) {
789		avc_flush();
790		/* kmem_cache_destroy(avc_node_cachep); */
791	}
792}
793