1 /*
2  * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
3  *
4  * Derived from:
5  *	https://github.com/yuq/sunxi-nfc-mtd
6  *	Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
7  *
8  *	https://github.com/hno/Allwinner-Info
9  *	Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
10  *
11  *	Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
12  *	Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/dma-mapping.h>
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/platform_device.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_gpio.h>
33 #include <linux/of_mtd.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/nand.h>
36 #include <linux/mtd/partitions.h>
37 #include <linux/clk.h>
38 #include <linux/delay.h>
39 #include <linux/dmaengine.h>
40 #include <linux/gpio.h>
41 #include <linux/interrupt.h>
42 #include <linux/io.h>
43 
44 #define NFC_REG_CTL		0x0000
45 #define NFC_REG_ST		0x0004
46 #define NFC_REG_INT		0x0008
47 #define NFC_REG_TIMING_CTL	0x000C
48 #define NFC_REG_TIMING_CFG	0x0010
49 #define NFC_REG_ADDR_LOW	0x0014
50 #define NFC_REG_ADDR_HIGH	0x0018
51 #define NFC_REG_SECTOR_NUM	0x001C
52 #define NFC_REG_CNT		0x0020
53 #define NFC_REG_CMD		0x0024
54 #define NFC_REG_RCMD_SET	0x0028
55 #define NFC_REG_WCMD_SET	0x002C
56 #define NFC_REG_IO_DATA		0x0030
57 #define NFC_REG_ECC_CTL		0x0034
58 #define NFC_REG_ECC_ST		0x0038
59 #define NFC_REG_DEBUG		0x003C
60 #define NFC_REG_ECC_ERR_CNT(x)	((0x0040 + (x)) & ~0x3)
61 #define NFC_REG_USER_DATA(x)	(0x0050 + ((x) * 4))
62 #define NFC_REG_SPARE_AREA	0x00A0
63 #define NFC_RAM0_BASE		0x0400
64 #define NFC_RAM1_BASE		0x0800
65 
66 /* define bit use in NFC_CTL */
67 #define NFC_EN			BIT(0)
68 #define NFC_RESET		BIT(1)
69 #define NFC_BUS_WIDTH_MSK	BIT(2)
70 #define NFC_BUS_WIDTH_8		(0 << 2)
71 #define NFC_BUS_WIDTH_16	(1 << 2)
72 #define NFC_RB_SEL_MSK		BIT(3)
73 #define NFC_RB_SEL(x)		((x) << 3)
74 #define NFC_CE_SEL_MSK		GENMASK(26, 24)
75 #define NFC_CE_SEL(x)		((x) << 24)
76 #define NFC_CE_CTL		BIT(6)
77 #define NFC_PAGE_SHIFT_MSK	GENMASK(11, 8)
78 #define NFC_PAGE_SHIFT(x)	(((x) < 10 ? 0 : (x) - 10) << 8)
79 #define NFC_SAM			BIT(12)
80 #define NFC_RAM_METHOD		BIT(14)
81 #define NFC_DEBUG_CTL		BIT(31)
82 
83 /* define bit use in NFC_ST */
84 #define NFC_RB_B2R		BIT(0)
85 #define NFC_CMD_INT_FLAG	BIT(1)
86 #define NFC_DMA_INT_FLAG	BIT(2)
87 #define NFC_CMD_FIFO_STATUS	BIT(3)
88 #define NFC_STA			BIT(4)
89 #define NFC_NATCH_INT_FLAG	BIT(5)
90 #define NFC_RB_STATE(x)		BIT(x + 8)
91 
92 /* define bit use in NFC_INT */
93 #define NFC_B2R_INT_ENABLE	BIT(0)
94 #define NFC_CMD_INT_ENABLE	BIT(1)
95 #define NFC_DMA_INT_ENABLE	BIT(2)
96 #define NFC_INT_MASK		(NFC_B2R_INT_ENABLE | \
97 				 NFC_CMD_INT_ENABLE | \
98 				 NFC_DMA_INT_ENABLE)
99 
100 /* define bit use in NFC_TIMING_CTL */
101 #define NFC_TIMING_CTL_EDO	BIT(8)
102 
103 /* define NFC_TIMING_CFG register layout */
104 #define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD)		\
105 	(((tWB) & 0x3) | (((tADL) & 0x3) << 2) |		\
106 	(((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) |		\
107 	(((tCAD) & 0x7) << 8))
108 
109 /* define bit use in NFC_CMD */
110 #define NFC_CMD_LOW_BYTE_MSK	GENMASK(7, 0)
111 #define NFC_CMD_HIGH_BYTE_MSK	GENMASK(15, 8)
112 #define NFC_CMD(x)		(x)
113 #define NFC_ADR_NUM_MSK		GENMASK(18, 16)
114 #define NFC_ADR_NUM(x)		(((x) - 1) << 16)
115 #define NFC_SEND_ADR		BIT(19)
116 #define NFC_ACCESS_DIR		BIT(20)
117 #define NFC_DATA_TRANS		BIT(21)
118 #define NFC_SEND_CMD1		BIT(22)
119 #define NFC_WAIT_FLAG		BIT(23)
120 #define NFC_SEND_CMD2		BIT(24)
121 #define NFC_SEQ			BIT(25)
122 #define NFC_DATA_SWAP_METHOD	BIT(26)
123 #define NFC_ROW_AUTO_INC	BIT(27)
124 #define NFC_SEND_CMD3		BIT(28)
125 #define NFC_SEND_CMD4		BIT(29)
126 #define NFC_CMD_TYPE_MSK	GENMASK(31, 30)
127 #define NFC_NORMAL_OP		(0 << 30)
128 #define NFC_ECC_OP		(1 << 30)
129 #define NFC_PAGE_OP		(2 << 30)
130 
131 /* define bit use in NFC_RCMD_SET */
132 #define NFC_READ_CMD_MSK	GENMASK(7, 0)
133 #define NFC_RND_READ_CMD0_MSK	GENMASK(15, 8)
134 #define NFC_RND_READ_CMD1_MSK	GENMASK(23, 16)
135 
136 /* define bit use in NFC_WCMD_SET */
137 #define NFC_PROGRAM_CMD_MSK	GENMASK(7, 0)
138 #define NFC_RND_WRITE_CMD_MSK	GENMASK(15, 8)
139 #define NFC_READ_CMD0_MSK	GENMASK(23, 16)
140 #define NFC_READ_CMD1_MSK	GENMASK(31, 24)
141 
142 /* define bit use in NFC_ECC_CTL */
143 #define NFC_ECC_EN		BIT(0)
144 #define NFC_ECC_PIPELINE	BIT(3)
145 #define NFC_ECC_EXCEPTION	BIT(4)
146 #define NFC_ECC_BLOCK_SIZE_MSK	BIT(5)
147 #define NFC_RANDOM_EN		BIT(9)
148 #define NFC_RANDOM_DIRECTION	BIT(10)
149 #define NFC_ECC_MODE_MSK	GENMASK(15, 12)
150 #define NFC_ECC_MODE(x)		((x) << 12)
151 #define NFC_RANDOM_SEED_MSK	GENMASK(30, 16)
152 #define NFC_RANDOM_SEED(x)	((x) << 16)
153 
154 /* define bit use in NFC_ECC_ST */
155 #define NFC_ECC_ERR(x)		BIT(x)
156 #define NFC_ECC_PAT_FOUND(x)	BIT(x + 16)
157 #define NFC_ECC_ERR_CNT(b, x)	(((x) >> ((b) * 8)) & 0xff)
158 
159 #define NFC_DEFAULT_TIMEOUT_MS	1000
160 
161 #define NFC_SRAM_SIZE		1024
162 
163 #define NFC_MAX_CS		7
164 
165 /*
166  * Ready/Busy detection type: describes the Ready/Busy detection modes
167  *
168  * @RB_NONE:	no external detection available, rely on STATUS command
169  *		and software timeouts
170  * @RB_NATIVE:	use sunxi NAND controller Ready/Busy support. The Ready/Busy
171  *		pin of the NAND flash chip must be connected to one of the
172  *		native NAND R/B pins (those which can be muxed to the NAND
173  *		Controller)
174  * @RB_GPIO:	use a simple GPIO to handle Ready/Busy status. The Ready/Busy
175  *		pin of the NAND flash chip must be connected to a GPIO capable
176  *		pin.
177  */
178 enum sunxi_nand_rb_type {
179 	RB_NONE,
180 	RB_NATIVE,
181 	RB_GPIO,
182 };
183 
184 /*
185  * Ready/Busy structure: stores information related to Ready/Busy detection
186  *
187  * @type:	the Ready/Busy detection mode
188  * @info:	information related to the R/B detection mode. Either a gpio
189  *		id or a native R/B id (those supported by the NAND controller).
190  */
191 struct sunxi_nand_rb {
192 	enum sunxi_nand_rb_type type;
193 	union {
194 		int gpio;
195 		int nativeid;
196 	} info;
197 };
198 
199 /*
200  * Chip Select structure: stores information related to NAND Chip Select
201  *
202  * @cs:		the NAND CS id used to communicate with a NAND Chip
203  * @rb:		the Ready/Busy description
204  */
205 struct sunxi_nand_chip_sel {
206 	u8 cs;
207 	struct sunxi_nand_rb rb;
208 };
209 
210 /*
211  * sunxi HW ECC infos: stores information related to HW ECC support
212  *
213  * @mode:	the sunxi ECC mode field deduced from ECC requirements
214  * @layout:	the OOB layout depending on the ECC requirements and the
215  *		selected ECC mode
216  */
217 struct sunxi_nand_hw_ecc {
218 	int mode;
219 	struct nand_ecclayout layout;
220 };
221 
222 /*
223  * NAND chip structure: stores NAND chip device related information
224  *
225  * @node:		used to store NAND chips into a list
226  * @nand:		base NAND chip structure
227  * @mtd:		base MTD structure
228  * @clk_rate:		clk_rate required for this NAND chip
229  * @timing_cfg		TIMING_CFG register value for this NAND chip
230  * @selected:		current active CS
231  * @nsels:		number of CS lines required by the NAND chip
232  * @sels:		array of CS lines descriptions
233  */
234 struct sunxi_nand_chip {
235 	struct list_head node;
236 	struct nand_chip nand;
237 	struct mtd_info mtd;
238 	unsigned long clk_rate;
239 	u32 timing_cfg;
240 	u32 timing_ctl;
241 	int selected;
242 	int nsels;
243 	struct sunxi_nand_chip_sel sels[0];
244 };
245 
to_sunxi_nand(struct nand_chip * nand)246 static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
247 {
248 	return container_of(nand, struct sunxi_nand_chip, nand);
249 }
250 
251 /*
252  * NAND Controller structure: stores sunxi NAND controller information
253  *
254  * @controller:		base controller structure
255  * @dev:		parent device (used to print error messages)
256  * @regs:		NAND controller registers
257  * @ahb_clk:		NAND Controller AHB clock
258  * @mod_clk:		NAND Controller mod clock
259  * @assigned_cs:	bitmask describing already assigned CS lines
260  * @clk_rate:		NAND controller current clock rate
261  * @chips:		a list containing all the NAND chips attached to
262  *			this NAND controller
263  * @complete:		a completion object used to wait for NAND
264  *			controller events
265  */
266 struct sunxi_nfc {
267 	struct nand_hw_control controller;
268 	struct device *dev;
269 	void __iomem *regs;
270 	struct clk *ahb_clk;
271 	struct clk *mod_clk;
272 	unsigned long assigned_cs;
273 	unsigned long clk_rate;
274 	struct list_head chips;
275 	struct completion complete;
276 };
277 
to_sunxi_nfc(struct nand_hw_control * ctrl)278 static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
279 {
280 	return container_of(ctrl, struct sunxi_nfc, controller);
281 }
282 
sunxi_nfc_interrupt(int irq,void * dev_id)283 static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
284 {
285 	struct sunxi_nfc *nfc = dev_id;
286 	u32 st = readl(nfc->regs + NFC_REG_ST);
287 	u32 ien = readl(nfc->regs + NFC_REG_INT);
288 
289 	if (!(ien & st))
290 		return IRQ_NONE;
291 
292 	if ((ien & st) == ien)
293 		complete(&nfc->complete);
294 
295 	writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
296 	writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
297 
298 	return IRQ_HANDLED;
299 }
300 
sunxi_nfc_wait_int(struct sunxi_nfc * nfc,u32 flags,unsigned int timeout_ms)301 static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
302 			      unsigned int timeout_ms)
303 {
304 	init_completion(&nfc->complete);
305 
306 	writel(flags, nfc->regs + NFC_REG_INT);
307 
308 	if (!timeout_ms)
309 		timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
310 
311 	if (!wait_for_completion_timeout(&nfc->complete,
312 					 msecs_to_jiffies(timeout_ms))) {
313 		dev_err(nfc->dev, "wait interrupt timedout\n");
314 		return -ETIMEDOUT;
315 	}
316 
317 	return 0;
318 }
319 
sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc * nfc)320 static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
321 {
322 	unsigned long timeout = jiffies +
323 				msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
324 
325 	do {
326 		if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
327 			return 0;
328 	} while (time_before(jiffies, timeout));
329 
330 	dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
331 	return -ETIMEDOUT;
332 }
333 
sunxi_nfc_rst(struct sunxi_nfc * nfc)334 static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
335 {
336 	unsigned long timeout = jiffies +
337 				msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
338 
339 	writel(0, nfc->regs + NFC_REG_ECC_CTL);
340 	writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
341 
342 	do {
343 		if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
344 			return 0;
345 	} while (time_before(jiffies, timeout));
346 
347 	dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
348 	return -ETIMEDOUT;
349 }
350 
sunxi_nfc_dev_ready(struct mtd_info * mtd)351 static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
352 {
353 	struct nand_chip *nand = mtd->priv;
354 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
355 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
356 	struct sunxi_nand_rb *rb;
357 	unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
358 	int ret;
359 
360 	if (sunxi_nand->selected < 0)
361 		return 0;
362 
363 	rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
364 
365 	switch (rb->type) {
366 	case RB_NATIVE:
367 		ret = !!(readl(nfc->regs + NFC_REG_ST) &
368 			 NFC_RB_STATE(rb->info.nativeid));
369 		if (ret)
370 			break;
371 
372 		sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
373 		ret = !!(readl(nfc->regs + NFC_REG_ST) &
374 			 NFC_RB_STATE(rb->info.nativeid));
375 		break;
376 	case RB_GPIO:
377 		ret = gpio_get_value(rb->info.gpio);
378 		break;
379 	case RB_NONE:
380 	default:
381 		ret = 0;
382 		dev_err(nfc->dev, "cannot check R/B NAND status!\n");
383 		break;
384 	}
385 
386 	return ret;
387 }
388 
sunxi_nfc_select_chip(struct mtd_info * mtd,int chip)389 static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
390 {
391 	struct nand_chip *nand = mtd->priv;
392 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
393 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
394 	struct sunxi_nand_chip_sel *sel;
395 	u32 ctl;
396 
397 	if (chip > 0 && chip >= sunxi_nand->nsels)
398 		return;
399 
400 	if (chip == sunxi_nand->selected)
401 		return;
402 
403 	ctl = readl(nfc->regs + NFC_REG_CTL) &
404 	      ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
405 
406 	if (chip >= 0) {
407 		sel = &sunxi_nand->sels[chip];
408 
409 		ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
410 		       NFC_PAGE_SHIFT(nand->page_shift - 10);
411 		if (sel->rb.type == RB_NONE) {
412 			nand->dev_ready = NULL;
413 		} else {
414 			nand->dev_ready = sunxi_nfc_dev_ready;
415 			if (sel->rb.type == RB_NATIVE)
416 				ctl |= NFC_RB_SEL(sel->rb.info.nativeid);
417 		}
418 
419 		writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
420 
421 		if (nfc->clk_rate != sunxi_nand->clk_rate) {
422 			clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
423 			nfc->clk_rate = sunxi_nand->clk_rate;
424 		}
425 	}
426 
427 	writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
428 	writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
429 	writel(ctl, nfc->regs + NFC_REG_CTL);
430 
431 	sunxi_nand->selected = chip;
432 }
433 
sunxi_nfc_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)434 static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
435 {
436 	struct nand_chip *nand = mtd->priv;
437 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
438 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
439 	int ret;
440 	int cnt;
441 	int offs = 0;
442 	u32 tmp;
443 
444 	while (len > offs) {
445 		cnt = min(len - offs, NFC_SRAM_SIZE);
446 
447 		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
448 		if (ret)
449 			break;
450 
451 		writel(cnt, nfc->regs + NFC_REG_CNT);
452 		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
453 		writel(tmp, nfc->regs + NFC_REG_CMD);
454 
455 		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
456 		if (ret)
457 			break;
458 
459 		if (buf)
460 			memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
461 				      cnt);
462 		offs += cnt;
463 	}
464 }
465 
sunxi_nfc_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)466 static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
467 				int len)
468 {
469 	struct nand_chip *nand = mtd->priv;
470 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
471 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
472 	int ret;
473 	int cnt;
474 	int offs = 0;
475 	u32 tmp;
476 
477 	while (len > offs) {
478 		cnt = min(len - offs, NFC_SRAM_SIZE);
479 
480 		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
481 		if (ret)
482 			break;
483 
484 		writel(cnt, nfc->regs + NFC_REG_CNT);
485 		memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
486 		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
487 		      NFC_ACCESS_DIR;
488 		writel(tmp, nfc->regs + NFC_REG_CMD);
489 
490 		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
491 		if (ret)
492 			break;
493 
494 		offs += cnt;
495 	}
496 }
497 
sunxi_nfc_read_byte(struct mtd_info * mtd)498 static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
499 {
500 	uint8_t ret;
501 
502 	sunxi_nfc_read_buf(mtd, &ret, 1);
503 
504 	return ret;
505 }
506 
sunxi_nfc_cmd_ctrl(struct mtd_info * mtd,int dat,unsigned int ctrl)507 static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
508 			       unsigned int ctrl)
509 {
510 	struct nand_chip *nand = mtd->priv;
511 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
512 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
513 	int ret;
514 	u32 tmp;
515 
516 	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
517 	if (ret)
518 		return;
519 
520 	if (ctrl & NAND_CTRL_CHANGE) {
521 		tmp = readl(nfc->regs + NFC_REG_CTL);
522 		if (ctrl & NAND_NCE)
523 			tmp |= NFC_CE_CTL;
524 		else
525 			tmp &= ~NFC_CE_CTL;
526 		writel(tmp, nfc->regs + NFC_REG_CTL);
527 	}
528 
529 	if (dat == NAND_CMD_NONE)
530 		return;
531 
532 	if (ctrl & NAND_CLE) {
533 		writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD);
534 	} else {
535 		writel(dat, nfc->regs + NFC_REG_ADDR_LOW);
536 		writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD);
537 	}
538 
539 	sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
540 }
541 
sunxi_nfc_hw_ecc_enable(struct mtd_info * mtd)542 static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
543 {
544 	struct nand_chip *nand = mtd->priv;
545 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
546 	struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
547 	u32 ecc_ctl;
548 
549 	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
550 	ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
551 		     NFC_ECC_BLOCK_SIZE_MSK);
552 	ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION;
553 
554 	writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
555 }
556 
sunxi_nfc_hw_ecc_disable(struct mtd_info * mtd)557 static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
558 {
559 	struct nand_chip *nand = mtd->priv;
560 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
561 
562 	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
563 	       nfc->regs + NFC_REG_ECC_CTL);
564 }
565 
sunxi_nfc_user_data_to_buf(u32 user_data,u8 * buf)566 static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
567 {
568 	buf[0] = user_data;
569 	buf[1] = user_data >> 8;
570 	buf[2] = user_data >> 16;
571 	buf[3] = user_data >> 24;
572 }
573 
sunxi_nfc_hw_ecc_read_chunk(struct mtd_info * mtd,u8 * data,int data_off,u8 * oob,int oob_off,int * cur_off,unsigned int * max_bitflips)574 static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
575 				       u8 *data, int data_off,
576 				       u8 *oob, int oob_off,
577 				       int *cur_off,
578 				       unsigned int *max_bitflips)
579 {
580 	struct nand_chip *nand = mtd->priv;
581 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
582 	struct nand_ecc_ctrl *ecc = &nand->ecc;
583 	u32 status;
584 	int ret;
585 
586 	if (*cur_off != data_off)
587 		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
588 
589 	sunxi_nfc_read_buf(mtd, NULL, ecc->size);
590 
591 	if (data_off + ecc->size != oob_off)
592 		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
593 
594 	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
595 	if (ret)
596 		return ret;
597 
598 	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
599 	       nfc->regs + NFC_REG_CMD);
600 
601 	ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
602 	if (ret)
603 		return ret;
604 
605 	status = readl(nfc->regs + NFC_REG_ECC_ST);
606 	ret = NFC_ECC_ERR_CNT(0, readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0)));
607 
608 	memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
609 
610 	nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
611 	sunxi_nfc_read_buf(mtd, oob, ecc->bytes + 4);
612 
613 	if (status & NFC_ECC_ERR(0)) {
614 		ret = nand_check_erased_ecc_chunk(data,	ecc->size,
615 						  oob, ecc->bytes + 4,
616 						  NULL, 0, ecc->strength);
617 	} else {
618 		/*
619 		 * The engine protects 4 bytes of OOB data per chunk.
620 		 * Retrieve the corrected OOB bytes.
621 		 */
622 		sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(0)),
623 					   oob);
624 	}
625 
626 	if (ret < 0) {
627 		mtd->ecc_stats.failed++;
628 	} else {
629 		mtd->ecc_stats.corrected += ret;
630 		*max_bitflips = max_t(unsigned int, *max_bitflips, ret);
631 	}
632 
633 	*cur_off = oob_off + ecc->bytes + 4;
634 
635 	return 0;
636 }
637 
sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info * mtd,u8 * oob,int * cur_off)638 static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
639 					    u8 *oob, int *cur_off)
640 {
641 	struct nand_chip *nand = mtd->priv;
642 	struct nand_ecc_ctrl *ecc = &nand->ecc;
643 	int offset = ((ecc->bytes + 4) * ecc->steps);
644 	int len = mtd->oobsize - offset;
645 
646 	if (len <= 0)
647 		return;
648 
649 	if (*cur_off != offset)
650 		nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
651 			      offset + mtd->writesize, -1);
652 
653 	sunxi_nfc_read_buf(mtd, oob + offset, len);
654 
655 	*cur_off = mtd->oobsize + mtd->writesize;
656 }
657 
sunxi_nfc_buf_to_user_data(const u8 * buf)658 static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
659 {
660 	return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
661 }
662 
sunxi_nfc_hw_ecc_write_chunk(struct mtd_info * mtd,const u8 * data,int data_off,const u8 * oob,int oob_off,int * cur_off)663 static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
664 					const u8 *data, int data_off,
665 					const u8 *oob, int oob_off,
666 					int *cur_off)
667 {
668 	struct nand_chip *nand = mtd->priv;
669 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
670 	struct nand_ecc_ctrl *ecc = &nand->ecc;
671 	int ret;
672 
673 	if (data_off != *cur_off)
674 		nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1);
675 
676 	sunxi_nfc_write_buf(mtd, data, ecc->size);
677 
678 	/* Fill OOB data in */
679 	writel(sunxi_nfc_buf_to_user_data(oob),
680 	       nfc->regs + NFC_REG_USER_DATA(0));
681 
682 	if (data_off + ecc->size != oob_off)
683 		nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1);
684 
685 	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
686 	if (ret)
687 		return ret;
688 
689 	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
690 	       NFC_ACCESS_DIR | NFC_ECC_OP,
691 	       nfc->regs + NFC_REG_CMD);
692 
693 	ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
694 	if (ret)
695 		return ret;
696 
697 	*cur_off = oob_off + ecc->bytes + 4;
698 
699 	return 0;
700 }
701 
sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info * mtd,u8 * oob,int * cur_off)702 static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
703 					     u8 *oob, int *cur_off)
704 {
705 	struct nand_chip *nand = mtd->priv;
706 	struct nand_ecc_ctrl *ecc = &nand->ecc;
707 	int offset = ((ecc->bytes + 4) * ecc->steps);
708 	int len = mtd->oobsize - offset;
709 
710 	if (len <= 0)
711 		return;
712 
713 	if (*cur_off != offset)
714 		nand->cmdfunc(mtd, NAND_CMD_RNDIN,
715 			      offset + mtd->writesize, -1);
716 
717 	sunxi_nfc_write_buf(mtd, oob + offset, len);
718 
719 	*cur_off = mtd->oobsize + mtd->writesize;
720 }
721 
sunxi_nfc_hw_ecc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)722 static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
723 				      struct nand_chip *chip, uint8_t *buf,
724 				      int oob_required, int page)
725 {
726 	struct nand_ecc_ctrl *ecc = &chip->ecc;
727 	unsigned int max_bitflips = 0;
728 	int ret, i, cur_off = 0;
729 
730 	sunxi_nfc_hw_ecc_enable(mtd);
731 
732 	for (i = 0; i < ecc->steps; i++) {
733 		int data_off = i * ecc->size;
734 		int oob_off = i * (ecc->bytes + 4);
735 		u8 *data = buf + data_off;
736 		u8 *oob = chip->oob_poi + oob_off;
737 
738 		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
739 						  oob_off + mtd->writesize,
740 						  &cur_off, &max_bitflips);
741 		if (ret)
742 			return ret;
743 	}
744 
745 	if (oob_required)
746 		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off);
747 
748 	sunxi_nfc_hw_ecc_disable(mtd);
749 
750 	return max_bitflips;
751 }
752 
sunxi_nfc_hw_ecc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)753 static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
754 				       struct nand_chip *chip,
755 				       const uint8_t *buf, int oob_required,
756 				       int page)
757 {
758 	struct nand_ecc_ctrl *ecc = &chip->ecc;
759 	int ret, i, cur_off = 0;
760 
761 	sunxi_nfc_hw_ecc_enable(mtd);
762 
763 	for (i = 0; i < ecc->steps; i++) {
764 		int data_off = i * ecc->size;
765 		int oob_off = i * (ecc->bytes + 4);
766 		const u8 *data = buf + data_off;
767 		const u8 *oob = chip->oob_poi + oob_off;
768 
769 		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
770 						   oob_off + mtd->writesize,
771 						   &cur_off);
772 		if (ret)
773 			return ret;
774 	}
775 
776 	if (oob_required)
777 		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off);
778 
779 	sunxi_nfc_hw_ecc_disable(mtd);
780 
781 	return 0;
782 }
783 
sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)784 static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
785 					       struct nand_chip *chip,
786 					       uint8_t *buf, int oob_required,
787 					       int page)
788 {
789 	struct nand_ecc_ctrl *ecc = &chip->ecc;
790 	unsigned int max_bitflips = 0;
791 	int ret, i, cur_off = 0;
792 
793 	sunxi_nfc_hw_ecc_enable(mtd);
794 
795 	for (i = 0; i < ecc->steps; i++) {
796 		int data_off = i * (ecc->size + ecc->bytes + 4);
797 		int oob_off = data_off + ecc->size;
798 		u8 *data = buf + (i * ecc->size);
799 		u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
800 
801 		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
802 						  oob_off, &cur_off,
803 						  &max_bitflips);
804 		if (ret)
805 			return ret;
806 	}
807 
808 	if (oob_required)
809 		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off);
810 
811 	sunxi_nfc_hw_ecc_disable(mtd);
812 
813 	return max_bitflips;
814 }
815 
sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)816 static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
817 						struct nand_chip *chip,
818 						const uint8_t *buf,
819 						int oob_required, int page)
820 {
821 	struct nand_ecc_ctrl *ecc = &chip->ecc;
822 	int ret, i, cur_off = 0;
823 
824 	sunxi_nfc_hw_ecc_enable(mtd);
825 
826 	for (i = 0; i < ecc->steps; i++) {
827 		int data_off = i * (ecc->size + ecc->bytes + 4);
828 		int oob_off = data_off + ecc->size;
829 		const u8 *data = buf + (i * ecc->size);
830 		const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
831 
832 		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
833 						   oob, oob_off, &cur_off);
834 		if (ret)
835 			return ret;
836 	}
837 
838 	if (oob_required)
839 		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off);
840 
841 	sunxi_nfc_hw_ecc_disable(mtd);
842 
843 	return 0;
844 }
845 
846 static const s32 tWB_lut[] = {6, 12, 16, 20};
847 static const s32 tRHW_lut[] = {4, 8, 12, 20};
848 
_sunxi_nand_lookup_timing(const s32 * lut,int lut_size,u32 duration,u32 clk_period)849 static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
850 		u32 clk_period)
851 {
852 	u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
853 	int i;
854 
855 	for (i = 0; i < lut_size; i++) {
856 		if (clk_cycles <= lut[i])
857 			return i;
858 	}
859 
860 	/* Doesn't fit */
861 	return -EINVAL;
862 }
863 
864 #define sunxi_nand_lookup_timing(l, p, c) \
865 			_sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
866 
sunxi_nand_chip_set_timings(struct sunxi_nand_chip * chip,const struct nand_sdr_timings * timings)867 static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
868 				       const struct nand_sdr_timings *timings)
869 {
870 	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
871 	u32 min_clk_period = 0;
872 	s32 tWB, tADL, tWHR, tRHW, tCAD;
873 
874 	/* T1 <=> tCLS */
875 	if (timings->tCLS_min > min_clk_period)
876 		min_clk_period = timings->tCLS_min;
877 
878 	/* T2 <=> tCLH */
879 	if (timings->tCLH_min > min_clk_period)
880 		min_clk_period = timings->tCLH_min;
881 
882 	/* T3 <=> tCS */
883 	if (timings->tCS_min > min_clk_period)
884 		min_clk_period = timings->tCS_min;
885 
886 	/* T4 <=> tCH */
887 	if (timings->tCH_min > min_clk_period)
888 		min_clk_period = timings->tCH_min;
889 
890 	/* T5 <=> tWP */
891 	if (timings->tWP_min > min_clk_period)
892 		min_clk_period = timings->tWP_min;
893 
894 	/* T6 <=> tWH */
895 	if (timings->tWH_min > min_clk_period)
896 		min_clk_period = timings->tWH_min;
897 
898 	/* T7 <=> tALS */
899 	if (timings->tALS_min > min_clk_period)
900 		min_clk_period = timings->tALS_min;
901 
902 	/* T8 <=> tDS */
903 	if (timings->tDS_min > min_clk_period)
904 		min_clk_period = timings->tDS_min;
905 
906 	/* T9 <=> tDH */
907 	if (timings->tDH_min > min_clk_period)
908 		min_clk_period = timings->tDH_min;
909 
910 	/* T10 <=> tRR */
911 	if (timings->tRR_min > (min_clk_period * 3))
912 		min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
913 
914 	/* T11 <=> tALH */
915 	if (timings->tALH_min > min_clk_period)
916 		min_clk_period = timings->tALH_min;
917 
918 	/* T12 <=> tRP */
919 	if (timings->tRP_min > min_clk_period)
920 		min_clk_period = timings->tRP_min;
921 
922 	/* T13 <=> tREH */
923 	if (timings->tREH_min > min_clk_period)
924 		min_clk_period = timings->tREH_min;
925 
926 	/* T14 <=> tRC */
927 	if (timings->tRC_min > (min_clk_period * 2))
928 		min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
929 
930 	/* T15 <=> tWC */
931 	if (timings->tWC_min > (min_clk_period * 2))
932 		min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
933 
934 	/* T16 - T19 + tCAD */
935 	tWB  = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
936 					min_clk_period);
937 	if (tWB < 0) {
938 		dev_err(nfc->dev, "unsupported tWB\n");
939 		return tWB;
940 	}
941 
942 	tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
943 	if (tADL > 3) {
944 		dev_err(nfc->dev, "unsupported tADL\n");
945 		return -EINVAL;
946 	}
947 
948 	tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
949 	if (tWHR > 3) {
950 		dev_err(nfc->dev, "unsupported tWHR\n");
951 		return -EINVAL;
952 	}
953 
954 	tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
955 					min_clk_period);
956 	if (tRHW < 0) {
957 		dev_err(nfc->dev, "unsupported tRHW\n");
958 		return tRHW;
959 	}
960 
961 	/*
962 	 * TODO: according to ONFI specs this value only applies for DDR NAND,
963 	 * but Allwinner seems to set this to 0x7. Mimic them for now.
964 	 */
965 	tCAD = 0x7;
966 
967 	/* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
968 	chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
969 
970 	/*
971 	 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
972 	 * output cycle timings shall be used if the host drives tRC less than
973 	 * 30 ns.
974 	 */
975 	chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0;
976 
977 	/* Convert min_clk_period from picoseconds to nanoseconds */
978 	min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
979 
980 	/*
981 	 * Convert min_clk_period into a clk frequency, then get the
982 	 * appropriate rate for the NAND controller IP given this formula
983 	 * (specified in the datasheet):
984 	 * nand clk_rate = 2 * min_clk_rate
985 	 */
986 	chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period;
987 
988 	return 0;
989 }
990 
sunxi_nand_chip_init_timings(struct sunxi_nand_chip * chip,struct device_node * np)991 static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
992 					struct device_node *np)
993 {
994 	const struct nand_sdr_timings *timings;
995 	int ret;
996 	int mode;
997 
998 	mode = onfi_get_async_timing_mode(&chip->nand);
999 	if (mode == ONFI_TIMING_MODE_UNKNOWN) {
1000 		mode = chip->nand.onfi_timing_mode_default;
1001 	} else {
1002 		uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
1003 		int i;
1004 
1005 		mode = fls(mode) - 1;
1006 		if (mode < 0)
1007 			mode = 0;
1008 
1009 		feature[0] = mode;
1010 		for (i = 0; i < chip->nsels; i++) {
1011 			chip->nand.select_chip(&chip->mtd, i);
1012 			ret = chip->nand.onfi_set_features(&chip->mtd,
1013 						&chip->nand,
1014 						ONFI_FEATURE_ADDR_TIMING_MODE,
1015 						feature);
1016 			chip->nand.select_chip(&chip->mtd, -1);
1017 			if (ret)
1018 				return ret;
1019 		}
1020 	}
1021 
1022 	timings = onfi_async_timing_mode_to_sdr_timings(mode);
1023 	if (IS_ERR(timings))
1024 		return PTR_ERR(timings);
1025 
1026 	return sunxi_nand_chip_set_timings(chip, timings);
1027 }
1028 
sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info * mtd,struct nand_ecc_ctrl * ecc,struct device_node * np)1029 static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
1030 					      struct nand_ecc_ctrl *ecc,
1031 					      struct device_node *np)
1032 {
1033 	static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
1034 	struct nand_chip *nand = mtd->priv;
1035 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
1036 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
1037 	struct sunxi_nand_hw_ecc *data;
1038 	struct nand_ecclayout *layout;
1039 	int nsectors;
1040 	int ret;
1041 	int i;
1042 
1043 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1044 	if (!data)
1045 		return -ENOMEM;
1046 
1047 	/* Add ECC info retrieval from DT */
1048 	for (i = 0; i < ARRAY_SIZE(strengths); i++) {
1049 		if (ecc->strength <= strengths[i])
1050 			break;
1051 	}
1052 
1053 	if (i >= ARRAY_SIZE(strengths)) {
1054 		dev_err(nfc->dev, "unsupported strength\n");
1055 		ret = -ENOTSUPP;
1056 		goto err;
1057 	}
1058 
1059 	data->mode = i;
1060 
1061 	/* HW ECC always request ECC bytes for 1024 bytes blocks */
1062 	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
1063 
1064 	/* HW ECC always work with even numbers of ECC bytes */
1065 	ecc->bytes = ALIGN(ecc->bytes, 2);
1066 
1067 	layout = &data->layout;
1068 	nsectors = mtd->writesize / ecc->size;
1069 
1070 	if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
1071 		ret = -EINVAL;
1072 		goto err;
1073 	}
1074 
1075 	layout->eccbytes = (ecc->bytes * nsectors);
1076 
1077 	ecc->layout = layout;
1078 	ecc->priv = data;
1079 
1080 	return 0;
1081 
1082 err:
1083 	kfree(data);
1084 
1085 	return ret;
1086 }
1087 
sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl * ecc)1088 static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
1089 {
1090 	kfree(ecc->priv);
1091 }
1092 
sunxi_nand_hw_ecc_ctrl_init(struct mtd_info * mtd,struct nand_ecc_ctrl * ecc,struct device_node * np)1093 static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
1094 				       struct nand_ecc_ctrl *ecc,
1095 				       struct device_node *np)
1096 {
1097 	struct nand_ecclayout *layout;
1098 	int nsectors;
1099 	int i, j;
1100 	int ret;
1101 
1102 	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1103 	if (ret)
1104 		return ret;
1105 
1106 	ecc->read_page = sunxi_nfc_hw_ecc_read_page;
1107 	ecc->write_page = sunxi_nfc_hw_ecc_write_page;
1108 	layout = ecc->layout;
1109 	nsectors = mtd->writesize / ecc->size;
1110 
1111 	for (i = 0; i < nsectors; i++) {
1112 		if (i) {
1113 			layout->oobfree[i].offset =
1114 				layout->oobfree[i - 1].offset +
1115 				layout->oobfree[i - 1].length +
1116 				ecc->bytes;
1117 			layout->oobfree[i].length = 4;
1118 		} else {
1119 			/*
1120 			 * The first 2 bytes are used for BB markers, hence we
1121 			 * only have 2 bytes available in the first user data
1122 			 * section.
1123 			 */
1124 			layout->oobfree[i].length = 2;
1125 			layout->oobfree[i].offset = 2;
1126 		}
1127 
1128 		for (j = 0; j < ecc->bytes; j++)
1129 			layout->eccpos[(ecc->bytes * i) + j] =
1130 					layout->oobfree[i].offset +
1131 					layout->oobfree[i].length + j;
1132 	}
1133 
1134 	if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
1135 		layout->oobfree[nsectors].offset =
1136 				layout->oobfree[nsectors - 1].offset +
1137 				layout->oobfree[nsectors - 1].length +
1138 				ecc->bytes;
1139 		layout->oobfree[nsectors].length = mtd->oobsize -
1140 				((ecc->bytes + 4) * nsectors);
1141 	}
1142 
1143 	return 0;
1144 }
1145 
sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info * mtd,struct nand_ecc_ctrl * ecc,struct device_node * np)1146 static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
1147 						struct nand_ecc_ctrl *ecc,
1148 						struct device_node *np)
1149 {
1150 	struct nand_ecclayout *layout;
1151 	int nsectors;
1152 	int i;
1153 	int ret;
1154 
1155 	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1156 	if (ret)
1157 		return ret;
1158 
1159 	ecc->prepad = 4;
1160 	ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
1161 	ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
1162 
1163 	layout = ecc->layout;
1164 	nsectors = mtd->writesize / ecc->size;
1165 
1166 	for (i = 0; i < (ecc->bytes * nsectors); i++)
1167 		layout->eccpos[i] = i;
1168 
1169 	layout->oobfree[0].length = mtd->oobsize - i;
1170 	layout->oobfree[0].offset = i;
1171 
1172 	return 0;
1173 }
1174 
sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl * ecc)1175 static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
1176 {
1177 	switch (ecc->mode) {
1178 	case NAND_ECC_HW:
1179 	case NAND_ECC_HW_SYNDROME:
1180 		sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
1181 		break;
1182 	case NAND_ECC_NONE:
1183 		kfree(ecc->layout);
1184 	default:
1185 		break;
1186 	}
1187 }
1188 
sunxi_nand_ecc_init(struct mtd_info * mtd,struct nand_ecc_ctrl * ecc,struct device_node * np)1189 static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
1190 			       struct device_node *np)
1191 {
1192 	struct nand_chip *nand = mtd->priv;
1193 	int ret;
1194 
1195 	if (!ecc->size) {
1196 		ecc->size = nand->ecc_step_ds;
1197 		ecc->strength = nand->ecc_strength_ds;
1198 	}
1199 
1200 	if (!ecc->size || !ecc->strength)
1201 		return -EINVAL;
1202 
1203 	switch (ecc->mode) {
1204 	case NAND_ECC_SOFT_BCH:
1205 		break;
1206 	case NAND_ECC_HW:
1207 		ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
1208 		if (ret)
1209 			return ret;
1210 		break;
1211 	case NAND_ECC_HW_SYNDROME:
1212 		ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
1213 		if (ret)
1214 			return ret;
1215 		break;
1216 	case NAND_ECC_NONE:
1217 		ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
1218 		if (!ecc->layout)
1219 			return -ENOMEM;
1220 		ecc->layout->oobfree[0].length = mtd->oobsize;
1221 	case NAND_ECC_SOFT:
1222 		break;
1223 	default:
1224 		return -EINVAL;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
sunxi_nand_chip_init(struct device * dev,struct sunxi_nfc * nfc,struct device_node * np)1230 static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
1231 				struct device_node *np)
1232 {
1233 	const struct nand_sdr_timings *timings;
1234 	struct sunxi_nand_chip *chip;
1235 	struct mtd_part_parser_data ppdata;
1236 	struct mtd_info *mtd;
1237 	struct nand_chip *nand;
1238 	int nsels;
1239 	int ret;
1240 	int i;
1241 	u32 tmp;
1242 
1243 	if (!of_get_property(np, "reg", &nsels))
1244 		return -EINVAL;
1245 
1246 	nsels /= sizeof(u32);
1247 	if (!nsels) {
1248 		dev_err(dev, "invalid reg property size\n");
1249 		return -EINVAL;
1250 	}
1251 
1252 	chip = devm_kzalloc(dev,
1253 			    sizeof(*chip) +
1254 			    (nsels * sizeof(struct sunxi_nand_chip_sel)),
1255 			    GFP_KERNEL);
1256 	if (!chip) {
1257 		dev_err(dev, "could not allocate chip\n");
1258 		return -ENOMEM;
1259 	}
1260 
1261 	chip->nsels = nsels;
1262 	chip->selected = -1;
1263 
1264 	for (i = 0; i < nsels; i++) {
1265 		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1266 		if (ret) {
1267 			dev_err(dev, "could not retrieve reg property: %d\n",
1268 				ret);
1269 			return ret;
1270 		}
1271 
1272 		if (tmp > NFC_MAX_CS) {
1273 			dev_err(dev,
1274 				"invalid reg value: %u (max CS = 7)\n",
1275 				tmp);
1276 			return -EINVAL;
1277 		}
1278 
1279 		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1280 			dev_err(dev, "CS %d already assigned\n", tmp);
1281 			return -EINVAL;
1282 		}
1283 
1284 		chip->sels[i].cs = tmp;
1285 
1286 		if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
1287 		    tmp < 2) {
1288 			chip->sels[i].rb.type = RB_NATIVE;
1289 			chip->sels[i].rb.info.nativeid = tmp;
1290 		} else {
1291 			ret = of_get_named_gpio(np, "rb-gpios", i);
1292 			if (ret >= 0) {
1293 				tmp = ret;
1294 				chip->sels[i].rb.type = RB_GPIO;
1295 				chip->sels[i].rb.info.gpio = tmp;
1296 				ret = devm_gpio_request(dev, tmp, "nand-rb");
1297 				if (ret)
1298 					return ret;
1299 
1300 				ret = gpio_direction_input(tmp);
1301 				if (ret)
1302 					return ret;
1303 			} else {
1304 				chip->sels[i].rb.type = RB_NONE;
1305 			}
1306 		}
1307 	}
1308 
1309 	timings = onfi_async_timing_mode_to_sdr_timings(0);
1310 	if (IS_ERR(timings)) {
1311 		ret = PTR_ERR(timings);
1312 		dev_err(dev,
1313 			"could not retrieve timings for ONFI mode 0: %d\n",
1314 			ret);
1315 		return ret;
1316 	}
1317 
1318 	ret = sunxi_nand_chip_set_timings(chip, timings);
1319 	if (ret) {
1320 		dev_err(dev, "could not configure chip timings: %d\n", ret);
1321 		return ret;
1322 	}
1323 
1324 	nand = &chip->nand;
1325 	/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
1326 	nand->chip_delay = 200;
1327 	nand->controller = &nfc->controller;
1328 	/*
1329 	 * Set the ECC mode to the default value in case nothing is specified
1330 	 * in the DT.
1331 	 */
1332 	nand->ecc.mode = NAND_ECC_HW;
1333 	nand->flash_node = np;
1334 	nand->select_chip = sunxi_nfc_select_chip;
1335 	nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
1336 	nand->read_buf = sunxi_nfc_read_buf;
1337 	nand->write_buf = sunxi_nfc_write_buf;
1338 	nand->read_byte = sunxi_nfc_read_byte;
1339 
1340 	mtd = &chip->mtd;
1341 	mtd->dev.parent = dev;
1342 	mtd->priv = nand;
1343 
1344 	ret = nand_scan_ident(mtd, nsels, NULL);
1345 	if (ret)
1346 		return ret;
1347 
1348 	if (nand->bbt_options & NAND_BBT_USE_FLASH)
1349 		nand->bbt_options |= NAND_BBT_NO_OOB;
1350 
1351 	ret = sunxi_nand_chip_init_timings(chip, np);
1352 	if (ret) {
1353 		dev_err(dev, "could not configure chip timings: %d\n", ret);
1354 		return ret;
1355 	}
1356 
1357 	ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
1358 	if (ret) {
1359 		dev_err(dev, "ECC init failed: %d\n", ret);
1360 		return ret;
1361 	}
1362 
1363 	ret = nand_scan_tail(mtd);
1364 	if (ret) {
1365 		dev_err(dev, "nand_scan_tail failed: %d\n", ret);
1366 		return ret;
1367 	}
1368 
1369 	ppdata.of_node = np;
1370 	ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1371 	if (ret) {
1372 		dev_err(dev, "failed to register mtd device: %d\n", ret);
1373 		nand_release(mtd);
1374 		return ret;
1375 	}
1376 
1377 	list_add_tail(&chip->node, &nfc->chips);
1378 
1379 	return 0;
1380 }
1381 
sunxi_nand_chips_init(struct device * dev,struct sunxi_nfc * nfc)1382 static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
1383 {
1384 	struct device_node *np = dev->of_node;
1385 	struct device_node *nand_np;
1386 	int nchips = of_get_child_count(np);
1387 	int ret;
1388 
1389 	if (nchips > 8) {
1390 		dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
1391 		return -EINVAL;
1392 	}
1393 
1394 	for_each_child_of_node(np, nand_np) {
1395 		ret = sunxi_nand_chip_init(dev, nfc, nand_np);
1396 		if (ret)
1397 			return ret;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
sunxi_nand_chips_cleanup(struct sunxi_nfc * nfc)1403 static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
1404 {
1405 	struct sunxi_nand_chip *chip;
1406 
1407 	while (!list_empty(&nfc->chips)) {
1408 		chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
1409 					node);
1410 		nand_release(&chip->mtd);
1411 		sunxi_nand_ecc_cleanup(&chip->nand.ecc);
1412 		list_del(&chip->node);
1413 	}
1414 }
1415 
sunxi_nfc_probe(struct platform_device * pdev)1416 static int sunxi_nfc_probe(struct platform_device *pdev)
1417 {
1418 	struct device *dev = &pdev->dev;
1419 	struct resource *r;
1420 	struct sunxi_nfc *nfc;
1421 	int irq;
1422 	int ret;
1423 
1424 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1425 	if (!nfc)
1426 		return -ENOMEM;
1427 
1428 	nfc->dev = dev;
1429 	spin_lock_init(&nfc->controller.lock);
1430 	init_waitqueue_head(&nfc->controller.wq);
1431 	INIT_LIST_HEAD(&nfc->chips);
1432 
1433 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1434 	nfc->regs = devm_ioremap_resource(dev, r);
1435 	if (IS_ERR(nfc->regs))
1436 		return PTR_ERR(nfc->regs);
1437 
1438 	irq = platform_get_irq(pdev, 0);
1439 	if (irq < 0) {
1440 		dev_err(dev, "failed to retrieve irq\n");
1441 		return irq;
1442 	}
1443 
1444 	nfc->ahb_clk = devm_clk_get(dev, "ahb");
1445 	if (IS_ERR(nfc->ahb_clk)) {
1446 		dev_err(dev, "failed to retrieve ahb clk\n");
1447 		return PTR_ERR(nfc->ahb_clk);
1448 	}
1449 
1450 	ret = clk_prepare_enable(nfc->ahb_clk);
1451 	if (ret)
1452 		return ret;
1453 
1454 	nfc->mod_clk = devm_clk_get(dev, "mod");
1455 	if (IS_ERR(nfc->mod_clk)) {
1456 		dev_err(dev, "failed to retrieve mod clk\n");
1457 		ret = PTR_ERR(nfc->mod_clk);
1458 		goto out_ahb_clk_unprepare;
1459 	}
1460 
1461 	ret = clk_prepare_enable(nfc->mod_clk);
1462 	if (ret)
1463 		goto out_ahb_clk_unprepare;
1464 
1465 	ret = sunxi_nfc_rst(nfc);
1466 	if (ret)
1467 		goto out_mod_clk_unprepare;
1468 
1469 	writel(0, nfc->regs + NFC_REG_INT);
1470 	ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
1471 			       0, "sunxi-nand", nfc);
1472 	if (ret)
1473 		goto out_mod_clk_unprepare;
1474 
1475 	platform_set_drvdata(pdev, nfc);
1476 
1477 	ret = sunxi_nand_chips_init(dev, nfc);
1478 	if (ret) {
1479 		dev_err(dev, "failed to init nand chips\n");
1480 		goto out_mod_clk_unprepare;
1481 	}
1482 
1483 	return 0;
1484 
1485 out_mod_clk_unprepare:
1486 	clk_disable_unprepare(nfc->mod_clk);
1487 out_ahb_clk_unprepare:
1488 	clk_disable_unprepare(nfc->ahb_clk);
1489 
1490 	return ret;
1491 }
1492 
sunxi_nfc_remove(struct platform_device * pdev)1493 static int sunxi_nfc_remove(struct platform_device *pdev)
1494 {
1495 	struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
1496 
1497 	sunxi_nand_chips_cleanup(nfc);
1498 
1499 	return 0;
1500 }
1501 
1502 static const struct of_device_id sunxi_nfc_ids[] = {
1503 	{ .compatible = "allwinner,sun4i-a10-nand" },
1504 	{ /* sentinel */ }
1505 };
1506 MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
1507 
1508 static struct platform_driver sunxi_nfc_driver = {
1509 	.driver = {
1510 		.name = "sunxi_nand",
1511 		.of_match_table = sunxi_nfc_ids,
1512 	},
1513 	.probe = sunxi_nfc_probe,
1514 	.remove = sunxi_nfc_remove,
1515 };
1516 module_platform_driver(sunxi_nfc_driver);
1517 
1518 MODULE_LICENSE("GPL v2");
1519 MODULE_AUTHOR("Boris BREZILLON");
1520 MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
1521 MODULE_ALIAS("platform:sunxi_nand");
1522