1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt2500usb
21 	Abstract: rt2500usb device specific routines.
22 	Supported chipsets: RT2570.
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
31 
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
35 
36 /*
37  * Allow hardware encryption to be disabled.
38  */
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
42 
43 /*
44  * Register access.
45  * All access to the CSR registers will go through the methods
46  * rt2500usb_register_read and rt2500usb_register_write.
47  * BBP and RF register require indirect register access,
48  * and use the CSR registers BBPCSR and RFCSR to achieve this.
49  * These indirect registers work with busy bits,
50  * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51  * the register while taking a REGISTER_BUSY_DELAY us delay
52  * between each attampt. When the busy bit is still set at that time,
53  * the access attempt is considered to have failed,
54  * and we will print an error.
55  * If the csr_mutex is already held then the _lock variants must
56  * be used instead.
57  */
rt2500usb_register_read(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u16 * value)58 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59 					   const unsigned int offset,
60 					   u16 *value)
61 {
62 	__le16 reg;
63 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
64 				      USB_VENDOR_REQUEST_IN, offset,
65 				      &reg, sizeof(reg));
66 	*value = le16_to_cpu(reg);
67 }
68 
rt2500usb_register_read_lock(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u16 * value)69 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
70 						const unsigned int offset,
71 						u16 *value)
72 {
73 	__le16 reg;
74 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75 				       USB_VENDOR_REQUEST_IN, offset,
76 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
77 	*value = le16_to_cpu(reg);
78 }
79 
rt2500usb_register_multiread(struct rt2x00_dev * rt2x00dev,const unsigned int offset,void * value,const u16 length)80 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81 						const unsigned int offset,
82 						void *value, const u16 length)
83 {
84 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85 				      USB_VENDOR_REQUEST_IN, offset,
86 				      value, length);
87 }
88 
rt2500usb_register_write(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u16 value)89 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
90 					    const unsigned int offset,
91 					    u16 value)
92 {
93 	__le16 reg = cpu_to_le16(value);
94 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
95 				      USB_VENDOR_REQUEST_OUT, offset,
96 				      &reg, sizeof(reg));
97 }
98 
rt2500usb_register_write_lock(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u16 value)99 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
100 						 const unsigned int offset,
101 						 u16 value)
102 {
103 	__le16 reg = cpu_to_le16(value);
104 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
105 				       USB_VENDOR_REQUEST_OUT, offset,
106 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
107 }
108 
rt2500usb_register_multiwrite(struct rt2x00_dev * rt2x00dev,const unsigned int offset,void * value,const u16 length)109 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
110 						 const unsigned int offset,
111 						 void *value, const u16 length)
112 {
113 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
114 				      USB_VENDOR_REQUEST_OUT, offset,
115 				      value, length);
116 }
117 
rt2500usb_regbusy_read(struct rt2x00_dev * rt2x00dev,const unsigned int offset,struct rt2x00_field16 field,u16 * reg)118 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
119 				  const unsigned int offset,
120 				  struct rt2x00_field16 field,
121 				  u16 *reg)
122 {
123 	unsigned int i;
124 
125 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
126 		rt2500usb_register_read_lock(rt2x00dev, offset, reg);
127 		if (!rt2x00_get_field16(*reg, field))
128 			return 1;
129 		udelay(REGISTER_BUSY_DELAY);
130 	}
131 
132 	rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
133 		   offset, *reg);
134 	*reg = ~0;
135 
136 	return 0;
137 }
138 
139 #define WAIT_FOR_BBP(__dev, __reg) \
140 	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
141 #define WAIT_FOR_RF(__dev, __reg) \
142 	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
143 
rt2500usb_bbp_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u8 value)144 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
145 				const unsigned int word, const u8 value)
146 {
147 	u16 reg;
148 
149 	mutex_lock(&rt2x00dev->csr_mutex);
150 
151 	/*
152 	 * Wait until the BBP becomes available, afterwards we
153 	 * can safely write the new data into the register.
154 	 */
155 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
156 		reg = 0;
157 		rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
158 		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
159 		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
160 
161 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
162 	}
163 
164 	mutex_unlock(&rt2x00dev->csr_mutex);
165 }
166 
rt2500usb_bbp_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u8 * value)167 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
168 			       const unsigned int word, u8 *value)
169 {
170 	u16 reg;
171 
172 	mutex_lock(&rt2x00dev->csr_mutex);
173 
174 	/*
175 	 * Wait until the BBP becomes available, afterwards we
176 	 * can safely write the read request into the register.
177 	 * After the data has been written, we wait until hardware
178 	 * returns the correct value, if at any time the register
179 	 * doesn't become available in time, reg will be 0xffffffff
180 	 * which means we return 0xff to the caller.
181 	 */
182 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
183 		reg = 0;
184 		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
185 		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
186 
187 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
188 
189 		if (WAIT_FOR_BBP(rt2x00dev, &reg))
190 			rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
191 	}
192 
193 	*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
194 
195 	mutex_unlock(&rt2x00dev->csr_mutex);
196 }
197 
rt2500usb_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u32 value)198 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
199 			       const unsigned int word, const u32 value)
200 {
201 	u16 reg;
202 
203 	mutex_lock(&rt2x00dev->csr_mutex);
204 
205 	/*
206 	 * Wait until the RF becomes available, afterwards we
207 	 * can safely write the new data into the register.
208 	 */
209 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
210 		reg = 0;
211 		rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
212 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
213 
214 		reg = 0;
215 		rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
216 		rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
217 		rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
218 		rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
219 
220 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
221 		rt2x00_rf_write(rt2x00dev, word, value);
222 	}
223 
224 	mutex_unlock(&rt2x00dev->csr_mutex);
225 }
226 
227 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
_rt2500usb_register_read(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u32 * value)228 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
229 				     const unsigned int offset,
230 				     u32 *value)
231 {
232 	rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
233 }
234 
_rt2500usb_register_write(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u32 value)235 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
236 				      const unsigned int offset,
237 				      u32 value)
238 {
239 	rt2500usb_register_write(rt2x00dev, offset, value);
240 }
241 
242 static const struct rt2x00debug rt2500usb_rt2x00debug = {
243 	.owner	= THIS_MODULE,
244 	.csr	= {
245 		.read		= _rt2500usb_register_read,
246 		.write		= _rt2500usb_register_write,
247 		.flags		= RT2X00DEBUGFS_OFFSET,
248 		.word_base	= CSR_REG_BASE,
249 		.word_size	= sizeof(u16),
250 		.word_count	= CSR_REG_SIZE / sizeof(u16),
251 	},
252 	.eeprom	= {
253 		.read		= rt2x00_eeprom_read,
254 		.write		= rt2x00_eeprom_write,
255 		.word_base	= EEPROM_BASE,
256 		.word_size	= sizeof(u16),
257 		.word_count	= EEPROM_SIZE / sizeof(u16),
258 	},
259 	.bbp	= {
260 		.read		= rt2500usb_bbp_read,
261 		.write		= rt2500usb_bbp_write,
262 		.word_base	= BBP_BASE,
263 		.word_size	= sizeof(u8),
264 		.word_count	= BBP_SIZE / sizeof(u8),
265 	},
266 	.rf	= {
267 		.read		= rt2x00_rf_read,
268 		.write		= rt2500usb_rf_write,
269 		.word_base	= RF_BASE,
270 		.word_size	= sizeof(u32),
271 		.word_count	= RF_SIZE / sizeof(u32),
272 	},
273 };
274 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
275 
rt2500usb_rfkill_poll(struct rt2x00_dev * rt2x00dev)276 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
277 {
278 	u16 reg;
279 
280 	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
281 	return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
282 }
283 
284 #ifdef CONFIG_RT2X00_LIB_LEDS
rt2500usb_brightness_set(struct led_classdev * led_cdev,enum led_brightness brightness)285 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
286 				     enum led_brightness brightness)
287 {
288 	struct rt2x00_led *led =
289 	    container_of(led_cdev, struct rt2x00_led, led_dev);
290 	unsigned int enabled = brightness != LED_OFF;
291 	u16 reg;
292 
293 	rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
294 
295 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
296 		rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
297 	else if (led->type == LED_TYPE_ACTIVITY)
298 		rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
299 
300 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
301 }
302 
rt2500usb_blink_set(struct led_classdev * led_cdev,unsigned long * delay_on,unsigned long * delay_off)303 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
304 			       unsigned long *delay_on,
305 			       unsigned long *delay_off)
306 {
307 	struct rt2x00_led *led =
308 	    container_of(led_cdev, struct rt2x00_led, led_dev);
309 	u16 reg;
310 
311 	rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
312 	rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
313 	rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
314 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
315 
316 	return 0;
317 }
318 
rt2500usb_init_led(struct rt2x00_dev * rt2x00dev,struct rt2x00_led * led,enum led_type type)319 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
320 			       struct rt2x00_led *led,
321 			       enum led_type type)
322 {
323 	led->rt2x00dev = rt2x00dev;
324 	led->type = type;
325 	led->led_dev.brightness_set = rt2500usb_brightness_set;
326 	led->led_dev.blink_set = rt2500usb_blink_set;
327 	led->flags = LED_INITIALIZED;
328 }
329 #endif /* CONFIG_RT2X00_LIB_LEDS */
330 
331 /*
332  * Configuration handlers.
333  */
334 
335 /*
336  * rt2500usb does not differentiate between shared and pairwise
337  * keys, so we should use the same function for both key types.
338  */
rt2500usb_config_key(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_crypto * crypto,struct ieee80211_key_conf * key)339 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
340 				struct rt2x00lib_crypto *crypto,
341 				struct ieee80211_key_conf *key)
342 {
343 	u32 mask;
344 	u16 reg;
345 	enum cipher curr_cipher;
346 
347 	if (crypto->cmd == SET_KEY) {
348 		/*
349 		 * Disallow to set WEP key other than with index 0,
350 		 * it is known that not work at least on some hardware.
351 		 * SW crypto will be used in that case.
352 		 */
353 		if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
354 		     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
355 		    key->keyidx != 0)
356 			return -EOPNOTSUPP;
357 
358 		/*
359 		 * Pairwise key will always be entry 0, but this
360 		 * could collide with a shared key on the same
361 		 * position...
362 		 */
363 		mask = TXRX_CSR0_KEY_ID.bit_mask;
364 
365 		rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
366 		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
367 		reg &= mask;
368 
369 		if (reg && reg == mask)
370 			return -ENOSPC;
371 
372 		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
373 
374 		key->hw_key_idx += reg ? ffz(reg) : 0;
375 		/*
376 		 * Hardware requires that all keys use the same cipher
377 		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
378 		 * If this is not the first key, compare the cipher with the
379 		 * first one and fall back to SW crypto if not the same.
380 		 */
381 		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
382 			return -EOPNOTSUPP;
383 
384 		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
385 					      crypto->key, sizeof(crypto->key));
386 
387 		/*
388 		 * The driver does not support the IV/EIV generation
389 		 * in hardware. However it demands the data to be provided
390 		 * both separately as well as inside the frame.
391 		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
392 		 * to ensure rt2x00lib will not strip the data from the
393 		 * frame after the copy, now we must tell mac80211
394 		 * to generate the IV/EIV data.
395 		 */
396 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
397 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
398 	}
399 
400 	/*
401 	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
402 	 * a particular key is valid.
403 	 */
404 	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
405 	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
406 	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
407 
408 	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
409 	if (crypto->cmd == SET_KEY)
410 		mask |= 1 << key->hw_key_idx;
411 	else if (crypto->cmd == DISABLE_KEY)
412 		mask &= ~(1 << key->hw_key_idx);
413 	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
414 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
415 
416 	return 0;
417 }
418 
rt2500usb_config_filter(struct rt2x00_dev * rt2x00dev,const unsigned int filter_flags)419 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
420 				    const unsigned int filter_flags)
421 {
422 	u16 reg;
423 
424 	/*
425 	 * Start configuration steps.
426 	 * Note that the version error will always be dropped
427 	 * and broadcast frames will always be accepted since
428 	 * there is no filter for it at this time.
429 	 */
430 	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
431 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
432 			   !(filter_flags & FIF_FCSFAIL));
433 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
434 			   !(filter_flags & FIF_PLCPFAIL));
435 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
436 			   !(filter_flags & FIF_CONTROL));
437 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME, 1);
438 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
439 			   !rt2x00dev->intf_ap_count);
440 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
441 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
442 			   !(filter_flags & FIF_ALLMULTI));
443 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
444 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
445 }
446 
rt2500usb_config_intf(struct rt2x00_dev * rt2x00dev,struct rt2x00_intf * intf,struct rt2x00intf_conf * conf,const unsigned int flags)447 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
448 				  struct rt2x00_intf *intf,
449 				  struct rt2x00intf_conf *conf,
450 				  const unsigned int flags)
451 {
452 	unsigned int bcn_preload;
453 	u16 reg;
454 
455 	if (flags & CONFIG_UPDATE_TYPE) {
456 		/*
457 		 * Enable beacon config
458 		 */
459 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
460 		rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
461 		rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
462 		rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
463 				   2 * (conf->type != NL80211_IFTYPE_STATION));
464 		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
465 
466 		/*
467 		 * Enable synchronisation.
468 		 */
469 		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
470 		rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
471 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
472 
473 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
474 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
475 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
476 	}
477 
478 	if (flags & CONFIG_UPDATE_MAC)
479 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
480 					      (3 * sizeof(__le16)));
481 
482 	if (flags & CONFIG_UPDATE_BSSID)
483 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
484 					      (3 * sizeof(__le16)));
485 }
486 
rt2500usb_config_erp(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_erp * erp,u32 changed)487 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
488 				 struct rt2x00lib_erp *erp,
489 				 u32 changed)
490 {
491 	u16 reg;
492 
493 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
494 		rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
495 		rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
496 				   !!erp->short_preamble);
497 		rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
498 	}
499 
500 	if (changed & BSS_CHANGED_BASIC_RATES)
501 		rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
502 					 erp->basic_rates);
503 
504 	if (changed & BSS_CHANGED_BEACON_INT) {
505 		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
506 		rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
507 				   erp->beacon_int * 4);
508 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
509 	}
510 
511 	if (changed & BSS_CHANGED_ERP_SLOT) {
512 		rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
513 		rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
514 		rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
515 	}
516 }
517 
rt2500usb_config_ant(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)518 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
519 				 struct antenna_setup *ant)
520 {
521 	u8 r2;
522 	u8 r14;
523 	u16 csr5;
524 	u16 csr6;
525 
526 	/*
527 	 * We should never come here because rt2x00lib is supposed
528 	 * to catch this and send us the correct antenna explicitely.
529 	 */
530 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
531 	       ant->tx == ANTENNA_SW_DIVERSITY);
532 
533 	rt2500usb_bbp_read(rt2x00dev, 2, &r2);
534 	rt2500usb_bbp_read(rt2x00dev, 14, &r14);
535 	rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
536 	rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
537 
538 	/*
539 	 * Configure the TX antenna.
540 	 */
541 	switch (ant->tx) {
542 	case ANTENNA_HW_DIVERSITY:
543 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
544 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
545 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
546 		break;
547 	case ANTENNA_A:
548 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
549 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
550 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
551 		break;
552 	case ANTENNA_B:
553 	default:
554 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
555 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
556 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
557 		break;
558 	}
559 
560 	/*
561 	 * Configure the RX antenna.
562 	 */
563 	switch (ant->rx) {
564 	case ANTENNA_HW_DIVERSITY:
565 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
566 		break;
567 	case ANTENNA_A:
568 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
569 		break;
570 	case ANTENNA_B:
571 	default:
572 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
573 		break;
574 	}
575 
576 	/*
577 	 * RT2525E and RT5222 need to flip TX I/Q
578 	 */
579 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
580 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
581 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
582 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
583 
584 		/*
585 		 * RT2525E does not need RX I/Q Flip.
586 		 */
587 		if (rt2x00_rf(rt2x00dev, RF2525E))
588 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
589 	} else {
590 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
591 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
592 	}
593 
594 	rt2500usb_bbp_write(rt2x00dev, 2, r2);
595 	rt2500usb_bbp_write(rt2x00dev, 14, r14);
596 	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
597 	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
598 }
599 
rt2500usb_config_channel(struct rt2x00_dev * rt2x00dev,struct rf_channel * rf,const int txpower)600 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
601 				     struct rf_channel *rf, const int txpower)
602 {
603 	/*
604 	 * Set TXpower.
605 	 */
606 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
607 
608 	/*
609 	 * For RT2525E we should first set the channel to half band higher.
610 	 */
611 	if (rt2x00_rf(rt2x00dev, RF2525E)) {
612 		static const u32 vals[] = {
613 			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
614 			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
615 			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
616 			0x00000902, 0x00000906
617 		};
618 
619 		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
620 		if (rf->rf4)
621 			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
622 	}
623 
624 	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
625 	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
626 	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
627 	if (rf->rf4)
628 		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
629 }
630 
rt2500usb_config_txpower(struct rt2x00_dev * rt2x00dev,const int txpower)631 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
632 				     const int txpower)
633 {
634 	u32 rf3;
635 
636 	rt2x00_rf_read(rt2x00dev, 3, &rf3);
637 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
638 	rt2500usb_rf_write(rt2x00dev, 3, rf3);
639 }
640 
rt2500usb_config_ps(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)641 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
642 				struct rt2x00lib_conf *libconf)
643 {
644 	enum dev_state state =
645 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
646 		STATE_SLEEP : STATE_AWAKE;
647 	u16 reg;
648 
649 	if (state == STATE_SLEEP) {
650 		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
651 		rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
652 				   rt2x00dev->beacon_int - 20);
653 		rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
654 				   libconf->conf->listen_interval - 1);
655 
656 		/* We must first disable autowake before it can be enabled */
657 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
658 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
659 
660 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
661 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
662 	} else {
663 		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
664 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
665 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
666 	}
667 
668 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
669 }
670 
rt2500usb_config(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf,const unsigned int flags)671 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
672 			     struct rt2x00lib_conf *libconf,
673 			     const unsigned int flags)
674 {
675 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
676 		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
677 					 libconf->conf->power_level);
678 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
679 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
680 		rt2500usb_config_txpower(rt2x00dev,
681 					 libconf->conf->power_level);
682 	if (flags & IEEE80211_CONF_CHANGE_PS)
683 		rt2500usb_config_ps(rt2x00dev, libconf);
684 }
685 
686 /*
687  * Link tuning
688  */
rt2500usb_link_stats(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)689 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
690 				 struct link_qual *qual)
691 {
692 	u16 reg;
693 
694 	/*
695 	 * Update FCS error count from register.
696 	 */
697 	rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
698 	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
699 
700 	/*
701 	 * Update False CCA count from register.
702 	 */
703 	rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
704 	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
705 }
706 
rt2500usb_reset_tuner(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)707 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
708 				  struct link_qual *qual)
709 {
710 	u16 eeprom;
711 	u16 value;
712 
713 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
714 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
715 	rt2500usb_bbp_write(rt2x00dev, 24, value);
716 
717 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
718 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
719 	rt2500usb_bbp_write(rt2x00dev, 25, value);
720 
721 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
722 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
723 	rt2500usb_bbp_write(rt2x00dev, 61, value);
724 
725 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
726 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
727 	rt2500usb_bbp_write(rt2x00dev, 17, value);
728 
729 	qual->vgc_level = value;
730 }
731 
732 /*
733  * Queue handlers.
734  */
rt2500usb_start_queue(struct data_queue * queue)735 static void rt2500usb_start_queue(struct data_queue *queue)
736 {
737 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
738 	u16 reg;
739 
740 	switch (queue->qid) {
741 	case QID_RX:
742 		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
743 		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
744 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
745 		break;
746 	case QID_BEACON:
747 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
748 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
749 		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
750 		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
751 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
752 		break;
753 	default:
754 		break;
755 	}
756 }
757 
rt2500usb_stop_queue(struct data_queue * queue)758 static void rt2500usb_stop_queue(struct data_queue *queue)
759 {
760 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
761 	u16 reg;
762 
763 	switch (queue->qid) {
764 	case QID_RX:
765 		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
766 		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
767 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
768 		break;
769 	case QID_BEACON:
770 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
771 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
772 		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
773 		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
774 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
775 		break;
776 	default:
777 		break;
778 	}
779 }
780 
781 /*
782  * Initialization functions.
783  */
rt2500usb_init_registers(struct rt2x00_dev * rt2x00dev)784 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
785 {
786 	u16 reg;
787 
788 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
789 				    USB_MODE_TEST, REGISTER_TIMEOUT);
790 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
791 				    0x00f0, REGISTER_TIMEOUT);
792 
793 	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
794 	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
795 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
796 
797 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
798 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
799 
800 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
801 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
802 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
803 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
804 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
805 
806 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
807 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
808 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
809 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
810 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
811 
812 	rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
813 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
814 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
815 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
816 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
817 	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
818 
819 	rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
820 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
821 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
822 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
823 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
824 	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
825 
826 	rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
827 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
828 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
829 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
830 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
831 	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
832 
833 	rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
834 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
835 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
836 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
837 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
838 	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
839 
840 	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
841 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
842 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
843 	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
844 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
845 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
846 
847 	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
848 	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
849 
850 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
851 		return -EBUSY;
852 
853 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
854 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
855 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
856 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
857 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
858 
859 	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
860 		rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
861 		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
862 	} else {
863 		reg = 0;
864 		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
865 		rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
866 	}
867 	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
868 
869 	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
870 	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
871 	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
872 	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
873 
874 	rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
875 	rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
876 			   rt2x00dev->rx->data_size);
877 	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
878 
879 	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
880 	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
881 	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
882 	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
883 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
884 
885 	rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
886 	rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
887 	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
888 
889 	rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
890 	rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
891 	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
892 
893 	rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
894 	rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
895 	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
896 
897 	return 0;
898 }
899 
rt2500usb_wait_bbp_ready(struct rt2x00_dev * rt2x00dev)900 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
901 {
902 	unsigned int i;
903 	u8 value;
904 
905 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
906 		rt2500usb_bbp_read(rt2x00dev, 0, &value);
907 		if ((value != 0xff) && (value != 0x00))
908 			return 0;
909 		udelay(REGISTER_BUSY_DELAY);
910 	}
911 
912 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
913 	return -EACCES;
914 }
915 
rt2500usb_init_bbp(struct rt2x00_dev * rt2x00dev)916 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
917 {
918 	unsigned int i;
919 	u16 eeprom;
920 	u8 value;
921 	u8 reg_id;
922 
923 	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
924 		return -EACCES;
925 
926 	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
927 	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
928 	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
929 	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
930 	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
931 	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
932 	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
933 	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
934 	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
935 	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
936 	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
937 	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
938 	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
939 	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
940 	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
941 	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
942 	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
943 	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
944 	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
945 	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
946 	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
947 	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
948 	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
949 	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
950 	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
951 	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
952 	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
953 	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
954 	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
955 	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
956 	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
957 
958 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
959 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
960 
961 		if (eeprom != 0xffff && eeprom != 0x0000) {
962 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
963 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
964 			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
965 		}
966 	}
967 
968 	return 0;
969 }
970 
971 /*
972  * Device state switch handlers.
973  */
rt2500usb_enable_radio(struct rt2x00_dev * rt2x00dev)974 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
975 {
976 	/*
977 	 * Initialize all registers.
978 	 */
979 	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
980 		     rt2500usb_init_bbp(rt2x00dev)))
981 		return -EIO;
982 
983 	return 0;
984 }
985 
rt2500usb_disable_radio(struct rt2x00_dev * rt2x00dev)986 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
987 {
988 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
989 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
990 
991 	/*
992 	 * Disable synchronisation.
993 	 */
994 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
995 
996 	rt2x00usb_disable_radio(rt2x00dev);
997 }
998 
rt2500usb_set_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)999 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1000 			       enum dev_state state)
1001 {
1002 	u16 reg;
1003 	u16 reg2;
1004 	unsigned int i;
1005 	char put_to_sleep;
1006 	char bbp_state;
1007 	char rf_state;
1008 
1009 	put_to_sleep = (state != STATE_AWAKE);
1010 
1011 	reg = 0;
1012 	rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1013 	rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1014 	rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1015 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1016 	rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1017 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1018 
1019 	/*
1020 	 * Device is not guaranteed to be in the requested state yet.
1021 	 * We must wait until the register indicates that the
1022 	 * device has entered the correct state.
1023 	 */
1024 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1025 		rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1026 		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1027 		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1028 		if (bbp_state == state && rf_state == state)
1029 			return 0;
1030 		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1031 		msleep(30);
1032 	}
1033 
1034 	return -EBUSY;
1035 }
1036 
rt2500usb_set_device_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1037 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1038 				      enum dev_state state)
1039 {
1040 	int retval = 0;
1041 
1042 	switch (state) {
1043 	case STATE_RADIO_ON:
1044 		retval = rt2500usb_enable_radio(rt2x00dev);
1045 		break;
1046 	case STATE_RADIO_OFF:
1047 		rt2500usb_disable_radio(rt2x00dev);
1048 		break;
1049 	case STATE_RADIO_IRQ_ON:
1050 	case STATE_RADIO_IRQ_OFF:
1051 		/* No support, but no error either */
1052 		break;
1053 	case STATE_DEEP_SLEEP:
1054 	case STATE_SLEEP:
1055 	case STATE_STANDBY:
1056 	case STATE_AWAKE:
1057 		retval = rt2500usb_set_state(rt2x00dev, state);
1058 		break;
1059 	default:
1060 		retval = -ENOTSUPP;
1061 		break;
1062 	}
1063 
1064 	if (unlikely(retval))
1065 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1066 			   state, retval);
1067 
1068 	return retval;
1069 }
1070 
1071 /*
1072  * TX descriptor initialization
1073  */
rt2500usb_write_tx_desc(struct queue_entry * entry,struct txentry_desc * txdesc)1074 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1075 				    struct txentry_desc *txdesc)
1076 {
1077 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1078 	__le32 *txd = (__le32 *) entry->skb->data;
1079 	u32 word;
1080 
1081 	/*
1082 	 * Start writing the descriptor words.
1083 	 */
1084 	rt2x00_desc_read(txd, 0, &word);
1085 	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1086 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1087 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1088 	rt2x00_set_field32(&word, TXD_W0_ACK,
1089 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1090 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1091 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1092 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1093 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1094 	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1095 			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1096 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1097 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1098 	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1099 	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1100 	rt2x00_desc_write(txd, 0, word);
1101 
1102 	rt2x00_desc_read(txd, 1, &word);
1103 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1104 	rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1105 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1106 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1107 	rt2x00_desc_write(txd, 1, word);
1108 
1109 	rt2x00_desc_read(txd, 2, &word);
1110 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1111 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1112 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1113 			   txdesc->u.plcp.length_low);
1114 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1115 			   txdesc->u.plcp.length_high);
1116 	rt2x00_desc_write(txd, 2, word);
1117 
1118 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1119 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1120 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1121 	}
1122 
1123 	/*
1124 	 * Register descriptor details in skb frame descriptor.
1125 	 */
1126 	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1127 	skbdesc->desc = txd;
1128 	skbdesc->desc_len = TXD_DESC_SIZE;
1129 }
1130 
1131 /*
1132  * TX data initialization
1133  */
1134 static void rt2500usb_beacondone(struct urb *urb);
1135 
rt2500usb_write_beacon(struct queue_entry * entry,struct txentry_desc * txdesc)1136 static void rt2500usb_write_beacon(struct queue_entry *entry,
1137 				   struct txentry_desc *txdesc)
1138 {
1139 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1140 	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1141 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1142 	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1143 	int length;
1144 	u16 reg, reg0;
1145 
1146 	/*
1147 	 * Disable beaconing while we are reloading the beacon data,
1148 	 * otherwise we might be sending out invalid data.
1149 	 */
1150 	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1151 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1152 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1153 
1154 	/*
1155 	 * Add space for the descriptor in front of the skb.
1156 	 */
1157 	skb_push(entry->skb, TXD_DESC_SIZE);
1158 	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1159 
1160 	/*
1161 	 * Write the TX descriptor for the beacon.
1162 	 */
1163 	rt2500usb_write_tx_desc(entry, txdesc);
1164 
1165 	/*
1166 	 * Dump beacon to userspace through debugfs.
1167 	 */
1168 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1169 
1170 	/*
1171 	 * USB devices cannot blindly pass the skb->len as the
1172 	 * length of the data to usb_fill_bulk_urb. Pass the skb
1173 	 * to the driver to determine what the length should be.
1174 	 */
1175 	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1176 
1177 	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1178 			  entry->skb->data, length, rt2500usb_beacondone,
1179 			  entry);
1180 
1181 	/*
1182 	 * Second we need to create the guardian byte.
1183 	 * We only need a single byte, so lets recycle
1184 	 * the 'flags' field we are not using for beacons.
1185 	 */
1186 	bcn_priv->guardian_data = 0;
1187 	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1188 			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1189 			  entry);
1190 
1191 	/*
1192 	 * Send out the guardian byte.
1193 	 */
1194 	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1195 
1196 	/*
1197 	 * Enable beaconing again.
1198 	 */
1199 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1200 	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1201 	reg0 = reg;
1202 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1203 	/*
1204 	 * Beacon generation will fail initially.
1205 	 * To prevent this we need to change the TXRX_CSR19
1206 	 * register several times (reg0 is the same as reg
1207 	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1208 	 * and 1 in reg).
1209 	 */
1210 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1211 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1212 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1213 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1214 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1215 }
1216 
rt2500usb_get_tx_data_len(struct queue_entry * entry)1217 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1218 {
1219 	int length;
1220 
1221 	/*
1222 	 * The length _must_ be a multiple of 2,
1223 	 * but it must _not_ be a multiple of the USB packet size.
1224 	 */
1225 	length = roundup(entry->skb->len, 2);
1226 	length += (2 * !(length % entry->queue->usb_maxpacket));
1227 
1228 	return length;
1229 }
1230 
1231 /*
1232  * RX control handlers
1233  */
rt2500usb_fill_rxdone(struct queue_entry * entry,struct rxdone_entry_desc * rxdesc)1234 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1235 				  struct rxdone_entry_desc *rxdesc)
1236 {
1237 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1238 	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1239 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1240 	__le32 *rxd =
1241 	    (__le32 *)(entry->skb->data +
1242 		       (entry_priv->urb->actual_length -
1243 			entry->queue->desc_size));
1244 	u32 word0;
1245 	u32 word1;
1246 
1247 	/*
1248 	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1249 	 * frame data in rt2x00usb.
1250 	 */
1251 	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1252 	rxd = (__le32 *)skbdesc->desc;
1253 
1254 	/*
1255 	 * It is now safe to read the descriptor on all architectures.
1256 	 */
1257 	rt2x00_desc_read(rxd, 0, &word0);
1258 	rt2x00_desc_read(rxd, 1, &word1);
1259 
1260 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1261 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1262 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1263 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1264 
1265 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1266 	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1267 		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1268 
1269 	if (rxdesc->cipher != CIPHER_NONE) {
1270 		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1271 		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1272 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1273 
1274 		/* ICV is located at the end of frame */
1275 
1276 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1277 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1278 			rxdesc->flags |= RX_FLAG_DECRYPTED;
1279 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1280 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1281 	}
1282 
1283 	/*
1284 	 * Obtain the status about this packet.
1285 	 * When frame was received with an OFDM bitrate,
1286 	 * the signal is the PLCP value. If it was received with
1287 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1288 	 */
1289 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1290 	rxdesc->rssi =
1291 	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1292 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1293 
1294 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1295 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1296 	else
1297 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1298 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1299 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1300 
1301 	/*
1302 	 * Adjust the skb memory window to the frame boundaries.
1303 	 */
1304 	skb_trim(entry->skb, rxdesc->size);
1305 }
1306 
1307 /*
1308  * Interrupt functions.
1309  */
rt2500usb_beacondone(struct urb * urb)1310 static void rt2500usb_beacondone(struct urb *urb)
1311 {
1312 	struct queue_entry *entry = (struct queue_entry *)urb->context;
1313 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1314 
1315 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1316 		return;
1317 
1318 	/*
1319 	 * Check if this was the guardian beacon,
1320 	 * if that was the case we need to send the real beacon now.
1321 	 * Otherwise we should free the sk_buffer, the device
1322 	 * should be doing the rest of the work now.
1323 	 */
1324 	if (bcn_priv->guardian_urb == urb) {
1325 		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1326 	} else if (bcn_priv->urb == urb) {
1327 		dev_kfree_skb(entry->skb);
1328 		entry->skb = NULL;
1329 	}
1330 }
1331 
1332 /*
1333  * Device probe functions.
1334  */
rt2500usb_validate_eeprom(struct rt2x00_dev * rt2x00dev)1335 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1336 {
1337 	u16 word;
1338 	u8 *mac;
1339 	u8 bbp;
1340 
1341 	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1342 
1343 	/*
1344 	 * Start validation of the data that has been read.
1345 	 */
1346 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1347 	if (!is_valid_ether_addr(mac)) {
1348 		eth_random_addr(mac);
1349 		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1350 	}
1351 
1352 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1353 	if (word == 0xffff) {
1354 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1355 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1356 				   ANTENNA_SW_DIVERSITY);
1357 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1358 				   ANTENNA_SW_DIVERSITY);
1359 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1360 				   LED_MODE_DEFAULT);
1361 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1362 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1363 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1364 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1365 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1366 	}
1367 
1368 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1369 	if (word == 0xffff) {
1370 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1371 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1372 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1373 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1374 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1375 	}
1376 
1377 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1378 	if (word == 0xffff) {
1379 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1380 				   DEFAULT_RSSI_OFFSET);
1381 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1382 		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1383 				  word);
1384 	}
1385 
1386 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1387 	if (word == 0xffff) {
1388 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1389 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1390 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1391 	}
1392 
1393 	/*
1394 	 * Switch lower vgc bound to current BBP R17 value,
1395 	 * lower the value a bit for better quality.
1396 	 */
1397 	rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1398 	bbp -= 6;
1399 
1400 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1401 	if (word == 0xffff) {
1402 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1403 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1404 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1405 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1406 	} else {
1407 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1408 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1409 	}
1410 
1411 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1412 	if (word == 0xffff) {
1413 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1414 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1415 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1416 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1417 	}
1418 
1419 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1420 	if (word == 0xffff) {
1421 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1422 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1423 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1424 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1425 	}
1426 
1427 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1428 	if (word == 0xffff) {
1429 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1430 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1431 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1432 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1433 	}
1434 
1435 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1436 	if (word == 0xffff) {
1437 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1438 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1439 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1440 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1441 	}
1442 
1443 	return 0;
1444 }
1445 
rt2500usb_init_eeprom(struct rt2x00_dev * rt2x00dev)1446 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1447 {
1448 	u16 reg;
1449 	u16 value;
1450 	u16 eeprom;
1451 
1452 	/*
1453 	 * Read EEPROM word for configuration.
1454 	 */
1455 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1456 
1457 	/*
1458 	 * Identify RF chipset.
1459 	 */
1460 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1461 	rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1462 	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1463 
1464 	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1465 		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1466 		return -ENODEV;
1467 	}
1468 
1469 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1470 	    !rt2x00_rf(rt2x00dev, RF2523) &&
1471 	    !rt2x00_rf(rt2x00dev, RF2524) &&
1472 	    !rt2x00_rf(rt2x00dev, RF2525) &&
1473 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1474 	    !rt2x00_rf(rt2x00dev, RF5222)) {
1475 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1476 		return -ENODEV;
1477 	}
1478 
1479 	/*
1480 	 * Identify default antenna configuration.
1481 	 */
1482 	rt2x00dev->default_ant.tx =
1483 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1484 	rt2x00dev->default_ant.rx =
1485 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1486 
1487 	/*
1488 	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1489 	 * I am not 100% sure about this, but the legacy drivers do not
1490 	 * indicate antenna swapping in software is required when
1491 	 * diversity is enabled.
1492 	 */
1493 	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1494 		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1495 	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1496 		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1497 
1498 	/*
1499 	 * Store led mode, for correct led behaviour.
1500 	 */
1501 #ifdef CONFIG_RT2X00_LIB_LEDS
1502 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1503 
1504 	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1505 	if (value == LED_MODE_TXRX_ACTIVITY ||
1506 	    value == LED_MODE_DEFAULT ||
1507 	    value == LED_MODE_ASUS)
1508 		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1509 				   LED_TYPE_ACTIVITY);
1510 #endif /* CONFIG_RT2X00_LIB_LEDS */
1511 
1512 	/*
1513 	 * Detect if this device has an hardware controlled radio.
1514 	 */
1515 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1516 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1517 
1518 	/*
1519 	 * Read the RSSI <-> dBm offset information.
1520 	 */
1521 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1522 	rt2x00dev->rssi_offset =
1523 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1524 
1525 	return 0;
1526 }
1527 
1528 /*
1529  * RF value list for RF2522
1530  * Supports: 2.4 GHz
1531  */
1532 static const struct rf_channel rf_vals_bg_2522[] = {
1533 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1534 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1535 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1536 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1537 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1538 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1539 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1540 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1541 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1542 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1543 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1544 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1545 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1546 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1547 };
1548 
1549 /*
1550  * RF value list for RF2523
1551  * Supports: 2.4 GHz
1552  */
1553 static const struct rf_channel rf_vals_bg_2523[] = {
1554 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1555 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1556 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1557 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1558 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1559 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1560 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1561 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1562 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1563 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1564 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1565 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1566 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1567 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1568 };
1569 
1570 /*
1571  * RF value list for RF2524
1572  * Supports: 2.4 GHz
1573  */
1574 static const struct rf_channel rf_vals_bg_2524[] = {
1575 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1576 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1577 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1578 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1579 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1580 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1581 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1582 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1583 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1584 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1585 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1586 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1587 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1588 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1589 };
1590 
1591 /*
1592  * RF value list for RF2525
1593  * Supports: 2.4 GHz
1594  */
1595 static const struct rf_channel rf_vals_bg_2525[] = {
1596 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1597 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1598 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1599 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1600 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1601 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1602 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1603 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1604 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1605 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1606 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1607 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1608 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1609 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1610 };
1611 
1612 /*
1613  * RF value list for RF2525e
1614  * Supports: 2.4 GHz
1615  */
1616 static const struct rf_channel rf_vals_bg_2525e[] = {
1617 	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1618 	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1619 	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1620 	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1621 	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1622 	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1623 	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1624 	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1625 	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1626 	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1627 	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1628 	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1629 	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1630 	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1631 };
1632 
1633 /*
1634  * RF value list for RF5222
1635  * Supports: 2.4 GHz & 5.2 GHz
1636  */
1637 static const struct rf_channel rf_vals_5222[] = {
1638 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1639 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1640 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1641 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1642 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1643 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1644 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1645 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1646 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1647 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1648 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1649 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1650 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1651 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1652 
1653 	/* 802.11 UNI / HyperLan 2 */
1654 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1655 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1656 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1657 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1658 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1659 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1660 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1661 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1662 
1663 	/* 802.11 HyperLan 2 */
1664 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1665 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1666 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1667 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1668 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1669 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1670 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1671 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1672 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1673 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1674 
1675 	/* 802.11 UNII */
1676 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1677 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1678 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1679 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1680 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1681 };
1682 
rt2500usb_probe_hw_mode(struct rt2x00_dev * rt2x00dev)1683 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1684 {
1685 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1686 	struct channel_info *info;
1687 	char *tx_power;
1688 	unsigned int i;
1689 
1690 	/*
1691 	 * Initialize all hw fields.
1692 	 *
1693 	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1694 	 * capable of sending the buffered frames out after the DTIM
1695 	 * transmission using rt2x00lib_beacondone. This will send out
1696 	 * multicast and broadcast traffic immediately instead of buffering it
1697 	 * infinitly and thus dropping it after some time.
1698 	 */
1699 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1700 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1701 	ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1702 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1703 
1704 	/*
1705 	 * Disable powersaving as default.
1706 	 */
1707 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1708 
1709 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1710 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1711 				rt2x00_eeprom_addr(rt2x00dev,
1712 						   EEPROM_MAC_ADDR_0));
1713 
1714 	/*
1715 	 * Initialize hw_mode information.
1716 	 */
1717 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1718 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1719 
1720 	if (rt2x00_rf(rt2x00dev, RF2522)) {
1721 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1722 		spec->channels = rf_vals_bg_2522;
1723 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1724 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1725 		spec->channels = rf_vals_bg_2523;
1726 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1727 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1728 		spec->channels = rf_vals_bg_2524;
1729 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1730 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1731 		spec->channels = rf_vals_bg_2525;
1732 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1733 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1734 		spec->channels = rf_vals_bg_2525e;
1735 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1736 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1737 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1738 		spec->channels = rf_vals_5222;
1739 	}
1740 
1741 	/*
1742 	 * Create channel information array
1743 	 */
1744 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1745 	if (!info)
1746 		return -ENOMEM;
1747 
1748 	spec->channels_info = info;
1749 
1750 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1751 	for (i = 0; i < 14; i++) {
1752 		info[i].max_power = MAX_TXPOWER;
1753 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1754 	}
1755 
1756 	if (spec->num_channels > 14) {
1757 		for (i = 14; i < spec->num_channels; i++) {
1758 			info[i].max_power = MAX_TXPOWER;
1759 			info[i].default_power1 = DEFAULT_TXPOWER;
1760 		}
1761 	}
1762 
1763 	return 0;
1764 }
1765 
rt2500usb_probe_hw(struct rt2x00_dev * rt2x00dev)1766 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1767 {
1768 	int retval;
1769 	u16 reg;
1770 
1771 	/*
1772 	 * Allocate eeprom data.
1773 	 */
1774 	retval = rt2500usb_validate_eeprom(rt2x00dev);
1775 	if (retval)
1776 		return retval;
1777 
1778 	retval = rt2500usb_init_eeprom(rt2x00dev);
1779 	if (retval)
1780 		return retval;
1781 
1782 	/*
1783 	 * Enable rfkill polling by setting GPIO direction of the
1784 	 * rfkill switch GPIO pin correctly.
1785 	 */
1786 	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1787 	rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1788 	rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1789 
1790 	/*
1791 	 * Initialize hw specifications.
1792 	 */
1793 	retval = rt2500usb_probe_hw_mode(rt2x00dev);
1794 	if (retval)
1795 		return retval;
1796 
1797 	/*
1798 	 * This device requires the atim queue
1799 	 */
1800 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1801 	__set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1802 	if (!modparam_nohwcrypt) {
1803 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1804 		__set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1805 	}
1806 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1807 	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1808 
1809 	/*
1810 	 * Set the rssi offset.
1811 	 */
1812 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1813 
1814 	return 0;
1815 }
1816 
1817 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1818 	.tx			= rt2x00mac_tx,
1819 	.start			= rt2x00mac_start,
1820 	.stop			= rt2x00mac_stop,
1821 	.add_interface		= rt2x00mac_add_interface,
1822 	.remove_interface	= rt2x00mac_remove_interface,
1823 	.config			= rt2x00mac_config,
1824 	.configure_filter	= rt2x00mac_configure_filter,
1825 	.set_tim		= rt2x00mac_set_tim,
1826 	.set_key		= rt2x00mac_set_key,
1827 	.sw_scan_start		= rt2x00mac_sw_scan_start,
1828 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1829 	.get_stats		= rt2x00mac_get_stats,
1830 	.bss_info_changed	= rt2x00mac_bss_info_changed,
1831 	.conf_tx		= rt2x00mac_conf_tx,
1832 	.rfkill_poll		= rt2x00mac_rfkill_poll,
1833 	.flush			= rt2x00mac_flush,
1834 	.set_antenna		= rt2x00mac_set_antenna,
1835 	.get_antenna		= rt2x00mac_get_antenna,
1836 	.get_ringparam		= rt2x00mac_get_ringparam,
1837 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1838 };
1839 
1840 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1841 	.probe_hw		= rt2500usb_probe_hw,
1842 	.initialize		= rt2x00usb_initialize,
1843 	.uninitialize		= rt2x00usb_uninitialize,
1844 	.clear_entry		= rt2x00usb_clear_entry,
1845 	.set_device_state	= rt2500usb_set_device_state,
1846 	.rfkill_poll		= rt2500usb_rfkill_poll,
1847 	.link_stats		= rt2500usb_link_stats,
1848 	.reset_tuner		= rt2500usb_reset_tuner,
1849 	.watchdog		= rt2x00usb_watchdog,
1850 	.start_queue		= rt2500usb_start_queue,
1851 	.kick_queue		= rt2x00usb_kick_queue,
1852 	.stop_queue		= rt2500usb_stop_queue,
1853 	.flush_queue		= rt2x00usb_flush_queue,
1854 	.write_tx_desc		= rt2500usb_write_tx_desc,
1855 	.write_beacon		= rt2500usb_write_beacon,
1856 	.get_tx_data_len	= rt2500usb_get_tx_data_len,
1857 	.fill_rxdone		= rt2500usb_fill_rxdone,
1858 	.config_shared_key	= rt2500usb_config_key,
1859 	.config_pairwise_key	= rt2500usb_config_key,
1860 	.config_filter		= rt2500usb_config_filter,
1861 	.config_intf		= rt2500usb_config_intf,
1862 	.config_erp		= rt2500usb_config_erp,
1863 	.config_ant		= rt2500usb_config_ant,
1864 	.config			= rt2500usb_config,
1865 };
1866 
rt2500usb_queue_init(struct data_queue * queue)1867 static void rt2500usb_queue_init(struct data_queue *queue)
1868 {
1869 	switch (queue->qid) {
1870 	case QID_RX:
1871 		queue->limit = 32;
1872 		queue->data_size = DATA_FRAME_SIZE;
1873 		queue->desc_size = RXD_DESC_SIZE;
1874 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1875 		break;
1876 
1877 	case QID_AC_VO:
1878 	case QID_AC_VI:
1879 	case QID_AC_BE:
1880 	case QID_AC_BK:
1881 		queue->limit = 32;
1882 		queue->data_size = DATA_FRAME_SIZE;
1883 		queue->desc_size = TXD_DESC_SIZE;
1884 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1885 		break;
1886 
1887 	case QID_BEACON:
1888 		queue->limit = 1;
1889 		queue->data_size = MGMT_FRAME_SIZE;
1890 		queue->desc_size = TXD_DESC_SIZE;
1891 		queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1892 		break;
1893 
1894 	case QID_ATIM:
1895 		queue->limit = 8;
1896 		queue->data_size = DATA_FRAME_SIZE;
1897 		queue->desc_size = TXD_DESC_SIZE;
1898 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1899 		break;
1900 
1901 	default:
1902 		BUG();
1903 		break;
1904 	}
1905 }
1906 
1907 static const struct rt2x00_ops rt2500usb_ops = {
1908 	.name			= KBUILD_MODNAME,
1909 	.max_ap_intf		= 1,
1910 	.eeprom_size		= EEPROM_SIZE,
1911 	.rf_size		= RF_SIZE,
1912 	.tx_queues		= NUM_TX_QUEUES,
1913 	.queue_init		= rt2500usb_queue_init,
1914 	.lib			= &rt2500usb_rt2x00_ops,
1915 	.hw			= &rt2500usb_mac80211_ops,
1916 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1917 	.debugfs		= &rt2500usb_rt2x00debug,
1918 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1919 };
1920 
1921 /*
1922  * rt2500usb module information.
1923  */
1924 static struct usb_device_id rt2500usb_device_table[] = {
1925 	/* ASUS */
1926 	{ USB_DEVICE(0x0b05, 0x1706) },
1927 	{ USB_DEVICE(0x0b05, 0x1707) },
1928 	/* Belkin */
1929 	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050A ver. 2.x */
1930 	{ USB_DEVICE(0x050d, 0x7051) },
1931 	/* Cisco Systems */
1932 	{ USB_DEVICE(0x13b1, 0x000d) },
1933 	{ USB_DEVICE(0x13b1, 0x0011) },
1934 	{ USB_DEVICE(0x13b1, 0x001a) },
1935 	/* Conceptronic */
1936 	{ USB_DEVICE(0x14b2, 0x3c02) },
1937 	/* D-LINK */
1938 	{ USB_DEVICE(0x2001, 0x3c00) },
1939 	/* Gigabyte */
1940 	{ USB_DEVICE(0x1044, 0x8001) },
1941 	{ USB_DEVICE(0x1044, 0x8007) },
1942 	/* Hercules */
1943 	{ USB_DEVICE(0x06f8, 0xe000) },
1944 	/* Melco */
1945 	{ USB_DEVICE(0x0411, 0x005e) },
1946 	{ USB_DEVICE(0x0411, 0x0066) },
1947 	{ USB_DEVICE(0x0411, 0x0067) },
1948 	{ USB_DEVICE(0x0411, 0x008b) },
1949 	{ USB_DEVICE(0x0411, 0x0097) },
1950 	/* MSI */
1951 	{ USB_DEVICE(0x0db0, 0x6861) },
1952 	{ USB_DEVICE(0x0db0, 0x6865) },
1953 	{ USB_DEVICE(0x0db0, 0x6869) },
1954 	/* Ralink */
1955 	{ USB_DEVICE(0x148f, 0x1706) },
1956 	{ USB_DEVICE(0x148f, 0x2570) },
1957 	{ USB_DEVICE(0x148f, 0x9020) },
1958 	/* Sagem */
1959 	{ USB_DEVICE(0x079b, 0x004b) },
1960 	/* Siemens */
1961 	{ USB_DEVICE(0x0681, 0x3c06) },
1962 	/* SMC */
1963 	{ USB_DEVICE(0x0707, 0xee13) },
1964 	/* Spairon */
1965 	{ USB_DEVICE(0x114b, 0x0110) },
1966 	/* SURECOM */
1967 	{ USB_DEVICE(0x0769, 0x11f3) },
1968 	/* Trust */
1969 	{ USB_DEVICE(0x0eb0, 0x9020) },
1970 	/* VTech */
1971 	{ USB_DEVICE(0x0f88, 0x3012) },
1972 	/* Zinwell */
1973 	{ USB_DEVICE(0x5a57, 0x0260) },
1974 	{ 0, }
1975 };
1976 
1977 MODULE_AUTHOR(DRV_PROJECT);
1978 MODULE_VERSION(DRV_VERSION);
1979 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1980 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1981 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1982 MODULE_LICENSE("GPL");
1983 
rt2500usb_probe(struct usb_interface * usb_intf,const struct usb_device_id * id)1984 static int rt2500usb_probe(struct usb_interface *usb_intf,
1985 			   const struct usb_device_id *id)
1986 {
1987 	return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1988 }
1989 
1990 static struct usb_driver rt2500usb_driver = {
1991 	.name		= KBUILD_MODNAME,
1992 	.id_table	= rt2500usb_device_table,
1993 	.probe		= rt2500usb_probe,
1994 	.disconnect	= rt2x00usb_disconnect,
1995 	.suspend	= rt2x00usb_suspend,
1996 	.resume		= rt2x00usb_resume,
1997 	.reset_resume	= rt2x00usb_resume,
1998 	.disable_hub_initiated_lpm = 1,
1999 };
2000 
2001 module_usb_driver(rt2500usb_driver);
2002