1 /*
2  * Specific bus support for PMC-TWI compliant implementation on MSP71xx.
3  *
4  * Copyright 2005-2007 PMC-Sierra, Inc.
5  *
6  *  This program is free software; you can redistribute  it and/or modify it
7  *  under  the terms of  the GNU General  Public License as published by the
8  *  Free Software Foundation;  either version 2 of the  License, or (at your
9  *  option) any later version.
10  *
11  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
12  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
13  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
14  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
15  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
16  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
17  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
18  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
19  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
20  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/completion.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/io.h>
32 
33 #define DRV_NAME	"pmcmsptwi"
34 
35 #define MSP_TWI_SF_CLK_REG_OFFSET	0x00
36 #define MSP_TWI_HS_CLK_REG_OFFSET	0x04
37 #define MSP_TWI_CFG_REG_OFFSET		0x08
38 #define MSP_TWI_CMD_REG_OFFSET		0x0c
39 #define MSP_TWI_ADD_REG_OFFSET		0x10
40 #define MSP_TWI_DAT_0_REG_OFFSET	0x14
41 #define MSP_TWI_DAT_1_REG_OFFSET	0x18
42 #define MSP_TWI_INT_STS_REG_OFFSET	0x1c
43 #define MSP_TWI_INT_MSK_REG_OFFSET	0x20
44 #define MSP_TWI_BUSY_REG_OFFSET		0x24
45 
46 #define MSP_TWI_INT_STS_DONE			(1 << 0)
47 #define MSP_TWI_INT_STS_LOST_ARBITRATION	(1 << 1)
48 #define MSP_TWI_INT_STS_NO_RESPONSE		(1 << 2)
49 #define MSP_TWI_INT_STS_DATA_COLLISION		(1 << 3)
50 #define MSP_TWI_INT_STS_BUSY			(1 << 4)
51 #define MSP_TWI_INT_STS_ALL			0x1f
52 
53 #define MSP_MAX_BYTES_PER_RW		8
54 #define MSP_MAX_POLL			5
55 #define MSP_POLL_DELAY			10
56 #define MSP_IRQ_TIMEOUT			(MSP_MAX_POLL * MSP_POLL_DELAY)
57 
58 /* IO Operation macros */
59 #define pmcmsptwi_readl		__raw_readl
60 #define pmcmsptwi_writel	__raw_writel
61 
62 /* TWI command type */
63 enum pmcmsptwi_cmd_type {
64 	MSP_TWI_CMD_WRITE	= 0,	/* Write only */
65 	MSP_TWI_CMD_READ	= 1,	/* Read only */
66 	MSP_TWI_CMD_WRITE_READ	= 2,	/* Write then Read */
67 };
68 
69 /* The possible results of the xferCmd */
70 enum pmcmsptwi_xfer_result {
71 	MSP_TWI_XFER_OK	= 0,
72 	MSP_TWI_XFER_TIMEOUT,
73 	MSP_TWI_XFER_BUSY,
74 	MSP_TWI_XFER_DATA_COLLISION,
75 	MSP_TWI_XFER_NO_RESPONSE,
76 	MSP_TWI_XFER_LOST_ARBITRATION,
77 };
78 
79 /* Corresponds to a PMCTWI clock configuration register */
80 struct pmcmsptwi_clock {
81 	u8 filter;	/* Bits 15:12,	default = 0x03 */
82 	u16 clock;	/* Bits 9:0,	default = 0x001f */
83 };
84 
85 struct pmcmsptwi_clockcfg {
86 	struct pmcmsptwi_clock standard;  /* The standard/fast clock config */
87 	struct pmcmsptwi_clock highspeed; /* The highspeed clock config */
88 };
89 
90 /* Corresponds to the main TWI configuration register */
91 struct pmcmsptwi_cfg {
92 	u8 arbf;	/* Bits 15:12,	default=0x03 */
93 	u8 nak;		/* Bits 11:8,	default=0x03 */
94 	u8 add10;	/* Bit 7,	default=0x00 */
95 	u8 mst_code;	/* Bits 6:4,	default=0x00 */
96 	u8 arb;		/* Bit 1,	default=0x01 */
97 	u8 highspeed;	/* Bit 0,	default=0x00 */
98 };
99 
100 /* A single pmctwi command to issue */
101 struct pmcmsptwi_cmd {
102 	u16 addr;	/* The slave address (7 or 10 bits) */
103 	enum pmcmsptwi_cmd_type type;	/* The command type */
104 	u8 write_len;	/* Number of bytes in the write buffer */
105 	u8 read_len;	/* Number of bytes in the read buffer */
106 	u8 *write_data;	/* Buffer of characters to send */
107 	u8 *read_data;	/* Buffer to fill with incoming data */
108 };
109 
110 /* The private data */
111 struct pmcmsptwi_data {
112 	void __iomem *iobase;			/* iomapped base for IO */
113 	int irq;				/* IRQ to use (0 disables) */
114 	struct completion wait;			/* Completion for xfer */
115 	struct mutex lock;			/* Used for threadsafeness */
116 	enum pmcmsptwi_xfer_result last_result;	/* result of last xfer */
117 };
118 
119 /* The default settings */
120 static const struct pmcmsptwi_clockcfg pmcmsptwi_defclockcfg = {
121 	.standard = {
122 		.filter	= 0x3,
123 		.clock	= 0x1f,
124 	},
125 	.highspeed = {
126 		.filter	= 0x3,
127 		.clock	= 0x1f,
128 	},
129 };
130 
131 static const struct pmcmsptwi_cfg pmcmsptwi_defcfg = {
132 	.arbf		= 0x03,
133 	.nak		= 0x03,
134 	.add10		= 0x00,
135 	.mst_code	= 0x00,
136 	.arb		= 0x01,
137 	.highspeed	= 0x00,
138 };
139 
140 static struct pmcmsptwi_data pmcmsptwi_data;
141 
142 static struct i2c_adapter pmcmsptwi_adapter;
143 
144 /* inline helper functions */
pmcmsptwi_clock_to_reg(const struct pmcmsptwi_clock * clock)145 static inline u32 pmcmsptwi_clock_to_reg(
146 			const struct pmcmsptwi_clock *clock)
147 {
148 	return ((clock->filter & 0xf) << 12) | (clock->clock & 0x03ff);
149 }
150 
pmcmsptwi_cfg_to_reg(const struct pmcmsptwi_cfg * cfg)151 static inline u32 pmcmsptwi_cfg_to_reg(const struct pmcmsptwi_cfg *cfg)
152 {
153 	return ((cfg->arbf & 0xf) << 12) |
154 		((cfg->nak & 0xf) << 8) |
155 		((cfg->add10 & 0x1) << 7) |
156 		((cfg->mst_code & 0x7) << 4) |
157 		((cfg->arb & 0x1) << 1) |
158 		(cfg->highspeed & 0x1);
159 }
160 
pmcmsptwi_reg_to_cfg(u32 reg,struct pmcmsptwi_cfg * cfg)161 static inline void pmcmsptwi_reg_to_cfg(u32 reg, struct pmcmsptwi_cfg *cfg)
162 {
163 	cfg->arbf = (reg >> 12) & 0xf;
164 	cfg->nak = (reg >> 8) & 0xf;
165 	cfg->add10 = (reg >> 7) & 0x1;
166 	cfg->mst_code = (reg >> 4) & 0x7;
167 	cfg->arb = (reg >> 1) & 0x1;
168 	cfg->highspeed = reg & 0x1;
169 }
170 
171 /*
172  * Sets the current clock configuration
173  */
pmcmsptwi_set_clock_config(const struct pmcmsptwi_clockcfg * cfg,struct pmcmsptwi_data * data)174 static void pmcmsptwi_set_clock_config(const struct pmcmsptwi_clockcfg *cfg,
175 					struct pmcmsptwi_data *data)
176 {
177 	mutex_lock(&data->lock);
178 	pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->standard),
179 				data->iobase + MSP_TWI_SF_CLK_REG_OFFSET);
180 	pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->highspeed),
181 				data->iobase + MSP_TWI_HS_CLK_REG_OFFSET);
182 	mutex_unlock(&data->lock);
183 }
184 
185 /*
186  * Gets the current TWI bus configuration
187  */
pmcmsptwi_get_twi_config(struct pmcmsptwi_cfg * cfg,struct pmcmsptwi_data * data)188 static void pmcmsptwi_get_twi_config(struct pmcmsptwi_cfg *cfg,
189 					struct pmcmsptwi_data *data)
190 {
191 	mutex_lock(&data->lock);
192 	pmcmsptwi_reg_to_cfg(pmcmsptwi_readl(
193 				data->iobase + MSP_TWI_CFG_REG_OFFSET), cfg);
194 	mutex_unlock(&data->lock);
195 }
196 
197 /*
198  * Sets the current TWI bus configuration
199  */
pmcmsptwi_set_twi_config(const struct pmcmsptwi_cfg * cfg,struct pmcmsptwi_data * data)200 static void pmcmsptwi_set_twi_config(const struct pmcmsptwi_cfg *cfg,
201 					struct pmcmsptwi_data *data)
202 {
203 	mutex_lock(&data->lock);
204 	pmcmsptwi_writel(pmcmsptwi_cfg_to_reg(cfg),
205 				data->iobase + MSP_TWI_CFG_REG_OFFSET);
206 	mutex_unlock(&data->lock);
207 }
208 
209 /*
210  * Parses the 'int_sts' register and returns a well-defined error code
211  */
pmcmsptwi_get_result(u32 reg)212 static enum pmcmsptwi_xfer_result pmcmsptwi_get_result(u32 reg)
213 {
214 	if (reg & MSP_TWI_INT_STS_LOST_ARBITRATION) {
215 		dev_dbg(&pmcmsptwi_adapter.dev,
216 			"Result: Lost arbitration\n");
217 		return MSP_TWI_XFER_LOST_ARBITRATION;
218 	} else if (reg & MSP_TWI_INT_STS_NO_RESPONSE) {
219 		dev_dbg(&pmcmsptwi_adapter.dev,
220 			"Result: No response\n");
221 		return MSP_TWI_XFER_NO_RESPONSE;
222 	} else if (reg & MSP_TWI_INT_STS_DATA_COLLISION) {
223 		dev_dbg(&pmcmsptwi_adapter.dev,
224 			"Result: Data collision\n");
225 		return MSP_TWI_XFER_DATA_COLLISION;
226 	} else if (reg & MSP_TWI_INT_STS_BUSY) {
227 		dev_dbg(&pmcmsptwi_adapter.dev,
228 			"Result: Bus busy\n");
229 		return MSP_TWI_XFER_BUSY;
230 	}
231 
232 	dev_dbg(&pmcmsptwi_adapter.dev, "Result: Operation succeeded\n");
233 	return MSP_TWI_XFER_OK;
234 }
235 
236 /*
237  * In interrupt mode, handle the interrupt.
238  * NOTE: Assumes data->lock is held.
239  */
pmcmsptwi_interrupt(int irq,void * ptr)240 static irqreturn_t pmcmsptwi_interrupt(int irq, void *ptr)
241 {
242 	struct pmcmsptwi_data *data = ptr;
243 
244 	u32 reason = pmcmsptwi_readl(data->iobase +
245 					MSP_TWI_INT_STS_REG_OFFSET);
246 	pmcmsptwi_writel(reason, data->iobase + MSP_TWI_INT_STS_REG_OFFSET);
247 
248 	dev_dbg(&pmcmsptwi_adapter.dev, "Got interrupt 0x%08x\n", reason);
249 	if (!(reason & MSP_TWI_INT_STS_DONE))
250 		return IRQ_NONE;
251 
252 	data->last_result = pmcmsptwi_get_result(reason);
253 	complete(&data->wait);
254 
255 	return IRQ_HANDLED;
256 }
257 
258 /*
259  * Probe for and register the device and return 0 if there is one.
260  */
pmcmsptwi_probe(struct platform_device * pldev)261 static int pmcmsptwi_probe(struct platform_device *pldev)
262 {
263 	struct resource *res;
264 	int rc = -ENODEV;
265 
266 	/* get the static platform resources */
267 	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
268 	if (!res) {
269 		dev_err(&pldev->dev, "IOMEM resource not found\n");
270 		goto ret_err;
271 	}
272 
273 	/* reserve the memory region */
274 	if (!request_mem_region(res->start, resource_size(res),
275 				pldev->name)) {
276 		dev_err(&pldev->dev,
277 			"Unable to get memory/io address region 0x%08x\n",
278 			res->start);
279 		rc = -EBUSY;
280 		goto ret_err;
281 	}
282 
283 	/* remap the memory */
284 	pmcmsptwi_data.iobase = ioremap_nocache(res->start,
285 						resource_size(res));
286 	if (!pmcmsptwi_data.iobase) {
287 		dev_err(&pldev->dev,
288 			"Unable to ioremap address 0x%08x\n", res->start);
289 		rc = -EIO;
290 		goto ret_unreserve;
291 	}
292 
293 	/* request the irq */
294 	pmcmsptwi_data.irq = platform_get_irq(pldev, 0);
295 	if (pmcmsptwi_data.irq) {
296 		rc = request_irq(pmcmsptwi_data.irq, &pmcmsptwi_interrupt,
297 				 IRQF_SHARED, pldev->name, &pmcmsptwi_data);
298 		if (rc == 0) {
299 			/*
300 			 * Enable 'DONE' interrupt only.
301 			 *
302 			 * If you enable all interrupts, you will get one on
303 			 * error and another when the operation completes.
304 			 * This way you only have to handle one interrupt,
305 			 * but you can still check all result flags.
306 			 */
307 			pmcmsptwi_writel(MSP_TWI_INT_STS_DONE,
308 					pmcmsptwi_data.iobase +
309 					MSP_TWI_INT_MSK_REG_OFFSET);
310 		} else {
311 			dev_warn(&pldev->dev,
312 				"Could not assign TWI IRQ handler "
313 				"to irq %d (continuing with poll)\n",
314 				pmcmsptwi_data.irq);
315 			pmcmsptwi_data.irq = 0;
316 		}
317 	}
318 
319 	init_completion(&pmcmsptwi_data.wait);
320 	mutex_init(&pmcmsptwi_data.lock);
321 
322 	pmcmsptwi_set_clock_config(&pmcmsptwi_defclockcfg, &pmcmsptwi_data);
323 	pmcmsptwi_set_twi_config(&pmcmsptwi_defcfg, &pmcmsptwi_data);
324 
325 	printk(KERN_INFO DRV_NAME ": Registering MSP71xx I2C adapter\n");
326 
327 	pmcmsptwi_adapter.dev.parent = &pldev->dev;
328 	platform_set_drvdata(pldev, &pmcmsptwi_adapter);
329 	i2c_set_adapdata(&pmcmsptwi_adapter, &pmcmsptwi_data);
330 
331 	rc = i2c_add_adapter(&pmcmsptwi_adapter);
332 	if (rc) {
333 		dev_err(&pldev->dev, "Unable to register I2C adapter\n");
334 		goto ret_unmap;
335 	}
336 
337 	return 0;
338 
339 ret_unmap:
340 	if (pmcmsptwi_data.irq) {
341 		pmcmsptwi_writel(0,
342 			pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
343 		free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
344 	}
345 
346 	iounmap(pmcmsptwi_data.iobase);
347 
348 ret_unreserve:
349 	release_mem_region(res->start, resource_size(res));
350 
351 ret_err:
352 	return rc;
353 }
354 
355 /*
356  * Release the device and return 0 if there is one.
357  */
pmcmsptwi_remove(struct platform_device * pldev)358 static int pmcmsptwi_remove(struct platform_device *pldev)
359 {
360 	struct resource *res;
361 
362 	i2c_del_adapter(&pmcmsptwi_adapter);
363 
364 	if (pmcmsptwi_data.irq) {
365 		pmcmsptwi_writel(0,
366 			pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
367 		free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
368 	}
369 
370 	iounmap(pmcmsptwi_data.iobase);
371 
372 	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
373 	release_mem_region(res->start, resource_size(res));
374 
375 	return 0;
376 }
377 
378 /*
379  * Polls the 'busy' register until the command is complete.
380  * NOTE: Assumes data->lock is held.
381  */
pmcmsptwi_poll_complete(struct pmcmsptwi_data * data)382 static void pmcmsptwi_poll_complete(struct pmcmsptwi_data *data)
383 {
384 	int i;
385 
386 	for (i = 0; i < MSP_MAX_POLL; i++) {
387 		u32 val = pmcmsptwi_readl(data->iobase +
388 						MSP_TWI_BUSY_REG_OFFSET);
389 		if (val == 0) {
390 			u32 reason = pmcmsptwi_readl(data->iobase +
391 						MSP_TWI_INT_STS_REG_OFFSET);
392 			pmcmsptwi_writel(reason, data->iobase +
393 						MSP_TWI_INT_STS_REG_OFFSET);
394 			data->last_result = pmcmsptwi_get_result(reason);
395 			return;
396 		}
397 		udelay(MSP_POLL_DELAY);
398 	}
399 
400 	dev_dbg(&pmcmsptwi_adapter.dev, "Result: Poll timeout\n");
401 	data->last_result = MSP_TWI_XFER_TIMEOUT;
402 }
403 
404 /*
405  * Do the transfer (low level):
406  *   May use interrupt-driven or polling, depending on if an IRQ is
407  *   presently registered.
408  * NOTE: Assumes data->lock is held.
409  */
pmcmsptwi_do_xfer(u32 reg,struct pmcmsptwi_data * data)410 static enum pmcmsptwi_xfer_result pmcmsptwi_do_xfer(
411 			u32 reg, struct pmcmsptwi_data *data)
412 {
413 	dev_dbg(&pmcmsptwi_adapter.dev, "Writing cmd reg 0x%08x\n", reg);
414 	pmcmsptwi_writel(reg, data->iobase + MSP_TWI_CMD_REG_OFFSET);
415 	if (data->irq) {
416 		unsigned long timeleft = wait_for_completion_timeout(
417 						&data->wait, MSP_IRQ_TIMEOUT);
418 		if (timeleft == 0) {
419 			dev_dbg(&pmcmsptwi_adapter.dev,
420 				"Result: IRQ timeout\n");
421 			complete(&data->wait);
422 			data->last_result = MSP_TWI_XFER_TIMEOUT;
423 		}
424 	} else
425 		pmcmsptwi_poll_complete(data);
426 
427 	return data->last_result;
428 }
429 
430 /*
431  * Helper routine, converts 'pmctwi_cmd' struct to register format
432  */
pmcmsptwi_cmd_to_reg(const struct pmcmsptwi_cmd * cmd)433 static inline u32 pmcmsptwi_cmd_to_reg(const struct pmcmsptwi_cmd *cmd)
434 {
435 	return ((cmd->type & 0x3) << 8) |
436 		(((cmd->write_len - 1) & 0x7) << 4) |
437 		((cmd->read_len - 1) & 0x7);
438 }
439 
440 /*
441  * Do the transfer (high level)
442  */
pmcmsptwi_xfer_cmd(struct pmcmsptwi_cmd * cmd,struct pmcmsptwi_data * data)443 static enum pmcmsptwi_xfer_result pmcmsptwi_xfer_cmd(
444 			struct pmcmsptwi_cmd *cmd,
445 			struct pmcmsptwi_data *data)
446 {
447 	enum pmcmsptwi_xfer_result retval;
448 
449 	if ((cmd->type == MSP_TWI_CMD_WRITE && cmd->write_len == 0) ||
450 	    (cmd->type == MSP_TWI_CMD_READ && cmd->read_len == 0) ||
451 	    (cmd->type == MSP_TWI_CMD_WRITE_READ &&
452 	    (cmd->read_len == 0 || cmd->write_len == 0))) {
453 		dev_err(&pmcmsptwi_adapter.dev,
454 			"%s: Cannot transfer less than 1 byte\n",
455 			__func__);
456 		return -EINVAL;
457 	}
458 
459 	mutex_lock(&data->lock);
460 	dev_dbg(&pmcmsptwi_adapter.dev,
461 		"Setting address to 0x%04x\n", cmd->addr);
462 	pmcmsptwi_writel(cmd->addr, data->iobase + MSP_TWI_ADD_REG_OFFSET);
463 
464 	if (cmd->type == MSP_TWI_CMD_WRITE ||
465 	    cmd->type == MSP_TWI_CMD_WRITE_READ) {
466 		u64 tmp = be64_to_cpup((__be64 *)cmd->write_data);
467 		tmp >>= (MSP_MAX_BYTES_PER_RW - cmd->write_len) * 8;
468 		dev_dbg(&pmcmsptwi_adapter.dev, "Writing 0x%016llx\n", tmp);
469 		pmcmsptwi_writel(tmp & 0x00000000ffffffffLL,
470 				data->iobase + MSP_TWI_DAT_0_REG_OFFSET);
471 		if (cmd->write_len > 4)
472 			pmcmsptwi_writel(tmp >> 32,
473 				data->iobase + MSP_TWI_DAT_1_REG_OFFSET);
474 	}
475 
476 	retval = pmcmsptwi_do_xfer(pmcmsptwi_cmd_to_reg(cmd), data);
477 	if (retval != MSP_TWI_XFER_OK)
478 		goto xfer_err;
479 
480 	if (cmd->type == MSP_TWI_CMD_READ ||
481 	    cmd->type == MSP_TWI_CMD_WRITE_READ) {
482 		int i;
483 		u64 rmsk = ~(0xffffffffffffffffLL << (cmd->read_len * 8));
484 		u64 tmp = (u64)pmcmsptwi_readl(data->iobase +
485 					MSP_TWI_DAT_0_REG_OFFSET);
486 		if (cmd->read_len > 4)
487 			tmp |= (u64)pmcmsptwi_readl(data->iobase +
488 					MSP_TWI_DAT_1_REG_OFFSET) << 32;
489 		tmp &= rmsk;
490 		dev_dbg(&pmcmsptwi_adapter.dev, "Read 0x%016llx\n", tmp);
491 
492 		for (i = 0; i < cmd->read_len; i++)
493 			cmd->read_data[i] = tmp >> i;
494 	}
495 
496 xfer_err:
497 	mutex_unlock(&data->lock);
498 
499 	return retval;
500 }
501 
502 /* -- Algorithm functions -- */
503 
504 /*
505  * Sends an i2c command out on the adapter
506  */
pmcmsptwi_master_xfer(struct i2c_adapter * adap,struct i2c_msg * msg,int num)507 static int pmcmsptwi_master_xfer(struct i2c_adapter *adap,
508 				struct i2c_msg *msg, int num)
509 {
510 	struct pmcmsptwi_data *data = i2c_get_adapdata(adap);
511 	struct pmcmsptwi_cmd cmd;
512 	struct pmcmsptwi_cfg oldcfg, newcfg;
513 	int ret;
514 
515 	if (num == 2) {
516 		struct i2c_msg *nextmsg = msg + 1;
517 
518 		cmd.type = MSP_TWI_CMD_WRITE_READ;
519 		cmd.write_len = msg->len;
520 		cmd.write_data = msg->buf;
521 		cmd.read_len = nextmsg->len;
522 		cmd.read_data = nextmsg->buf;
523 	} else if (msg->flags & I2C_M_RD) {
524 		cmd.type = MSP_TWI_CMD_READ;
525 		cmd.read_len = msg->len;
526 		cmd.read_data = msg->buf;
527 		cmd.write_len = 0;
528 		cmd.write_data = NULL;
529 	} else {
530 		cmd.type = MSP_TWI_CMD_WRITE;
531 		cmd.read_len = 0;
532 		cmd.read_data = NULL;
533 		cmd.write_len = msg->len;
534 		cmd.write_data = msg->buf;
535 	}
536 
537 	if (msg->len == 0) {
538 		dev_err(&adap->dev, "Zero-byte messages unsupported\n");
539 		return -EINVAL;
540 	}
541 
542 	cmd.addr = msg->addr;
543 
544 	if (msg->flags & I2C_M_TEN) {
545 		pmcmsptwi_get_twi_config(&newcfg, data);
546 		memcpy(&oldcfg, &newcfg, sizeof(oldcfg));
547 
548 		/* Set the special 10-bit address flag */
549 		newcfg.add10 = 1;
550 
551 		pmcmsptwi_set_twi_config(&newcfg, data);
552 	}
553 
554 	/* Execute the command */
555 	ret = pmcmsptwi_xfer_cmd(&cmd, data);
556 
557 	if (msg->flags & I2C_M_TEN)
558 		pmcmsptwi_set_twi_config(&oldcfg, data);
559 
560 	dev_dbg(&adap->dev, "I2C %s of %d bytes %s\n",
561 		(msg->flags & I2C_M_RD) ? "read" : "write", msg->len,
562 		(ret == MSP_TWI_XFER_OK) ? "succeeded" : "failed");
563 
564 	if (ret != MSP_TWI_XFER_OK) {
565 		/*
566 		 * TODO: We could potentially loop and retry in the case
567 		 * of MSP_TWI_XFER_TIMEOUT.
568 		 */
569 		return -1;
570 	}
571 
572 	return 0;
573 }
574 
pmcmsptwi_i2c_func(struct i2c_adapter * adapter)575 static u32 pmcmsptwi_i2c_func(struct i2c_adapter *adapter)
576 {
577 	return I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR |
578 		I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA |
579 		I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_PROC_CALL;
580 }
581 
582 static struct i2c_adapter_quirks pmcmsptwi_i2c_quirks = {
583 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
584 	.max_write_len = MSP_MAX_BYTES_PER_RW,
585 	.max_read_len = MSP_MAX_BYTES_PER_RW,
586 	.max_comb_1st_msg_len = MSP_MAX_BYTES_PER_RW,
587 	.max_comb_2nd_msg_len = MSP_MAX_BYTES_PER_RW,
588 };
589 
590 /* -- Initialization -- */
591 
592 static struct i2c_algorithm pmcmsptwi_algo = {
593 	.master_xfer	= pmcmsptwi_master_xfer,
594 	.functionality	= pmcmsptwi_i2c_func,
595 };
596 
597 static struct i2c_adapter pmcmsptwi_adapter = {
598 	.owner		= THIS_MODULE,
599 	.class		= I2C_CLASS_HWMON | I2C_CLASS_SPD,
600 	.algo		= &pmcmsptwi_algo,
601 	.quirks		= &pmcmsptwi_i2c_quirks,
602 	.name		= DRV_NAME,
603 };
604 
605 static struct platform_driver pmcmsptwi_driver = {
606 	.probe  = pmcmsptwi_probe,
607 	.remove	= pmcmsptwi_remove,
608 	.driver = {
609 		.name	= DRV_NAME,
610 	},
611 };
612 
613 module_platform_driver(pmcmsptwi_driver);
614 
615 MODULE_DESCRIPTION("PMC MSP TWI/SMBus/I2C driver");
616 MODULE_LICENSE("GPL");
617 MODULE_ALIAS("platform:" DRV_NAME);
618