1 /*
2  * Handle caching attributes in page tables (PAT)
3  *
4  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5  *          Suresh B Siddha <suresh.b.siddha@intel.com>
6  *
7  * Interval tree (augmented rbtree) used to store the PAT memory type
8  * reservations.
9  */
10 
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/rbtree_augmented.h>
16 #include <linux/sched.h>
17 #include <linux/gfp.h>
18 
19 #include <asm/pgtable.h>
20 #include <asm/pat.h>
21 
22 #include "pat_internal.h"
23 
24 /*
25  * The memtype tree keeps track of memory type for specific
26  * physical memory areas. Without proper tracking, conflicting memory
27  * types in different mappings can cause CPU cache corruption.
28  *
29  * The tree is an interval tree (augmented rbtree) with tree ordered
30  * on starting address. Tree can contain multiple entries for
31  * different regions which overlap. All the aliases have the same
32  * cache attributes of course.
33  *
34  * memtype_lock protects the rbtree.
35  */
36 
37 static struct rb_root memtype_rbroot = RB_ROOT;
38 
is_node_overlap(struct memtype * node,u64 start,u64 end)39 static int is_node_overlap(struct memtype *node, u64 start, u64 end)
40 {
41 	if (node->start >= end || node->end <= start)
42 		return 0;
43 
44 	return 1;
45 }
46 
get_subtree_max_end(struct rb_node * node)47 static u64 get_subtree_max_end(struct rb_node *node)
48 {
49 	u64 ret = 0;
50 	if (node) {
51 		struct memtype *data = container_of(node, struct memtype, rb);
52 		ret = data->subtree_max_end;
53 	}
54 	return ret;
55 }
56 
compute_subtree_max_end(struct memtype * data)57 static u64 compute_subtree_max_end(struct memtype *data)
58 {
59 	u64 max_end = data->end, child_max_end;
60 
61 	child_max_end = get_subtree_max_end(data->rb.rb_right);
62 	if (child_max_end > max_end)
63 		max_end = child_max_end;
64 
65 	child_max_end = get_subtree_max_end(data->rb.rb_left);
66 	if (child_max_end > max_end)
67 		max_end = child_max_end;
68 
69 	return max_end;
70 }
71 
RB_DECLARE_CALLBACKS(static,memtype_rb_augment_cb,struct memtype,rb,u64,subtree_max_end,compute_subtree_max_end)72 RB_DECLARE_CALLBACKS(static, memtype_rb_augment_cb, struct memtype, rb,
73 		     u64, subtree_max_end, compute_subtree_max_end)
74 
75 /* Find the first (lowest start addr) overlapping range from rb tree */
76 static struct memtype *memtype_rb_lowest_match(struct rb_root *root,
77 				u64 start, u64 end)
78 {
79 	struct rb_node *node = root->rb_node;
80 	struct memtype *last_lower = NULL;
81 
82 	while (node) {
83 		struct memtype *data = container_of(node, struct memtype, rb);
84 
85 		if (get_subtree_max_end(node->rb_left) > start) {
86 			/* Lowest overlap if any must be on left side */
87 			node = node->rb_left;
88 		} else if (is_node_overlap(data, start, end)) {
89 			last_lower = data;
90 			break;
91 		} else if (start >= data->start) {
92 			/* Lowest overlap if any must be on right side */
93 			node = node->rb_right;
94 		} else {
95 			break;
96 		}
97 	}
98 	return last_lower; /* Returns NULL if there is no overlap */
99 }
100 
memtype_rb_exact_match(struct rb_root * root,u64 start,u64 end)101 static struct memtype *memtype_rb_exact_match(struct rb_root *root,
102 				u64 start, u64 end)
103 {
104 	struct memtype *match;
105 
106 	match = memtype_rb_lowest_match(root, start, end);
107 	while (match != NULL && match->start < end) {
108 		struct rb_node *node;
109 
110 		if (match->start == start && match->end == end)
111 			return match;
112 
113 		node = rb_next(&match->rb);
114 		if (node)
115 			match = container_of(node, struct memtype, rb);
116 		else
117 			match = NULL;
118 	}
119 
120 	return NULL; /* Returns NULL if there is no exact match */
121 }
122 
memtype_rb_check_conflict(struct rb_root * root,u64 start,u64 end,enum page_cache_mode reqtype,enum page_cache_mode * newtype)123 static int memtype_rb_check_conflict(struct rb_root *root,
124 				u64 start, u64 end,
125 				enum page_cache_mode reqtype,
126 				enum page_cache_mode *newtype)
127 {
128 	struct rb_node *node;
129 	struct memtype *match;
130 	enum page_cache_mode found_type = reqtype;
131 
132 	match = memtype_rb_lowest_match(&memtype_rbroot, start, end);
133 	if (match == NULL)
134 		goto success;
135 
136 	if (match->type != found_type && newtype == NULL)
137 		goto failure;
138 
139 	dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
140 	found_type = match->type;
141 
142 	node = rb_next(&match->rb);
143 	while (node) {
144 		match = container_of(node, struct memtype, rb);
145 
146 		if (match->start >= end) /* Checked all possible matches */
147 			goto success;
148 
149 		if (is_node_overlap(match, start, end) &&
150 		    match->type != found_type) {
151 			goto failure;
152 		}
153 
154 		node = rb_next(&match->rb);
155 	}
156 success:
157 	if (newtype)
158 		*newtype = found_type;
159 
160 	return 0;
161 
162 failure:
163 	pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n",
164 		current->comm, current->pid, start, end,
165 		cattr_name(found_type), cattr_name(match->type));
166 	return -EBUSY;
167 }
168 
memtype_rb_insert(struct rb_root * root,struct memtype * newdata)169 static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata)
170 {
171 	struct rb_node **node = &(root->rb_node);
172 	struct rb_node *parent = NULL;
173 
174 	while (*node) {
175 		struct memtype *data = container_of(*node, struct memtype, rb);
176 
177 		parent = *node;
178 		if (data->subtree_max_end < newdata->end)
179 			data->subtree_max_end = newdata->end;
180 		if (newdata->start <= data->start)
181 			node = &((*node)->rb_left);
182 		else if (newdata->start > data->start)
183 			node = &((*node)->rb_right);
184 	}
185 
186 	newdata->subtree_max_end = newdata->end;
187 	rb_link_node(&newdata->rb, parent, node);
188 	rb_insert_augmented(&newdata->rb, root, &memtype_rb_augment_cb);
189 }
190 
rbt_memtype_check_insert(struct memtype * new,enum page_cache_mode * ret_type)191 int rbt_memtype_check_insert(struct memtype *new,
192 			     enum page_cache_mode *ret_type)
193 {
194 	int err = 0;
195 
196 	err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end,
197 						new->type, ret_type);
198 
199 	if (!err) {
200 		if (ret_type)
201 			new->type = *ret_type;
202 
203 		new->subtree_max_end = new->end;
204 		memtype_rb_insert(&memtype_rbroot, new);
205 	}
206 	return err;
207 }
208 
rbt_memtype_erase(u64 start,u64 end)209 struct memtype *rbt_memtype_erase(u64 start, u64 end)
210 {
211 	struct memtype *data;
212 
213 	data = memtype_rb_exact_match(&memtype_rbroot, start, end);
214 	if (!data)
215 		goto out;
216 
217 	rb_erase_augmented(&data->rb, &memtype_rbroot, &memtype_rb_augment_cb);
218 out:
219 	return data;
220 }
221 
rbt_memtype_lookup(u64 addr)222 struct memtype *rbt_memtype_lookup(u64 addr)
223 {
224 	struct memtype *data;
225 	data = memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE);
226 	return data;
227 }
228 
229 #if defined(CONFIG_DEBUG_FS)
rbt_memtype_copy_nth_element(struct memtype * out,loff_t pos)230 int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos)
231 {
232 	struct rb_node *node;
233 	int i = 1;
234 
235 	node = rb_first(&memtype_rbroot);
236 	while (node && pos != i) {
237 		node = rb_next(node);
238 		i++;
239 	}
240 
241 	if (node) { /* pos == i */
242 		struct memtype *this = container_of(node, struct memtype, rb);
243 		*out = *this;
244 		return 0;
245 	} else {
246 		return 1;
247 	}
248 }
249 #endif
250