1 /*
2  * Intel Cache Quality-of-Service Monitoring (CQM) support.
3  *
4  * Based very, very heavily on work by Peter Zijlstra.
5  */
6 
7 #include <linux/perf_event.h>
8 #include <linux/slab.h>
9 #include <asm/cpu_device_id.h>
10 #include "perf_event.h"
11 
12 #define MSR_IA32_PQR_ASSOC	0x0c8f
13 #define MSR_IA32_QM_CTR		0x0c8e
14 #define MSR_IA32_QM_EVTSEL	0x0c8d
15 
16 static u32 cqm_max_rmid = -1;
17 static unsigned int cqm_l3_scale; /* supposedly cacheline size */
18 
19 /**
20  * struct intel_pqr_state - State cache for the PQR MSR
21  * @rmid:		The cached Resource Monitoring ID
22  * @closid:		The cached Class Of Service ID
23  * @rmid_usecnt:	The usage counter for rmid
24  *
25  * The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the
26  * lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always
27  * contains both parts, so we need to cache them.
28  *
29  * The cache also helps to avoid pointless updates if the value does
30  * not change.
31  */
32 struct intel_pqr_state {
33 	u32			rmid;
34 	u32			closid;
35 	int			rmid_usecnt;
36 };
37 
38 /*
39  * The cached intel_pqr_state is strictly per CPU and can never be
40  * updated from a remote CPU. Both functions which modify the state
41  * (intel_cqm_event_start and intel_cqm_event_stop) are called with
42  * interrupts disabled, which is sufficient for the protection.
43  */
44 static DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
45 
46 /*
47  * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
48  * Also protects event->hw.cqm_rmid
49  *
50  * Hold either for stability, both for modification of ->hw.cqm_rmid.
51  */
52 static DEFINE_MUTEX(cache_mutex);
53 static DEFINE_RAW_SPINLOCK(cache_lock);
54 
55 /*
56  * Groups of events that have the same target(s), one RMID per group.
57  */
58 static LIST_HEAD(cache_groups);
59 
60 /*
61  * Mask of CPUs for reading CQM values. We only need one per-socket.
62  */
63 static cpumask_t cqm_cpumask;
64 
65 #define RMID_VAL_ERROR		(1ULL << 63)
66 #define RMID_VAL_UNAVAIL	(1ULL << 62)
67 
68 #define QOS_L3_OCCUP_EVENT_ID	(1 << 0)
69 
70 #define QOS_EVENT_MASK	QOS_L3_OCCUP_EVENT_ID
71 
72 /*
73  * This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
74  *
75  * This rmid is always free and is guaranteed to have an associated
76  * near-zero occupancy value, i.e. no cachelines are tagged with this
77  * RMID, once __intel_cqm_rmid_rotate() returns.
78  */
79 static u32 intel_cqm_rotation_rmid;
80 
81 #define INVALID_RMID		(-1)
82 
83 /*
84  * Is @rmid valid for programming the hardware?
85  *
86  * rmid 0 is reserved by the hardware for all non-monitored tasks, which
87  * means that we should never come across an rmid with that value.
88  * Likewise, an rmid value of -1 is used to indicate "no rmid currently
89  * assigned" and is used as part of the rotation code.
90  */
__rmid_valid(u32 rmid)91 static inline bool __rmid_valid(u32 rmid)
92 {
93 	if (!rmid || rmid == INVALID_RMID)
94 		return false;
95 
96 	return true;
97 }
98 
__rmid_read(u32 rmid)99 static u64 __rmid_read(u32 rmid)
100 {
101 	u64 val;
102 
103 	/*
104 	 * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
105 	 * it just says that to increase confusion.
106 	 */
107 	wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid);
108 	rdmsrl(MSR_IA32_QM_CTR, val);
109 
110 	/*
111 	 * Aside from the ERROR and UNAVAIL bits, assume this thing returns
112 	 * the number of cachelines tagged with @rmid.
113 	 */
114 	return val;
115 }
116 
117 enum rmid_recycle_state {
118 	RMID_YOUNG = 0,
119 	RMID_AVAILABLE,
120 	RMID_DIRTY,
121 };
122 
123 struct cqm_rmid_entry {
124 	u32 rmid;
125 	enum rmid_recycle_state state;
126 	struct list_head list;
127 	unsigned long queue_time;
128 };
129 
130 /*
131  * cqm_rmid_free_lru - A least recently used list of RMIDs.
132  *
133  * Oldest entry at the head, newest (most recently used) entry at the
134  * tail. This list is never traversed, it's only used to keep track of
135  * the lru order. That is, we only pick entries of the head or insert
136  * them on the tail.
137  *
138  * All entries on the list are 'free', and their RMIDs are not currently
139  * in use. To mark an RMID as in use, remove its entry from the lru
140  * list.
141  *
142  *
143  * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
144  *
145  * This list is contains RMIDs that no one is currently using but that
146  * may have a non-zero occupancy value associated with them. The
147  * rotation worker moves RMIDs from the limbo list to the free list once
148  * the occupancy value drops below __intel_cqm_threshold.
149  *
150  * Both lists are protected by cache_mutex.
151  */
152 static LIST_HEAD(cqm_rmid_free_lru);
153 static LIST_HEAD(cqm_rmid_limbo_lru);
154 
155 /*
156  * We use a simple array of pointers so that we can lookup a struct
157  * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid()
158  * and __put_rmid() from having to worry about dealing with struct
159  * cqm_rmid_entry - they just deal with rmids, i.e. integers.
160  *
161  * Once this array is initialized it is read-only. No locks are required
162  * to access it.
163  *
164  * All entries for all RMIDs can be looked up in the this array at all
165  * times.
166  */
167 static struct cqm_rmid_entry **cqm_rmid_ptrs;
168 
__rmid_entry(u32 rmid)169 static inline struct cqm_rmid_entry *__rmid_entry(u32 rmid)
170 {
171 	struct cqm_rmid_entry *entry;
172 
173 	entry = cqm_rmid_ptrs[rmid];
174 	WARN_ON(entry->rmid != rmid);
175 
176 	return entry;
177 }
178 
179 /*
180  * Returns < 0 on fail.
181  *
182  * We expect to be called with cache_mutex held.
183  */
__get_rmid(void)184 static u32 __get_rmid(void)
185 {
186 	struct cqm_rmid_entry *entry;
187 
188 	lockdep_assert_held(&cache_mutex);
189 
190 	if (list_empty(&cqm_rmid_free_lru))
191 		return INVALID_RMID;
192 
193 	entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
194 	list_del(&entry->list);
195 
196 	return entry->rmid;
197 }
198 
__put_rmid(u32 rmid)199 static void __put_rmid(u32 rmid)
200 {
201 	struct cqm_rmid_entry *entry;
202 
203 	lockdep_assert_held(&cache_mutex);
204 
205 	WARN_ON(!__rmid_valid(rmid));
206 	entry = __rmid_entry(rmid);
207 
208 	entry->queue_time = jiffies;
209 	entry->state = RMID_YOUNG;
210 
211 	list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
212 }
213 
intel_cqm_setup_rmid_cache(void)214 static int intel_cqm_setup_rmid_cache(void)
215 {
216 	struct cqm_rmid_entry *entry;
217 	unsigned int nr_rmids;
218 	int r = 0;
219 
220 	nr_rmids = cqm_max_rmid + 1;
221 	cqm_rmid_ptrs = kmalloc(sizeof(struct cqm_rmid_entry *) *
222 				nr_rmids, GFP_KERNEL);
223 	if (!cqm_rmid_ptrs)
224 		return -ENOMEM;
225 
226 	for (; r <= cqm_max_rmid; r++) {
227 		struct cqm_rmid_entry *entry;
228 
229 		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
230 		if (!entry)
231 			goto fail;
232 
233 		INIT_LIST_HEAD(&entry->list);
234 		entry->rmid = r;
235 		cqm_rmid_ptrs[r] = entry;
236 
237 		list_add_tail(&entry->list, &cqm_rmid_free_lru);
238 	}
239 
240 	/*
241 	 * RMID 0 is special and is always allocated. It's used for all
242 	 * tasks that are not monitored.
243 	 */
244 	entry = __rmid_entry(0);
245 	list_del(&entry->list);
246 
247 	mutex_lock(&cache_mutex);
248 	intel_cqm_rotation_rmid = __get_rmid();
249 	mutex_unlock(&cache_mutex);
250 
251 	return 0;
252 fail:
253 	while (r--)
254 		kfree(cqm_rmid_ptrs[r]);
255 
256 	kfree(cqm_rmid_ptrs);
257 	return -ENOMEM;
258 }
259 
260 /*
261  * Determine if @a and @b measure the same set of tasks.
262  *
263  * If @a and @b measure the same set of tasks then we want to share a
264  * single RMID.
265  */
__match_event(struct perf_event * a,struct perf_event * b)266 static bool __match_event(struct perf_event *a, struct perf_event *b)
267 {
268 	/* Per-cpu and task events don't mix */
269 	if ((a->attach_state & PERF_ATTACH_TASK) !=
270 	    (b->attach_state & PERF_ATTACH_TASK))
271 		return false;
272 
273 #ifdef CONFIG_CGROUP_PERF
274 	if (a->cgrp != b->cgrp)
275 		return false;
276 #endif
277 
278 	/* If not task event, we're machine wide */
279 	if (!(b->attach_state & PERF_ATTACH_TASK))
280 		return true;
281 
282 	/*
283 	 * Events that target same task are placed into the same cache group.
284 	 */
285 	if (a->hw.target == b->hw.target)
286 		return true;
287 
288 	/*
289 	 * Are we an inherited event?
290 	 */
291 	if (b->parent == a)
292 		return true;
293 
294 	return false;
295 }
296 
297 #ifdef CONFIG_CGROUP_PERF
event_to_cgroup(struct perf_event * event)298 static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event)
299 {
300 	if (event->attach_state & PERF_ATTACH_TASK)
301 		return perf_cgroup_from_task(event->hw.target, event->ctx);
302 
303 	return event->cgrp;
304 }
305 #endif
306 
307 /*
308  * Determine if @a's tasks intersect with @b's tasks
309  *
310  * There are combinations of events that we explicitly prohibit,
311  *
312  *		   PROHIBITS
313  *     system-wide    -> 	cgroup and task
314  *     cgroup 	      ->	system-wide
315  *     		      ->	task in cgroup
316  *     task 	      -> 	system-wide
317  *     		      ->	task in cgroup
318  *
319  * Call this function before allocating an RMID.
320  */
__conflict_event(struct perf_event * a,struct perf_event * b)321 static bool __conflict_event(struct perf_event *a, struct perf_event *b)
322 {
323 #ifdef CONFIG_CGROUP_PERF
324 	/*
325 	 * We can have any number of cgroups but only one system-wide
326 	 * event at a time.
327 	 */
328 	if (a->cgrp && b->cgrp) {
329 		struct perf_cgroup *ac = a->cgrp;
330 		struct perf_cgroup *bc = b->cgrp;
331 
332 		/*
333 		 * This condition should have been caught in
334 		 * __match_event() and we should be sharing an RMID.
335 		 */
336 		WARN_ON_ONCE(ac == bc);
337 
338 		if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
339 		    cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
340 			return true;
341 
342 		return false;
343 	}
344 
345 	if (a->cgrp || b->cgrp) {
346 		struct perf_cgroup *ac, *bc;
347 
348 		/*
349 		 * cgroup and system-wide events are mutually exclusive
350 		 */
351 		if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) ||
352 		    (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK)))
353 			return true;
354 
355 		/*
356 		 * Ensure neither event is part of the other's cgroup
357 		 */
358 		ac = event_to_cgroup(a);
359 		bc = event_to_cgroup(b);
360 		if (ac == bc)
361 			return true;
362 
363 		/*
364 		 * Must have cgroup and non-intersecting task events.
365 		 */
366 		if (!ac || !bc)
367 			return false;
368 
369 		/*
370 		 * We have cgroup and task events, and the task belongs
371 		 * to a cgroup. Check for for overlap.
372 		 */
373 		if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
374 		    cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
375 			return true;
376 
377 		return false;
378 	}
379 #endif
380 	/*
381 	 * If one of them is not a task, same story as above with cgroups.
382 	 */
383 	if (!(a->attach_state & PERF_ATTACH_TASK) ||
384 	    !(b->attach_state & PERF_ATTACH_TASK))
385 		return true;
386 
387 	/*
388 	 * Must be non-overlapping.
389 	 */
390 	return false;
391 }
392 
393 struct rmid_read {
394 	u32 rmid;
395 	atomic64_t value;
396 };
397 
398 static void __intel_cqm_event_count(void *info);
399 
400 /*
401  * Exchange the RMID of a group of events.
402  */
intel_cqm_xchg_rmid(struct perf_event * group,u32 rmid)403 static u32 intel_cqm_xchg_rmid(struct perf_event *group, u32 rmid)
404 {
405 	struct perf_event *event;
406 	struct list_head *head = &group->hw.cqm_group_entry;
407 	u32 old_rmid = group->hw.cqm_rmid;
408 
409 	lockdep_assert_held(&cache_mutex);
410 
411 	/*
412 	 * If our RMID is being deallocated, perform a read now.
413 	 */
414 	if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
415 		struct rmid_read rr = {
416 			.value = ATOMIC64_INIT(0),
417 			.rmid = old_rmid,
418 		};
419 
420 		on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count,
421 				 &rr, 1);
422 		local64_set(&group->count, atomic64_read(&rr.value));
423 	}
424 
425 	raw_spin_lock_irq(&cache_lock);
426 
427 	group->hw.cqm_rmid = rmid;
428 	list_for_each_entry(event, head, hw.cqm_group_entry)
429 		event->hw.cqm_rmid = rmid;
430 
431 	raw_spin_unlock_irq(&cache_lock);
432 
433 	return old_rmid;
434 }
435 
436 /*
437  * If we fail to assign a new RMID for intel_cqm_rotation_rmid because
438  * cachelines are still tagged with RMIDs in limbo, we progressively
439  * increment the threshold until we find an RMID in limbo with <=
440  * __intel_cqm_threshold lines tagged. This is designed to mitigate the
441  * problem where cachelines tagged with an RMID are not steadily being
442  * evicted.
443  *
444  * On successful rotations we decrease the threshold back towards zero.
445  *
446  * __intel_cqm_max_threshold provides an upper bound on the threshold,
447  * and is measured in bytes because it's exposed to userland.
448  */
449 static unsigned int __intel_cqm_threshold;
450 static unsigned int __intel_cqm_max_threshold;
451 
452 /*
453  * Test whether an RMID has a zero occupancy value on this cpu.
454  */
intel_cqm_stable(void * arg)455 static void intel_cqm_stable(void *arg)
456 {
457 	struct cqm_rmid_entry *entry;
458 
459 	list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
460 		if (entry->state != RMID_AVAILABLE)
461 			break;
462 
463 		if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
464 			entry->state = RMID_DIRTY;
465 	}
466 }
467 
468 /*
469  * If we have group events waiting for an RMID that don't conflict with
470  * events already running, assign @rmid.
471  */
intel_cqm_sched_in_event(u32 rmid)472 static bool intel_cqm_sched_in_event(u32 rmid)
473 {
474 	struct perf_event *leader, *event;
475 
476 	lockdep_assert_held(&cache_mutex);
477 
478 	leader = list_first_entry(&cache_groups, struct perf_event,
479 				  hw.cqm_groups_entry);
480 	event = leader;
481 
482 	list_for_each_entry_continue(event, &cache_groups,
483 				     hw.cqm_groups_entry) {
484 		if (__rmid_valid(event->hw.cqm_rmid))
485 			continue;
486 
487 		if (__conflict_event(event, leader))
488 			continue;
489 
490 		intel_cqm_xchg_rmid(event, rmid);
491 		return true;
492 	}
493 
494 	return false;
495 }
496 
497 /*
498  * Initially use this constant for both the limbo queue time and the
499  * rotation timer interval, pmu::hrtimer_interval_ms.
500  *
501  * They don't need to be the same, but the two are related since if you
502  * rotate faster than you recycle RMIDs, you may run out of available
503  * RMIDs.
504  */
505 #define RMID_DEFAULT_QUEUE_TIME 250	/* ms */
506 
507 static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;
508 
509 /*
510  * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
511  * @nr_available: number of freeable RMIDs on the limbo list
512  *
513  * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
514  * cachelines are tagged with those RMIDs. After this we can reuse them
515  * and know that the current set of active RMIDs is stable.
516  *
517  * Return %true or %false depending on whether stabilization needs to be
518  * reattempted.
519  *
520  * If we return %true then @nr_available is updated to indicate the
521  * number of RMIDs on the limbo list that have been queued for the
522  * minimum queue time (RMID_AVAILABLE), but whose data occupancy values
523  * are above __intel_cqm_threshold.
524  */
intel_cqm_rmid_stabilize(unsigned int * available)525 static bool intel_cqm_rmid_stabilize(unsigned int *available)
526 {
527 	struct cqm_rmid_entry *entry, *tmp;
528 
529 	lockdep_assert_held(&cache_mutex);
530 
531 	*available = 0;
532 	list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
533 		unsigned long min_queue_time;
534 		unsigned long now = jiffies;
535 
536 		/*
537 		 * We hold RMIDs placed into limbo for a minimum queue
538 		 * time. Before the minimum queue time has elapsed we do
539 		 * not recycle RMIDs.
540 		 *
541 		 * The reasoning is that until a sufficient time has
542 		 * passed since we stopped using an RMID, any RMID
543 		 * placed onto the limbo list will likely still have
544 		 * data tagged in the cache, which means we'll probably
545 		 * fail to recycle it anyway.
546 		 *
547 		 * We can save ourselves an expensive IPI by skipping
548 		 * any RMIDs that have not been queued for the minimum
549 		 * time.
550 		 */
551 		min_queue_time = entry->queue_time +
552 			msecs_to_jiffies(__rmid_queue_time_ms);
553 
554 		if (time_after(min_queue_time, now))
555 			break;
556 
557 		entry->state = RMID_AVAILABLE;
558 		(*available)++;
559 	}
560 
561 	/*
562 	 * Fast return if none of the RMIDs on the limbo list have been
563 	 * sitting on the queue for the minimum queue time.
564 	 */
565 	if (!*available)
566 		return false;
567 
568 	/*
569 	 * Test whether an RMID is free for each package.
570 	 */
571 	on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);
572 
573 	list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
574 		/*
575 		 * Exhausted all RMIDs that have waited min queue time.
576 		 */
577 		if (entry->state == RMID_YOUNG)
578 			break;
579 
580 		if (entry->state == RMID_DIRTY)
581 			continue;
582 
583 		list_del(&entry->list);	/* remove from limbo */
584 
585 		/*
586 		 * The rotation RMID gets priority if it's
587 		 * currently invalid. In which case, skip adding
588 		 * the RMID to the the free lru.
589 		 */
590 		if (!__rmid_valid(intel_cqm_rotation_rmid)) {
591 			intel_cqm_rotation_rmid = entry->rmid;
592 			continue;
593 		}
594 
595 		/*
596 		 * If we have groups waiting for RMIDs, hand
597 		 * them one now provided they don't conflict.
598 		 */
599 		if (intel_cqm_sched_in_event(entry->rmid))
600 			continue;
601 
602 		/*
603 		 * Otherwise place it onto the free list.
604 		 */
605 		list_add_tail(&entry->list, &cqm_rmid_free_lru);
606 	}
607 
608 
609 	return __rmid_valid(intel_cqm_rotation_rmid);
610 }
611 
612 /*
613  * Pick a victim group and move it to the tail of the group list.
614  * @next: The first group without an RMID
615  */
__intel_cqm_pick_and_rotate(struct perf_event * next)616 static void __intel_cqm_pick_and_rotate(struct perf_event *next)
617 {
618 	struct perf_event *rotor;
619 	u32 rmid;
620 
621 	lockdep_assert_held(&cache_mutex);
622 
623 	rotor = list_first_entry(&cache_groups, struct perf_event,
624 				 hw.cqm_groups_entry);
625 
626 	/*
627 	 * The group at the front of the list should always have a valid
628 	 * RMID. If it doesn't then no groups have RMIDs assigned and we
629 	 * don't need to rotate the list.
630 	 */
631 	if (next == rotor)
632 		return;
633 
634 	rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
635 	__put_rmid(rmid);
636 
637 	list_rotate_left(&cache_groups);
638 }
639 
640 /*
641  * Deallocate the RMIDs from any events that conflict with @event, and
642  * place them on the back of the group list.
643  */
intel_cqm_sched_out_conflicting_events(struct perf_event * event)644 static void intel_cqm_sched_out_conflicting_events(struct perf_event *event)
645 {
646 	struct perf_event *group, *g;
647 	u32 rmid;
648 
649 	lockdep_assert_held(&cache_mutex);
650 
651 	list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) {
652 		if (group == event)
653 			continue;
654 
655 		rmid = group->hw.cqm_rmid;
656 
657 		/*
658 		 * Skip events that don't have a valid RMID.
659 		 */
660 		if (!__rmid_valid(rmid))
661 			continue;
662 
663 		/*
664 		 * No conflict? No problem! Leave the event alone.
665 		 */
666 		if (!__conflict_event(group, event))
667 			continue;
668 
669 		intel_cqm_xchg_rmid(group, INVALID_RMID);
670 		__put_rmid(rmid);
671 	}
672 }
673 
674 /*
675  * Attempt to rotate the groups and assign new RMIDs.
676  *
677  * We rotate for two reasons,
678  *   1. To handle the scheduling of conflicting events
679  *   2. To recycle RMIDs
680  *
681  * Rotating RMIDs is complicated because the hardware doesn't give us
682  * any clues.
683  *
684  * There's problems with the hardware interface; when you change the
685  * task:RMID map cachelines retain their 'old' tags, giving a skewed
686  * picture. In order to work around this, we must always keep one free
687  * RMID - intel_cqm_rotation_rmid.
688  *
689  * Rotation works by taking away an RMID from a group (the old RMID),
690  * and assigning the free RMID to another group (the new RMID). We must
691  * then wait for the old RMID to not be used (no cachelines tagged).
692  * This ensure that all cachelines are tagged with 'active' RMIDs. At
693  * this point we can start reading values for the new RMID and treat the
694  * old RMID as the free RMID for the next rotation.
695  *
696  * Return %true or %false depending on whether we did any rotating.
697  */
__intel_cqm_rmid_rotate(void)698 static bool __intel_cqm_rmid_rotate(void)
699 {
700 	struct perf_event *group, *start = NULL;
701 	unsigned int threshold_limit;
702 	unsigned int nr_needed = 0;
703 	unsigned int nr_available;
704 	bool rotated = false;
705 
706 	mutex_lock(&cache_mutex);
707 
708 again:
709 	/*
710 	 * Fast path through this function if there are no groups and no
711 	 * RMIDs that need cleaning.
712 	 */
713 	if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
714 		goto out;
715 
716 	list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
717 		if (!__rmid_valid(group->hw.cqm_rmid)) {
718 			if (!start)
719 				start = group;
720 			nr_needed++;
721 		}
722 	}
723 
724 	/*
725 	 * We have some event groups, but they all have RMIDs assigned
726 	 * and no RMIDs need cleaning.
727 	 */
728 	if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
729 		goto out;
730 
731 	if (!nr_needed)
732 		goto stabilize;
733 
734 	/*
735 	 * We have more event groups without RMIDs than available RMIDs,
736 	 * or we have event groups that conflict with the ones currently
737 	 * scheduled.
738 	 *
739 	 * We force deallocate the rmid of the group at the head of
740 	 * cache_groups. The first event group without an RMID then gets
741 	 * assigned intel_cqm_rotation_rmid. This ensures we always make
742 	 * forward progress.
743 	 *
744 	 * Rotate the cache_groups list so the previous head is now the
745 	 * tail.
746 	 */
747 	__intel_cqm_pick_and_rotate(start);
748 
749 	/*
750 	 * If the rotation is going to succeed, reduce the threshold so
751 	 * that we don't needlessly reuse dirty RMIDs.
752 	 */
753 	if (__rmid_valid(intel_cqm_rotation_rmid)) {
754 		intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
755 		intel_cqm_rotation_rmid = __get_rmid();
756 
757 		intel_cqm_sched_out_conflicting_events(start);
758 
759 		if (__intel_cqm_threshold)
760 			__intel_cqm_threshold--;
761 	}
762 
763 	rotated = true;
764 
765 stabilize:
766 	/*
767 	 * We now need to stablize the RMID we freed above (if any) to
768 	 * ensure that the next time we rotate we have an RMID with zero
769 	 * occupancy value.
770 	 *
771 	 * Alternatively, if we didn't need to perform any rotation,
772 	 * we'll have a bunch of RMIDs in limbo that need stabilizing.
773 	 */
774 	threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;
775 
776 	while (intel_cqm_rmid_stabilize(&nr_available) &&
777 	       __intel_cqm_threshold < threshold_limit) {
778 		unsigned int steal_limit;
779 
780 		/*
781 		 * Don't spin if nobody is actively waiting for an RMID,
782 		 * the rotation worker will be kicked as soon as an
783 		 * event needs an RMID anyway.
784 		 */
785 		if (!nr_needed)
786 			break;
787 
788 		/* Allow max 25% of RMIDs to be in limbo. */
789 		steal_limit = (cqm_max_rmid + 1) / 4;
790 
791 		/*
792 		 * We failed to stabilize any RMIDs so our rotation
793 		 * logic is now stuck. In order to make forward progress
794 		 * we have a few options:
795 		 *
796 		 *   1. rotate ("steal") another RMID
797 		 *   2. increase the threshold
798 		 *   3. do nothing
799 		 *
800 		 * We do both of 1. and 2. until we hit the steal limit.
801 		 *
802 		 * The steal limit prevents all RMIDs ending up on the
803 		 * limbo list. This can happen if every RMID has a
804 		 * non-zero occupancy above threshold_limit, and the
805 		 * occupancy values aren't dropping fast enough.
806 		 *
807 		 * Note that there is prioritisation at work here - we'd
808 		 * rather increase the number of RMIDs on the limbo list
809 		 * than increase the threshold, because increasing the
810 		 * threshold skews the event data (because we reuse
811 		 * dirty RMIDs) - threshold bumps are a last resort.
812 		 */
813 		if (nr_available < steal_limit)
814 			goto again;
815 
816 		__intel_cqm_threshold++;
817 	}
818 
819 out:
820 	mutex_unlock(&cache_mutex);
821 	return rotated;
822 }
823 
824 static void intel_cqm_rmid_rotate(struct work_struct *work);
825 
826 static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);
827 
828 static struct pmu intel_cqm_pmu;
829 
intel_cqm_rmid_rotate(struct work_struct * work)830 static void intel_cqm_rmid_rotate(struct work_struct *work)
831 {
832 	unsigned long delay;
833 
834 	__intel_cqm_rmid_rotate();
835 
836 	delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
837 	schedule_delayed_work(&intel_cqm_rmid_work, delay);
838 }
839 
840 /*
841  * Find a group and setup RMID.
842  *
843  * If we're part of a group, we use the group's RMID.
844  */
intel_cqm_setup_event(struct perf_event * event,struct perf_event ** group)845 static void intel_cqm_setup_event(struct perf_event *event,
846 				  struct perf_event **group)
847 {
848 	struct perf_event *iter;
849 	bool conflict = false;
850 	u32 rmid;
851 
852 	list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
853 		rmid = iter->hw.cqm_rmid;
854 
855 		if (__match_event(iter, event)) {
856 			/* All tasks in a group share an RMID */
857 			event->hw.cqm_rmid = rmid;
858 			*group = iter;
859 			return;
860 		}
861 
862 		/*
863 		 * We only care about conflicts for events that are
864 		 * actually scheduled in (and hence have a valid RMID).
865 		 */
866 		if (__conflict_event(iter, event) && __rmid_valid(rmid))
867 			conflict = true;
868 	}
869 
870 	if (conflict)
871 		rmid = INVALID_RMID;
872 	else
873 		rmid = __get_rmid();
874 
875 	event->hw.cqm_rmid = rmid;
876 }
877 
intel_cqm_event_read(struct perf_event * event)878 static void intel_cqm_event_read(struct perf_event *event)
879 {
880 	unsigned long flags;
881 	u32 rmid;
882 	u64 val;
883 
884 	/*
885 	 * Task events are handled by intel_cqm_event_count().
886 	 */
887 	if (event->cpu == -1)
888 		return;
889 
890 	raw_spin_lock_irqsave(&cache_lock, flags);
891 	rmid = event->hw.cqm_rmid;
892 
893 	if (!__rmid_valid(rmid))
894 		goto out;
895 
896 	val = __rmid_read(rmid);
897 
898 	/*
899 	 * Ignore this reading on error states and do not update the value.
900 	 */
901 	if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
902 		goto out;
903 
904 	local64_set(&event->count, val);
905 out:
906 	raw_spin_unlock_irqrestore(&cache_lock, flags);
907 }
908 
__intel_cqm_event_count(void * info)909 static void __intel_cqm_event_count(void *info)
910 {
911 	struct rmid_read *rr = info;
912 	u64 val;
913 
914 	val = __rmid_read(rr->rmid);
915 
916 	if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
917 		return;
918 
919 	atomic64_add(val, &rr->value);
920 }
921 
cqm_group_leader(struct perf_event * event)922 static inline bool cqm_group_leader(struct perf_event *event)
923 {
924 	return !list_empty(&event->hw.cqm_groups_entry);
925 }
926 
intel_cqm_event_count(struct perf_event * event)927 static u64 intel_cqm_event_count(struct perf_event *event)
928 {
929 	unsigned long flags;
930 	struct rmid_read rr = {
931 		.value = ATOMIC64_INIT(0),
932 	};
933 
934 	/*
935 	 * We only need to worry about task events. System-wide events
936 	 * are handled like usual, i.e. entirely with
937 	 * intel_cqm_event_read().
938 	 */
939 	if (event->cpu != -1)
940 		return __perf_event_count(event);
941 
942 	/*
943 	 * Only the group leader gets to report values. This stops us
944 	 * reporting duplicate values to userspace, and gives us a clear
945 	 * rule for which task gets to report the values.
946 	 *
947 	 * Note that it is impossible to attribute these values to
948 	 * specific packages - we forfeit that ability when we create
949 	 * task events.
950 	 */
951 	if (!cqm_group_leader(event))
952 		return 0;
953 
954 	/*
955 	 * Getting up-to-date values requires an SMP IPI which is not
956 	 * possible if we're being called in interrupt context. Return
957 	 * the cached values instead.
958 	 */
959 	if (unlikely(in_interrupt()))
960 		goto out;
961 
962 	/*
963 	 * Notice that we don't perform the reading of an RMID
964 	 * atomically, because we can't hold a spin lock across the
965 	 * IPIs.
966 	 *
967 	 * Speculatively perform the read, since @event might be
968 	 * assigned a different (possibly invalid) RMID while we're
969 	 * busying performing the IPI calls. It's therefore necessary to
970 	 * check @event's RMID afterwards, and if it has changed,
971 	 * discard the result of the read.
972 	 */
973 	rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
974 
975 	if (!__rmid_valid(rr.rmid))
976 		goto out;
977 
978 	on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1);
979 
980 	raw_spin_lock_irqsave(&cache_lock, flags);
981 	if (event->hw.cqm_rmid == rr.rmid)
982 		local64_set(&event->count, atomic64_read(&rr.value));
983 	raw_spin_unlock_irqrestore(&cache_lock, flags);
984 out:
985 	return __perf_event_count(event);
986 }
987 
intel_cqm_event_start(struct perf_event * event,int mode)988 static void intel_cqm_event_start(struct perf_event *event, int mode)
989 {
990 	struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
991 	u32 rmid = event->hw.cqm_rmid;
992 
993 	if (!(event->hw.cqm_state & PERF_HES_STOPPED))
994 		return;
995 
996 	event->hw.cqm_state &= ~PERF_HES_STOPPED;
997 
998 	if (state->rmid_usecnt++) {
999 		if (!WARN_ON_ONCE(state->rmid != rmid))
1000 			return;
1001 	} else {
1002 		WARN_ON_ONCE(state->rmid);
1003 	}
1004 
1005 	state->rmid = rmid;
1006 	wrmsr(MSR_IA32_PQR_ASSOC, rmid, state->closid);
1007 }
1008 
intel_cqm_event_stop(struct perf_event * event,int mode)1009 static void intel_cqm_event_stop(struct perf_event *event, int mode)
1010 {
1011 	struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
1012 
1013 	if (event->hw.cqm_state & PERF_HES_STOPPED)
1014 		return;
1015 
1016 	event->hw.cqm_state |= PERF_HES_STOPPED;
1017 
1018 	intel_cqm_event_read(event);
1019 
1020 	if (!--state->rmid_usecnt) {
1021 		state->rmid = 0;
1022 		wrmsr(MSR_IA32_PQR_ASSOC, 0, state->closid);
1023 	} else {
1024 		WARN_ON_ONCE(!state->rmid);
1025 	}
1026 }
1027 
intel_cqm_event_add(struct perf_event * event,int mode)1028 static int intel_cqm_event_add(struct perf_event *event, int mode)
1029 {
1030 	unsigned long flags;
1031 	u32 rmid;
1032 
1033 	raw_spin_lock_irqsave(&cache_lock, flags);
1034 
1035 	event->hw.cqm_state = PERF_HES_STOPPED;
1036 	rmid = event->hw.cqm_rmid;
1037 
1038 	if (__rmid_valid(rmid) && (mode & PERF_EF_START))
1039 		intel_cqm_event_start(event, mode);
1040 
1041 	raw_spin_unlock_irqrestore(&cache_lock, flags);
1042 
1043 	return 0;
1044 }
1045 
intel_cqm_event_destroy(struct perf_event * event)1046 static void intel_cqm_event_destroy(struct perf_event *event)
1047 {
1048 	struct perf_event *group_other = NULL;
1049 
1050 	mutex_lock(&cache_mutex);
1051 
1052 	/*
1053 	 * If there's another event in this group...
1054 	 */
1055 	if (!list_empty(&event->hw.cqm_group_entry)) {
1056 		group_other = list_first_entry(&event->hw.cqm_group_entry,
1057 					       struct perf_event,
1058 					       hw.cqm_group_entry);
1059 		list_del(&event->hw.cqm_group_entry);
1060 	}
1061 
1062 	/*
1063 	 * And we're the group leader..
1064 	 */
1065 	if (cqm_group_leader(event)) {
1066 		/*
1067 		 * If there was a group_other, make that leader, otherwise
1068 		 * destroy the group and return the RMID.
1069 		 */
1070 		if (group_other) {
1071 			list_replace(&event->hw.cqm_groups_entry,
1072 				     &group_other->hw.cqm_groups_entry);
1073 		} else {
1074 			u32 rmid = event->hw.cqm_rmid;
1075 
1076 			if (__rmid_valid(rmid))
1077 				__put_rmid(rmid);
1078 			list_del(&event->hw.cqm_groups_entry);
1079 		}
1080 	}
1081 
1082 	mutex_unlock(&cache_mutex);
1083 }
1084 
intel_cqm_event_init(struct perf_event * event)1085 static int intel_cqm_event_init(struct perf_event *event)
1086 {
1087 	struct perf_event *group = NULL;
1088 	bool rotate = false;
1089 
1090 	if (event->attr.type != intel_cqm_pmu.type)
1091 		return -ENOENT;
1092 
1093 	if (event->attr.config & ~QOS_EVENT_MASK)
1094 		return -EINVAL;
1095 
1096 	/* unsupported modes and filters */
1097 	if (event->attr.exclude_user   ||
1098 	    event->attr.exclude_kernel ||
1099 	    event->attr.exclude_hv     ||
1100 	    event->attr.exclude_idle   ||
1101 	    event->attr.exclude_host   ||
1102 	    event->attr.exclude_guest  ||
1103 	    event->attr.sample_period) /* no sampling */
1104 		return -EINVAL;
1105 
1106 	INIT_LIST_HEAD(&event->hw.cqm_group_entry);
1107 	INIT_LIST_HEAD(&event->hw.cqm_groups_entry);
1108 
1109 	event->destroy = intel_cqm_event_destroy;
1110 
1111 	mutex_lock(&cache_mutex);
1112 
1113 	/* Will also set rmid */
1114 	intel_cqm_setup_event(event, &group);
1115 
1116 	if (group) {
1117 		list_add_tail(&event->hw.cqm_group_entry,
1118 			      &group->hw.cqm_group_entry);
1119 	} else {
1120 		list_add_tail(&event->hw.cqm_groups_entry,
1121 			      &cache_groups);
1122 
1123 		/*
1124 		 * All RMIDs are either in use or have recently been
1125 		 * used. Kick the rotation worker to clean/free some.
1126 		 *
1127 		 * We only do this for the group leader, rather than for
1128 		 * every event in a group to save on needless work.
1129 		 */
1130 		if (!__rmid_valid(event->hw.cqm_rmid))
1131 			rotate = true;
1132 	}
1133 
1134 	mutex_unlock(&cache_mutex);
1135 
1136 	if (rotate)
1137 		schedule_delayed_work(&intel_cqm_rmid_work, 0);
1138 
1139 	return 0;
1140 }
1141 
1142 EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01");
1143 EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1");
1144 EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes");
1145 EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL);
1146 EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1");
1147 
1148 static struct attribute *intel_cqm_events_attr[] = {
1149 	EVENT_PTR(intel_cqm_llc),
1150 	EVENT_PTR(intel_cqm_llc_pkg),
1151 	EVENT_PTR(intel_cqm_llc_unit),
1152 	EVENT_PTR(intel_cqm_llc_scale),
1153 	EVENT_PTR(intel_cqm_llc_snapshot),
1154 	NULL,
1155 };
1156 
1157 static struct attribute_group intel_cqm_events_group = {
1158 	.name = "events",
1159 	.attrs = intel_cqm_events_attr,
1160 };
1161 
1162 PMU_FORMAT_ATTR(event, "config:0-7");
1163 static struct attribute *intel_cqm_formats_attr[] = {
1164 	&format_attr_event.attr,
1165 	NULL,
1166 };
1167 
1168 static struct attribute_group intel_cqm_format_group = {
1169 	.name = "format",
1170 	.attrs = intel_cqm_formats_attr,
1171 };
1172 
1173 static ssize_t
max_recycle_threshold_show(struct device * dev,struct device_attribute * attr,char * page)1174 max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
1175 			   char *page)
1176 {
1177 	ssize_t rv;
1178 
1179 	mutex_lock(&cache_mutex);
1180 	rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
1181 	mutex_unlock(&cache_mutex);
1182 
1183 	return rv;
1184 }
1185 
1186 static ssize_t
max_recycle_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1187 max_recycle_threshold_store(struct device *dev,
1188 			    struct device_attribute *attr,
1189 			    const char *buf, size_t count)
1190 {
1191 	unsigned int bytes, cachelines;
1192 	int ret;
1193 
1194 	ret = kstrtouint(buf, 0, &bytes);
1195 	if (ret)
1196 		return ret;
1197 
1198 	mutex_lock(&cache_mutex);
1199 
1200 	__intel_cqm_max_threshold = bytes;
1201 	cachelines = bytes / cqm_l3_scale;
1202 
1203 	/*
1204 	 * The new maximum takes effect immediately.
1205 	 */
1206 	if (__intel_cqm_threshold > cachelines)
1207 		__intel_cqm_threshold = cachelines;
1208 
1209 	mutex_unlock(&cache_mutex);
1210 
1211 	return count;
1212 }
1213 
1214 static DEVICE_ATTR_RW(max_recycle_threshold);
1215 
1216 static struct attribute *intel_cqm_attrs[] = {
1217 	&dev_attr_max_recycle_threshold.attr,
1218 	NULL,
1219 };
1220 
1221 static const struct attribute_group intel_cqm_group = {
1222 	.attrs = intel_cqm_attrs,
1223 };
1224 
1225 static const struct attribute_group *intel_cqm_attr_groups[] = {
1226 	&intel_cqm_events_group,
1227 	&intel_cqm_format_group,
1228 	&intel_cqm_group,
1229 	NULL,
1230 };
1231 
1232 static struct pmu intel_cqm_pmu = {
1233 	.hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
1234 	.attr_groups	     = intel_cqm_attr_groups,
1235 	.task_ctx_nr	     = perf_sw_context,
1236 	.event_init	     = intel_cqm_event_init,
1237 	.add		     = intel_cqm_event_add,
1238 	.del		     = intel_cqm_event_stop,
1239 	.start		     = intel_cqm_event_start,
1240 	.stop		     = intel_cqm_event_stop,
1241 	.read		     = intel_cqm_event_read,
1242 	.count		     = intel_cqm_event_count,
1243 };
1244 
cqm_pick_event_reader(int cpu)1245 static inline void cqm_pick_event_reader(int cpu)
1246 {
1247 	int phys_id = topology_physical_package_id(cpu);
1248 	int i;
1249 
1250 	for_each_cpu(i, &cqm_cpumask) {
1251 		if (phys_id == topology_physical_package_id(i))
1252 			return;	/* already got reader for this socket */
1253 	}
1254 
1255 	cpumask_set_cpu(cpu, &cqm_cpumask);
1256 }
1257 
intel_cqm_cpu_starting(unsigned int cpu)1258 static void intel_cqm_cpu_starting(unsigned int cpu)
1259 {
1260 	struct intel_pqr_state *state = &per_cpu(pqr_state, cpu);
1261 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1262 
1263 	state->rmid = 0;
1264 	state->closid = 0;
1265 	state->rmid_usecnt = 0;
1266 
1267 	WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid);
1268 	WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale);
1269 }
1270 
intel_cqm_cpu_exit(unsigned int cpu)1271 static void intel_cqm_cpu_exit(unsigned int cpu)
1272 {
1273 	int phys_id = topology_physical_package_id(cpu);
1274 	int i;
1275 
1276 	/*
1277 	 * Is @cpu a designated cqm reader?
1278 	 */
1279 	if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask))
1280 		return;
1281 
1282 	for_each_online_cpu(i) {
1283 		if (i == cpu)
1284 			continue;
1285 
1286 		if (phys_id == topology_physical_package_id(i)) {
1287 			cpumask_set_cpu(i, &cqm_cpumask);
1288 			break;
1289 		}
1290 	}
1291 }
1292 
intel_cqm_cpu_notifier(struct notifier_block * nb,unsigned long action,void * hcpu)1293 static int intel_cqm_cpu_notifier(struct notifier_block *nb,
1294 				  unsigned long action, void *hcpu)
1295 {
1296 	unsigned int cpu  = (unsigned long)hcpu;
1297 
1298 	switch (action & ~CPU_TASKS_FROZEN) {
1299 	case CPU_DOWN_PREPARE:
1300 		intel_cqm_cpu_exit(cpu);
1301 		break;
1302 	case CPU_STARTING:
1303 		intel_cqm_cpu_starting(cpu);
1304 		cqm_pick_event_reader(cpu);
1305 		break;
1306 	}
1307 
1308 	return NOTIFY_OK;
1309 }
1310 
1311 static const struct x86_cpu_id intel_cqm_match[] = {
1312 	{ .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC },
1313 	{}
1314 };
1315 
intel_cqm_init(void)1316 static int __init intel_cqm_init(void)
1317 {
1318 	char *str, scale[20];
1319 	int i, cpu, ret;
1320 
1321 	if (!x86_match_cpu(intel_cqm_match))
1322 		return -ENODEV;
1323 
1324 	cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale;
1325 
1326 	/*
1327 	 * It's possible that not all resources support the same number
1328 	 * of RMIDs. Instead of making scheduling much more complicated
1329 	 * (where we have to match a task's RMID to a cpu that supports
1330 	 * that many RMIDs) just find the minimum RMIDs supported across
1331 	 * all cpus.
1332 	 *
1333 	 * Also, check that the scales match on all cpus.
1334 	 */
1335 	cpu_notifier_register_begin();
1336 
1337 	for_each_online_cpu(cpu) {
1338 		struct cpuinfo_x86 *c = &cpu_data(cpu);
1339 
1340 		if (c->x86_cache_max_rmid < cqm_max_rmid)
1341 			cqm_max_rmid = c->x86_cache_max_rmid;
1342 
1343 		if (c->x86_cache_occ_scale != cqm_l3_scale) {
1344 			pr_err("Multiple LLC scale values, disabling\n");
1345 			ret = -EINVAL;
1346 			goto out;
1347 		}
1348 	}
1349 
1350 	/*
1351 	 * A reasonable upper limit on the max threshold is the number
1352 	 * of lines tagged per RMID if all RMIDs have the same number of
1353 	 * lines tagged in the LLC.
1354 	 *
1355 	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
1356 	 */
1357 	__intel_cqm_max_threshold =
1358 		boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);
1359 
1360 	snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
1361 	str = kstrdup(scale, GFP_KERNEL);
1362 	if (!str) {
1363 		ret = -ENOMEM;
1364 		goto out;
1365 	}
1366 
1367 	event_attr_intel_cqm_llc_scale.event_str = str;
1368 
1369 	ret = intel_cqm_setup_rmid_cache();
1370 	if (ret)
1371 		goto out;
1372 
1373 	for_each_online_cpu(i) {
1374 		intel_cqm_cpu_starting(i);
1375 		cqm_pick_event_reader(i);
1376 	}
1377 
1378 	__perf_cpu_notifier(intel_cqm_cpu_notifier);
1379 
1380 	ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1);
1381 	if (ret)
1382 		pr_err("Intel CQM perf registration failed: %d\n", ret);
1383 	else
1384 		pr_info("Intel CQM monitoring enabled\n");
1385 
1386 out:
1387 	cpu_notifier_register_done();
1388 
1389 	return ret;
1390 }
1391 device_initcall(intel_cqm_init);
1392