1 /*
2 * Copyright (C) 2004-2006 Atmel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8 #ifndef __ASM_AVR32_PGTABLE_H
9 #define __ASM_AVR32_PGTABLE_H
10
11 #include <asm/addrspace.h>
12
13 #ifndef __ASSEMBLY__
14 #include <linux/sched.h>
15
16 #endif /* !__ASSEMBLY__ */
17
18 /*
19 * Use two-level page tables just as the i386 (without PAE)
20 */
21 #include <asm/pgtable-2level.h>
22
23 /*
24 * The following code might need some cleanup when the values are
25 * final...
26 */
27 #define PMD_SIZE (1UL << PMD_SHIFT)
28 #define PMD_MASK (~(PMD_SIZE-1))
29 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
30 #define PGDIR_MASK (~(PGDIR_SIZE-1))
31
32 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
33 #define FIRST_USER_ADDRESS 0UL
34
35 #ifndef __ASSEMBLY__
36 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
37 extern void paging_init(void);
38
39 /*
40 * ZERO_PAGE is a global shared page that is always zero: used for
41 * zero-mapped memory areas etc.
42 */
43 extern struct page *empty_zero_page;
44 #define ZERO_PAGE(vaddr) (empty_zero_page)
45
46 /*
47 * Just any arbitrary offset to the start of the vmalloc VM area: the
48 * current 8 MiB value just means that there will be a 8 MiB "hole"
49 * after the uncached physical memory (P2 segment) until the vmalloc
50 * area starts. That means that any out-of-bounds memory accesses will
51 * hopefully be caught; we don't know if the end of the P1/P2 segments
52 * are actually used for anything, but it is anyway safer to let the
53 * MMU catch these kinds of errors than to rely on the memory bus.
54 *
55 * A "hole" of the same size is added to the end of the P3 segment as
56 * well. It might seem wasteful to use 16 MiB of virtual address space
57 * on this, but we do have 512 MiB of it...
58 *
59 * The vmalloc() routines leave a hole of 4 KiB between each vmalloced
60 * area for the same reason.
61 */
62 #define VMALLOC_OFFSET (8 * 1024 * 1024)
63 #define VMALLOC_START (P3SEG + VMALLOC_OFFSET)
64 #define VMALLOC_END (P4SEG - VMALLOC_OFFSET)
65 #endif /* !__ASSEMBLY__ */
66
67 /*
68 * Page flags. Some of these flags are not directly supported by
69 * hardware, so we have to emulate them.
70 */
71 #define _TLBEHI_BIT_VALID 9
72 #define _TLBEHI_VALID (1 << _TLBEHI_BIT_VALID)
73
74 #define _PAGE_BIT_WT 0 /* W-bit : write-through */
75 #define _PAGE_BIT_DIRTY 1 /* D-bit : page changed */
76 #define _PAGE_BIT_SZ0 2 /* SZ0-bit : Size of page */
77 #define _PAGE_BIT_SZ1 3 /* SZ1-bit : Size of page */
78 #define _PAGE_BIT_EXECUTE 4 /* X-bit : execute access allowed */
79 #define _PAGE_BIT_RW 5 /* AP0-bit : write access allowed */
80 #define _PAGE_BIT_USER 6 /* AP1-bit : user space access allowed */
81 #define _PAGE_BIT_BUFFER 7 /* B-bit : bufferable */
82 #define _PAGE_BIT_GLOBAL 8 /* G-bit : global (ignore ASID) */
83 #define _PAGE_BIT_CACHABLE 9 /* C-bit : cachable */
84
85 /* If we drop support for 1K pages, we get two extra bits */
86 #define _PAGE_BIT_PRESENT 10
87 #define _PAGE_BIT_ACCESSED 11 /* software: page was accessed */
88
89 #define _PAGE_WT (1 << _PAGE_BIT_WT)
90 #define _PAGE_DIRTY (1 << _PAGE_BIT_DIRTY)
91 #define _PAGE_EXECUTE (1 << _PAGE_BIT_EXECUTE)
92 #define _PAGE_RW (1 << _PAGE_BIT_RW)
93 #define _PAGE_USER (1 << _PAGE_BIT_USER)
94 #define _PAGE_BUFFER (1 << _PAGE_BIT_BUFFER)
95 #define _PAGE_GLOBAL (1 << _PAGE_BIT_GLOBAL)
96 #define _PAGE_CACHABLE (1 << _PAGE_BIT_CACHABLE)
97
98 /* Software flags */
99 #define _PAGE_ACCESSED (1 << _PAGE_BIT_ACCESSED)
100 #define _PAGE_PRESENT (1 << _PAGE_BIT_PRESENT)
101
102 /*
103 * Page types, i.e. sizes. _PAGE_TYPE_NONE corresponds to what is
104 * usually called _PAGE_PROTNONE on other architectures.
105 *
106 * XXX: Find out if _PAGE_PROTNONE is equivalent with !_PAGE_USER. If
107 * so, we can encode all possible page sizes (although we can't really
108 * support 1K pages anyway due to the _PAGE_PRESENT and _PAGE_ACCESSED
109 * bits)
110 *
111 */
112 #define _PAGE_TYPE_MASK ((1 << _PAGE_BIT_SZ0) | (1 << _PAGE_BIT_SZ1))
113 #define _PAGE_TYPE_NONE (0 << _PAGE_BIT_SZ0)
114 #define _PAGE_TYPE_SMALL (1 << _PAGE_BIT_SZ0)
115 #define _PAGE_TYPE_MEDIUM (2 << _PAGE_BIT_SZ0)
116 #define _PAGE_TYPE_LARGE (3 << _PAGE_BIT_SZ0)
117
118 /*
119 * Mask which drop software flags. We currently can't handle more than
120 * 512 MiB of physical memory, so we can use bits 29-31 for other
121 * stuff. With a fixed 4K page size, we can use bits 10-11 as well as
122 * bits 2-3 (SZ)
123 */
124 #define _PAGE_FLAGS_HARDWARE_MASK 0xfffff3ff
125
126 #define _PAGE_FLAGS_CACHE_MASK (_PAGE_CACHABLE | _PAGE_BUFFER | _PAGE_WT)
127
128 /* Flags that may be modified by software */
129 #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY \
130 | _PAGE_FLAGS_CACHE_MASK)
131
132 #define _PAGE_FLAGS_READ (_PAGE_CACHABLE | _PAGE_BUFFER)
133 #define _PAGE_FLAGS_WRITE (_PAGE_FLAGS_READ | _PAGE_RW | _PAGE_DIRTY)
134
135 #define _PAGE_NORMAL(x) __pgprot((x) | _PAGE_PRESENT | _PAGE_TYPE_SMALL \
136 | _PAGE_ACCESSED)
137
138 #define PAGE_NONE (_PAGE_ACCESSED | _PAGE_TYPE_NONE)
139 #define PAGE_READ (_PAGE_FLAGS_READ | _PAGE_USER)
140 #define PAGE_EXEC (_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_USER)
141 #define PAGE_WRITE (_PAGE_FLAGS_WRITE | _PAGE_USER)
142 #define PAGE_KERNEL _PAGE_NORMAL(_PAGE_FLAGS_WRITE | _PAGE_EXECUTE | _PAGE_GLOBAL)
143 #define PAGE_KERNEL_RO _PAGE_NORMAL(_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_GLOBAL)
144
145 #define _PAGE_P(x) _PAGE_NORMAL((x) & ~(_PAGE_RW | _PAGE_DIRTY))
146 #define _PAGE_S(x) _PAGE_NORMAL(x)
147
148 #define PAGE_COPY _PAGE_P(PAGE_WRITE | PAGE_READ)
149 #define PAGE_SHARED _PAGE_S(PAGE_WRITE | PAGE_READ)
150
151 #ifndef __ASSEMBLY__
152 /*
153 * The hardware supports flags for write- and execute access. Read is
154 * always allowed if the page is loaded into the TLB, so the "-w-",
155 * "--x" and "-wx" mappings are implemented as "rw-", "r-x" and "rwx",
156 * respectively.
157 *
158 * The "---" case is handled by software; the page will simply not be
159 * loaded into the TLB if the page type is _PAGE_TYPE_NONE.
160 */
161
162 #define __P000 __pgprot(PAGE_NONE)
163 #define __P001 _PAGE_P(PAGE_READ)
164 #define __P010 _PAGE_P(PAGE_WRITE)
165 #define __P011 _PAGE_P(PAGE_WRITE | PAGE_READ)
166 #define __P100 _PAGE_P(PAGE_EXEC)
167 #define __P101 _PAGE_P(PAGE_EXEC | PAGE_READ)
168 #define __P110 _PAGE_P(PAGE_EXEC | PAGE_WRITE)
169 #define __P111 _PAGE_P(PAGE_EXEC | PAGE_WRITE | PAGE_READ)
170
171 #define __S000 __pgprot(PAGE_NONE)
172 #define __S001 _PAGE_S(PAGE_READ)
173 #define __S010 _PAGE_S(PAGE_WRITE)
174 #define __S011 _PAGE_S(PAGE_WRITE | PAGE_READ)
175 #define __S100 _PAGE_S(PAGE_EXEC)
176 #define __S101 _PAGE_S(PAGE_EXEC | PAGE_READ)
177 #define __S110 _PAGE_S(PAGE_EXEC | PAGE_WRITE)
178 #define __S111 _PAGE_S(PAGE_EXEC | PAGE_WRITE | PAGE_READ)
179
180 #define pte_none(x) (!pte_val(x))
181 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
182
183 #define pte_clear(mm,addr,xp) \
184 do { \
185 set_pte_at(mm, addr, xp, __pte(0)); \
186 } while (0)
187
188 /*
189 * The following only work if pte_present() is true.
190 * Undefined behaviour if not..
191 */
pte_write(pte_t pte)192 static inline int pte_write(pte_t pte)
193 {
194 return pte_val(pte) & _PAGE_RW;
195 }
pte_dirty(pte_t pte)196 static inline int pte_dirty(pte_t pte)
197 {
198 return pte_val(pte) & _PAGE_DIRTY;
199 }
pte_young(pte_t pte)200 static inline int pte_young(pte_t pte)
201 {
202 return pte_val(pte) & _PAGE_ACCESSED;
203 }
pte_special(pte_t pte)204 static inline int pte_special(pte_t pte)
205 {
206 return 0;
207 }
208
209 /* Mutator functions for PTE bits */
pte_wrprotect(pte_t pte)210 static inline pte_t pte_wrprotect(pte_t pte)
211 {
212 set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW));
213 return pte;
214 }
pte_mkclean(pte_t pte)215 static inline pte_t pte_mkclean(pte_t pte)
216 {
217 set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY));
218 return pte;
219 }
pte_mkold(pte_t pte)220 static inline pte_t pte_mkold(pte_t pte)
221 {
222 set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED));
223 return pte;
224 }
pte_mkwrite(pte_t pte)225 static inline pte_t pte_mkwrite(pte_t pte)
226 {
227 set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW));
228 return pte;
229 }
pte_mkdirty(pte_t pte)230 static inline pte_t pte_mkdirty(pte_t pte)
231 {
232 set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY));
233 return pte;
234 }
pte_mkyoung(pte_t pte)235 static inline pte_t pte_mkyoung(pte_t pte)
236 {
237 set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED));
238 return pte;
239 }
pte_mkspecial(pte_t pte)240 static inline pte_t pte_mkspecial(pte_t pte)
241 {
242 return pte;
243 }
244
245 #define pmd_none(x) (!pmd_val(x))
246 #define pmd_present(x) (pmd_val(x))
247
pmd_clear(pmd_t * pmdp)248 static inline void pmd_clear(pmd_t *pmdp)
249 {
250 set_pmd(pmdp, __pmd(0));
251 }
252
253 #define pmd_bad(x) (pmd_val(x) & ~PAGE_MASK)
254
255 /*
256 * Permanent address of a page. We don't support highmem, so this is
257 * trivial.
258 */
259 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
260 #define pte_page(x) (pfn_to_page(pte_pfn(x)))
261
262 /*
263 * Mark the prot value as uncacheable and unbufferable
264 */
265 #define pgprot_noncached(prot) \
266 __pgprot(pgprot_val(prot) & ~(_PAGE_BUFFER | _PAGE_CACHABLE))
267
268 /*
269 * Mark the prot value as uncacheable but bufferable
270 */
271 #define pgprot_writecombine(prot) \
272 __pgprot((pgprot_val(prot) & ~_PAGE_CACHABLE) | _PAGE_BUFFER)
273
274 /*
275 * Conversion functions: convert a page and protection to a page entry,
276 * and a page entry and page directory to the page they refer to.
277 *
278 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
279 */
280 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
281
pte_modify(pte_t pte,pgprot_t newprot)282 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
283 {
284 set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK)
285 | pgprot_val(newprot)));
286 return pte;
287 }
288
289 #define page_pte(page) page_pte_prot(page, __pgprot(0))
290
291 #define pmd_page_vaddr(pmd) pmd_val(pmd)
292 #define pmd_page(pmd) (virt_to_page(pmd_val(pmd)))
293
294 /* to find an entry in a page-table-directory. */
295 #define pgd_index(address) (((address) >> PGDIR_SHIFT) \
296 & (PTRS_PER_PGD - 1))
297 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
298
299 /* to find an entry in a kernel page-table-directory */
300 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
301
302 /* Find an entry in the third-level page table.. */
303 #define pte_index(address) \
304 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
305 #define pte_offset(dir, address) \
306 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
307 #define pte_offset_kernel(dir, address) \
308 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
309 #define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
310 #define pte_unmap(pte) do { } while (0)
311
312 struct vm_area_struct;
313 extern void update_mmu_cache(struct vm_area_struct * vma,
314 unsigned long address, pte_t *ptep);
315
316 /*
317 * Encode and decode a swap entry
318 *
319 * Constraints:
320 * _PAGE_TYPE_* at bits 2-3 (for emulating _PAGE_PROTNONE)
321 * _PAGE_PRESENT at bit 10
322 *
323 * We encode the type into bits 4-9 and offset into bits 11-31. This
324 * gives us a 21 bits offset, or 2**21 * 4K = 8G usable swap space per
325 * device, and 64 possible types.
326 *
327 * NOTE: We should set ZEROs at the position of _PAGE_PRESENT
328 * and _PAGE_PROTNONE bits
329 */
330 #define __swp_type(x) (((x).val >> 4) & 0x3f)
331 #define __swp_offset(x) ((x).val >> 11)
332 #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
333 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
334 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
335
336 typedef pte_t *pte_addr_t;
337
338 #define kern_addr_valid(addr) (1)
339
340 /* No page table caches to initialize (?) */
341 #define pgtable_cache_init() do { } while(0)
342
343 #include <asm-generic/pgtable.h>
344
345 #endif /* !__ASSEMBLY__ */
346
347 #endif /* __ASM_AVR32_PGTABLE_H */
348