1 /*
2  * SuperH FLCTL nand controller
3  *
4  * Copyright (c) 2008 Renesas Solutions Corp.
5  * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
6  *
7  * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; version 2 of the License.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/completion.h>
27 #include <linux/delay.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_mtd.h>
35 #include <linux/platform_device.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/sh_dma.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40 
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/mtd/sh_flctl.h>
45 
46 static struct nand_ecclayout flctl_4secc_oob_16 = {
47 	.eccbytes = 10,
48 	.eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
49 	.oobfree = {
50 		{.offset = 12,
51 		. length = 4} },
52 };
53 
54 static struct nand_ecclayout flctl_4secc_oob_64 = {
55 	.eccbytes = 4 * 10,
56 	.eccpos = {
57 		 6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
58 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
59 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
60 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
61 	.oobfree = {
62 		{.offset =  2, .length = 4},
63 		{.offset = 16, .length = 6},
64 		{.offset = 32, .length = 6},
65 		{.offset = 48, .length = 6} },
66 };
67 
68 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
69 
70 static struct nand_bbt_descr flctl_4secc_smallpage = {
71 	.options = NAND_BBT_SCAN2NDPAGE,
72 	.offs = 11,
73 	.len = 1,
74 	.pattern = scan_ff_pattern,
75 };
76 
77 static struct nand_bbt_descr flctl_4secc_largepage = {
78 	.options = NAND_BBT_SCAN2NDPAGE,
79 	.offs = 0,
80 	.len = 2,
81 	.pattern = scan_ff_pattern,
82 };
83 
empty_fifo(struct sh_flctl * flctl)84 static void empty_fifo(struct sh_flctl *flctl)
85 {
86 	writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
87 	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
88 }
89 
start_translation(struct sh_flctl * flctl)90 static void start_translation(struct sh_flctl *flctl)
91 {
92 	writeb(TRSTRT, FLTRCR(flctl));
93 }
94 
timeout_error(struct sh_flctl * flctl,const char * str)95 static void timeout_error(struct sh_flctl *flctl, const char *str)
96 {
97 	dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
98 }
99 
wait_completion(struct sh_flctl * flctl)100 static void wait_completion(struct sh_flctl *flctl)
101 {
102 	uint32_t timeout = LOOP_TIMEOUT_MAX;
103 
104 	while (timeout--) {
105 		if (readb(FLTRCR(flctl)) & TREND) {
106 			writeb(0x0, FLTRCR(flctl));
107 			return;
108 		}
109 		udelay(1);
110 	}
111 
112 	timeout_error(flctl, __func__);
113 	writeb(0x0, FLTRCR(flctl));
114 }
115 
flctl_dma_complete(void * param)116 static void flctl_dma_complete(void *param)
117 {
118 	struct sh_flctl *flctl = param;
119 
120 	complete(&flctl->dma_complete);
121 }
122 
flctl_release_dma(struct sh_flctl * flctl)123 static void flctl_release_dma(struct sh_flctl *flctl)
124 {
125 	if (flctl->chan_fifo0_rx) {
126 		dma_release_channel(flctl->chan_fifo0_rx);
127 		flctl->chan_fifo0_rx = NULL;
128 	}
129 	if (flctl->chan_fifo0_tx) {
130 		dma_release_channel(flctl->chan_fifo0_tx);
131 		flctl->chan_fifo0_tx = NULL;
132 	}
133 }
134 
flctl_setup_dma(struct sh_flctl * flctl)135 static void flctl_setup_dma(struct sh_flctl *flctl)
136 {
137 	dma_cap_mask_t mask;
138 	struct dma_slave_config cfg;
139 	struct platform_device *pdev = flctl->pdev;
140 	struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
141 	int ret;
142 
143 	if (!pdata)
144 		return;
145 
146 	if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
147 		return;
148 
149 	/* We can only either use DMA for both Tx and Rx or not use it at all */
150 	dma_cap_zero(mask);
151 	dma_cap_set(DMA_SLAVE, mask);
152 
153 	flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
154 				(void *)(uintptr_t)pdata->slave_id_fifo0_tx);
155 	dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
156 		flctl->chan_fifo0_tx);
157 
158 	if (!flctl->chan_fifo0_tx)
159 		return;
160 
161 	memset(&cfg, 0, sizeof(cfg));
162 	cfg.direction = DMA_MEM_TO_DEV;
163 	cfg.dst_addr = (dma_addr_t)FLDTFIFO(flctl);
164 	cfg.src_addr = 0;
165 	ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
166 	if (ret < 0)
167 		goto err;
168 
169 	flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
170 				(void *)(uintptr_t)pdata->slave_id_fifo0_rx);
171 	dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
172 		flctl->chan_fifo0_rx);
173 
174 	if (!flctl->chan_fifo0_rx)
175 		goto err;
176 
177 	cfg.direction = DMA_DEV_TO_MEM;
178 	cfg.dst_addr = 0;
179 	cfg.src_addr = (dma_addr_t)FLDTFIFO(flctl);
180 	ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
181 	if (ret < 0)
182 		goto err;
183 
184 	init_completion(&flctl->dma_complete);
185 
186 	return;
187 
188 err:
189 	flctl_release_dma(flctl);
190 }
191 
set_addr(struct mtd_info * mtd,int column,int page_addr)192 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
193 {
194 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
195 	uint32_t addr = 0;
196 
197 	if (column == -1) {
198 		addr = page_addr;	/* ERASE1 */
199 	} else if (page_addr != -1) {
200 		/* SEQIN, READ0, etc.. */
201 		if (flctl->chip.options & NAND_BUSWIDTH_16)
202 			column >>= 1;
203 		if (flctl->page_size) {
204 			addr = column & 0x0FFF;
205 			addr |= (page_addr & 0xff) << 16;
206 			addr |= ((page_addr >> 8) & 0xff) << 24;
207 			/* big than 128MB */
208 			if (flctl->rw_ADRCNT == ADRCNT2_E) {
209 				uint32_t 	addr2;
210 				addr2 = (page_addr >> 16) & 0xff;
211 				writel(addr2, FLADR2(flctl));
212 			}
213 		} else {
214 			addr = column;
215 			addr |= (page_addr & 0xff) << 8;
216 			addr |= ((page_addr >> 8) & 0xff) << 16;
217 			addr |= ((page_addr >> 16) & 0xff) << 24;
218 		}
219 	}
220 	writel(addr, FLADR(flctl));
221 }
222 
wait_rfifo_ready(struct sh_flctl * flctl)223 static void wait_rfifo_ready(struct sh_flctl *flctl)
224 {
225 	uint32_t timeout = LOOP_TIMEOUT_MAX;
226 
227 	while (timeout--) {
228 		uint32_t val;
229 		/* check FIFO */
230 		val = readl(FLDTCNTR(flctl)) >> 16;
231 		if (val & 0xFF)
232 			return;
233 		udelay(1);
234 	}
235 	timeout_error(flctl, __func__);
236 }
237 
wait_wfifo_ready(struct sh_flctl * flctl)238 static void wait_wfifo_ready(struct sh_flctl *flctl)
239 {
240 	uint32_t len, timeout = LOOP_TIMEOUT_MAX;
241 
242 	while (timeout--) {
243 		/* check FIFO */
244 		len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
245 		if (len >= 4)
246 			return;
247 		udelay(1);
248 	}
249 	timeout_error(flctl, __func__);
250 }
251 
wait_recfifo_ready(struct sh_flctl * flctl,int sector_number)252 static enum flctl_ecc_res_t wait_recfifo_ready
253 		(struct sh_flctl *flctl, int sector_number)
254 {
255 	uint32_t timeout = LOOP_TIMEOUT_MAX;
256 	void __iomem *ecc_reg[4];
257 	int i;
258 	int state = FL_SUCCESS;
259 	uint32_t data, size;
260 
261 	/*
262 	 * First this loops checks in FLDTCNTR if we are ready to read out the
263 	 * oob data. This is the case if either all went fine without errors or
264 	 * if the bottom part of the loop corrected the errors or marked them as
265 	 * uncorrectable and the controller is given time to push the data into
266 	 * the FIFO.
267 	 */
268 	while (timeout--) {
269 		/* check if all is ok and we can read out the OOB */
270 		size = readl(FLDTCNTR(flctl)) >> 24;
271 		if ((size & 0xFF) == 4)
272 			return state;
273 
274 		/* check if a correction code has been calculated */
275 		if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
276 			/*
277 			 * either we wait for the fifo to be filled or a
278 			 * correction pattern is being generated
279 			 */
280 			udelay(1);
281 			continue;
282 		}
283 
284 		/* check for an uncorrectable error */
285 		if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
286 			/* check if we face a non-empty page */
287 			for (i = 0; i < 512; i++) {
288 				if (flctl->done_buff[i] != 0xff) {
289 					state = FL_ERROR; /* can't correct */
290 					break;
291 				}
292 			}
293 
294 			if (state == FL_SUCCESS)
295 				dev_dbg(&flctl->pdev->dev,
296 				"reading empty sector %d, ecc error ignored\n",
297 				sector_number);
298 
299 			writel(0, FL4ECCCR(flctl));
300 			continue;
301 		}
302 
303 		/* start error correction */
304 		ecc_reg[0] = FL4ECCRESULT0(flctl);
305 		ecc_reg[1] = FL4ECCRESULT1(flctl);
306 		ecc_reg[2] = FL4ECCRESULT2(flctl);
307 		ecc_reg[3] = FL4ECCRESULT3(flctl);
308 
309 		for (i = 0; i < 3; i++) {
310 			uint8_t org;
311 			unsigned int index;
312 
313 			data = readl(ecc_reg[i]);
314 
315 			if (flctl->page_size)
316 				index = (512 * sector_number) +
317 					(data >> 16);
318 			else
319 				index = data >> 16;
320 
321 			org = flctl->done_buff[index];
322 			flctl->done_buff[index] = org ^ (data & 0xFF);
323 		}
324 		state = FL_REPAIRABLE;
325 		writel(0, FL4ECCCR(flctl));
326 	}
327 
328 	timeout_error(flctl, __func__);
329 	return FL_TIMEOUT;	/* timeout */
330 }
331 
wait_wecfifo_ready(struct sh_flctl * flctl)332 static void wait_wecfifo_ready(struct sh_flctl *flctl)
333 {
334 	uint32_t timeout = LOOP_TIMEOUT_MAX;
335 	uint32_t len;
336 
337 	while (timeout--) {
338 		/* check FLECFIFO */
339 		len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
340 		if (len >= 4)
341 			return;
342 		udelay(1);
343 	}
344 	timeout_error(flctl, __func__);
345 }
346 
flctl_dma_fifo0_transfer(struct sh_flctl * flctl,unsigned long * buf,int len,enum dma_data_direction dir)347 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
348 					int len, enum dma_data_direction dir)
349 {
350 	struct dma_async_tx_descriptor *desc = NULL;
351 	struct dma_chan *chan;
352 	enum dma_transfer_direction tr_dir;
353 	dma_addr_t dma_addr;
354 	dma_cookie_t cookie = -EINVAL;
355 	uint32_t reg;
356 	int ret;
357 
358 	if (dir == DMA_FROM_DEVICE) {
359 		chan = flctl->chan_fifo0_rx;
360 		tr_dir = DMA_DEV_TO_MEM;
361 	} else {
362 		chan = flctl->chan_fifo0_tx;
363 		tr_dir = DMA_MEM_TO_DEV;
364 	}
365 
366 	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
367 
368 	if (dma_addr)
369 		desc = dmaengine_prep_slave_single(chan, dma_addr, len,
370 			tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
371 
372 	if (desc) {
373 		reg = readl(FLINTDMACR(flctl));
374 		reg |= DREQ0EN;
375 		writel(reg, FLINTDMACR(flctl));
376 
377 		desc->callback = flctl_dma_complete;
378 		desc->callback_param = flctl;
379 		cookie = dmaengine_submit(desc);
380 
381 		dma_async_issue_pending(chan);
382 	} else {
383 		/* DMA failed, fall back to PIO */
384 		flctl_release_dma(flctl);
385 		dev_warn(&flctl->pdev->dev,
386 			 "DMA failed, falling back to PIO\n");
387 		ret = -EIO;
388 		goto out;
389 	}
390 
391 	ret =
392 	wait_for_completion_timeout(&flctl->dma_complete,
393 				msecs_to_jiffies(3000));
394 
395 	if (ret <= 0) {
396 		dmaengine_terminate_all(chan);
397 		dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
398 	}
399 
400 out:
401 	reg = readl(FLINTDMACR(flctl));
402 	reg &= ~DREQ0EN;
403 	writel(reg, FLINTDMACR(flctl));
404 
405 	dma_unmap_single(chan->device->dev, dma_addr, len, dir);
406 
407 	/* ret > 0 is success */
408 	return ret;
409 }
410 
read_datareg(struct sh_flctl * flctl,int offset)411 static void read_datareg(struct sh_flctl *flctl, int offset)
412 {
413 	unsigned long data;
414 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
415 
416 	wait_completion(flctl);
417 
418 	data = readl(FLDATAR(flctl));
419 	*buf = le32_to_cpu(data);
420 }
421 
read_fiforeg(struct sh_flctl * flctl,int rlen,int offset)422 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
423 {
424 	int i, len_4align;
425 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
426 
427 	len_4align = (rlen + 3) / 4;
428 
429 	/* initiate DMA transfer */
430 	if (flctl->chan_fifo0_rx && rlen >= 32 &&
431 		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0)
432 			goto convert;	/* DMA success */
433 
434 	/* do polling transfer */
435 	for (i = 0; i < len_4align; i++) {
436 		wait_rfifo_ready(flctl);
437 		buf[i] = readl(FLDTFIFO(flctl));
438 	}
439 
440 convert:
441 	for (i = 0; i < len_4align; i++)
442 		buf[i] = be32_to_cpu(buf[i]);
443 }
444 
read_ecfiforeg(struct sh_flctl * flctl,uint8_t * buff,int sector)445 static enum flctl_ecc_res_t read_ecfiforeg
446 		(struct sh_flctl *flctl, uint8_t *buff, int sector)
447 {
448 	int i;
449 	enum flctl_ecc_res_t res;
450 	unsigned long *ecc_buf = (unsigned long *)buff;
451 
452 	res = wait_recfifo_ready(flctl , sector);
453 
454 	if (res != FL_ERROR) {
455 		for (i = 0; i < 4; i++) {
456 			ecc_buf[i] = readl(FLECFIFO(flctl));
457 			ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
458 		}
459 	}
460 
461 	return res;
462 }
463 
write_fiforeg(struct sh_flctl * flctl,int rlen,unsigned int offset)464 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
465 						unsigned int offset)
466 {
467 	int i, len_4align;
468 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
469 
470 	len_4align = (rlen + 3) / 4;
471 	for (i = 0; i < len_4align; i++) {
472 		wait_wfifo_ready(flctl);
473 		writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
474 	}
475 }
476 
write_ec_fiforeg(struct sh_flctl * flctl,int rlen,unsigned int offset)477 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
478 						unsigned int offset)
479 {
480 	int i, len_4align;
481 	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
482 
483 	len_4align = (rlen + 3) / 4;
484 
485 	for (i = 0; i < len_4align; i++)
486 		buf[i] = cpu_to_be32(buf[i]);
487 
488 	/* initiate DMA transfer */
489 	if (flctl->chan_fifo0_tx && rlen >= 32 &&
490 		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0)
491 			return;	/* DMA success */
492 
493 	/* do polling transfer */
494 	for (i = 0; i < len_4align; i++) {
495 		wait_wecfifo_ready(flctl);
496 		writel(buf[i], FLECFIFO(flctl));
497 	}
498 }
499 
set_cmd_regs(struct mtd_info * mtd,uint32_t cmd,uint32_t flcmcdr_val)500 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
501 {
502 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
503 	uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
504 	uint32_t flcmdcr_val, addr_len_bytes = 0;
505 
506 	/* Set SNAND bit if page size is 2048byte */
507 	if (flctl->page_size)
508 		flcmncr_val |= SNAND_E;
509 	else
510 		flcmncr_val &= ~SNAND_E;
511 
512 	/* default FLCMDCR val */
513 	flcmdcr_val = DOCMD1_E | DOADR_E;
514 
515 	/* Set for FLCMDCR */
516 	switch (cmd) {
517 	case NAND_CMD_ERASE1:
518 		addr_len_bytes = flctl->erase_ADRCNT;
519 		flcmdcr_val |= DOCMD2_E;
520 		break;
521 	case NAND_CMD_READ0:
522 	case NAND_CMD_READOOB:
523 	case NAND_CMD_RNDOUT:
524 		addr_len_bytes = flctl->rw_ADRCNT;
525 		flcmdcr_val |= CDSRC_E;
526 		if (flctl->chip.options & NAND_BUSWIDTH_16)
527 			flcmncr_val |= SEL_16BIT;
528 		break;
529 	case NAND_CMD_SEQIN:
530 		/* This case is that cmd is READ0 or READ1 or READ00 */
531 		flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */
532 		break;
533 	case NAND_CMD_PAGEPROG:
534 		addr_len_bytes = flctl->rw_ADRCNT;
535 		flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
536 		if (flctl->chip.options & NAND_BUSWIDTH_16)
537 			flcmncr_val |= SEL_16BIT;
538 		break;
539 	case NAND_CMD_READID:
540 		flcmncr_val &= ~SNAND_E;
541 		flcmdcr_val |= CDSRC_E;
542 		addr_len_bytes = ADRCNT_1;
543 		break;
544 	case NAND_CMD_STATUS:
545 	case NAND_CMD_RESET:
546 		flcmncr_val &= ~SNAND_E;
547 		flcmdcr_val &= ~(DOADR_E | DOSR_E);
548 		break;
549 	default:
550 		break;
551 	}
552 
553 	/* Set address bytes parameter */
554 	flcmdcr_val |= addr_len_bytes;
555 
556 	/* Now actually write */
557 	writel(flcmncr_val, FLCMNCR(flctl));
558 	writel(flcmdcr_val, FLCMDCR(flctl));
559 	writel(flcmcdr_val, FLCMCDR(flctl));
560 }
561 
flctl_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)562 static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
563 				uint8_t *buf, int oob_required, int page)
564 {
565 	chip->read_buf(mtd, buf, mtd->writesize);
566 	if (oob_required)
567 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
568 	return 0;
569 }
570 
flctl_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)571 static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
572 				  const uint8_t *buf, int oob_required,
573 				  int page)
574 {
575 	chip->write_buf(mtd, buf, mtd->writesize);
576 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
577 	return 0;
578 }
579 
execmd_read_page_sector(struct mtd_info * mtd,int page_addr)580 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
581 {
582 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
583 	int sector, page_sectors;
584 	enum flctl_ecc_res_t ecc_result;
585 
586 	page_sectors = flctl->page_size ? 4 : 1;
587 
588 	set_cmd_regs(mtd, NAND_CMD_READ0,
589 		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
590 
591 	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
592 		 FLCMNCR(flctl));
593 	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
594 	writel(page_addr << 2, FLADR(flctl));
595 
596 	empty_fifo(flctl);
597 	start_translation(flctl);
598 
599 	for (sector = 0; sector < page_sectors; sector++) {
600 		read_fiforeg(flctl, 512, 512 * sector);
601 
602 		ecc_result = read_ecfiforeg(flctl,
603 			&flctl->done_buff[mtd->writesize + 16 * sector],
604 			sector);
605 
606 		switch (ecc_result) {
607 		case FL_REPAIRABLE:
608 			dev_info(&flctl->pdev->dev,
609 				"applied ecc on page 0x%x", page_addr);
610 			flctl->mtd.ecc_stats.corrected++;
611 			break;
612 		case FL_ERROR:
613 			dev_warn(&flctl->pdev->dev,
614 				"page 0x%x contains corrupted data\n",
615 				page_addr);
616 			flctl->mtd.ecc_stats.failed++;
617 			break;
618 		default:
619 			;
620 		}
621 	}
622 
623 	wait_completion(flctl);
624 
625 	writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
626 			FLCMNCR(flctl));
627 }
628 
execmd_read_oob(struct mtd_info * mtd,int page_addr)629 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
630 {
631 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
632 	int page_sectors = flctl->page_size ? 4 : 1;
633 	int i;
634 
635 	set_cmd_regs(mtd, NAND_CMD_READ0,
636 		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
637 
638 	empty_fifo(flctl);
639 
640 	for (i = 0; i < page_sectors; i++) {
641 		set_addr(mtd, (512 + 16) * i + 512 , page_addr);
642 		writel(16, FLDTCNTR(flctl));
643 
644 		start_translation(flctl);
645 		read_fiforeg(flctl, 16, 16 * i);
646 		wait_completion(flctl);
647 	}
648 }
649 
execmd_write_page_sector(struct mtd_info * mtd)650 static void execmd_write_page_sector(struct mtd_info *mtd)
651 {
652 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
653 	int page_addr = flctl->seqin_page_addr;
654 	int sector, page_sectors;
655 
656 	page_sectors = flctl->page_size ? 4 : 1;
657 
658 	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
659 			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
660 
661 	empty_fifo(flctl);
662 	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
663 	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
664 	writel(page_addr << 2, FLADR(flctl));
665 	start_translation(flctl);
666 
667 	for (sector = 0; sector < page_sectors; sector++) {
668 		write_fiforeg(flctl, 512, 512 * sector);
669 		write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
670 	}
671 
672 	wait_completion(flctl);
673 	writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
674 }
675 
execmd_write_oob(struct mtd_info * mtd)676 static void execmd_write_oob(struct mtd_info *mtd)
677 {
678 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
679 	int page_addr = flctl->seqin_page_addr;
680 	int sector, page_sectors;
681 
682 	page_sectors = flctl->page_size ? 4 : 1;
683 
684 	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
685 			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
686 
687 	for (sector = 0; sector < page_sectors; sector++) {
688 		empty_fifo(flctl);
689 		set_addr(mtd, sector * 528 + 512, page_addr);
690 		writel(16, FLDTCNTR(flctl));	/* set read size */
691 
692 		start_translation(flctl);
693 		write_fiforeg(flctl, 16, 16 * sector);
694 		wait_completion(flctl);
695 	}
696 }
697 
flctl_cmdfunc(struct mtd_info * mtd,unsigned int command,int column,int page_addr)698 static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
699 			int column, int page_addr)
700 {
701 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
702 	uint32_t read_cmd = 0;
703 
704 	pm_runtime_get_sync(&flctl->pdev->dev);
705 
706 	flctl->read_bytes = 0;
707 	if (command != NAND_CMD_PAGEPROG)
708 		flctl->index = 0;
709 
710 	switch (command) {
711 	case NAND_CMD_READ1:
712 	case NAND_CMD_READ0:
713 		if (flctl->hwecc) {
714 			/* read page with hwecc */
715 			execmd_read_page_sector(mtd, page_addr);
716 			break;
717 		}
718 		if (flctl->page_size)
719 			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
720 				| command);
721 		else
722 			set_cmd_regs(mtd, command, command);
723 
724 		set_addr(mtd, 0, page_addr);
725 
726 		flctl->read_bytes = mtd->writesize + mtd->oobsize;
727 		if (flctl->chip.options & NAND_BUSWIDTH_16)
728 			column >>= 1;
729 		flctl->index += column;
730 		goto read_normal_exit;
731 
732 	case NAND_CMD_READOOB:
733 		if (flctl->hwecc) {
734 			/* read page with hwecc */
735 			execmd_read_oob(mtd, page_addr);
736 			break;
737 		}
738 
739 		if (flctl->page_size) {
740 			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
741 				| NAND_CMD_READ0);
742 			set_addr(mtd, mtd->writesize, page_addr);
743 		} else {
744 			set_cmd_regs(mtd, command, command);
745 			set_addr(mtd, 0, page_addr);
746 		}
747 		flctl->read_bytes = mtd->oobsize;
748 		goto read_normal_exit;
749 
750 	case NAND_CMD_RNDOUT:
751 		if (flctl->hwecc)
752 			break;
753 
754 		if (flctl->page_size)
755 			set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
756 				| command);
757 		else
758 			set_cmd_regs(mtd, command, command);
759 
760 		set_addr(mtd, column, 0);
761 
762 		flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
763 		goto read_normal_exit;
764 
765 	case NAND_CMD_READID:
766 		set_cmd_regs(mtd, command, command);
767 
768 		/* READID is always performed using an 8-bit bus */
769 		if (flctl->chip.options & NAND_BUSWIDTH_16)
770 			column <<= 1;
771 		set_addr(mtd, column, 0);
772 
773 		flctl->read_bytes = 8;
774 		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
775 		empty_fifo(flctl);
776 		start_translation(flctl);
777 		read_fiforeg(flctl, flctl->read_bytes, 0);
778 		wait_completion(flctl);
779 		break;
780 
781 	case NAND_CMD_ERASE1:
782 		flctl->erase1_page_addr = page_addr;
783 		break;
784 
785 	case NAND_CMD_ERASE2:
786 		set_cmd_regs(mtd, NAND_CMD_ERASE1,
787 			(command << 8) | NAND_CMD_ERASE1);
788 		set_addr(mtd, -1, flctl->erase1_page_addr);
789 		start_translation(flctl);
790 		wait_completion(flctl);
791 		break;
792 
793 	case NAND_CMD_SEQIN:
794 		if (!flctl->page_size) {
795 			/* output read command */
796 			if (column >= mtd->writesize) {
797 				column -= mtd->writesize;
798 				read_cmd = NAND_CMD_READOOB;
799 			} else if (column < 256) {
800 				read_cmd = NAND_CMD_READ0;
801 			} else {
802 				column -= 256;
803 				read_cmd = NAND_CMD_READ1;
804 			}
805 		}
806 		flctl->seqin_column = column;
807 		flctl->seqin_page_addr = page_addr;
808 		flctl->seqin_read_cmd = read_cmd;
809 		break;
810 
811 	case NAND_CMD_PAGEPROG:
812 		empty_fifo(flctl);
813 		if (!flctl->page_size) {
814 			set_cmd_regs(mtd, NAND_CMD_SEQIN,
815 					flctl->seqin_read_cmd);
816 			set_addr(mtd, -1, -1);
817 			writel(0, FLDTCNTR(flctl));	/* set 0 size */
818 			start_translation(flctl);
819 			wait_completion(flctl);
820 		}
821 		if (flctl->hwecc) {
822 			/* write page with hwecc */
823 			if (flctl->seqin_column == mtd->writesize)
824 				execmd_write_oob(mtd);
825 			else if (!flctl->seqin_column)
826 				execmd_write_page_sector(mtd);
827 			else
828 				printk(KERN_ERR "Invalid address !?\n");
829 			break;
830 		}
831 		set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
832 		set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
833 		writel(flctl->index, FLDTCNTR(flctl));	/* set write size */
834 		start_translation(flctl);
835 		write_fiforeg(flctl, flctl->index, 0);
836 		wait_completion(flctl);
837 		break;
838 
839 	case NAND_CMD_STATUS:
840 		set_cmd_regs(mtd, command, command);
841 		set_addr(mtd, -1, -1);
842 
843 		flctl->read_bytes = 1;
844 		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
845 		start_translation(flctl);
846 		read_datareg(flctl, 0); /* read and end */
847 		break;
848 
849 	case NAND_CMD_RESET:
850 		set_cmd_regs(mtd, command, command);
851 		set_addr(mtd, -1, -1);
852 
853 		writel(0, FLDTCNTR(flctl));	/* set 0 size */
854 		start_translation(flctl);
855 		wait_completion(flctl);
856 		break;
857 
858 	default:
859 		break;
860 	}
861 	goto runtime_exit;
862 
863 read_normal_exit:
864 	writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */
865 	empty_fifo(flctl);
866 	start_translation(flctl);
867 	read_fiforeg(flctl, flctl->read_bytes, 0);
868 	wait_completion(flctl);
869 runtime_exit:
870 	pm_runtime_put_sync(&flctl->pdev->dev);
871 	return;
872 }
873 
flctl_select_chip(struct mtd_info * mtd,int chipnr)874 static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
875 {
876 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
877 	int ret;
878 
879 	switch (chipnr) {
880 	case -1:
881 		flctl->flcmncr_base &= ~CE0_ENABLE;
882 
883 		pm_runtime_get_sync(&flctl->pdev->dev);
884 		writel(flctl->flcmncr_base, FLCMNCR(flctl));
885 
886 		if (flctl->qos_request) {
887 			dev_pm_qos_remove_request(&flctl->pm_qos);
888 			flctl->qos_request = 0;
889 		}
890 
891 		pm_runtime_put_sync(&flctl->pdev->dev);
892 		break;
893 	case 0:
894 		flctl->flcmncr_base |= CE0_ENABLE;
895 
896 		if (!flctl->qos_request) {
897 			ret = dev_pm_qos_add_request(&flctl->pdev->dev,
898 							&flctl->pm_qos,
899 							DEV_PM_QOS_RESUME_LATENCY,
900 							100);
901 			if (ret < 0)
902 				dev_err(&flctl->pdev->dev,
903 					"PM QoS request failed: %d\n", ret);
904 			flctl->qos_request = 1;
905 		}
906 
907 		if (flctl->holden) {
908 			pm_runtime_get_sync(&flctl->pdev->dev);
909 			writel(HOLDEN, FLHOLDCR(flctl));
910 			pm_runtime_put_sync(&flctl->pdev->dev);
911 		}
912 		break;
913 	default:
914 		BUG();
915 	}
916 }
917 
flctl_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)918 static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
919 {
920 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
921 
922 	memcpy(&flctl->done_buff[flctl->index], buf, len);
923 	flctl->index += len;
924 }
925 
flctl_read_byte(struct mtd_info * mtd)926 static uint8_t flctl_read_byte(struct mtd_info *mtd)
927 {
928 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
929 	uint8_t data;
930 
931 	data = flctl->done_buff[flctl->index];
932 	flctl->index++;
933 	return data;
934 }
935 
flctl_read_word(struct mtd_info * mtd)936 static uint16_t flctl_read_word(struct mtd_info *mtd)
937 {
938 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
939 	uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index];
940 
941 	flctl->index += 2;
942 	return *buf;
943 }
944 
flctl_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)945 static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
946 {
947 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
948 
949 	memcpy(buf, &flctl->done_buff[flctl->index], len);
950 	flctl->index += len;
951 }
952 
flctl_chip_init_tail(struct mtd_info * mtd)953 static int flctl_chip_init_tail(struct mtd_info *mtd)
954 {
955 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
956 	struct nand_chip *chip = &flctl->chip;
957 
958 	if (mtd->writesize == 512) {
959 		flctl->page_size = 0;
960 		if (chip->chipsize > (32 << 20)) {
961 			/* big than 32MB */
962 			flctl->rw_ADRCNT = ADRCNT_4;
963 			flctl->erase_ADRCNT = ADRCNT_3;
964 		} else if (chip->chipsize > (2 << 16)) {
965 			/* big than 128KB */
966 			flctl->rw_ADRCNT = ADRCNT_3;
967 			flctl->erase_ADRCNT = ADRCNT_2;
968 		} else {
969 			flctl->rw_ADRCNT = ADRCNT_2;
970 			flctl->erase_ADRCNT = ADRCNT_1;
971 		}
972 	} else {
973 		flctl->page_size = 1;
974 		if (chip->chipsize > (128 << 20)) {
975 			/* big than 128MB */
976 			flctl->rw_ADRCNT = ADRCNT2_E;
977 			flctl->erase_ADRCNT = ADRCNT_3;
978 		} else if (chip->chipsize > (8 << 16)) {
979 			/* big than 512KB */
980 			flctl->rw_ADRCNT = ADRCNT_4;
981 			flctl->erase_ADRCNT = ADRCNT_2;
982 		} else {
983 			flctl->rw_ADRCNT = ADRCNT_3;
984 			flctl->erase_ADRCNT = ADRCNT_1;
985 		}
986 	}
987 
988 	if (flctl->hwecc) {
989 		if (mtd->writesize == 512) {
990 			chip->ecc.layout = &flctl_4secc_oob_16;
991 			chip->badblock_pattern = &flctl_4secc_smallpage;
992 		} else {
993 			chip->ecc.layout = &flctl_4secc_oob_64;
994 			chip->badblock_pattern = &flctl_4secc_largepage;
995 		}
996 
997 		chip->ecc.size = 512;
998 		chip->ecc.bytes = 10;
999 		chip->ecc.strength = 4;
1000 		chip->ecc.read_page = flctl_read_page_hwecc;
1001 		chip->ecc.write_page = flctl_write_page_hwecc;
1002 		chip->ecc.mode = NAND_ECC_HW;
1003 
1004 		/* 4 symbols ECC enabled */
1005 		flctl->flcmncr_base |= _4ECCEN;
1006 	} else {
1007 		chip->ecc.mode = NAND_ECC_SOFT;
1008 	}
1009 
1010 	return 0;
1011 }
1012 
flctl_handle_flste(int irq,void * dev_id)1013 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1014 {
1015 	struct sh_flctl *flctl = dev_id;
1016 
1017 	dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1018 	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1019 
1020 	return IRQ_HANDLED;
1021 }
1022 
1023 struct flctl_soc_config {
1024 	unsigned long flcmncr_val;
1025 	unsigned has_hwecc:1;
1026 	unsigned use_holden:1;
1027 };
1028 
1029 static struct flctl_soc_config flctl_sh7372_config = {
1030 	.flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1031 	.has_hwecc = 1,
1032 	.use_holden = 1,
1033 };
1034 
1035 static const struct of_device_id of_flctl_match[] = {
1036 	{ .compatible = "renesas,shmobile-flctl-sh7372",
1037 				.data = &flctl_sh7372_config },
1038 	{},
1039 };
1040 MODULE_DEVICE_TABLE(of, of_flctl_match);
1041 
flctl_parse_dt(struct device * dev)1042 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1043 {
1044 	const struct of_device_id *match;
1045 	struct flctl_soc_config *config;
1046 	struct sh_flctl_platform_data *pdata;
1047 	struct device_node *dn = dev->of_node;
1048 	int ret;
1049 
1050 	match = of_match_device(of_flctl_match, dev);
1051 	if (match)
1052 		config = (struct flctl_soc_config *)match->data;
1053 	else {
1054 		dev_err(dev, "%s: no OF configuration attached\n", __func__);
1055 		return NULL;
1056 	}
1057 
1058 	pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1059 								GFP_KERNEL);
1060 	if (!pdata)
1061 		return NULL;
1062 
1063 	/* set SoC specific options */
1064 	pdata->flcmncr_val = config->flcmncr_val;
1065 	pdata->has_hwecc = config->has_hwecc;
1066 	pdata->use_holden = config->use_holden;
1067 
1068 	/* parse user defined options */
1069 	ret = of_get_nand_bus_width(dn);
1070 	if (ret == 16)
1071 		pdata->flcmncr_val |= SEL_16BIT;
1072 	else if (ret != 8) {
1073 		dev_err(dev, "%s: invalid bus width\n", __func__);
1074 		return NULL;
1075 	}
1076 
1077 	return pdata;
1078 }
1079 
flctl_probe(struct platform_device * pdev)1080 static int flctl_probe(struct platform_device *pdev)
1081 {
1082 	struct resource *res;
1083 	struct sh_flctl *flctl;
1084 	struct mtd_info *flctl_mtd;
1085 	struct nand_chip *nand;
1086 	struct sh_flctl_platform_data *pdata;
1087 	int ret;
1088 	int irq;
1089 	struct mtd_part_parser_data ppdata = {};
1090 
1091 	flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1092 	if (!flctl)
1093 		return -ENOMEM;
1094 
1095 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1096 	flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1097 	if (IS_ERR(flctl->reg))
1098 		return PTR_ERR(flctl->reg);
1099 
1100 	irq = platform_get_irq(pdev, 0);
1101 	if (irq < 0) {
1102 		dev_err(&pdev->dev, "failed to get flste irq data\n");
1103 		return -ENXIO;
1104 	}
1105 
1106 	ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1107 			       "flste", flctl);
1108 	if (ret) {
1109 		dev_err(&pdev->dev, "request interrupt failed.\n");
1110 		return ret;
1111 	}
1112 
1113 	if (pdev->dev.of_node)
1114 		pdata = flctl_parse_dt(&pdev->dev);
1115 	else
1116 		pdata = dev_get_platdata(&pdev->dev);
1117 
1118 	if (!pdata) {
1119 		dev_err(&pdev->dev, "no setup data defined\n");
1120 		return -EINVAL;
1121 	}
1122 
1123 	platform_set_drvdata(pdev, flctl);
1124 	flctl_mtd = &flctl->mtd;
1125 	nand = &flctl->chip;
1126 	flctl_mtd->priv = nand;
1127 	flctl_mtd->dev.parent = &pdev->dev;
1128 	flctl->pdev = pdev;
1129 	flctl->hwecc = pdata->has_hwecc;
1130 	flctl->holden = pdata->use_holden;
1131 	flctl->flcmncr_base = pdata->flcmncr_val;
1132 	flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1133 
1134 	/* Set address of hardware control function */
1135 	/* 20 us command delay time */
1136 	nand->chip_delay = 20;
1137 
1138 	nand->read_byte = flctl_read_byte;
1139 	nand->write_buf = flctl_write_buf;
1140 	nand->read_buf = flctl_read_buf;
1141 	nand->select_chip = flctl_select_chip;
1142 	nand->cmdfunc = flctl_cmdfunc;
1143 
1144 	if (pdata->flcmncr_val & SEL_16BIT) {
1145 		nand->options |= NAND_BUSWIDTH_16;
1146 		nand->read_word = flctl_read_word;
1147 	}
1148 
1149 	pm_runtime_enable(&pdev->dev);
1150 	pm_runtime_resume(&pdev->dev);
1151 
1152 	flctl_setup_dma(flctl);
1153 
1154 	ret = nand_scan_ident(flctl_mtd, 1, NULL);
1155 	if (ret)
1156 		goto err_chip;
1157 
1158 	ret = flctl_chip_init_tail(flctl_mtd);
1159 	if (ret)
1160 		goto err_chip;
1161 
1162 	ret = nand_scan_tail(flctl_mtd);
1163 	if (ret)
1164 		goto err_chip;
1165 
1166 	ppdata.of_node = pdev->dev.of_node;
1167 	ret = mtd_device_parse_register(flctl_mtd, NULL, &ppdata, pdata->parts,
1168 			pdata->nr_parts);
1169 
1170 	return 0;
1171 
1172 err_chip:
1173 	flctl_release_dma(flctl);
1174 	pm_runtime_disable(&pdev->dev);
1175 	return ret;
1176 }
1177 
flctl_remove(struct platform_device * pdev)1178 static int flctl_remove(struct platform_device *pdev)
1179 {
1180 	struct sh_flctl *flctl = platform_get_drvdata(pdev);
1181 
1182 	flctl_release_dma(flctl);
1183 	nand_release(&flctl->mtd);
1184 	pm_runtime_disable(&pdev->dev);
1185 
1186 	return 0;
1187 }
1188 
1189 static struct platform_driver flctl_driver = {
1190 	.remove		= flctl_remove,
1191 	.driver = {
1192 		.name	= "sh_flctl",
1193 		.of_match_table = of_match_ptr(of_flctl_match),
1194 	},
1195 };
1196 
1197 module_platform_driver_probe(flctl_driver, flctl_probe);
1198 
1199 MODULE_LICENSE("GPL");
1200 MODULE_AUTHOR("Yoshihiro Shimoda");
1201 MODULE_DESCRIPTION("SuperH FLCTL driver");
1202 MODULE_ALIAS("platform:sh_flctl");
1203