1/*
2 *  Driver for SiS7019 Audio Accelerator
3 *
4 *  Copyright (C) 2004-2007, David Dillow
5 *  Written by David Dillow <dave@thedillows.org>
6 *  Inspired by the Trident 4D-WaveDX/NX driver.
7 *
8 *  All rights reserved.
9 *
10 *  This program is free software; you can redistribute it and/or modify
11 *  it under the terms of the GNU General Public License as published by
12 *  the Free Software Foundation, version 2.
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *  GNU General Public License for more details.
18 *
19 *  You should have received a copy of the GNU General Public License
20 *  along with this program; if not, write to the Free Software
21 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
22 */
23
24#include <linux/init.h>
25#include <linux/pci.h>
26#include <linux/time.h>
27#include <linux/slab.h>
28#include <linux/module.h>
29#include <linux/interrupt.h>
30#include <linux/delay.h>
31#include <sound/core.h>
32#include <sound/ac97_codec.h>
33#include <sound/initval.h>
34#include "sis7019.h"
35
36MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
37MODULE_DESCRIPTION("SiS7019");
38MODULE_LICENSE("GPL");
39MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
40
41static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */
42static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */
43static bool enable = 1;
44static int codecs = 1;
45
46module_param(index, int, 0444);
47MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
48module_param(id, charp, 0444);
49MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
50module_param(enable, bool, 0444);
51MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
52module_param(codecs, int, 0444);
53MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
54
55static const struct pci_device_id snd_sis7019_ids[] = {
56	{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
57	{ 0, }
58};
59
60MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
61
62/* There are three timing modes for the voices.
63 *
64 * For both playback and capture, when the buffer is one or two periods long,
65 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
66 * to let us know when the periods have ended.
67 *
68 * When performing playback with more than two periods per buffer, we set
69 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
70 * reach it. We then update the offset and continue on until we are
71 * interrupted for the next period.
72 *
73 * Capture channels do not have a SSO, so we allocate a playback channel to
74 * use as a timer for the capture periods. We use the SSO on the playback
75 * channel to clock out virtual periods, and adjust the virtual period length
76 * to maintain synchronization. This algorithm came from the Trident driver.
77 *
78 * FIXME: It'd be nice to make use of some of the synth features in the
79 * hardware, but a woeful lack of documentation is a significant roadblock.
80 */
81struct voice {
82	u16 flags;
83#define 	VOICE_IN_USE		1
84#define 	VOICE_CAPTURE		2
85#define 	VOICE_SSO_TIMING	4
86#define 	VOICE_SYNC_TIMING	8
87	u16 sync_cso;
88	u16 period_size;
89	u16 buffer_size;
90	u16 sync_period_size;
91	u16 sync_buffer_size;
92	u32 sso;
93	u32 vperiod;
94	struct snd_pcm_substream *substream;
95	struct voice *timing;
96	void __iomem *ctrl_base;
97	void __iomem *wave_base;
98	void __iomem *sync_base;
99	int num;
100};
101
102/* We need four pages to store our wave parameters during a suspend. If
103 * we're not doing power management, we still need to allocate a page
104 * for the silence buffer.
105 */
106#ifdef CONFIG_PM_SLEEP
107#define SIS_SUSPEND_PAGES	4
108#else
109#define SIS_SUSPEND_PAGES	1
110#endif
111
112struct sis7019 {
113	unsigned long ioport;
114	void __iomem *ioaddr;
115	int irq;
116	int codecs_present;
117
118	struct pci_dev *pci;
119	struct snd_pcm *pcm;
120	struct snd_card *card;
121	struct snd_ac97 *ac97[3];
122
123	/* Protect against more than one thread hitting the AC97
124	 * registers (in a more polite manner than pounding the hardware
125	 * semaphore)
126	 */
127	struct mutex ac97_mutex;
128
129	/* voice_lock protects allocation/freeing of the voice descriptions
130	 */
131	spinlock_t voice_lock;
132
133	struct voice voices[64];
134	struct voice capture_voice;
135
136	/* Allocate pages to store the internal wave state during
137	 * suspends. When we're operating, this can be used as a silence
138	 * buffer for a timing channel.
139	 */
140	void *suspend_state[SIS_SUSPEND_PAGES];
141
142	int silence_users;
143	dma_addr_t silence_dma_addr;
144};
145
146/* These values are also used by the module param 'codecs' to indicate
147 * which codecs should be present.
148 */
149#define SIS_PRIMARY_CODEC_PRESENT	0x0001
150#define SIS_SECONDARY_CODEC_PRESENT	0x0002
151#define SIS_TERTIARY_CODEC_PRESENT	0x0004
152
153/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
154 * documented range of 8-0xfff8 samples. Given that they are 0-based,
155 * that places our period/buffer range at 9-0xfff9 samples. That makes the
156 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
157 * max samples / min samples gives us the max periods in a buffer.
158 *
159 * We'll add a constraint upon open that limits the period and buffer sample
160 * size to values that are legal for the hardware.
161 */
162static struct snd_pcm_hardware sis_playback_hw_info = {
163	.info = (SNDRV_PCM_INFO_MMAP |
164		 SNDRV_PCM_INFO_MMAP_VALID |
165		 SNDRV_PCM_INFO_INTERLEAVED |
166		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
167		 SNDRV_PCM_INFO_SYNC_START |
168		 SNDRV_PCM_INFO_RESUME),
169	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
170		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
171	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
172	.rate_min = 4000,
173	.rate_max = 48000,
174	.channels_min = 1,
175	.channels_max = 2,
176	.buffer_bytes_max = (0xfff9 * 4),
177	.period_bytes_min = 9,
178	.period_bytes_max = (0xfff9 * 4),
179	.periods_min = 1,
180	.periods_max = (0xfff9 / 9),
181};
182
183static struct snd_pcm_hardware sis_capture_hw_info = {
184	.info = (SNDRV_PCM_INFO_MMAP |
185		 SNDRV_PCM_INFO_MMAP_VALID |
186		 SNDRV_PCM_INFO_INTERLEAVED |
187		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
188		 SNDRV_PCM_INFO_SYNC_START |
189		 SNDRV_PCM_INFO_RESUME),
190	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
191		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
192	.rates = SNDRV_PCM_RATE_48000,
193	.rate_min = 4000,
194	.rate_max = 48000,
195	.channels_min = 1,
196	.channels_max = 2,
197	.buffer_bytes_max = (0xfff9 * 4),
198	.period_bytes_min = 9,
199	.period_bytes_max = (0xfff9 * 4),
200	.periods_min = 1,
201	.periods_max = (0xfff9 / 9),
202};
203
204static void sis_update_sso(struct voice *voice, u16 period)
205{
206	void __iomem *base = voice->ctrl_base;
207
208	voice->sso += period;
209	if (voice->sso >= voice->buffer_size)
210		voice->sso -= voice->buffer_size;
211
212	/* Enforce the documented hardware minimum offset */
213	if (voice->sso < 8)
214		voice->sso = 8;
215
216	/* The SSO is in the upper 16 bits of the register. */
217	writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
218}
219
220static void sis_update_voice(struct voice *voice)
221{
222	if (voice->flags & VOICE_SSO_TIMING) {
223		sis_update_sso(voice, voice->period_size);
224	} else if (voice->flags & VOICE_SYNC_TIMING) {
225		int sync;
226
227		/* If we've not hit the end of the virtual period, update
228		 * our records and keep going.
229		 */
230		if (voice->vperiod > voice->period_size) {
231			voice->vperiod -= voice->period_size;
232			if (voice->vperiod < voice->period_size)
233				sis_update_sso(voice, voice->vperiod);
234			else
235				sis_update_sso(voice, voice->period_size);
236			return;
237		}
238
239		/* Calculate our relative offset between the target and
240		 * the actual CSO value. Since we're operating in a loop,
241		 * if the value is more than half way around, we can
242		 * consider ourselves wrapped.
243		 */
244		sync = voice->sync_cso;
245		sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
246		if (sync > (voice->sync_buffer_size / 2))
247			sync -= voice->sync_buffer_size;
248
249		/* If sync is positive, then we interrupted too early, and
250		 * we'll need to come back in a few samples and try again.
251		 * There's a minimum wait, as it takes some time for the DMA
252		 * engine to startup, etc...
253		 */
254		if (sync > 0) {
255			if (sync < 16)
256				sync = 16;
257			sis_update_sso(voice, sync);
258			return;
259		}
260
261		/* Ok, we interrupted right on time, or (hopefully) just
262		 * a bit late. We'll adjst our next waiting period based
263		 * on how close we got.
264		 *
265		 * We need to stay just behind the actual channel to ensure
266		 * it really is past a period when we get our interrupt --
267		 * otherwise we'll fall into the early code above and have
268		 * a minimum wait time, which makes us quite late here,
269		 * eating into the user's time to refresh the buffer, esp.
270		 * if using small periods.
271		 *
272		 * If we're less than 9 samples behind, we're on target.
273		 * Otherwise, shorten the next vperiod by the amount we've
274		 * been delayed.
275		 */
276		if (sync > -9)
277			voice->vperiod = voice->sync_period_size + 1;
278		else
279			voice->vperiod = voice->sync_period_size + sync + 10;
280
281		if (voice->vperiod < voice->buffer_size) {
282			sis_update_sso(voice, voice->vperiod);
283			voice->vperiod = 0;
284		} else
285			sis_update_sso(voice, voice->period_size);
286
287		sync = voice->sync_cso + voice->sync_period_size;
288		if (sync >= voice->sync_buffer_size)
289			sync -= voice->sync_buffer_size;
290		voice->sync_cso = sync;
291	}
292
293	snd_pcm_period_elapsed(voice->substream);
294}
295
296static void sis_voice_irq(u32 status, struct voice *voice)
297{
298	int bit;
299
300	while (status) {
301		bit = __ffs(status);
302		status >>= bit + 1;
303		voice += bit;
304		sis_update_voice(voice);
305		voice++;
306	}
307}
308
309static irqreturn_t sis_interrupt(int irq, void *dev)
310{
311	struct sis7019 *sis = dev;
312	unsigned long io = sis->ioport;
313	struct voice *voice;
314	u32 intr, status;
315
316	/* We only use the DMA interrupts, and we don't enable any other
317	 * source of interrupts. But, it is possible to see an interrupt
318	 * status that didn't actually interrupt us, so eliminate anything
319	 * we're not expecting to avoid falsely claiming an IRQ, and an
320	 * ensuing endless loop.
321	 */
322	intr = inl(io + SIS_GISR);
323	intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
324		SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
325	if (!intr)
326		return IRQ_NONE;
327
328	do {
329		status = inl(io + SIS_PISR_A);
330		if (status) {
331			sis_voice_irq(status, sis->voices);
332			outl(status, io + SIS_PISR_A);
333		}
334
335		status = inl(io + SIS_PISR_B);
336		if (status) {
337			sis_voice_irq(status, &sis->voices[32]);
338			outl(status, io + SIS_PISR_B);
339		}
340
341		status = inl(io + SIS_RISR);
342		if (status) {
343			voice = &sis->capture_voice;
344			if (!voice->timing)
345				snd_pcm_period_elapsed(voice->substream);
346
347			outl(status, io + SIS_RISR);
348		}
349
350		outl(intr, io + SIS_GISR);
351		intr = inl(io + SIS_GISR);
352		intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
353			SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
354	} while (intr);
355
356	return IRQ_HANDLED;
357}
358
359static u32 sis_rate_to_delta(unsigned int rate)
360{
361	u32 delta;
362
363	/* This was copied from the trident driver, but it seems its gotten
364	 * around a bit... nevertheless, it works well.
365	 *
366	 * We special case 44100 and 8000 since rounding with the equation
367	 * does not give us an accurate enough value. For 11025 and 22050
368	 * the equation gives us the best answer. All other frequencies will
369	 * also use the equation. JDW
370	 */
371	if (rate == 44100)
372		delta = 0xeb3;
373	else if (rate == 8000)
374		delta = 0x2ab;
375	else if (rate == 48000)
376		delta = 0x1000;
377	else
378		delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
379	return delta;
380}
381
382static void __sis_map_silence(struct sis7019 *sis)
383{
384	/* Helper function: must hold sis->voice_lock on entry */
385	if (!sis->silence_users)
386		sis->silence_dma_addr = pci_map_single(sis->pci,
387						sis->suspend_state[0],
388						4096, PCI_DMA_TODEVICE);
389	sis->silence_users++;
390}
391
392static void __sis_unmap_silence(struct sis7019 *sis)
393{
394	/* Helper function: must hold sis->voice_lock on entry */
395	sis->silence_users--;
396	if (!sis->silence_users)
397		pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
398					PCI_DMA_TODEVICE);
399}
400
401static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
402{
403	unsigned long flags;
404
405	spin_lock_irqsave(&sis->voice_lock, flags);
406	if (voice->timing) {
407		__sis_unmap_silence(sis);
408		voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
409						VOICE_SYNC_TIMING);
410		voice->timing = NULL;
411	}
412	voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
413	spin_unlock_irqrestore(&sis->voice_lock, flags);
414}
415
416static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
417{
418	/* Must hold the voice_lock on entry */
419	struct voice *voice;
420	int i;
421
422	for (i = 0; i < 64; i++) {
423		voice = &sis->voices[i];
424		if (voice->flags & VOICE_IN_USE)
425			continue;
426		voice->flags |= VOICE_IN_USE;
427		goto found_one;
428	}
429	voice = NULL;
430
431found_one:
432	return voice;
433}
434
435static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
436{
437	struct voice *voice;
438	unsigned long flags;
439
440	spin_lock_irqsave(&sis->voice_lock, flags);
441	voice = __sis_alloc_playback_voice(sis);
442	spin_unlock_irqrestore(&sis->voice_lock, flags);
443
444	return voice;
445}
446
447static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
448					struct snd_pcm_hw_params *hw_params)
449{
450	struct sis7019 *sis = snd_pcm_substream_chip(substream);
451	struct snd_pcm_runtime *runtime = substream->runtime;
452	struct voice *voice = runtime->private_data;
453	unsigned int period_size, buffer_size;
454	unsigned long flags;
455	int needed;
456
457	/* If there are one or two periods per buffer, we don't need a
458	 * timing voice, as we can use the capture channel's interrupts
459	 * to clock out the periods.
460	 */
461	period_size = params_period_size(hw_params);
462	buffer_size = params_buffer_size(hw_params);
463	needed = (period_size != buffer_size &&
464			period_size != (buffer_size / 2));
465
466	if (needed && !voice->timing) {
467		spin_lock_irqsave(&sis->voice_lock, flags);
468		voice->timing = __sis_alloc_playback_voice(sis);
469		if (voice->timing)
470			__sis_map_silence(sis);
471		spin_unlock_irqrestore(&sis->voice_lock, flags);
472		if (!voice->timing)
473			return -ENOMEM;
474		voice->timing->substream = substream;
475	} else if (!needed && voice->timing) {
476		sis_free_voice(sis, voice);
477		voice->timing = NULL;
478	}
479
480	return 0;
481}
482
483static int sis_playback_open(struct snd_pcm_substream *substream)
484{
485	struct sis7019 *sis = snd_pcm_substream_chip(substream);
486	struct snd_pcm_runtime *runtime = substream->runtime;
487	struct voice *voice;
488
489	voice = sis_alloc_playback_voice(sis);
490	if (!voice)
491		return -EAGAIN;
492
493	voice->substream = substream;
494	runtime->private_data = voice;
495	runtime->hw = sis_playback_hw_info;
496	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
497						9, 0xfff9);
498	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
499						9, 0xfff9);
500	snd_pcm_set_sync(substream);
501	return 0;
502}
503
504static int sis_substream_close(struct snd_pcm_substream *substream)
505{
506	struct sis7019 *sis = snd_pcm_substream_chip(substream);
507	struct snd_pcm_runtime *runtime = substream->runtime;
508	struct voice *voice = runtime->private_data;
509
510	sis_free_voice(sis, voice);
511	return 0;
512}
513
514static int sis_playback_hw_params(struct snd_pcm_substream *substream,
515					struct snd_pcm_hw_params *hw_params)
516{
517	return snd_pcm_lib_malloc_pages(substream,
518					params_buffer_bytes(hw_params));
519}
520
521static int sis_hw_free(struct snd_pcm_substream *substream)
522{
523	return snd_pcm_lib_free_pages(substream);
524}
525
526static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
527{
528	struct snd_pcm_runtime *runtime = substream->runtime;
529	struct voice *voice = runtime->private_data;
530	void __iomem *ctrl_base = voice->ctrl_base;
531	void __iomem *wave_base = voice->wave_base;
532	u32 format, dma_addr, control, sso_eso, delta, reg;
533	u16 leo;
534
535	/* We rely on the PCM core to ensure that the parameters for this
536	 * substream do not change on us while we're programming the HW.
537	 */
538	format = 0;
539	if (snd_pcm_format_width(runtime->format) == 8)
540		format |= SIS_PLAY_DMA_FORMAT_8BIT;
541	if (!snd_pcm_format_signed(runtime->format))
542		format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
543	if (runtime->channels == 1)
544		format |= SIS_PLAY_DMA_FORMAT_MONO;
545
546	/* The baseline setup is for a single period per buffer, and
547	 * we add bells and whistles as needed from there.
548	 */
549	dma_addr = runtime->dma_addr;
550	leo = runtime->buffer_size - 1;
551	control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
552	sso_eso = leo;
553
554	if (runtime->period_size == (runtime->buffer_size / 2)) {
555		control |= SIS_PLAY_DMA_INTR_AT_MLP;
556	} else if (runtime->period_size != runtime->buffer_size) {
557		voice->flags |= VOICE_SSO_TIMING;
558		voice->sso = runtime->period_size - 1;
559		voice->period_size = runtime->period_size;
560		voice->buffer_size = runtime->buffer_size;
561
562		control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
563		control |= SIS_PLAY_DMA_INTR_AT_SSO;
564		sso_eso |= (runtime->period_size - 1) << 16;
565	}
566
567	delta = sis_rate_to_delta(runtime->rate);
568
569	/* Ok, we're ready to go, set up the channel.
570	 */
571	writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
572	writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
573	writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
574	writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
575
576	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
577		writel(0, wave_base + reg);
578
579	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
580	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
581	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
582			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
583			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
584			wave_base + SIS_WAVE_CHANNEL_CONTROL);
585
586	/* Force PCI writes to post. */
587	readl(ctrl_base);
588
589	return 0;
590}
591
592static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
593{
594	struct sis7019 *sis = snd_pcm_substream_chip(substream);
595	unsigned long io = sis->ioport;
596	struct snd_pcm_substream *s;
597	struct voice *voice;
598	void *chip;
599	int starting;
600	u32 record = 0;
601	u32 play[2] = { 0, 0 };
602
603	/* No locks needed, as the PCM core will hold the locks on the
604	 * substreams, and the HW will only start/stop the indicated voices
605	 * without changing the state of the others.
606	 */
607	switch (cmd) {
608	case SNDRV_PCM_TRIGGER_START:
609	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
610	case SNDRV_PCM_TRIGGER_RESUME:
611		starting = 1;
612		break;
613	case SNDRV_PCM_TRIGGER_STOP:
614	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
615	case SNDRV_PCM_TRIGGER_SUSPEND:
616		starting = 0;
617		break;
618	default:
619		return -EINVAL;
620	}
621
622	snd_pcm_group_for_each_entry(s, substream) {
623		/* Make sure it is for us... */
624		chip = snd_pcm_substream_chip(s);
625		if (chip != sis)
626			continue;
627
628		voice = s->runtime->private_data;
629		if (voice->flags & VOICE_CAPTURE) {
630			record |= 1 << voice->num;
631			voice = voice->timing;
632		}
633
634		/* voice could be NULL if this a recording stream, and it
635		 * doesn't have an external timing channel.
636		 */
637		if (voice)
638			play[voice->num / 32] |= 1 << (voice->num & 0x1f);
639
640		snd_pcm_trigger_done(s, substream);
641	}
642
643	if (starting) {
644		if (record)
645			outl(record, io + SIS_RECORD_START_REG);
646		if (play[0])
647			outl(play[0], io + SIS_PLAY_START_A_REG);
648		if (play[1])
649			outl(play[1], io + SIS_PLAY_START_B_REG);
650	} else {
651		if (record)
652			outl(record, io + SIS_RECORD_STOP_REG);
653		if (play[0])
654			outl(play[0], io + SIS_PLAY_STOP_A_REG);
655		if (play[1])
656			outl(play[1], io + SIS_PLAY_STOP_B_REG);
657	}
658	return 0;
659}
660
661static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
662{
663	struct snd_pcm_runtime *runtime = substream->runtime;
664	struct voice *voice = runtime->private_data;
665	u32 cso;
666
667	cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
668	cso &= 0xffff;
669	return cso;
670}
671
672static int sis_capture_open(struct snd_pcm_substream *substream)
673{
674	struct sis7019 *sis = snd_pcm_substream_chip(substream);
675	struct snd_pcm_runtime *runtime = substream->runtime;
676	struct voice *voice = &sis->capture_voice;
677	unsigned long flags;
678
679	/* FIXME: The driver only supports recording from one channel
680	 * at the moment, but it could support more.
681	 */
682	spin_lock_irqsave(&sis->voice_lock, flags);
683	if (voice->flags & VOICE_IN_USE)
684		voice = NULL;
685	else
686		voice->flags |= VOICE_IN_USE;
687	spin_unlock_irqrestore(&sis->voice_lock, flags);
688
689	if (!voice)
690		return -EAGAIN;
691
692	voice->substream = substream;
693	runtime->private_data = voice;
694	runtime->hw = sis_capture_hw_info;
695	runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
696	snd_pcm_limit_hw_rates(runtime);
697	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
698						9, 0xfff9);
699	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
700						9, 0xfff9);
701	snd_pcm_set_sync(substream);
702	return 0;
703}
704
705static int sis_capture_hw_params(struct snd_pcm_substream *substream,
706					struct snd_pcm_hw_params *hw_params)
707{
708	struct sis7019 *sis = snd_pcm_substream_chip(substream);
709	int rc;
710
711	rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
712						params_rate(hw_params));
713	if (rc)
714		goto out;
715
716	rc = snd_pcm_lib_malloc_pages(substream,
717					params_buffer_bytes(hw_params));
718	if (rc < 0)
719		goto out;
720
721	rc = sis_alloc_timing_voice(substream, hw_params);
722
723out:
724	return rc;
725}
726
727static void sis_prepare_timing_voice(struct voice *voice,
728					struct snd_pcm_substream *substream)
729{
730	struct sis7019 *sis = snd_pcm_substream_chip(substream);
731	struct snd_pcm_runtime *runtime = substream->runtime;
732	struct voice *timing = voice->timing;
733	void __iomem *play_base = timing->ctrl_base;
734	void __iomem *wave_base = timing->wave_base;
735	u16 buffer_size, period_size;
736	u32 format, control, sso_eso, delta;
737	u32 vperiod, sso, reg;
738
739	/* Set our initial buffer and period as large as we can given a
740	 * single page of silence.
741	 */
742	buffer_size = 4096 / runtime->channels;
743	buffer_size /= snd_pcm_format_size(runtime->format, 1);
744	period_size = buffer_size;
745
746	/* Initially, we want to interrupt just a bit behind the end of
747	 * the period we're clocking out. 12 samples seems to give a good
748	 * delay.
749	 *
750	 * We want to spread our interrupts throughout the virtual period,
751	 * so that we don't end up with two interrupts back to back at the
752	 * end -- this helps minimize the effects of any jitter. Adjust our
753	 * clocking period size so that the last period is at least a fourth
754	 * of a full period.
755	 *
756	 * This is all moot if we don't need to use virtual periods.
757	 */
758	vperiod = runtime->period_size + 12;
759	if (vperiod > period_size) {
760		u16 tail = vperiod % period_size;
761		u16 quarter_period = period_size / 4;
762
763		if (tail && tail < quarter_period) {
764			u16 loops = vperiod / period_size;
765
766			tail = quarter_period - tail;
767			tail += loops - 1;
768			tail /= loops;
769			period_size -= tail;
770		}
771
772		sso = period_size - 1;
773	} else {
774		/* The initial period will fit inside the buffer, so we
775		 * don't need to use virtual periods -- disable them.
776		 */
777		period_size = runtime->period_size;
778		sso = vperiod - 1;
779		vperiod = 0;
780	}
781
782	/* The interrupt handler implements the timing synchronization, so
783	 * setup its state.
784	 */
785	timing->flags |= VOICE_SYNC_TIMING;
786	timing->sync_base = voice->ctrl_base;
787	timing->sync_cso = runtime->period_size;
788	timing->sync_period_size = runtime->period_size;
789	timing->sync_buffer_size = runtime->buffer_size;
790	timing->period_size = period_size;
791	timing->buffer_size = buffer_size;
792	timing->sso = sso;
793	timing->vperiod = vperiod;
794
795	/* Using unsigned samples with the all-zero silence buffer
796	 * forces the output to the lower rail, killing playback.
797	 * So ignore unsigned vs signed -- it doesn't change the timing.
798	 */
799	format = 0;
800	if (snd_pcm_format_width(runtime->format) == 8)
801		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
802	if (runtime->channels == 1)
803		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
804
805	control = timing->buffer_size - 1;
806	control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
807	sso_eso = timing->buffer_size - 1;
808	sso_eso |= timing->sso << 16;
809
810	delta = sis_rate_to_delta(runtime->rate);
811
812	/* We've done the math, now configure the channel.
813	 */
814	writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
815	writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
816	writel(control, play_base + SIS_PLAY_DMA_CONTROL);
817	writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
818
819	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
820		writel(0, wave_base + reg);
821
822	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
823	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
824	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
825			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
826			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
827			wave_base + SIS_WAVE_CHANNEL_CONTROL);
828}
829
830static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
831{
832	struct snd_pcm_runtime *runtime = substream->runtime;
833	struct voice *voice = runtime->private_data;
834	void __iomem *rec_base = voice->ctrl_base;
835	u32 format, dma_addr, control;
836	u16 leo;
837
838	/* We rely on the PCM core to ensure that the parameters for this
839	 * substream do not change on us while we're programming the HW.
840	 */
841	format = 0;
842	if (snd_pcm_format_width(runtime->format) == 8)
843		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
844	if (!snd_pcm_format_signed(runtime->format))
845		format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
846	if (runtime->channels == 1)
847		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
848
849	dma_addr = runtime->dma_addr;
850	leo = runtime->buffer_size - 1;
851	control = leo | SIS_CAPTURE_DMA_LOOP;
852
853	/* If we've got more than two periods per buffer, then we have
854	 * use a timing voice to clock out the periods. Otherwise, we can
855	 * use the capture channel's interrupts.
856	 */
857	if (voice->timing) {
858		sis_prepare_timing_voice(voice, substream);
859	} else {
860		control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
861		if (runtime->period_size != runtime->buffer_size)
862			control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
863	}
864
865	writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
866	writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
867	writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
868
869	/* Force the writes to post. */
870	readl(rec_base);
871
872	return 0;
873}
874
875static struct snd_pcm_ops sis_playback_ops = {
876	.open = sis_playback_open,
877	.close = sis_substream_close,
878	.ioctl = snd_pcm_lib_ioctl,
879	.hw_params = sis_playback_hw_params,
880	.hw_free = sis_hw_free,
881	.prepare = sis_pcm_playback_prepare,
882	.trigger = sis_pcm_trigger,
883	.pointer = sis_pcm_pointer,
884};
885
886static struct snd_pcm_ops sis_capture_ops = {
887	.open = sis_capture_open,
888	.close = sis_substream_close,
889	.ioctl = snd_pcm_lib_ioctl,
890	.hw_params = sis_capture_hw_params,
891	.hw_free = sis_hw_free,
892	.prepare = sis_pcm_capture_prepare,
893	.trigger = sis_pcm_trigger,
894	.pointer = sis_pcm_pointer,
895};
896
897static int sis_pcm_create(struct sis7019 *sis)
898{
899	struct snd_pcm *pcm;
900	int rc;
901
902	/* We have 64 voices, and the driver currently records from
903	 * only one channel, though that could change in the future.
904	 */
905	rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
906	if (rc)
907		return rc;
908
909	pcm->private_data = sis;
910	strcpy(pcm->name, "SiS7019");
911	sis->pcm = pcm;
912
913	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
914	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
915
916	/* Try to preallocate some memory, but it's not the end of the
917	 * world if this fails.
918	 */
919	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
920				snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
921
922	return 0;
923}
924
925static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
926{
927	unsigned long io = sis->ioport;
928	unsigned short val = 0xffff;
929	u16 status;
930	u16 rdy;
931	int count;
932	static const u16 codec_ready[3] = {
933		SIS_AC97_STATUS_CODEC_READY,
934		SIS_AC97_STATUS_CODEC2_READY,
935		SIS_AC97_STATUS_CODEC3_READY,
936	};
937
938	rdy = codec_ready[codec];
939
940
941	/* Get the AC97 semaphore -- software first, so we don't spin
942	 * pounding out IO reads on the hardware semaphore...
943	 */
944	mutex_lock(&sis->ac97_mutex);
945
946	count = 0xffff;
947	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
948		udelay(1);
949
950	if (!count)
951		goto timeout;
952
953	/* ... and wait for any outstanding commands to complete ...
954	 */
955	count = 0xffff;
956	do {
957		status = inw(io + SIS_AC97_STATUS);
958		if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
959			break;
960
961		udelay(1);
962	} while (--count);
963
964	if (!count)
965		goto timeout_sema;
966
967	/* ... before sending our command and waiting for it to finish ...
968	 */
969	outl(cmd, io + SIS_AC97_CMD);
970	udelay(10);
971
972	count = 0xffff;
973	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
974		udelay(1);
975
976	/* ... and reading the results (if any).
977	 */
978	val = inl(io + SIS_AC97_CMD) >> 16;
979
980timeout_sema:
981	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
982timeout:
983	mutex_unlock(&sis->ac97_mutex);
984
985	if (!count) {
986		dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
987					codec, cmd);
988	}
989
990	return val;
991}
992
993static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
994				unsigned short val)
995{
996	static const u32 cmd[3] = {
997		SIS_AC97_CMD_CODEC_WRITE,
998		SIS_AC97_CMD_CODEC2_WRITE,
999		SIS_AC97_CMD_CODEC3_WRITE,
1000	};
1001	sis_ac97_rw(ac97->private_data, ac97->num,
1002			(val << 16) | (reg << 8) | cmd[ac97->num]);
1003}
1004
1005static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
1006{
1007	static const u32 cmd[3] = {
1008		SIS_AC97_CMD_CODEC_READ,
1009		SIS_AC97_CMD_CODEC2_READ,
1010		SIS_AC97_CMD_CODEC3_READ,
1011	};
1012	return sis_ac97_rw(ac97->private_data, ac97->num,
1013					(reg << 8) | cmd[ac97->num]);
1014}
1015
1016static int sis_mixer_create(struct sis7019 *sis)
1017{
1018	struct snd_ac97_bus *bus;
1019	struct snd_ac97_template ac97;
1020	static struct snd_ac97_bus_ops ops = {
1021		.write = sis_ac97_write,
1022		.read = sis_ac97_read,
1023	};
1024	int rc;
1025
1026	memset(&ac97, 0, sizeof(ac97));
1027	ac97.private_data = sis;
1028
1029	rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1030	if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1031		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1032	ac97.num = 1;
1033	if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1034		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1035	ac97.num = 2;
1036	if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1037		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1038
1039	/* If we return an error here, then snd_card_free() should
1040	 * free up any ac97 codecs that got created, as well as the bus.
1041	 */
1042	return rc;
1043}
1044
1045static void sis_free_suspend(struct sis7019 *sis)
1046{
1047	int i;
1048
1049	for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1050		kfree(sis->suspend_state[i]);
1051}
1052
1053static int sis_chip_free(struct sis7019 *sis)
1054{
1055	/* Reset the chip, and disable all interrputs.
1056	 */
1057	outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1058	udelay(25);
1059	outl(0, sis->ioport + SIS_GCR);
1060	outl(0, sis->ioport + SIS_GIER);
1061
1062	/* Now, free everything we allocated.
1063	 */
1064	if (sis->irq >= 0)
1065		free_irq(sis->irq, sis);
1066
1067	iounmap(sis->ioaddr);
1068	pci_release_regions(sis->pci);
1069	pci_disable_device(sis->pci);
1070	sis_free_suspend(sis);
1071	return 0;
1072}
1073
1074static int sis_dev_free(struct snd_device *dev)
1075{
1076	struct sis7019 *sis = dev->device_data;
1077	return sis_chip_free(sis);
1078}
1079
1080static int sis_chip_init(struct sis7019 *sis)
1081{
1082	unsigned long io = sis->ioport;
1083	void __iomem *ioaddr = sis->ioaddr;
1084	unsigned long timeout;
1085	u16 status;
1086	int count;
1087	int i;
1088
1089	/* Reset the audio controller
1090	 */
1091	outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1092	udelay(25);
1093	outl(0, io + SIS_GCR);
1094
1095	/* Get the AC-link semaphore, and reset the codecs
1096	 */
1097	count = 0xffff;
1098	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1099		udelay(1);
1100
1101	if (!count)
1102		return -EIO;
1103
1104	outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1105	udelay(250);
1106
1107	count = 0xffff;
1108	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1109		udelay(1);
1110
1111	/* Command complete, we can let go of the semaphore now.
1112	 */
1113	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1114	if (!count)
1115		return -EIO;
1116
1117	/* Now that we've finished the reset, find out what's attached.
1118	 * There are some codec/board combinations that take an extremely
1119	 * long time to come up. 350+ ms has been observed in the field,
1120	 * so we'll give them up to 500ms.
1121	 */
1122	sis->codecs_present = 0;
1123	timeout = msecs_to_jiffies(500) + jiffies;
1124	while (time_before_eq(jiffies, timeout)) {
1125		status = inl(io + SIS_AC97_STATUS);
1126		if (status & SIS_AC97_STATUS_CODEC_READY)
1127			sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1128		if (status & SIS_AC97_STATUS_CODEC2_READY)
1129			sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1130		if (status & SIS_AC97_STATUS_CODEC3_READY)
1131			sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1132
1133		if (sis->codecs_present == codecs)
1134			break;
1135
1136		msleep(1);
1137	}
1138
1139	/* All done, check for errors.
1140	 */
1141	if (!sis->codecs_present) {
1142		dev_err(&sis->pci->dev, "could not find any codecs\n");
1143		return -EIO;
1144	}
1145
1146	if (sis->codecs_present != codecs) {
1147		dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1148					 sis->codecs_present, codecs);
1149	}
1150
1151	/* Let the hardware know that the audio driver is alive,
1152	 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1153	 * record channels. We're going to want to use Variable Rate Audio
1154	 * for recording, to avoid needlessly resampling from 48kHZ.
1155	 */
1156	outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1157	outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1158		SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1159		SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1160		SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1161
1162	/* All AC97 PCM slots should be sourced from sub-mixer 0.
1163	 */
1164	outl(0, io + SIS_AC97_PSR);
1165
1166	/* There is only one valid DMA setup for a PCI environment.
1167	 */
1168	outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1169
1170	/* Reset the synchronization groups for all of the channels
1171	 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1172	 * we'll need to change how we handle these. Until then, we just
1173	 * assign sub-mixer 0 to all playback channels, and avoid any
1174	 * attenuation on the audio.
1175	 */
1176	outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1177	outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1178	outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1179	outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1180	outl(0, io + SIS_MIXER_SYNC_GROUP);
1181
1182	for (i = 0; i < 64; i++) {
1183		writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1184		writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1185				SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1186	}
1187
1188	/* Don't attenuate any audio set for the wave amplifier.
1189	 *
1190	 * FIXME: Maximum attenuation is set for the music amp, which will
1191	 * need to change if we start using the synth engine.
1192	 */
1193	outl(0xffff0000, io + SIS_WEVCR);
1194
1195	/* Ensure that the wave engine is in normal operating mode.
1196	 */
1197	outl(0, io + SIS_WECCR);
1198
1199	/* Go ahead and enable the DMA interrupts. They won't go live
1200	 * until we start a channel.
1201	 */
1202	outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1203		SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1204
1205	return 0;
1206}
1207
1208#ifdef CONFIG_PM_SLEEP
1209static int sis_suspend(struct device *dev)
1210{
1211	struct snd_card *card = dev_get_drvdata(dev);
1212	struct sis7019 *sis = card->private_data;
1213	void __iomem *ioaddr = sis->ioaddr;
1214	int i;
1215
1216	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1217	snd_pcm_suspend_all(sis->pcm);
1218	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1219		snd_ac97_suspend(sis->ac97[0]);
1220	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1221		snd_ac97_suspend(sis->ac97[1]);
1222	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1223		snd_ac97_suspend(sis->ac97[2]);
1224
1225	/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1226	 */
1227	if (sis->irq >= 0) {
1228		free_irq(sis->irq, sis);
1229		sis->irq = -1;
1230	}
1231
1232	/* Save the internal state away
1233	 */
1234	for (i = 0; i < 4; i++) {
1235		memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1236		ioaddr += 4096;
1237	}
1238
1239	return 0;
1240}
1241
1242static int sis_resume(struct device *dev)
1243{
1244	struct pci_dev *pci = to_pci_dev(dev);
1245	struct snd_card *card = dev_get_drvdata(dev);
1246	struct sis7019 *sis = card->private_data;
1247	void __iomem *ioaddr = sis->ioaddr;
1248	int i;
1249
1250	if (sis_chip_init(sis)) {
1251		dev_err(&pci->dev, "unable to re-init controller\n");
1252		goto error;
1253	}
1254
1255	if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1256			KBUILD_MODNAME, sis)) {
1257		dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1258		goto error;
1259	}
1260
1261	/* Restore saved state, then clear out the page we use for the
1262	 * silence buffer.
1263	 */
1264	for (i = 0; i < 4; i++) {
1265		memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1266		ioaddr += 4096;
1267	}
1268
1269	memset(sis->suspend_state[0], 0, 4096);
1270
1271	sis->irq = pci->irq;
1272
1273	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1274		snd_ac97_resume(sis->ac97[0]);
1275	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1276		snd_ac97_resume(sis->ac97[1]);
1277	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1278		snd_ac97_resume(sis->ac97[2]);
1279
1280	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1281	return 0;
1282
1283error:
1284	snd_card_disconnect(card);
1285	return -EIO;
1286}
1287
1288static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1289#define SIS_PM_OPS	&sis_pm
1290#else
1291#define SIS_PM_OPS	NULL
1292#endif /* CONFIG_PM_SLEEP */
1293
1294static int sis_alloc_suspend(struct sis7019 *sis)
1295{
1296	int i;
1297
1298	/* We need 16K to store the internal wave engine state during a
1299	 * suspend, but we don't need it to be contiguous, so play nice
1300	 * with the memory system. We'll also use this area for a silence
1301	 * buffer.
1302	 */
1303	for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1304		sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1305		if (!sis->suspend_state[i])
1306			return -ENOMEM;
1307	}
1308	memset(sis->suspend_state[0], 0, 4096);
1309
1310	return 0;
1311}
1312
1313static int sis_chip_create(struct snd_card *card,
1314			   struct pci_dev *pci)
1315{
1316	struct sis7019 *sis = card->private_data;
1317	struct voice *voice;
1318	static struct snd_device_ops ops = {
1319		.dev_free = sis_dev_free,
1320	};
1321	int rc;
1322	int i;
1323
1324	rc = pci_enable_device(pci);
1325	if (rc)
1326		goto error_out;
1327
1328	rc = pci_set_dma_mask(pci, DMA_BIT_MASK(30));
1329	if (rc < 0) {
1330		dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1331		goto error_out_enabled;
1332	}
1333
1334	memset(sis, 0, sizeof(*sis));
1335	mutex_init(&sis->ac97_mutex);
1336	spin_lock_init(&sis->voice_lock);
1337	sis->card = card;
1338	sis->pci = pci;
1339	sis->irq = -1;
1340	sis->ioport = pci_resource_start(pci, 0);
1341
1342	rc = pci_request_regions(pci, "SiS7019");
1343	if (rc) {
1344		dev_err(&pci->dev, "unable request regions\n");
1345		goto error_out_enabled;
1346	}
1347
1348	rc = -EIO;
1349	sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1350	if (!sis->ioaddr) {
1351		dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1352		goto error_out_cleanup;
1353	}
1354
1355	rc = sis_alloc_suspend(sis);
1356	if (rc < 0) {
1357		dev_err(&pci->dev, "unable to allocate state storage\n");
1358		goto error_out_cleanup;
1359	}
1360
1361	rc = sis_chip_init(sis);
1362	if (rc)
1363		goto error_out_cleanup;
1364
1365	rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1366			 sis);
1367	if (rc) {
1368		dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1369		goto error_out_cleanup;
1370	}
1371
1372	sis->irq = pci->irq;
1373	pci_set_master(pci);
1374
1375	for (i = 0; i < 64; i++) {
1376		voice = &sis->voices[i];
1377		voice->num = i;
1378		voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1379		voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1380	}
1381
1382	voice = &sis->capture_voice;
1383	voice->flags = VOICE_CAPTURE;
1384	voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1385	voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1386
1387	rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1388	if (rc)
1389		goto error_out_cleanup;
1390
1391	return 0;
1392
1393error_out_cleanup:
1394	sis_chip_free(sis);
1395
1396error_out_enabled:
1397	pci_disable_device(pci);
1398
1399error_out:
1400	return rc;
1401}
1402
1403static int snd_sis7019_probe(struct pci_dev *pci,
1404			     const struct pci_device_id *pci_id)
1405{
1406	struct snd_card *card;
1407	struct sis7019 *sis;
1408	int rc;
1409
1410	rc = -ENOENT;
1411	if (!enable)
1412		goto error_out;
1413
1414	/* The user can specify which codecs should be present so that we
1415	 * can wait for them to show up if they are slow to recover from
1416	 * the AC97 cold reset. We default to a single codec, the primary.
1417	 *
1418	 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1419	 */
1420	codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1421		  SIS_TERTIARY_CODEC_PRESENT;
1422	if (!codecs)
1423		codecs = SIS_PRIMARY_CODEC_PRESENT;
1424
1425	rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1426			  sizeof(*sis), &card);
1427	if (rc < 0)
1428		goto error_out;
1429
1430	strcpy(card->driver, "SiS7019");
1431	strcpy(card->shortname, "SiS7019");
1432	rc = sis_chip_create(card, pci);
1433	if (rc)
1434		goto card_error_out;
1435
1436	sis = card->private_data;
1437
1438	rc = sis_mixer_create(sis);
1439	if (rc)
1440		goto card_error_out;
1441
1442	rc = sis_pcm_create(sis);
1443	if (rc)
1444		goto card_error_out;
1445
1446	snprintf(card->longname, sizeof(card->longname),
1447			"%s Audio Accelerator with %s at 0x%lx, irq %d",
1448			card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1449			sis->ioport, sis->irq);
1450
1451	rc = snd_card_register(card);
1452	if (rc)
1453		goto card_error_out;
1454
1455	pci_set_drvdata(pci, card);
1456	return 0;
1457
1458card_error_out:
1459	snd_card_free(card);
1460
1461error_out:
1462	return rc;
1463}
1464
1465static void snd_sis7019_remove(struct pci_dev *pci)
1466{
1467	snd_card_free(pci_get_drvdata(pci));
1468}
1469
1470static struct pci_driver sis7019_driver = {
1471	.name = KBUILD_MODNAME,
1472	.id_table = snd_sis7019_ids,
1473	.probe = snd_sis7019_probe,
1474	.remove = snd_sis7019_remove,
1475	.driver = {
1476		.pm = SIS_PM_OPS,
1477	},
1478};
1479
1480module_pci_driver(sis7019_driver);
1481