1 /* Faraday FOTG210 EHCI-like driver
2  *
3  * Copyright (c) 2013 Faraday Technology Corporation
4  *
5  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
6  *	   Feng-Hsin Chiang <john453@faraday-tech.com>
7  *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
8  *
9  * Most of code borrowed from the Linux-3.7 EHCI driver
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2 of the License, or (at your
14  * option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19  * for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software Foundation,
23  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 #include <linux/module.h>
26 #include <linux/device.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/delay.h>
30 #include <linux/ioport.h>
31 #include <linux/sched.h>
32 #include <linux/vmalloc.h>
33 #include <linux/errno.h>
34 #include <linux/init.h>
35 #include <linux/hrtimer.h>
36 #include <linux/list.h>
37 #include <linux/interrupt.h>
38 #include <linux/usb.h>
39 #include <linux/usb/hcd.h>
40 #include <linux/moduleparam.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/debugfs.h>
43 #include <linux/slab.h>
44 #include <linux/uaccess.h>
45 #include <linux/platform_device.h>
46 #include <linux/io.h>
47 
48 #include <asm/byteorder.h>
49 #include <asm/irq.h>
50 #include <asm/unaligned.h>
51 
52 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
53 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
54 static const char hcd_name[] = "fotg210_hcd";
55 
56 #undef FOTG210_URB_TRACE
57 #define FOTG210_STATS
58 
59 /* magic numbers that can affect system performance */
60 #define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
61 #define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
62 #define FOTG210_TUNE_RL_TT	0
63 #define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
64 #define FOTG210_TUNE_MULT_TT	1
65 
66 /* Some drivers think it's safe to schedule isochronous transfers more than 256
67  * ms into the future (partly as a result of an old bug in the scheduling
68  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
69  * length of 512 frames instead of 256.
70  */
71 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
72 
73 /* Initial IRQ latency:  faster than hw default */
74 static int log2_irq_thresh; /* 0 to 6 */
75 module_param(log2_irq_thresh, int, S_IRUGO);
76 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
77 
78 /* initial park setting:  slower than hw default */
79 static unsigned park;
80 module_param(park, uint, S_IRUGO);
81 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
82 
83 /* for link power management(LPM) feature */
84 static unsigned int hird;
85 module_param(hird, int, S_IRUGO);
86 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
87 
88 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
89 
90 #include "fotg210.h"
91 
92 #define fotg210_dbg(fotg210, fmt, args...) \
93 	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
94 #define fotg210_err(fotg210, fmt, args...) \
95 	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
96 #define fotg210_info(fotg210, fmt, args...) \
97 	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
98 #define fotg210_warn(fotg210, fmt, args...) \
99 	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
100 
101 /* check the values in the HCSPARAMS register (host controller _Structural_
102  * parameters) see EHCI spec, Table 2-4 for each value
103  */
dbg_hcs_params(struct fotg210_hcd * fotg210,char * label)104 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
105 {
106 	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
107 
108 	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
109 			HCS_N_PORTS(params));
110 }
111 
112 /* check the values in the HCCPARAMS register (host controller _Capability_
113  * parameters) see EHCI Spec, Table 2-5 for each value
114  */
dbg_hcc_params(struct fotg210_hcd * fotg210,char * label)115 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
116 {
117 	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
118 
119 	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
120 			params,
121 			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
122 			HCC_CANPARK(params) ? " park" : "");
123 }
124 
125 static void __maybe_unused
dbg_qtd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)126 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
127 {
128 	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
129 			hc32_to_cpup(fotg210, &qtd->hw_next),
130 			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
131 			hc32_to_cpup(fotg210, &qtd->hw_token),
132 			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
133 	if (qtd->hw_buf[1])
134 		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
135 				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
136 				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
137 				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
138 				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
139 }
140 
141 static void __maybe_unused
dbg_qh(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qh * qh)142 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
143 {
144 	struct fotg210_qh_hw *hw = qh->hw;
145 
146 	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
147 			hw->hw_next, hw->hw_info1, hw->hw_info2,
148 			hw->hw_current);
149 
150 	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
151 }
152 
153 static void __maybe_unused
dbg_itd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_itd * itd)154 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
155 {
156 	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
157 			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
158 			itd->urb);
159 
160 	fotg210_dbg(fotg210,
161 			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
162 			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
163 			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
164 			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
165 			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
166 			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
167 			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
168 			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
169 			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
170 
171 	fotg210_dbg(fotg210,
172 			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
173 			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
174 			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
175 			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
176 			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
177 			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
178 			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
179 			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
180 
181 	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
182 			itd->index[0], itd->index[1], itd->index[2],
183 			itd->index[3], itd->index[4], itd->index[5],
184 			itd->index[6], itd->index[7]);
185 }
186 
187 static int __maybe_unused
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)188 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
189 {
190 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
191 			label, label[0] ? " " : "", status,
192 			(status & STS_ASS) ? " Async" : "",
193 			(status & STS_PSS) ? " Periodic" : "",
194 			(status & STS_RECL) ? " Recl" : "",
195 			(status & STS_HALT) ? " Halt" : "",
196 			(status & STS_IAA) ? " IAA" : "",
197 			(status & STS_FATAL) ? " FATAL" : "",
198 			(status & STS_FLR) ? " FLR" : "",
199 			(status & STS_PCD) ? " PCD" : "",
200 			(status & STS_ERR) ? " ERR" : "",
201 			(status & STS_INT) ? " INT" : "");
202 }
203 
204 static int __maybe_unused
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)205 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
206 {
207 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
208 			label, label[0] ? " " : "", enable,
209 			(enable & STS_IAA) ? " IAA" : "",
210 			(enable & STS_FATAL) ? " FATAL" : "",
211 			(enable & STS_FLR) ? " FLR" : "",
212 			(enable & STS_PCD) ? " PCD" : "",
213 			(enable & STS_ERR) ? " ERR" : "",
214 			(enable & STS_INT) ? " INT" : "");
215 }
216 
217 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
218 
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)219 static int dbg_command_buf(char *buf, unsigned len, const char *label,
220 		u32 command)
221 {
222 	return scnprintf(buf, len,
223 			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
224 			label, label[0] ? " " : "", command,
225 			(command & CMD_PARK) ? " park" : "(park)",
226 			CMD_PARK_CNT(command),
227 			(command >> 16) & 0x3f,
228 			(command & CMD_IAAD) ? " IAAD" : "",
229 			(command & CMD_ASE) ? " Async" : "",
230 			(command & CMD_PSE) ? " Periodic" : "",
231 			fls_strings[(command >> 2) & 0x3],
232 			(command & CMD_RESET) ? " Reset" : "",
233 			(command & CMD_RUN) ? "RUN" : "HALT");
234 }
235 
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)236 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
237 		u32 status)
238 {
239 	char *sig;
240 
241 	/* signaling state */
242 	switch (status & (3 << 10)) {
243 	case 0 << 10:
244 		sig = "se0";
245 		break;
246 	case 1 << 10:
247 		sig = "k";
248 		break; /* low speed */
249 	case 2 << 10:
250 		sig = "j";
251 		break;
252 	default:
253 		sig = "?";
254 		break;
255 	}
256 
257 	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
258 			label, label[0] ? " " : "", port, status,
259 			status >> 25, /*device address */
260 			sig,
261 			(status & PORT_RESET) ? " RESET" : "",
262 			(status & PORT_SUSPEND) ? " SUSPEND" : "",
263 			(status & PORT_RESUME) ? " RESUME" : "",
264 			(status & PORT_PEC) ? " PEC" : "",
265 			(status & PORT_PE) ? " PE" : "",
266 			(status & PORT_CSC) ? " CSC" : "",
267 			(status & PORT_CONNECT) ? " CONNECT" : "");
268 
269 	return buf;
270 }
271 
272 /* functions have the "wrong" filename when they're output... */
273 #define dbg_status(fotg210, label, status) {			\
274 	char _buf[80];						\
275 	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
276 	fotg210_dbg(fotg210, "%s\n", _buf);			\
277 }
278 
279 #define dbg_cmd(fotg210, label, command) {			\
280 	char _buf[80];						\
281 	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
282 	fotg210_dbg(fotg210, "%s\n", _buf);			\
283 }
284 
285 #define dbg_port(fotg210, label, port, status) {			       \
286 	char _buf[80];							       \
287 	fotg210_dbg(fotg210, "%s\n",					       \
288 			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
289 }
290 
291 /* troubleshooting help: expose state in debugfs */
292 static int debug_async_open(struct inode *, struct file *);
293 static int debug_periodic_open(struct inode *, struct file *);
294 static int debug_registers_open(struct inode *, struct file *);
295 static int debug_async_open(struct inode *, struct file *);
296 
297 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
298 static int debug_close(struct inode *, struct file *);
299 
300 static const struct file_operations debug_async_fops = {
301 	.owner		= THIS_MODULE,
302 	.open		= debug_async_open,
303 	.read		= debug_output,
304 	.release	= debug_close,
305 	.llseek		= default_llseek,
306 };
307 static const struct file_operations debug_periodic_fops = {
308 	.owner		= THIS_MODULE,
309 	.open		= debug_periodic_open,
310 	.read		= debug_output,
311 	.release	= debug_close,
312 	.llseek		= default_llseek,
313 };
314 static const struct file_operations debug_registers_fops = {
315 	.owner		= THIS_MODULE,
316 	.open		= debug_registers_open,
317 	.read		= debug_output,
318 	.release	= debug_close,
319 	.llseek		= default_llseek,
320 };
321 
322 static struct dentry *fotg210_debug_root;
323 
324 struct debug_buffer {
325 	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
326 	struct usb_bus *bus;
327 	struct mutex mutex;	/* protect filling of buffer */
328 	size_t count;		/* number of characters filled into buffer */
329 	char *output_buf;
330 	size_t alloc_size;
331 };
332 
speed_char(u32 scratch)333 static inline char speed_char(u32 scratch)
334 {
335 	switch (scratch & (3 << 12)) {
336 	case QH_FULL_SPEED:
337 		return 'f';
338 
339 	case QH_LOW_SPEED:
340 		return 'l';
341 
342 	case QH_HIGH_SPEED:
343 		return 'h';
344 
345 	default:
346 		return '?';
347 	}
348 }
349 
token_mark(struct fotg210_hcd * fotg210,__hc32 token)350 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
351 {
352 	__u32 v = hc32_to_cpu(fotg210, token);
353 
354 	if (v & QTD_STS_ACTIVE)
355 		return '*';
356 	if (v & QTD_STS_HALT)
357 		return '-';
358 	if (!IS_SHORT_READ(v))
359 		return ' ';
360 	/* tries to advance through hw_alt_next */
361 	return '/';
362 }
363 
qh_lines(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,char ** nextp,unsigned * sizep)364 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
365 		char **nextp, unsigned *sizep)
366 {
367 	u32 scratch;
368 	u32 hw_curr;
369 	struct fotg210_qtd *td;
370 	unsigned temp;
371 	unsigned size = *sizep;
372 	char *next = *nextp;
373 	char mark;
374 	__le32 list_end = FOTG210_LIST_END(fotg210);
375 	struct fotg210_qh_hw *hw = qh->hw;
376 
377 	if (hw->hw_qtd_next == list_end) /* NEC does this */
378 		mark = '@';
379 	else
380 		mark = token_mark(fotg210, hw->hw_token);
381 	if (mark == '/') { /* qh_alt_next controls qh advance? */
382 		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
383 		    fotg210->async->hw->hw_alt_next)
384 			mark = '#'; /* blocked */
385 		else if (hw->hw_alt_next == list_end)
386 			mark = '.'; /* use hw_qtd_next */
387 		/* else alt_next points to some other qtd */
388 	}
389 	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
390 	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
391 	temp = scnprintf(next, size,
392 			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
393 			qh, scratch & 0x007f,
394 			speed_char(scratch),
395 			(scratch >> 8) & 0x000f,
396 			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
397 			hc32_to_cpup(fotg210, &hw->hw_token), mark,
398 			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
399 				? "data1" : "data0",
400 			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
401 	size -= temp;
402 	next += temp;
403 
404 	/* hc may be modifying the list as we read it ... */
405 	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
406 		scratch = hc32_to_cpup(fotg210, &td->hw_token);
407 		mark = ' ';
408 		if (hw_curr == td->qtd_dma)
409 			mark = '*';
410 		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
411 			mark = '+';
412 		else if (QTD_LENGTH(scratch)) {
413 			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
414 				mark = '#';
415 			else if (td->hw_alt_next != list_end)
416 				mark = '/';
417 		}
418 		temp = snprintf(next, size,
419 				"\n\t%p%c%s len=%d %08x urb %p",
420 				td, mark, ({ char *tmp;
421 				 switch ((scratch>>8)&0x03) {
422 				 case 0:
423 					tmp = "out";
424 					break;
425 				 case 1:
426 					tmp = "in";
427 					break;
428 				 case 2:
429 					tmp = "setup";
430 					break;
431 				 default:
432 					tmp = "?";
433 					break;
434 				 } tmp; }),
435 				(scratch >> 16) & 0x7fff,
436 				scratch,
437 				td->urb);
438 		if (size < temp)
439 			temp = size;
440 		size -= temp;
441 		next += temp;
442 		if (temp == size)
443 			goto done;
444 	}
445 
446 	temp = snprintf(next, size, "\n");
447 	if (size < temp)
448 		temp = size;
449 
450 	size -= temp;
451 	next += temp;
452 
453 done:
454 	*sizep = size;
455 	*nextp = next;
456 }
457 
fill_async_buffer(struct debug_buffer * buf)458 static ssize_t fill_async_buffer(struct debug_buffer *buf)
459 {
460 	struct usb_hcd *hcd;
461 	struct fotg210_hcd *fotg210;
462 	unsigned long flags;
463 	unsigned temp, size;
464 	char *next;
465 	struct fotg210_qh *qh;
466 
467 	hcd = bus_to_hcd(buf->bus);
468 	fotg210 = hcd_to_fotg210(hcd);
469 	next = buf->output_buf;
470 	size = buf->alloc_size;
471 
472 	*next = 0;
473 
474 	/* dumps a snapshot of the async schedule.
475 	 * usually empty except for long-term bulk reads, or head.
476 	 * one QH per line, and TDs we know about
477 	 */
478 	spin_lock_irqsave(&fotg210->lock, flags);
479 	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
480 			qh = qh->qh_next.qh)
481 		qh_lines(fotg210, qh, &next, &size);
482 	if (fotg210->async_unlink && size > 0) {
483 		temp = scnprintf(next, size, "\nunlink =\n");
484 		size -= temp;
485 		next += temp;
486 
487 		for (qh = fotg210->async_unlink; size > 0 && qh;
488 				qh = qh->unlink_next)
489 			qh_lines(fotg210, qh, &next, &size);
490 	}
491 	spin_unlock_irqrestore(&fotg210->lock, flags);
492 
493 	return strlen(buf->output_buf);
494 }
495 
496 /* count tds, get ep direction */
output_buf_tds_dir(char * buf,struct fotg210_hcd * fotg210,struct fotg210_qh_hw * hw,struct fotg210_qh * qh,unsigned size)497 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
498 		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
499 {
500 	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
501 	struct fotg210_qtd *qtd;
502 	char *type = "";
503 	unsigned temp = 0;
504 
505 	/* count tds, get ep direction */
506 	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
507 		temp++;
508 		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
509 		case 0:
510 			type = "out";
511 			continue;
512 		case 1:
513 			type = "in";
514 			continue;
515 		}
516 	}
517 
518 	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
519 			speed_char(scratch), scratch & 0x007f,
520 			(scratch >> 8) & 0x000f, type, qh->usecs,
521 			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
522 }
523 
524 #define DBG_SCHED_LIMIT 64
fill_periodic_buffer(struct debug_buffer * buf)525 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
526 {
527 	struct usb_hcd *hcd;
528 	struct fotg210_hcd *fotg210;
529 	unsigned long flags;
530 	union fotg210_shadow p, *seen;
531 	unsigned temp, size, seen_count;
532 	char *next;
533 	unsigned i;
534 	__hc32 tag;
535 
536 	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
537 	if (!seen)
538 		return 0;
539 
540 	seen_count = 0;
541 
542 	hcd = bus_to_hcd(buf->bus);
543 	fotg210 = hcd_to_fotg210(hcd);
544 	next = buf->output_buf;
545 	size = buf->alloc_size;
546 
547 	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
548 	size -= temp;
549 	next += temp;
550 
551 	/* dump a snapshot of the periodic schedule.
552 	 * iso changes, interrupt usually doesn't.
553 	 */
554 	spin_lock_irqsave(&fotg210->lock, flags);
555 	for (i = 0; i < fotg210->periodic_size; i++) {
556 		p = fotg210->pshadow[i];
557 		if (likely(!p.ptr))
558 			continue;
559 
560 		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
561 
562 		temp = scnprintf(next, size, "%4d: ", i);
563 		size -= temp;
564 		next += temp;
565 
566 		do {
567 			struct fotg210_qh_hw *hw;
568 
569 			switch (hc32_to_cpu(fotg210, tag)) {
570 			case Q_TYPE_QH:
571 				hw = p.qh->hw;
572 				temp = scnprintf(next, size, " qh%d-%04x/%p",
573 						p.qh->period,
574 						hc32_to_cpup(fotg210,
575 							&hw->hw_info2)
576 							/* uframe masks */
577 							& (QH_CMASK | QH_SMASK),
578 						p.qh);
579 				size -= temp;
580 				next += temp;
581 				/* don't repeat what follows this qh */
582 				for (temp = 0; temp < seen_count; temp++) {
583 					if (seen[temp].ptr != p.ptr)
584 						continue;
585 					if (p.qh->qh_next.ptr) {
586 						temp = scnprintf(next, size,
587 								" ...");
588 						size -= temp;
589 						next += temp;
590 					}
591 					break;
592 				}
593 				/* show more info the first time around */
594 				if (temp == seen_count) {
595 					temp = output_buf_tds_dir(next,
596 							fotg210, hw,
597 							p.qh, size);
598 
599 					if (seen_count < DBG_SCHED_LIMIT)
600 						seen[seen_count++].qh = p.qh;
601 				} else
602 					temp = 0;
603 				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
604 				p = p.qh->qh_next;
605 				break;
606 			case Q_TYPE_FSTN:
607 				temp = scnprintf(next, size,
608 						" fstn-%8x/%p",
609 						p.fstn->hw_prev, p.fstn);
610 				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
611 				p = p.fstn->fstn_next;
612 				break;
613 			case Q_TYPE_ITD:
614 				temp = scnprintf(next, size,
615 						" itd/%p", p.itd);
616 				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
617 				p = p.itd->itd_next;
618 				break;
619 			}
620 			size -= temp;
621 			next += temp;
622 		} while (p.ptr);
623 
624 		temp = scnprintf(next, size, "\n");
625 		size -= temp;
626 		next += temp;
627 	}
628 	spin_unlock_irqrestore(&fotg210->lock, flags);
629 	kfree(seen);
630 
631 	return buf->alloc_size - size;
632 }
633 #undef DBG_SCHED_LIMIT
634 
rh_state_string(struct fotg210_hcd * fotg210)635 static const char *rh_state_string(struct fotg210_hcd *fotg210)
636 {
637 	switch (fotg210->rh_state) {
638 	case FOTG210_RH_HALTED:
639 		return "halted";
640 	case FOTG210_RH_SUSPENDED:
641 		return "suspended";
642 	case FOTG210_RH_RUNNING:
643 		return "running";
644 	case FOTG210_RH_STOPPING:
645 		return "stopping";
646 	}
647 	return "?";
648 }
649 
fill_registers_buffer(struct debug_buffer * buf)650 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
651 {
652 	struct usb_hcd *hcd;
653 	struct fotg210_hcd *fotg210;
654 	unsigned long flags;
655 	unsigned temp, size, i;
656 	char *next, scratch[80];
657 	static const char fmt[] = "%*s\n";
658 	static const char label[] = "";
659 
660 	hcd = bus_to_hcd(buf->bus);
661 	fotg210 = hcd_to_fotg210(hcd);
662 	next = buf->output_buf;
663 	size = buf->alloc_size;
664 
665 	spin_lock_irqsave(&fotg210->lock, flags);
666 
667 	if (!HCD_HW_ACCESSIBLE(hcd)) {
668 		size = scnprintf(next, size,
669 				"bus %s, device %s\n"
670 				"%s\n"
671 				"SUSPENDED(no register access)\n",
672 				hcd->self.controller->bus->name,
673 				dev_name(hcd->self.controller),
674 				hcd->product_desc);
675 		goto done;
676 	}
677 
678 	/* Capability Registers */
679 	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
680 			&fotg210->caps->hc_capbase));
681 	temp = scnprintf(next, size,
682 			"bus %s, device %s\n"
683 			"%s\n"
684 			"EHCI %x.%02x, rh state %s\n",
685 			hcd->self.controller->bus->name,
686 			dev_name(hcd->self.controller),
687 			hcd->product_desc,
688 			i >> 8, i & 0x0ff, rh_state_string(fotg210));
689 	size -= temp;
690 	next += temp;
691 
692 	/* FIXME interpret both types of params */
693 	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
694 	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
695 	size -= temp;
696 	next += temp;
697 
698 	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
699 	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
700 	size -= temp;
701 	next += temp;
702 
703 	/* Operational Registers */
704 	temp = dbg_status_buf(scratch, sizeof(scratch), label,
705 			fotg210_readl(fotg210, &fotg210->regs->status));
706 	temp = scnprintf(next, size, fmt, temp, scratch);
707 	size -= temp;
708 	next += temp;
709 
710 	temp = dbg_command_buf(scratch, sizeof(scratch), label,
711 			fotg210_readl(fotg210, &fotg210->regs->command));
712 	temp = scnprintf(next, size, fmt, temp, scratch);
713 	size -= temp;
714 	next += temp;
715 
716 	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
717 			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
718 	temp = scnprintf(next, size, fmt, temp, scratch);
719 	size -= temp;
720 	next += temp;
721 
722 	temp = scnprintf(next, size, "uframe %04x\n",
723 			fotg210_read_frame_index(fotg210));
724 	size -= temp;
725 	next += temp;
726 
727 	if (fotg210->async_unlink) {
728 		temp = scnprintf(next, size, "async unlink qh %p\n",
729 				fotg210->async_unlink);
730 		size -= temp;
731 		next += temp;
732 	}
733 
734 #ifdef FOTG210_STATS
735 	temp = scnprintf(next, size,
736 			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
737 			fotg210->stats.normal, fotg210->stats.error,
738 			fotg210->stats.iaa, fotg210->stats.lost_iaa);
739 	size -= temp;
740 	next += temp;
741 
742 	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
743 			fotg210->stats.complete, fotg210->stats.unlink);
744 	size -= temp;
745 	next += temp;
746 #endif
747 
748 done:
749 	spin_unlock_irqrestore(&fotg210->lock, flags);
750 
751 	return buf->alloc_size - size;
752 }
753 
754 static struct debug_buffer
alloc_buffer(struct usb_bus * bus,ssize_t (* fill_func)(struct debug_buffer *))755 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
756 {
757 	struct debug_buffer *buf;
758 
759 	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
760 
761 	if (buf) {
762 		buf->bus = bus;
763 		buf->fill_func = fill_func;
764 		mutex_init(&buf->mutex);
765 		buf->alloc_size = PAGE_SIZE;
766 	}
767 
768 	return buf;
769 }
770 
fill_buffer(struct debug_buffer * buf)771 static int fill_buffer(struct debug_buffer *buf)
772 {
773 	int ret = 0;
774 
775 	if (!buf->output_buf)
776 		buf->output_buf = vmalloc(buf->alloc_size);
777 
778 	if (!buf->output_buf) {
779 		ret = -ENOMEM;
780 		goto out;
781 	}
782 
783 	ret = buf->fill_func(buf);
784 
785 	if (ret >= 0) {
786 		buf->count = ret;
787 		ret = 0;
788 	}
789 
790 out:
791 	return ret;
792 }
793 
debug_output(struct file * file,char __user * user_buf,size_t len,loff_t * offset)794 static ssize_t debug_output(struct file *file, char __user *user_buf,
795 		size_t len, loff_t *offset)
796 {
797 	struct debug_buffer *buf = file->private_data;
798 	int ret = 0;
799 
800 	mutex_lock(&buf->mutex);
801 	if (buf->count == 0) {
802 		ret = fill_buffer(buf);
803 		if (ret != 0) {
804 			mutex_unlock(&buf->mutex);
805 			goto out;
806 		}
807 	}
808 	mutex_unlock(&buf->mutex);
809 
810 	ret = simple_read_from_buffer(user_buf, len, offset,
811 			buf->output_buf, buf->count);
812 
813 out:
814 	return ret;
815 
816 }
817 
debug_close(struct inode * inode,struct file * file)818 static int debug_close(struct inode *inode, struct file *file)
819 {
820 	struct debug_buffer *buf = file->private_data;
821 
822 	if (buf) {
823 		vfree(buf->output_buf);
824 		kfree(buf);
825 	}
826 
827 	return 0;
828 }
debug_async_open(struct inode * inode,struct file * file)829 static int debug_async_open(struct inode *inode, struct file *file)
830 {
831 	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
832 
833 	return file->private_data ? 0 : -ENOMEM;
834 }
835 
debug_periodic_open(struct inode * inode,struct file * file)836 static int debug_periodic_open(struct inode *inode, struct file *file)
837 {
838 	struct debug_buffer *buf;
839 
840 	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
841 	if (!buf)
842 		return -ENOMEM;
843 
844 	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
845 	file->private_data = buf;
846 	return 0;
847 }
848 
debug_registers_open(struct inode * inode,struct file * file)849 static int debug_registers_open(struct inode *inode, struct file *file)
850 {
851 	file->private_data = alloc_buffer(inode->i_private,
852 			fill_registers_buffer);
853 
854 	return file->private_data ? 0 : -ENOMEM;
855 }
856 
create_debug_files(struct fotg210_hcd * fotg210)857 static inline void create_debug_files(struct fotg210_hcd *fotg210)
858 {
859 	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
860 
861 	fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
862 			fotg210_debug_root);
863 	if (!fotg210->debug_dir)
864 		return;
865 
866 	if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
867 			&debug_async_fops))
868 		goto file_error;
869 
870 	if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
871 			&debug_periodic_fops))
872 		goto file_error;
873 
874 	if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
875 			&debug_registers_fops))
876 		goto file_error;
877 
878 	return;
879 
880 file_error:
881 	debugfs_remove_recursive(fotg210->debug_dir);
882 }
883 
remove_debug_files(struct fotg210_hcd * fotg210)884 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
885 {
886 	debugfs_remove_recursive(fotg210->debug_dir);
887 }
888 
889 /* handshake - spin reading hc until handshake completes or fails
890  * @ptr: address of hc register to be read
891  * @mask: bits to look at in result of read
892  * @done: value of those bits when handshake succeeds
893  * @usec: timeout in microseconds
894  *
895  * Returns negative errno, or zero on success
896  *
897  * Success happens when the "mask" bits have the specified value (hardware
898  * handshake done).  There are two failure modes:  "usec" have passed (major
899  * hardware flakeout), or the register reads as all-ones (hardware removed).
900  *
901  * That last failure should_only happen in cases like physical cardbus eject
902  * before driver shutdown. But it also seems to be caused by bugs in cardbus
903  * bridge shutdown:  shutting down the bridge before the devices using it.
904  */
handshake(struct fotg210_hcd * fotg210,void __iomem * ptr,u32 mask,u32 done,int usec)905 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
906 		u32 mask, u32 done, int usec)
907 {
908 	u32 result;
909 
910 	do {
911 		result = fotg210_readl(fotg210, ptr);
912 		if (result == ~(u32)0)		/* card removed */
913 			return -ENODEV;
914 		result &= mask;
915 		if (result == done)
916 			return 0;
917 		udelay(1);
918 		usec--;
919 	} while (usec > 0);
920 	return -ETIMEDOUT;
921 }
922 
923 /* Force HC to halt state from unknown (EHCI spec section 2.3).
924  * Must be called with interrupts enabled and the lock not held.
925  */
fotg210_halt(struct fotg210_hcd * fotg210)926 static int fotg210_halt(struct fotg210_hcd *fotg210)
927 {
928 	u32 temp;
929 
930 	spin_lock_irq(&fotg210->lock);
931 
932 	/* disable any irqs left enabled by previous code */
933 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
934 
935 	/*
936 	 * This routine gets called during probe before fotg210->command
937 	 * has been initialized, so we can't rely on its value.
938 	 */
939 	fotg210->command &= ~CMD_RUN;
940 	temp = fotg210_readl(fotg210, &fotg210->regs->command);
941 	temp &= ~(CMD_RUN | CMD_IAAD);
942 	fotg210_writel(fotg210, temp, &fotg210->regs->command);
943 
944 	spin_unlock_irq(&fotg210->lock);
945 	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
946 
947 	return handshake(fotg210, &fotg210->regs->status,
948 			STS_HALT, STS_HALT, 16 * 125);
949 }
950 
951 /* Reset a non-running (STS_HALT == 1) controller.
952  * Must be called with interrupts enabled and the lock not held.
953  */
fotg210_reset(struct fotg210_hcd * fotg210)954 static int fotg210_reset(struct fotg210_hcd *fotg210)
955 {
956 	int retval;
957 	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
958 
959 	/* If the EHCI debug controller is active, special care must be
960 	 * taken before and after a host controller reset
961 	 */
962 	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
963 		fotg210->debug = NULL;
964 
965 	command |= CMD_RESET;
966 	dbg_cmd(fotg210, "reset", command);
967 	fotg210_writel(fotg210, command, &fotg210->regs->command);
968 	fotg210->rh_state = FOTG210_RH_HALTED;
969 	fotg210->next_statechange = jiffies;
970 	retval = handshake(fotg210, &fotg210->regs->command,
971 			CMD_RESET, 0, 250 * 1000);
972 
973 	if (retval)
974 		return retval;
975 
976 	if (fotg210->debug)
977 		dbgp_external_startup(fotg210_to_hcd(fotg210));
978 
979 	fotg210->port_c_suspend = fotg210->suspended_ports =
980 			fotg210->resuming_ports = 0;
981 	return retval;
982 }
983 
984 /* Idle the controller (turn off the schedules).
985  * Must be called with interrupts enabled and the lock not held.
986  */
fotg210_quiesce(struct fotg210_hcd * fotg210)987 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
988 {
989 	u32 temp;
990 
991 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
992 		return;
993 
994 	/* wait for any schedule enables/disables to take effect */
995 	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
996 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
997 			16 * 125);
998 
999 	/* then disable anything that's still active */
1000 	spin_lock_irq(&fotg210->lock);
1001 	fotg210->command &= ~(CMD_ASE | CMD_PSE);
1002 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1003 	spin_unlock_irq(&fotg210->lock);
1004 
1005 	/* hardware can take 16 microframes to turn off ... */
1006 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1007 			16 * 125);
1008 }
1009 
1010 static void end_unlink_async(struct fotg210_hcd *fotg210);
1011 static void unlink_empty_async(struct fotg210_hcd *fotg210);
1012 static void fotg210_work(struct fotg210_hcd *fotg210);
1013 static void start_unlink_intr(struct fotg210_hcd *fotg210,
1014 			      struct fotg210_qh *qh);
1015 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1016 
1017 /* Set a bit in the USBCMD register */
fotg210_set_command_bit(struct fotg210_hcd * fotg210,u32 bit)1018 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1019 {
1020 	fotg210->command |= bit;
1021 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1022 
1023 	/* unblock posted write */
1024 	fotg210_readl(fotg210, &fotg210->regs->command);
1025 }
1026 
1027 /* Clear a bit in the USBCMD register */
fotg210_clear_command_bit(struct fotg210_hcd * fotg210,u32 bit)1028 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1029 {
1030 	fotg210->command &= ~bit;
1031 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1032 
1033 	/* unblock posted write */
1034 	fotg210_readl(fotg210, &fotg210->regs->command);
1035 }
1036 
1037 /* EHCI timer support...  Now using hrtimers.
1038  *
1039  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1040  * the timer routine runs, it checks each possible event; events that are
1041  * currently enabled and whose expiration time has passed get handled.
1042  * The set of enabled events is stored as a collection of bitflags in
1043  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1044  * increasing delay values (ranging between 1 ms and 100 ms).
1045  *
1046  * Rather than implementing a sorted list or tree of all pending events,
1047  * we keep track only of the lowest-numbered pending event, in
1048  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1049  * expiration time is set to the timeout value for this event.
1050  *
1051  * As a result, events might not get handled right away; the actual delay
1052  * could be anywhere up to twice the requested delay.  This doesn't
1053  * matter, because none of the events are especially time-critical.  The
1054  * ones that matter most all have a delay of 1 ms, so they will be
1055  * handled after 2 ms at most, which is okay.  In addition to this, we
1056  * allow for an expiration range of 1 ms.
1057  */
1058 
1059 /* Delay lengths for the hrtimer event types.
1060  * Keep this list sorted by delay length, in the same order as
1061  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1062  */
1063 static unsigned event_delays_ns[] = {
1064 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1065 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1066 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1067 	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1068 	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1069 	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1070 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1071 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1072 	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1073 	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1074 };
1075 
1076 /* Enable a pending hrtimer event */
fotg210_enable_event(struct fotg210_hcd * fotg210,unsigned event,bool resched)1077 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1078 		bool resched)
1079 {
1080 	ktime_t *timeout = &fotg210->hr_timeouts[event];
1081 
1082 	if (resched)
1083 		*timeout = ktime_add(ktime_get(),
1084 				ktime_set(0, event_delays_ns[event]));
1085 	fotg210->enabled_hrtimer_events |= (1 << event);
1086 
1087 	/* Track only the lowest-numbered pending event */
1088 	if (event < fotg210->next_hrtimer_event) {
1089 		fotg210->next_hrtimer_event = event;
1090 		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1091 				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1092 	}
1093 }
1094 
1095 
1096 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
fotg210_poll_ASS(struct fotg210_hcd * fotg210)1097 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1098 {
1099 	unsigned actual, want;
1100 
1101 	/* Don't enable anything if the controller isn't running (e.g., died) */
1102 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1103 		return;
1104 
1105 	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1106 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1107 
1108 	if (want != actual) {
1109 
1110 		/* Poll again later, but give up after about 20 ms */
1111 		if (fotg210->ASS_poll_count++ < 20) {
1112 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1113 					true);
1114 			return;
1115 		}
1116 		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1117 				want, actual);
1118 	}
1119 	fotg210->ASS_poll_count = 0;
1120 
1121 	/* The status is up-to-date; restart or stop the schedule as needed */
1122 	if (want == 0) {	/* Stopped */
1123 		if (fotg210->async_count > 0)
1124 			fotg210_set_command_bit(fotg210, CMD_ASE);
1125 
1126 	} else {		/* Running */
1127 		if (fotg210->async_count == 0) {
1128 
1129 			/* Turn off the schedule after a while */
1130 			fotg210_enable_event(fotg210,
1131 					FOTG210_HRTIMER_DISABLE_ASYNC,
1132 					true);
1133 		}
1134 	}
1135 }
1136 
1137 /* Turn off the async schedule after a brief delay */
fotg210_disable_ASE(struct fotg210_hcd * fotg210)1138 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1139 {
1140 	fotg210_clear_command_bit(fotg210, CMD_ASE);
1141 }
1142 
1143 
1144 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
fotg210_poll_PSS(struct fotg210_hcd * fotg210)1145 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1146 {
1147 	unsigned actual, want;
1148 
1149 	/* Don't do anything if the controller isn't running (e.g., died) */
1150 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1151 		return;
1152 
1153 	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1154 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1155 
1156 	if (want != actual) {
1157 
1158 		/* Poll again later, but give up after about 20 ms */
1159 		if (fotg210->PSS_poll_count++ < 20) {
1160 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1161 					true);
1162 			return;
1163 		}
1164 		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1165 				want, actual);
1166 	}
1167 	fotg210->PSS_poll_count = 0;
1168 
1169 	/* The status is up-to-date; restart or stop the schedule as needed */
1170 	if (want == 0) {	/* Stopped */
1171 		if (fotg210->periodic_count > 0)
1172 			fotg210_set_command_bit(fotg210, CMD_PSE);
1173 
1174 	} else {		/* Running */
1175 		if (fotg210->periodic_count == 0) {
1176 
1177 			/* Turn off the schedule after a while */
1178 			fotg210_enable_event(fotg210,
1179 					FOTG210_HRTIMER_DISABLE_PERIODIC,
1180 					true);
1181 		}
1182 	}
1183 }
1184 
1185 /* Turn off the periodic schedule after a brief delay */
fotg210_disable_PSE(struct fotg210_hcd * fotg210)1186 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1187 {
1188 	fotg210_clear_command_bit(fotg210, CMD_PSE);
1189 }
1190 
1191 
1192 /* Poll the STS_HALT status bit; see when a dead controller stops */
fotg210_handle_controller_death(struct fotg210_hcd * fotg210)1193 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1194 {
1195 	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1196 
1197 		/* Give up after a few milliseconds */
1198 		if (fotg210->died_poll_count++ < 5) {
1199 			/* Try again later */
1200 			fotg210_enable_event(fotg210,
1201 					FOTG210_HRTIMER_POLL_DEAD, true);
1202 			return;
1203 		}
1204 		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1205 	}
1206 
1207 	/* Clean up the mess */
1208 	fotg210->rh_state = FOTG210_RH_HALTED;
1209 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1210 	fotg210_work(fotg210);
1211 	end_unlink_async(fotg210);
1212 
1213 	/* Not in process context, so don't try to reset the controller */
1214 }
1215 
1216 
1217 /* Handle unlinked interrupt QHs once they are gone from the hardware */
fotg210_handle_intr_unlinks(struct fotg210_hcd * fotg210)1218 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1219 {
1220 	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1221 
1222 	/*
1223 	 * Process all the QHs on the intr_unlink list that were added
1224 	 * before the current unlink cycle began.  The list is in
1225 	 * temporal order, so stop when we reach the first entry in the
1226 	 * current cycle.  But if the root hub isn't running then
1227 	 * process all the QHs on the list.
1228 	 */
1229 	fotg210->intr_unlinking = true;
1230 	while (fotg210->intr_unlink) {
1231 		struct fotg210_qh *qh = fotg210->intr_unlink;
1232 
1233 		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1234 			break;
1235 		fotg210->intr_unlink = qh->unlink_next;
1236 		qh->unlink_next = NULL;
1237 		end_unlink_intr(fotg210, qh);
1238 	}
1239 
1240 	/* Handle remaining entries later */
1241 	if (fotg210->intr_unlink) {
1242 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1243 				true);
1244 		++fotg210->intr_unlink_cycle;
1245 	}
1246 	fotg210->intr_unlinking = false;
1247 }
1248 
1249 
1250 /* Start another free-iTDs/siTDs cycle */
start_free_itds(struct fotg210_hcd * fotg210)1251 static void start_free_itds(struct fotg210_hcd *fotg210)
1252 {
1253 	if (!(fotg210->enabled_hrtimer_events &
1254 			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1255 		fotg210->last_itd_to_free = list_entry(
1256 				fotg210->cached_itd_list.prev,
1257 				struct fotg210_itd, itd_list);
1258 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1259 	}
1260 }
1261 
1262 /* Wait for controller to stop using old iTDs and siTDs */
end_free_itds(struct fotg210_hcd * fotg210)1263 static void end_free_itds(struct fotg210_hcd *fotg210)
1264 {
1265 	struct fotg210_itd *itd, *n;
1266 
1267 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1268 		fotg210->last_itd_to_free = NULL;
1269 
1270 	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1271 		list_del(&itd->itd_list);
1272 		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1273 		if (itd == fotg210->last_itd_to_free)
1274 			break;
1275 	}
1276 
1277 	if (!list_empty(&fotg210->cached_itd_list))
1278 		start_free_itds(fotg210);
1279 }
1280 
1281 
1282 /* Handle lost (or very late) IAA interrupts */
fotg210_iaa_watchdog(struct fotg210_hcd * fotg210)1283 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1284 {
1285 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1286 		return;
1287 
1288 	/*
1289 	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1290 	 * So we need this watchdog, but must protect it against both
1291 	 * (a) SMP races against real IAA firing and retriggering, and
1292 	 * (b) clean HC shutdown, when IAA watchdog was pending.
1293 	 */
1294 	if (fotg210->async_iaa) {
1295 		u32 cmd, status;
1296 
1297 		/* If we get here, IAA is *REALLY* late.  It's barely
1298 		 * conceivable that the system is so busy that CMD_IAAD
1299 		 * is still legitimately set, so let's be sure it's
1300 		 * clear before we read STS_IAA.  (The HC should clear
1301 		 * CMD_IAAD when it sets STS_IAA.)
1302 		 */
1303 		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1304 
1305 		/*
1306 		 * If IAA is set here it either legitimately triggered
1307 		 * after the watchdog timer expired (_way_ late, so we'll
1308 		 * still count it as lost) ... or a silicon erratum:
1309 		 * - VIA seems to set IAA without triggering the IRQ;
1310 		 * - IAAD potentially cleared without setting IAA.
1311 		 */
1312 		status = fotg210_readl(fotg210, &fotg210->regs->status);
1313 		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1314 			COUNT(fotg210->stats.lost_iaa);
1315 			fotg210_writel(fotg210, STS_IAA,
1316 					&fotg210->regs->status);
1317 		}
1318 
1319 		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1320 				status, cmd);
1321 		end_unlink_async(fotg210);
1322 	}
1323 }
1324 
1325 
1326 /* Enable the I/O watchdog, if appropriate */
turn_on_io_watchdog(struct fotg210_hcd * fotg210)1327 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1328 {
1329 	/* Not needed if the controller isn't running or it's already enabled */
1330 	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1331 			(fotg210->enabled_hrtimer_events &
1332 			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1333 		return;
1334 
1335 	/*
1336 	 * Isochronous transfers always need the watchdog.
1337 	 * For other sorts we use it only if the flag is set.
1338 	 */
1339 	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1340 			fotg210->async_count + fotg210->intr_count > 0))
1341 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1342 				true);
1343 }
1344 
1345 
1346 /* Handler functions for the hrtimer event types.
1347  * Keep this array in the same order as the event types indexed by
1348  * enum fotg210_hrtimer_event in fotg210.h.
1349  */
1350 static void (*event_handlers[])(struct fotg210_hcd *) = {
1351 	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1352 	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1353 	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1354 	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1355 	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1356 	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1357 	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1358 	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1359 	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1360 	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1361 };
1362 
fotg210_hrtimer_func(struct hrtimer * t)1363 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1364 {
1365 	struct fotg210_hcd *fotg210 =
1366 			container_of(t, struct fotg210_hcd, hrtimer);
1367 	ktime_t now;
1368 	unsigned long events;
1369 	unsigned long flags;
1370 	unsigned e;
1371 
1372 	spin_lock_irqsave(&fotg210->lock, flags);
1373 
1374 	events = fotg210->enabled_hrtimer_events;
1375 	fotg210->enabled_hrtimer_events = 0;
1376 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1377 
1378 	/*
1379 	 * Check each pending event.  If its time has expired, handle
1380 	 * the event; otherwise re-enable it.
1381 	 */
1382 	now = ktime_get();
1383 	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1384 		if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
1385 			event_handlers[e](fotg210);
1386 		else
1387 			fotg210_enable_event(fotg210, e, false);
1388 	}
1389 
1390 	spin_unlock_irqrestore(&fotg210->lock, flags);
1391 	return HRTIMER_NORESTART;
1392 }
1393 
1394 #define fotg210_bus_suspend NULL
1395 #define fotg210_bus_resume NULL
1396 
check_reset_complete(struct fotg210_hcd * fotg210,int index,u32 __iomem * status_reg,int port_status)1397 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1398 		u32 __iomem *status_reg, int port_status)
1399 {
1400 	if (!(port_status & PORT_CONNECT))
1401 		return port_status;
1402 
1403 	/* if reset finished and it's still not enabled -- handoff */
1404 	if (!(port_status & PORT_PE))
1405 		/* with integrated TT, there's nobody to hand it to! */
1406 		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1407 				index + 1);
1408 	else
1409 		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1410 				index + 1);
1411 
1412 	return port_status;
1413 }
1414 
1415 
1416 /* build "status change" packet (one or two bytes) from HC registers */
1417 
fotg210_hub_status_data(struct usb_hcd * hcd,char * buf)1418 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1419 {
1420 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1421 	u32 temp, status;
1422 	u32 mask;
1423 	int retval = 1;
1424 	unsigned long flags;
1425 
1426 	/* init status to no-changes */
1427 	buf[0] = 0;
1428 
1429 	/* Inform the core about resumes-in-progress by returning
1430 	 * a non-zero value even if there are no status changes.
1431 	 */
1432 	status = fotg210->resuming_ports;
1433 
1434 	mask = PORT_CSC | PORT_PEC;
1435 	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1436 
1437 	/* no hub change reports (bit 0) for now (power, ...) */
1438 
1439 	/* port N changes (bit N)? */
1440 	spin_lock_irqsave(&fotg210->lock, flags);
1441 
1442 	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1443 
1444 	/*
1445 	 * Return status information even for ports with OWNER set.
1446 	 * Otherwise hub_wq wouldn't see the disconnect event when a
1447 	 * high-speed device is switched over to the companion
1448 	 * controller by the user.
1449 	 */
1450 
1451 	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1452 			(fotg210->reset_done[0] &&
1453 			time_after_eq(jiffies, fotg210->reset_done[0]))) {
1454 		buf[0] |= 1 << 1;
1455 		status = STS_PCD;
1456 	}
1457 	/* FIXME autosuspend idle root hubs */
1458 	spin_unlock_irqrestore(&fotg210->lock, flags);
1459 	return status ? retval : 0;
1460 }
1461 
fotg210_hub_descriptor(struct fotg210_hcd * fotg210,struct usb_hub_descriptor * desc)1462 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1463 		struct usb_hub_descriptor *desc)
1464 {
1465 	int ports = HCS_N_PORTS(fotg210->hcs_params);
1466 	u16 temp;
1467 
1468 	desc->bDescriptorType = USB_DT_HUB;
1469 	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1470 	desc->bHubContrCurrent = 0;
1471 
1472 	desc->bNbrPorts = ports;
1473 	temp = 1 + (ports / 8);
1474 	desc->bDescLength = 7 + 2 * temp;
1475 
1476 	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1477 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1478 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1479 
1480 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1481 	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1482 	desc->wHubCharacteristics = cpu_to_le16(temp);
1483 }
1484 
fotg210_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)1485 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1486 		u16 wIndex, char *buf, u16 wLength)
1487 {
1488 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1489 	int ports = HCS_N_PORTS(fotg210->hcs_params);
1490 	u32 __iomem *status_reg = &fotg210->regs->port_status;
1491 	u32 temp, temp1, status;
1492 	unsigned long flags;
1493 	int retval = 0;
1494 	unsigned selector;
1495 
1496 	/*
1497 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1498 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1499 	 * (track current state ourselves) ... blink for diagnostics,
1500 	 * power, "this is the one", etc.  EHCI spec supports this.
1501 	 */
1502 
1503 	spin_lock_irqsave(&fotg210->lock, flags);
1504 	switch (typeReq) {
1505 	case ClearHubFeature:
1506 		switch (wValue) {
1507 		case C_HUB_LOCAL_POWER:
1508 		case C_HUB_OVER_CURRENT:
1509 			/* no hub-wide feature/status flags */
1510 			break;
1511 		default:
1512 			goto error;
1513 		}
1514 		break;
1515 	case ClearPortFeature:
1516 		if (!wIndex || wIndex > ports)
1517 			goto error;
1518 		wIndex--;
1519 		temp = fotg210_readl(fotg210, status_reg);
1520 		temp &= ~PORT_RWC_BITS;
1521 
1522 		/*
1523 		 * Even if OWNER is set, so the port is owned by the
1524 		 * companion controller, hub_wq needs to be able to clear
1525 		 * the port-change status bits (especially
1526 		 * USB_PORT_STAT_C_CONNECTION).
1527 		 */
1528 
1529 		switch (wValue) {
1530 		case USB_PORT_FEAT_ENABLE:
1531 			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1532 			break;
1533 		case USB_PORT_FEAT_C_ENABLE:
1534 			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1535 			break;
1536 		case USB_PORT_FEAT_SUSPEND:
1537 			if (temp & PORT_RESET)
1538 				goto error;
1539 			if (!(temp & PORT_SUSPEND))
1540 				break;
1541 			if ((temp & PORT_PE) == 0)
1542 				goto error;
1543 
1544 			/* resume signaling for 20 msec */
1545 			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1546 			fotg210->reset_done[wIndex] = jiffies
1547 					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1548 			break;
1549 		case USB_PORT_FEAT_C_SUSPEND:
1550 			clear_bit(wIndex, &fotg210->port_c_suspend);
1551 			break;
1552 		case USB_PORT_FEAT_C_CONNECTION:
1553 			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1554 			break;
1555 		case USB_PORT_FEAT_C_OVER_CURRENT:
1556 			fotg210_writel(fotg210, temp | OTGISR_OVC,
1557 					&fotg210->regs->otgisr);
1558 			break;
1559 		case USB_PORT_FEAT_C_RESET:
1560 			/* GetPortStatus clears reset */
1561 			break;
1562 		default:
1563 			goto error;
1564 		}
1565 		fotg210_readl(fotg210, &fotg210->regs->command);
1566 		break;
1567 	case GetHubDescriptor:
1568 		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1569 				buf);
1570 		break;
1571 	case GetHubStatus:
1572 		/* no hub-wide feature/status flags */
1573 		memset(buf, 0, 4);
1574 		/*cpu_to_le32s ((u32 *) buf); */
1575 		break;
1576 	case GetPortStatus:
1577 		if (!wIndex || wIndex > ports)
1578 			goto error;
1579 		wIndex--;
1580 		status = 0;
1581 		temp = fotg210_readl(fotg210, status_reg);
1582 
1583 		/* wPortChange bits */
1584 		if (temp & PORT_CSC)
1585 			status |= USB_PORT_STAT_C_CONNECTION << 16;
1586 		if (temp & PORT_PEC)
1587 			status |= USB_PORT_STAT_C_ENABLE << 16;
1588 
1589 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1590 		if (temp1 & OTGISR_OVC)
1591 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1592 
1593 		/* whoever resumes must GetPortStatus to complete it!! */
1594 		if (temp & PORT_RESUME) {
1595 
1596 			/* Remote Wakeup received? */
1597 			if (!fotg210->reset_done[wIndex]) {
1598 				/* resume signaling for 20 msec */
1599 				fotg210->reset_done[wIndex] = jiffies
1600 						+ msecs_to_jiffies(20);
1601 				/* check the port again */
1602 				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1603 						fotg210->reset_done[wIndex]);
1604 			}
1605 
1606 			/* resume completed? */
1607 			else if (time_after_eq(jiffies,
1608 					fotg210->reset_done[wIndex])) {
1609 				clear_bit(wIndex, &fotg210->suspended_ports);
1610 				set_bit(wIndex, &fotg210->port_c_suspend);
1611 				fotg210->reset_done[wIndex] = 0;
1612 
1613 				/* stop resume signaling */
1614 				temp = fotg210_readl(fotg210, status_reg);
1615 				fotg210_writel(fotg210, temp &
1616 						~(PORT_RWC_BITS | PORT_RESUME),
1617 						status_reg);
1618 				clear_bit(wIndex, &fotg210->resuming_ports);
1619 				retval = handshake(fotg210, status_reg,
1620 						PORT_RESUME, 0, 2000);/* 2ms */
1621 				if (retval != 0) {
1622 					fotg210_err(fotg210,
1623 							"port %d resume error %d\n",
1624 							wIndex + 1, retval);
1625 					goto error;
1626 				}
1627 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1628 			}
1629 		}
1630 
1631 		/* whoever resets must GetPortStatus to complete it!! */
1632 		if ((temp & PORT_RESET) && time_after_eq(jiffies,
1633 				fotg210->reset_done[wIndex])) {
1634 			status |= USB_PORT_STAT_C_RESET << 16;
1635 			fotg210->reset_done[wIndex] = 0;
1636 			clear_bit(wIndex, &fotg210->resuming_ports);
1637 
1638 			/* force reset to complete */
1639 			fotg210_writel(fotg210,
1640 					temp & ~(PORT_RWC_BITS | PORT_RESET),
1641 					status_reg);
1642 			/* REVISIT:  some hardware needs 550+ usec to clear
1643 			 * this bit; seems too long to spin routinely...
1644 			 */
1645 			retval = handshake(fotg210, status_reg,
1646 					PORT_RESET, 0, 1000);
1647 			if (retval != 0) {
1648 				fotg210_err(fotg210, "port %d reset error %d\n",
1649 						wIndex + 1, retval);
1650 				goto error;
1651 			}
1652 
1653 			/* see what we found out */
1654 			temp = check_reset_complete(fotg210, wIndex, status_reg,
1655 					fotg210_readl(fotg210, status_reg));
1656 		}
1657 
1658 		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1659 			fotg210->reset_done[wIndex] = 0;
1660 			clear_bit(wIndex, &fotg210->resuming_ports);
1661 		}
1662 
1663 		/* transfer dedicated ports to the companion hc */
1664 		if ((temp & PORT_CONNECT) &&
1665 				test_bit(wIndex, &fotg210->companion_ports)) {
1666 			temp &= ~PORT_RWC_BITS;
1667 			fotg210_writel(fotg210, temp, status_reg);
1668 			fotg210_dbg(fotg210, "port %d --> companion\n",
1669 					wIndex + 1);
1670 			temp = fotg210_readl(fotg210, status_reg);
1671 		}
1672 
1673 		/*
1674 		 * Even if OWNER is set, there's no harm letting hub_wq
1675 		 * see the wPortStatus values (they should all be 0 except
1676 		 * for PORT_POWER anyway).
1677 		 */
1678 
1679 		if (temp & PORT_CONNECT) {
1680 			status |= USB_PORT_STAT_CONNECTION;
1681 			status |= fotg210_port_speed(fotg210, temp);
1682 		}
1683 		if (temp & PORT_PE)
1684 			status |= USB_PORT_STAT_ENABLE;
1685 
1686 		/* maybe the port was unsuspended without our knowledge */
1687 		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1688 			status |= USB_PORT_STAT_SUSPEND;
1689 		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1690 			clear_bit(wIndex, &fotg210->suspended_ports);
1691 			clear_bit(wIndex, &fotg210->resuming_ports);
1692 			fotg210->reset_done[wIndex] = 0;
1693 			if (temp & PORT_PE)
1694 				set_bit(wIndex, &fotg210->port_c_suspend);
1695 		}
1696 
1697 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1698 		if (temp1 & OTGISR_OVC)
1699 			status |= USB_PORT_STAT_OVERCURRENT;
1700 		if (temp & PORT_RESET)
1701 			status |= USB_PORT_STAT_RESET;
1702 		if (test_bit(wIndex, &fotg210->port_c_suspend))
1703 			status |= USB_PORT_STAT_C_SUSPEND << 16;
1704 
1705 		if (status & ~0xffff)	/* only if wPortChange is interesting */
1706 			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1707 		put_unaligned_le32(status, buf);
1708 		break;
1709 	case SetHubFeature:
1710 		switch (wValue) {
1711 		case C_HUB_LOCAL_POWER:
1712 		case C_HUB_OVER_CURRENT:
1713 			/* no hub-wide feature/status flags */
1714 			break;
1715 		default:
1716 			goto error;
1717 		}
1718 		break;
1719 	case SetPortFeature:
1720 		selector = wIndex >> 8;
1721 		wIndex &= 0xff;
1722 
1723 		if (!wIndex || wIndex > ports)
1724 			goto error;
1725 		wIndex--;
1726 		temp = fotg210_readl(fotg210, status_reg);
1727 		temp &= ~PORT_RWC_BITS;
1728 		switch (wValue) {
1729 		case USB_PORT_FEAT_SUSPEND:
1730 			if ((temp & PORT_PE) == 0
1731 					|| (temp & PORT_RESET) != 0)
1732 				goto error;
1733 
1734 			/* After above check the port must be connected.
1735 			 * Set appropriate bit thus could put phy into low power
1736 			 * mode if we have hostpc feature
1737 			 */
1738 			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1739 					status_reg);
1740 			set_bit(wIndex, &fotg210->suspended_ports);
1741 			break;
1742 		case USB_PORT_FEAT_RESET:
1743 			if (temp & PORT_RESUME)
1744 				goto error;
1745 			/* line status bits may report this as low speed,
1746 			 * which can be fine if this root hub has a
1747 			 * transaction translator built in.
1748 			 */
1749 			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1750 			temp |= PORT_RESET;
1751 			temp &= ~PORT_PE;
1752 
1753 			/*
1754 			 * caller must wait, then call GetPortStatus
1755 			 * usb 2.0 spec says 50 ms resets on root
1756 			 */
1757 			fotg210->reset_done[wIndex] = jiffies
1758 					+ msecs_to_jiffies(50);
1759 			fotg210_writel(fotg210, temp, status_reg);
1760 			break;
1761 
1762 		/* For downstream facing ports (these):  one hub port is put
1763 		 * into test mode according to USB2 11.24.2.13, then the hub
1764 		 * must be reset (which for root hub now means rmmod+modprobe,
1765 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1766 		 * about the EHCI-specific stuff.
1767 		 */
1768 		case USB_PORT_FEAT_TEST:
1769 			if (!selector || selector > 5)
1770 				goto error;
1771 			spin_unlock_irqrestore(&fotg210->lock, flags);
1772 			fotg210_quiesce(fotg210);
1773 			spin_lock_irqsave(&fotg210->lock, flags);
1774 
1775 			/* Put all enabled ports into suspend */
1776 			temp = fotg210_readl(fotg210, status_reg) &
1777 				~PORT_RWC_BITS;
1778 			if (temp & PORT_PE)
1779 				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1780 						status_reg);
1781 
1782 			spin_unlock_irqrestore(&fotg210->lock, flags);
1783 			fotg210_halt(fotg210);
1784 			spin_lock_irqsave(&fotg210->lock, flags);
1785 
1786 			temp = fotg210_readl(fotg210, status_reg);
1787 			temp |= selector << 16;
1788 			fotg210_writel(fotg210, temp, status_reg);
1789 			break;
1790 
1791 		default:
1792 			goto error;
1793 		}
1794 		fotg210_readl(fotg210, &fotg210->regs->command);
1795 		break;
1796 
1797 	default:
1798 error:
1799 		/* "stall" on error */
1800 		retval = -EPIPE;
1801 	}
1802 	spin_unlock_irqrestore(&fotg210->lock, flags);
1803 	return retval;
1804 }
1805 
fotg210_relinquish_port(struct usb_hcd * hcd,int portnum)1806 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1807 		int portnum)
1808 {
1809 	return;
1810 }
1811 
fotg210_port_handed_over(struct usb_hcd * hcd,int portnum)1812 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1813 		int portnum)
1814 {
1815 	return 0;
1816 }
1817 
1818 /* There's basically three types of memory:
1819  *	- data used only by the HCD ... kmalloc is fine
1820  *	- async and periodic schedules, shared by HC and HCD ... these
1821  *	  need to use dma_pool or dma_alloc_coherent
1822  *	- driver buffers, read/written by HC ... single shot DMA mapped
1823  *
1824  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1825  * No memory seen by this driver is pageable.
1826  */
1827 
1828 /* Allocate the key transfer structures from the previously allocated pool */
fotg210_qtd_init(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t dma)1829 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1830 		struct fotg210_qtd *qtd, dma_addr_t dma)
1831 {
1832 	memset(qtd, 0, sizeof(*qtd));
1833 	qtd->qtd_dma = dma;
1834 	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1835 	qtd->hw_next = FOTG210_LIST_END(fotg210);
1836 	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1837 	INIT_LIST_HEAD(&qtd->qtd_list);
1838 }
1839 
fotg210_qtd_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1840 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1841 		gfp_t flags)
1842 {
1843 	struct fotg210_qtd *qtd;
1844 	dma_addr_t dma;
1845 
1846 	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1847 	if (qtd != NULL)
1848 		fotg210_qtd_init(fotg210, qtd, dma);
1849 
1850 	return qtd;
1851 }
1852 
fotg210_qtd_free(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)1853 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1854 		struct fotg210_qtd *qtd)
1855 {
1856 	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1857 }
1858 
1859 
qh_destroy(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)1860 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1861 {
1862 	/* clean qtds first, and know this is not linked */
1863 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1864 		fotg210_dbg(fotg210, "unused qh not empty!\n");
1865 		BUG();
1866 	}
1867 	if (qh->dummy)
1868 		fotg210_qtd_free(fotg210, qh->dummy);
1869 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1870 	kfree(qh);
1871 }
1872 
fotg210_qh_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1873 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1874 		gfp_t flags)
1875 {
1876 	struct fotg210_qh *qh;
1877 	dma_addr_t dma;
1878 
1879 	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1880 	if (!qh)
1881 		goto done;
1882 	qh->hw = (struct fotg210_qh_hw *)
1883 		dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1884 	if (!qh->hw)
1885 		goto fail;
1886 	memset(qh->hw, 0, sizeof(*qh->hw));
1887 	qh->qh_dma = dma;
1888 	INIT_LIST_HEAD(&qh->qtd_list);
1889 
1890 	/* dummy td enables safe urb queuing */
1891 	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1892 	if (qh->dummy == NULL) {
1893 		fotg210_dbg(fotg210, "no dummy td\n");
1894 		goto fail1;
1895 	}
1896 done:
1897 	return qh;
1898 fail1:
1899 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1900 fail:
1901 	kfree(qh);
1902 	return NULL;
1903 }
1904 
1905 /* The queue heads and transfer descriptors are managed from pools tied
1906  * to each of the "per device" structures.
1907  * This is the initialisation and cleanup code.
1908  */
1909 
fotg210_mem_cleanup(struct fotg210_hcd * fotg210)1910 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1911 {
1912 	if (fotg210->async)
1913 		qh_destroy(fotg210, fotg210->async);
1914 	fotg210->async = NULL;
1915 
1916 	if (fotg210->dummy)
1917 		qh_destroy(fotg210, fotg210->dummy);
1918 	fotg210->dummy = NULL;
1919 
1920 	/* DMA consistent memory and pools */
1921 	dma_pool_destroy(fotg210->qtd_pool);
1922 	fotg210->qtd_pool = NULL;
1923 
1924 	dma_pool_destroy(fotg210->qh_pool);
1925 	fotg210->qh_pool = NULL;
1926 
1927 	dma_pool_destroy(fotg210->itd_pool);
1928 	fotg210->itd_pool = NULL;
1929 
1930 	if (fotg210->periodic)
1931 		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1932 				fotg210->periodic_size * sizeof(u32),
1933 				fotg210->periodic, fotg210->periodic_dma);
1934 	fotg210->periodic = NULL;
1935 
1936 	/* shadow periodic table */
1937 	kfree(fotg210->pshadow);
1938 	fotg210->pshadow = NULL;
1939 }
1940 
1941 /* remember to add cleanup code (above) if you add anything here */
fotg210_mem_init(struct fotg210_hcd * fotg210,gfp_t flags)1942 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1943 {
1944 	int i;
1945 
1946 	/* QTDs for control/bulk/intr transfers */
1947 	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1948 			fotg210_to_hcd(fotg210)->self.controller,
1949 			sizeof(struct fotg210_qtd),
1950 			32 /* byte alignment (for hw parts) */,
1951 			4096 /* can't cross 4K */);
1952 	if (!fotg210->qtd_pool)
1953 		goto fail;
1954 
1955 	/* QHs for control/bulk/intr transfers */
1956 	fotg210->qh_pool = dma_pool_create("fotg210_qh",
1957 			fotg210_to_hcd(fotg210)->self.controller,
1958 			sizeof(struct fotg210_qh_hw),
1959 			32 /* byte alignment (for hw parts) */,
1960 			4096 /* can't cross 4K */);
1961 	if (!fotg210->qh_pool)
1962 		goto fail;
1963 
1964 	fotg210->async = fotg210_qh_alloc(fotg210, flags);
1965 	if (!fotg210->async)
1966 		goto fail;
1967 
1968 	/* ITD for high speed ISO transfers */
1969 	fotg210->itd_pool = dma_pool_create("fotg210_itd",
1970 			fotg210_to_hcd(fotg210)->self.controller,
1971 			sizeof(struct fotg210_itd),
1972 			64 /* byte alignment (for hw parts) */,
1973 			4096 /* can't cross 4K */);
1974 	if (!fotg210->itd_pool)
1975 		goto fail;
1976 
1977 	/* Hardware periodic table */
1978 	fotg210->periodic = (__le32 *)
1979 		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1980 				fotg210->periodic_size * sizeof(__le32),
1981 				&fotg210->periodic_dma, 0);
1982 	if (fotg210->periodic == NULL)
1983 		goto fail;
1984 
1985 	for (i = 0; i < fotg210->periodic_size; i++)
1986 		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1987 
1988 	/* software shadow of hardware table */
1989 	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1990 			flags);
1991 	if (fotg210->pshadow != NULL)
1992 		return 0;
1993 
1994 fail:
1995 	fotg210_dbg(fotg210, "couldn't init memory\n");
1996 	fotg210_mem_cleanup(fotg210);
1997 	return -ENOMEM;
1998 }
1999 /* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
2000  *
2001  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
2002  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2003  * buffers needed for the larger number).  We use one QH per endpoint, queue
2004  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
2005  *
2006  * ISO traffic uses "ISO TD" (itd) records, and (along with
2007  * interrupts) needs careful scheduling.  Performance improvements can be
2008  * an ongoing challenge.  That's in "ehci-sched.c".
2009  *
2010  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2011  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2012  * (b) special fields in qh entries or (c) split iso entries.  TTs will
2013  * buffer low/full speed data so the host collects it at high speed.
2014  */
2015 
2016 /* fill a qtd, returning how much of the buffer we were able to queue up */
qtd_fill(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)2017 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
2018 		dma_addr_t buf, size_t len, int token, int maxpacket)
2019 {
2020 	int i, count;
2021 	u64 addr = buf;
2022 
2023 	/* one buffer entry per 4K ... first might be short or unaligned */
2024 	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2025 	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2026 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
2027 	if (likely(len < count))		/* ... iff needed */
2028 		count = len;
2029 	else {
2030 		buf +=  0x1000;
2031 		buf &= ~0x0fff;
2032 
2033 		/* per-qtd limit: from 16K to 20K (best alignment) */
2034 		for (i = 1; count < len && i < 5; i++) {
2035 			addr = buf;
2036 			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2037 			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2038 					(u32)(addr >> 32));
2039 			buf += 0x1000;
2040 			if ((count + 0x1000) < len)
2041 				count += 0x1000;
2042 			else
2043 				count = len;
2044 		}
2045 
2046 		/* short packets may only terminate transfers */
2047 		if (count != len)
2048 			count -= (count % maxpacket);
2049 	}
2050 	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2051 	qtd->length = count;
2052 
2053 	return count;
2054 }
2055 
qh_update(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct fotg210_qtd * qtd)2056 static inline void qh_update(struct fotg210_hcd *fotg210,
2057 		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2058 {
2059 	struct fotg210_qh_hw *hw = qh->hw;
2060 
2061 	/* writes to an active overlay are unsafe */
2062 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2063 
2064 	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2065 	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2066 
2067 	/* Except for control endpoints, we make hardware maintain data
2068 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2069 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2070 	 * ever clear it.
2071 	 */
2072 	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2073 		unsigned is_out, epnum;
2074 
2075 		is_out = qh->is_out;
2076 		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2077 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2078 			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2079 			usb_settoggle(qh->dev, epnum, is_out, 1);
2080 		}
2081 	}
2082 
2083 	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2084 }
2085 
2086 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2087  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2088  * recovery (including urb dequeue) would need software changes to a QH...
2089  */
qh_refresh(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2090 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2091 {
2092 	struct fotg210_qtd *qtd;
2093 
2094 	if (list_empty(&qh->qtd_list))
2095 		qtd = qh->dummy;
2096 	else {
2097 		qtd = list_entry(qh->qtd_list.next,
2098 				struct fotg210_qtd, qtd_list);
2099 		/*
2100 		 * first qtd may already be partially processed.
2101 		 * If we come here during unlink, the QH overlay region
2102 		 * might have reference to the just unlinked qtd. The
2103 		 * qtd is updated in qh_completions(). Update the QH
2104 		 * overlay here.
2105 		 */
2106 		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2107 			qh->hw->hw_qtd_next = qtd->hw_next;
2108 			qtd = NULL;
2109 		}
2110 	}
2111 
2112 	if (qtd)
2113 		qh_update(fotg210, qh, qtd);
2114 }
2115 
2116 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2117 
fotg210_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2118 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2119 		struct usb_host_endpoint *ep)
2120 {
2121 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2122 	struct fotg210_qh *qh = ep->hcpriv;
2123 	unsigned long flags;
2124 
2125 	spin_lock_irqsave(&fotg210->lock, flags);
2126 	qh->clearing_tt = 0;
2127 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2128 			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2129 		qh_link_async(fotg210, qh);
2130 	spin_unlock_irqrestore(&fotg210->lock, flags);
2131 }
2132 
fotg210_clear_tt_buffer(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct urb * urb,u32 token)2133 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2134 		struct fotg210_qh *qh, struct urb *urb, u32 token)
2135 {
2136 
2137 	/* If an async split transaction gets an error or is unlinked,
2138 	 * the TT buffer may be left in an indeterminate state.  We
2139 	 * have to clear the TT buffer.
2140 	 *
2141 	 * Note: this routine is never called for Isochronous transfers.
2142 	 */
2143 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2144 		struct usb_device *tt = urb->dev->tt->hub;
2145 
2146 		dev_dbg(&tt->dev,
2147 				"clear tt buffer port %d, a%d ep%d t%08x\n",
2148 				urb->dev->ttport, urb->dev->devnum,
2149 				usb_pipeendpoint(urb->pipe), token);
2150 
2151 		if (urb->dev->tt->hub !=
2152 				fotg210_to_hcd(fotg210)->self.root_hub) {
2153 			if (usb_hub_clear_tt_buffer(urb) == 0)
2154 				qh->clearing_tt = 1;
2155 		}
2156 	}
2157 }
2158 
qtd_copy_status(struct fotg210_hcd * fotg210,struct urb * urb,size_t length,u32 token)2159 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2160 		size_t length, u32 token)
2161 {
2162 	int status = -EINPROGRESS;
2163 
2164 	/* count IN/OUT bytes, not SETUP (even short packets) */
2165 	if (likely(QTD_PID(token) != 2))
2166 		urb->actual_length += length - QTD_LENGTH(token);
2167 
2168 	/* don't modify error codes */
2169 	if (unlikely(urb->unlinked))
2170 		return status;
2171 
2172 	/* force cleanup after short read; not always an error */
2173 	if (unlikely(IS_SHORT_READ(token)))
2174 		status = -EREMOTEIO;
2175 
2176 	/* serious "can't proceed" faults reported by the hardware */
2177 	if (token & QTD_STS_HALT) {
2178 		if (token & QTD_STS_BABBLE) {
2179 			/* FIXME "must" disable babbling device's port too */
2180 			status = -EOVERFLOW;
2181 		/* CERR nonzero + halt --> stall */
2182 		} else if (QTD_CERR(token)) {
2183 			status = -EPIPE;
2184 
2185 		/* In theory, more than one of the following bits can be set
2186 		 * since they are sticky and the transaction is retried.
2187 		 * Which to test first is rather arbitrary.
2188 		 */
2189 		} else if (token & QTD_STS_MMF) {
2190 			/* fs/ls interrupt xfer missed the complete-split */
2191 			status = -EPROTO;
2192 		} else if (token & QTD_STS_DBE) {
2193 			status = (QTD_PID(token) == 1) /* IN ? */
2194 				? -ENOSR  /* hc couldn't read data */
2195 				: -ECOMM; /* hc couldn't write data */
2196 		} else if (token & QTD_STS_XACT) {
2197 			/* timeout, bad CRC, wrong PID, etc */
2198 			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2199 					urb->dev->devpath,
2200 					usb_pipeendpoint(urb->pipe),
2201 					usb_pipein(urb->pipe) ? "in" : "out");
2202 			status = -EPROTO;
2203 		} else {	/* unknown */
2204 			status = -EPROTO;
2205 		}
2206 
2207 		fotg210_dbg(fotg210,
2208 				"dev%d ep%d%s qtd token %08x --> status %d\n",
2209 				usb_pipedevice(urb->pipe),
2210 				usb_pipeendpoint(urb->pipe),
2211 				usb_pipein(urb->pipe) ? "in" : "out",
2212 				token, status);
2213 	}
2214 
2215 	return status;
2216 }
2217 
fotg210_urb_done(struct fotg210_hcd * fotg210,struct urb * urb,int status)2218 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2219 		int status)
2220 __releases(fotg210->lock)
2221 __acquires(fotg210->lock)
2222 {
2223 	if (likely(urb->hcpriv != NULL)) {
2224 		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2225 
2226 		/* S-mask in a QH means it's an interrupt urb */
2227 		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2228 
2229 			/* ... update hc-wide periodic stats (for usbfs) */
2230 			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2231 		}
2232 	}
2233 
2234 	if (unlikely(urb->unlinked)) {
2235 		COUNT(fotg210->stats.unlink);
2236 	} else {
2237 		/* report non-error and short read status as zero */
2238 		if (status == -EINPROGRESS || status == -EREMOTEIO)
2239 			status = 0;
2240 		COUNT(fotg210->stats.complete);
2241 	}
2242 
2243 #ifdef FOTG210_URB_TRACE
2244 	fotg210_dbg(fotg210,
2245 			"%s %s urb %p ep%d%s status %d len %d/%d\n",
2246 			__func__, urb->dev->devpath, urb,
2247 			usb_pipeendpoint(urb->pipe),
2248 			usb_pipein(urb->pipe) ? "in" : "out",
2249 			status,
2250 			urb->actual_length, urb->transfer_buffer_length);
2251 #endif
2252 
2253 	/* complete() can reenter this HCD */
2254 	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2255 	spin_unlock(&fotg210->lock);
2256 	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2257 	spin_lock(&fotg210->lock);
2258 }
2259 
2260 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2261 
2262 /* Process and free completed qtds for a qh, returning URBs to drivers.
2263  * Chases up to qh->hw_current.  Returns number of completions called,
2264  * indicating how much "real" work we did.
2265  */
qh_completions(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2266 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2267 		struct fotg210_qh *qh)
2268 {
2269 	struct fotg210_qtd *last, *end = qh->dummy;
2270 	struct list_head *entry, *tmp;
2271 	int last_status;
2272 	int stopped;
2273 	unsigned count = 0;
2274 	u8 state;
2275 	struct fotg210_qh_hw *hw = qh->hw;
2276 
2277 	if (unlikely(list_empty(&qh->qtd_list)))
2278 		return count;
2279 
2280 	/* completions (or tasks on other cpus) must never clobber HALT
2281 	 * till we've gone through and cleaned everything up, even when
2282 	 * they add urbs to this qh's queue or mark them for unlinking.
2283 	 *
2284 	 * NOTE:  unlinking expects to be done in queue order.
2285 	 *
2286 	 * It's a bug for qh->qh_state to be anything other than
2287 	 * QH_STATE_IDLE, unless our caller is scan_async() or
2288 	 * scan_intr().
2289 	 */
2290 	state = qh->qh_state;
2291 	qh->qh_state = QH_STATE_COMPLETING;
2292 	stopped = (state == QH_STATE_IDLE);
2293 
2294 rescan:
2295 	last = NULL;
2296 	last_status = -EINPROGRESS;
2297 	qh->needs_rescan = 0;
2298 
2299 	/* remove de-activated QTDs from front of queue.
2300 	 * after faults (including short reads), cleanup this urb
2301 	 * then let the queue advance.
2302 	 * if queue is stopped, handles unlinks.
2303 	 */
2304 	list_for_each_safe(entry, tmp, &qh->qtd_list) {
2305 		struct fotg210_qtd *qtd;
2306 		struct urb *urb;
2307 		u32 token = 0;
2308 
2309 		qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2310 		urb = qtd->urb;
2311 
2312 		/* clean up any state from previous QTD ...*/
2313 		if (last) {
2314 			if (likely(last->urb != urb)) {
2315 				fotg210_urb_done(fotg210, last->urb,
2316 						last_status);
2317 				count++;
2318 				last_status = -EINPROGRESS;
2319 			}
2320 			fotg210_qtd_free(fotg210, last);
2321 			last = NULL;
2322 		}
2323 
2324 		/* ignore urbs submitted during completions we reported */
2325 		if (qtd == end)
2326 			break;
2327 
2328 		/* hardware copies qtd out of qh overlay */
2329 		rmb();
2330 		token = hc32_to_cpu(fotg210, qtd->hw_token);
2331 
2332 		/* always clean up qtds the hc de-activated */
2333 retry_xacterr:
2334 		if ((token & QTD_STS_ACTIVE) == 0) {
2335 
2336 			/* Report Data Buffer Error: non-fatal but useful */
2337 			if (token & QTD_STS_DBE)
2338 				fotg210_dbg(fotg210,
2339 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2340 					urb, usb_endpoint_num(&urb->ep->desc),
2341 					usb_endpoint_dir_in(&urb->ep->desc)
2342 						? "in" : "out",
2343 					urb->transfer_buffer_length, qtd, qh);
2344 
2345 			/* on STALL, error, and short reads this urb must
2346 			 * complete and all its qtds must be recycled.
2347 			 */
2348 			if ((token & QTD_STS_HALT) != 0) {
2349 
2350 				/* retry transaction errors until we
2351 				 * reach the software xacterr limit
2352 				 */
2353 				if ((token & QTD_STS_XACT) &&
2354 						QTD_CERR(token) == 0 &&
2355 						++qh->xacterrs < QH_XACTERR_MAX &&
2356 						!urb->unlinked) {
2357 					fotg210_dbg(fotg210,
2358 						"detected XactErr len %zu/%zu retry %d\n",
2359 						qtd->length - QTD_LENGTH(token),
2360 						qtd->length,
2361 						qh->xacterrs);
2362 
2363 					/* reset the token in the qtd and the
2364 					 * qh overlay (which still contains
2365 					 * the qtd) so that we pick up from
2366 					 * where we left off
2367 					 */
2368 					token &= ~QTD_STS_HALT;
2369 					token |= QTD_STS_ACTIVE |
2370 						 (FOTG210_TUNE_CERR << 10);
2371 					qtd->hw_token = cpu_to_hc32(fotg210,
2372 							token);
2373 					wmb();
2374 					hw->hw_token = cpu_to_hc32(fotg210,
2375 							token);
2376 					goto retry_xacterr;
2377 				}
2378 				stopped = 1;
2379 
2380 			/* magic dummy for some short reads; qh won't advance.
2381 			 * that silicon quirk can kick in with this dummy too.
2382 			 *
2383 			 * other short reads won't stop the queue, including
2384 			 * control transfers (status stage handles that) or
2385 			 * most other single-qtd reads ... the queue stops if
2386 			 * URB_SHORT_NOT_OK was set so the driver submitting
2387 			 * the urbs could clean it up.
2388 			 */
2389 			} else if (IS_SHORT_READ(token) &&
2390 					!(qtd->hw_alt_next &
2391 					FOTG210_LIST_END(fotg210))) {
2392 				stopped = 1;
2393 			}
2394 
2395 		/* stop scanning when we reach qtds the hc is using */
2396 		} else if (likely(!stopped
2397 				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2398 			break;
2399 
2400 		/* scan the whole queue for unlinks whenever it stops */
2401 		} else {
2402 			stopped = 1;
2403 
2404 			/* cancel everything if we halt, suspend, etc */
2405 			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2406 				last_status = -ESHUTDOWN;
2407 
2408 			/* this qtd is active; skip it unless a previous qtd
2409 			 * for its urb faulted, or its urb was canceled.
2410 			 */
2411 			else if (last_status == -EINPROGRESS && !urb->unlinked)
2412 				continue;
2413 
2414 			/* qh unlinked; token in overlay may be most current */
2415 			if (state == QH_STATE_IDLE &&
2416 					cpu_to_hc32(fotg210, qtd->qtd_dma)
2417 					== hw->hw_current) {
2418 				token = hc32_to_cpu(fotg210, hw->hw_token);
2419 
2420 				/* An unlink may leave an incomplete
2421 				 * async transaction in the TT buffer.
2422 				 * We have to clear it.
2423 				 */
2424 				fotg210_clear_tt_buffer(fotg210, qh, urb,
2425 						token);
2426 			}
2427 		}
2428 
2429 		/* unless we already know the urb's status, collect qtd status
2430 		 * and update count of bytes transferred.  in common short read
2431 		 * cases with only one data qtd (including control transfers),
2432 		 * queue processing won't halt.  but with two or more qtds (for
2433 		 * example, with a 32 KB transfer), when the first qtd gets a
2434 		 * short read the second must be removed by hand.
2435 		 */
2436 		if (last_status == -EINPROGRESS) {
2437 			last_status = qtd_copy_status(fotg210, urb,
2438 					qtd->length, token);
2439 			if (last_status == -EREMOTEIO &&
2440 					(qtd->hw_alt_next &
2441 					FOTG210_LIST_END(fotg210)))
2442 				last_status = -EINPROGRESS;
2443 
2444 			/* As part of low/full-speed endpoint-halt processing
2445 			 * we must clear the TT buffer (11.17.5).
2446 			 */
2447 			if (unlikely(last_status != -EINPROGRESS &&
2448 					last_status != -EREMOTEIO)) {
2449 				/* The TT's in some hubs malfunction when they
2450 				 * receive this request following a STALL (they
2451 				 * stop sending isochronous packets).  Since a
2452 				 * STALL can't leave the TT buffer in a busy
2453 				 * state (if you believe Figures 11-48 - 11-51
2454 				 * in the USB 2.0 spec), we won't clear the TT
2455 				 * buffer in this case.  Strictly speaking this
2456 				 * is a violation of the spec.
2457 				 */
2458 				if (last_status != -EPIPE)
2459 					fotg210_clear_tt_buffer(fotg210, qh,
2460 							urb, token);
2461 			}
2462 		}
2463 
2464 		/* if we're removing something not at the queue head,
2465 		 * patch the hardware queue pointer.
2466 		 */
2467 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2468 			last = list_entry(qtd->qtd_list.prev,
2469 					struct fotg210_qtd, qtd_list);
2470 			last->hw_next = qtd->hw_next;
2471 		}
2472 
2473 		/* remove qtd; it's recycled after possible urb completion */
2474 		list_del(&qtd->qtd_list);
2475 		last = qtd;
2476 
2477 		/* reinit the xacterr counter for the next qtd */
2478 		qh->xacterrs = 0;
2479 	}
2480 
2481 	/* last urb's completion might still need calling */
2482 	if (likely(last != NULL)) {
2483 		fotg210_urb_done(fotg210, last->urb, last_status);
2484 		count++;
2485 		fotg210_qtd_free(fotg210, last);
2486 	}
2487 
2488 	/* Do we need to rescan for URBs dequeued during a giveback? */
2489 	if (unlikely(qh->needs_rescan)) {
2490 		/* If the QH is already unlinked, do the rescan now. */
2491 		if (state == QH_STATE_IDLE)
2492 			goto rescan;
2493 
2494 		/* Otherwise we have to wait until the QH is fully unlinked.
2495 		 * Our caller will start an unlink if qh->needs_rescan is
2496 		 * set.  But if an unlink has already started, nothing needs
2497 		 * to be done.
2498 		 */
2499 		if (state != QH_STATE_LINKED)
2500 			qh->needs_rescan = 0;
2501 	}
2502 
2503 	/* restore original state; caller must unlink or relink */
2504 	qh->qh_state = state;
2505 
2506 	/* be sure the hardware's done with the qh before refreshing
2507 	 * it after fault cleanup, or recovering from silicon wrongly
2508 	 * overlaying the dummy qtd (which reduces DMA chatter).
2509 	 */
2510 	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2511 		switch (state) {
2512 		case QH_STATE_IDLE:
2513 			qh_refresh(fotg210, qh);
2514 			break;
2515 		case QH_STATE_LINKED:
2516 			/* We won't refresh a QH that's linked (after the HC
2517 			 * stopped the queue).  That avoids a race:
2518 			 *  - HC reads first part of QH;
2519 			 *  - CPU updates that first part and the token;
2520 			 *  - HC reads rest of that QH, including token
2521 			 * Result:  HC gets an inconsistent image, and then
2522 			 * DMAs to/from the wrong memory (corrupting it).
2523 			 *
2524 			 * That should be rare for interrupt transfers,
2525 			 * except maybe high bandwidth ...
2526 			 */
2527 
2528 			/* Tell the caller to start an unlink */
2529 			qh->needs_rescan = 1;
2530 			break;
2531 		/* otherwise, unlink already started */
2532 		}
2533 	}
2534 
2535 	return count;
2536 }
2537 
2538 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2539 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2540 /* ... and packet size, for any kind of endpoint descriptor */
2541 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2542 
2543 /* reverse of qh_urb_transaction:  free a list of TDs.
2544  * used for cleanup after errors, before HC sees an URB's TDs.
2545  */
qtd_list_free(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list)2546 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2547 		struct list_head *qtd_list)
2548 {
2549 	struct list_head *entry, *temp;
2550 
2551 	list_for_each_safe(entry, temp, qtd_list) {
2552 		struct fotg210_qtd *qtd;
2553 
2554 		qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2555 		list_del(&qtd->qtd_list);
2556 		fotg210_qtd_free(fotg210, qtd);
2557 	}
2558 }
2559 
2560 /* create a list of filled qtds for this URB; won't link into qh.
2561  */
qh_urb_transaction(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head,gfp_t flags)2562 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2563 		struct urb *urb, struct list_head *head, gfp_t flags)
2564 {
2565 	struct fotg210_qtd *qtd, *qtd_prev;
2566 	dma_addr_t buf;
2567 	int len, this_sg_len, maxpacket;
2568 	int is_input;
2569 	u32 token;
2570 	int i;
2571 	struct scatterlist *sg;
2572 
2573 	/*
2574 	 * URBs map to sequences of QTDs:  one logical transaction
2575 	 */
2576 	qtd = fotg210_qtd_alloc(fotg210, flags);
2577 	if (unlikely(!qtd))
2578 		return NULL;
2579 	list_add_tail(&qtd->qtd_list, head);
2580 	qtd->urb = urb;
2581 
2582 	token = QTD_STS_ACTIVE;
2583 	token |= (FOTG210_TUNE_CERR << 10);
2584 	/* for split transactions, SplitXState initialized to zero */
2585 
2586 	len = urb->transfer_buffer_length;
2587 	is_input = usb_pipein(urb->pipe);
2588 	if (usb_pipecontrol(urb->pipe)) {
2589 		/* SETUP pid */
2590 		qtd_fill(fotg210, qtd, urb->setup_dma,
2591 				sizeof(struct usb_ctrlrequest),
2592 				token | (2 /* "setup" */ << 8), 8);
2593 
2594 		/* ... and always at least one more pid */
2595 		token ^= QTD_TOGGLE;
2596 		qtd_prev = qtd;
2597 		qtd = fotg210_qtd_alloc(fotg210, flags);
2598 		if (unlikely(!qtd))
2599 			goto cleanup;
2600 		qtd->urb = urb;
2601 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2602 		list_add_tail(&qtd->qtd_list, head);
2603 
2604 		/* for zero length DATA stages, STATUS is always IN */
2605 		if (len == 0)
2606 			token |= (1 /* "in" */ << 8);
2607 	}
2608 
2609 	/*
2610 	 * data transfer stage:  buffer setup
2611 	 */
2612 	i = urb->num_mapped_sgs;
2613 	if (len > 0 && i > 0) {
2614 		sg = urb->sg;
2615 		buf = sg_dma_address(sg);
2616 
2617 		/* urb->transfer_buffer_length may be smaller than the
2618 		 * size of the scatterlist (or vice versa)
2619 		 */
2620 		this_sg_len = min_t(int, sg_dma_len(sg), len);
2621 	} else {
2622 		sg = NULL;
2623 		buf = urb->transfer_dma;
2624 		this_sg_len = len;
2625 	}
2626 
2627 	if (is_input)
2628 		token |= (1 /* "in" */ << 8);
2629 	/* else it's already initted to "out" pid (0 << 8) */
2630 
2631 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2632 
2633 	/*
2634 	 * buffer gets wrapped in one or more qtds;
2635 	 * last one may be "short" (including zero len)
2636 	 * and may serve as a control status ack
2637 	 */
2638 	for (;;) {
2639 		int this_qtd_len;
2640 
2641 		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2642 				maxpacket);
2643 		this_sg_len -= this_qtd_len;
2644 		len -= this_qtd_len;
2645 		buf += this_qtd_len;
2646 
2647 		/*
2648 		 * short reads advance to a "magic" dummy instead of the next
2649 		 * qtd ... that forces the queue to stop, for manual cleanup.
2650 		 * (this will usually be overridden later.)
2651 		 */
2652 		if (is_input)
2653 			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2654 
2655 		/* qh makes control packets use qtd toggle; maybe switch it */
2656 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2657 			token ^= QTD_TOGGLE;
2658 
2659 		if (likely(this_sg_len <= 0)) {
2660 			if (--i <= 0 || len <= 0)
2661 				break;
2662 			sg = sg_next(sg);
2663 			buf = sg_dma_address(sg);
2664 			this_sg_len = min_t(int, sg_dma_len(sg), len);
2665 		}
2666 
2667 		qtd_prev = qtd;
2668 		qtd = fotg210_qtd_alloc(fotg210, flags);
2669 		if (unlikely(!qtd))
2670 			goto cleanup;
2671 		qtd->urb = urb;
2672 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2673 		list_add_tail(&qtd->qtd_list, head);
2674 	}
2675 
2676 	/*
2677 	 * unless the caller requires manual cleanup after short reads,
2678 	 * have the alt_next mechanism keep the queue running after the
2679 	 * last data qtd (the only one, for control and most other cases).
2680 	 */
2681 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2682 			usb_pipecontrol(urb->pipe)))
2683 		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2684 
2685 	/*
2686 	 * control requests may need a terminating data "status" ack;
2687 	 * other OUT ones may need a terminating short packet
2688 	 * (zero length).
2689 	 */
2690 	if (likely(urb->transfer_buffer_length != 0)) {
2691 		int one_more = 0;
2692 
2693 		if (usb_pipecontrol(urb->pipe)) {
2694 			one_more = 1;
2695 			token ^= 0x0100;	/* "in" <--> "out"  */
2696 			token |= QTD_TOGGLE;	/* force DATA1 */
2697 		} else if (usb_pipeout(urb->pipe)
2698 				&& (urb->transfer_flags & URB_ZERO_PACKET)
2699 				&& !(urb->transfer_buffer_length % maxpacket)) {
2700 			one_more = 1;
2701 		}
2702 		if (one_more) {
2703 			qtd_prev = qtd;
2704 			qtd = fotg210_qtd_alloc(fotg210, flags);
2705 			if (unlikely(!qtd))
2706 				goto cleanup;
2707 			qtd->urb = urb;
2708 			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2709 			list_add_tail(&qtd->qtd_list, head);
2710 
2711 			/* never any data in such packets */
2712 			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2713 		}
2714 	}
2715 
2716 	/* by default, enable interrupt on urb completion */
2717 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2718 		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2719 	return head;
2720 
2721 cleanup:
2722 	qtd_list_free(fotg210, urb, head);
2723 	return NULL;
2724 }
2725 
2726 /* Would be best to create all qh's from config descriptors,
2727  * when each interface/altsetting is established.  Unlink
2728  * any previous qh and cancel its urbs first; endpoints are
2729  * implicitly reset then (data toggle too).
2730  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2731 */
2732 
2733 
2734 /* Each QH holds a qtd list; a QH is used for everything except iso.
2735  *
2736  * For interrupt urbs, the scheduler must set the microframe scheduling
2737  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2738  * just one microframe in the s-mask.  For split interrupt transactions
2739  * there are additional complications: c-mask, maybe FSTNs.
2740  */
qh_make(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t flags)2741 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2742 		gfp_t flags)
2743 {
2744 	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2745 	u32 info1 = 0, info2 = 0;
2746 	int is_input, type;
2747 	int maxp = 0;
2748 	struct usb_tt *tt = urb->dev->tt;
2749 	struct fotg210_qh_hw *hw;
2750 
2751 	if (!qh)
2752 		return qh;
2753 
2754 	/*
2755 	 * init endpoint/device data for this QH
2756 	 */
2757 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2758 	info1 |= usb_pipedevice(urb->pipe) << 0;
2759 
2760 	is_input = usb_pipein(urb->pipe);
2761 	type = usb_pipetype(urb->pipe);
2762 	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2763 
2764 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2765 	 * acts like up to 3KB, but is built from smaller packets.
2766 	 */
2767 	if (max_packet(maxp) > 1024) {
2768 		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2769 				max_packet(maxp));
2770 		goto done;
2771 	}
2772 
2773 	/* Compute interrupt scheduling parameters just once, and save.
2774 	 * - allowing for high bandwidth, how many nsec/uframe are used?
2775 	 * - split transactions need a second CSPLIT uframe; same question
2776 	 * - splits also need a schedule gap (for full/low speed I/O)
2777 	 * - qh has a polling interval
2778 	 *
2779 	 * For control/bulk requests, the HC or TT handles these.
2780 	 */
2781 	if (type == PIPE_INTERRUPT) {
2782 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2783 				is_input, 0,
2784 				hb_mult(maxp) * max_packet(maxp)));
2785 		qh->start = NO_FRAME;
2786 
2787 		if (urb->dev->speed == USB_SPEED_HIGH) {
2788 			qh->c_usecs = 0;
2789 			qh->gap_uf = 0;
2790 
2791 			qh->period = urb->interval >> 3;
2792 			if (qh->period == 0 && urb->interval != 1) {
2793 				/* NOTE interval 2 or 4 uframes could work.
2794 				 * But interval 1 scheduling is simpler, and
2795 				 * includes high bandwidth.
2796 				 */
2797 				urb->interval = 1;
2798 			} else if (qh->period > fotg210->periodic_size) {
2799 				qh->period = fotg210->periodic_size;
2800 				urb->interval = qh->period << 3;
2801 			}
2802 		} else {
2803 			int think_time;
2804 
2805 			/* gap is f(FS/LS transfer times) */
2806 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2807 					is_input, 0, maxp) / (125 * 1000);
2808 
2809 			/* FIXME this just approximates SPLIT/CSPLIT times */
2810 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2811 				qh->c_usecs = qh->usecs + HS_USECS(0);
2812 				qh->usecs = HS_USECS(1);
2813 			} else {		/* SPLIT+DATA, gap, CSPLIT */
2814 				qh->usecs += HS_USECS(1);
2815 				qh->c_usecs = HS_USECS(0);
2816 			}
2817 
2818 			think_time = tt ? tt->think_time : 0;
2819 			qh->tt_usecs = NS_TO_US(think_time +
2820 					usb_calc_bus_time(urb->dev->speed,
2821 					is_input, 0, max_packet(maxp)));
2822 			qh->period = urb->interval;
2823 			if (qh->period > fotg210->periodic_size) {
2824 				qh->period = fotg210->periodic_size;
2825 				urb->interval = qh->period;
2826 			}
2827 		}
2828 	}
2829 
2830 	/* support for tt scheduling, and access to toggles */
2831 	qh->dev = urb->dev;
2832 
2833 	/* using TT? */
2834 	switch (urb->dev->speed) {
2835 	case USB_SPEED_LOW:
2836 		info1 |= QH_LOW_SPEED;
2837 		/* FALL THROUGH */
2838 
2839 	case USB_SPEED_FULL:
2840 		/* EPS 0 means "full" */
2841 		if (type != PIPE_INTERRUPT)
2842 			info1 |= (FOTG210_TUNE_RL_TT << 28);
2843 		if (type == PIPE_CONTROL) {
2844 			info1 |= QH_CONTROL_EP;		/* for TT */
2845 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2846 		}
2847 		info1 |= maxp << 16;
2848 
2849 		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2850 
2851 		/* Some Freescale processors have an erratum in which the
2852 		 * port number in the queue head was 0..N-1 instead of 1..N.
2853 		 */
2854 		if (fotg210_has_fsl_portno_bug(fotg210))
2855 			info2 |= (urb->dev->ttport-1) << 23;
2856 		else
2857 			info2 |= urb->dev->ttport << 23;
2858 
2859 		/* set the address of the TT; for TDI's integrated
2860 		 * root hub tt, leave it zeroed.
2861 		 */
2862 		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2863 			info2 |= tt->hub->devnum << 16;
2864 
2865 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2866 
2867 		break;
2868 
2869 	case USB_SPEED_HIGH:		/* no TT involved */
2870 		info1 |= QH_HIGH_SPEED;
2871 		if (type == PIPE_CONTROL) {
2872 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2873 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2874 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2875 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2876 		} else if (type == PIPE_BULK) {
2877 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2878 			/* The USB spec says that high speed bulk endpoints
2879 			 * always use 512 byte maxpacket.  But some device
2880 			 * vendors decided to ignore that, and MSFT is happy
2881 			 * to help them do so.  So now people expect to use
2882 			 * such nonconformant devices with Linux too; sigh.
2883 			 */
2884 			info1 |= max_packet(maxp) << 16;
2885 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2886 		} else {		/* PIPE_INTERRUPT */
2887 			info1 |= max_packet(maxp) << 16;
2888 			info2 |= hb_mult(maxp) << 30;
2889 		}
2890 		break;
2891 	default:
2892 		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2893 				urb->dev->speed);
2894 done:
2895 		qh_destroy(fotg210, qh);
2896 		return NULL;
2897 	}
2898 
2899 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2900 
2901 	/* init as live, toggle clear, advance to dummy */
2902 	qh->qh_state = QH_STATE_IDLE;
2903 	hw = qh->hw;
2904 	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2905 	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2906 	qh->is_out = !is_input;
2907 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2908 	qh_refresh(fotg210, qh);
2909 	return qh;
2910 }
2911 
enable_async(struct fotg210_hcd * fotg210)2912 static void enable_async(struct fotg210_hcd *fotg210)
2913 {
2914 	if (fotg210->async_count++)
2915 		return;
2916 
2917 	/* Stop waiting to turn off the async schedule */
2918 	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2919 
2920 	/* Don't start the schedule until ASS is 0 */
2921 	fotg210_poll_ASS(fotg210);
2922 	turn_on_io_watchdog(fotg210);
2923 }
2924 
disable_async(struct fotg210_hcd * fotg210)2925 static void disable_async(struct fotg210_hcd *fotg210)
2926 {
2927 	if (--fotg210->async_count)
2928 		return;
2929 
2930 	/* The async schedule and async_unlink list are supposed to be empty */
2931 	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2932 
2933 	/* Don't turn off the schedule until ASS is 1 */
2934 	fotg210_poll_ASS(fotg210);
2935 }
2936 
2937 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
2938 
qh_link_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2939 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2940 {
2941 	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2942 	struct fotg210_qh *head;
2943 
2944 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
2945 	if (unlikely(qh->clearing_tt))
2946 		return;
2947 
2948 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
2949 
2950 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
2951 	qh_refresh(fotg210, qh);
2952 
2953 	/* splice right after start */
2954 	head = fotg210->async;
2955 	qh->qh_next = head->qh_next;
2956 	qh->hw->hw_next = head->hw->hw_next;
2957 	wmb();
2958 
2959 	head->qh_next.qh = qh;
2960 	head->hw->hw_next = dma;
2961 
2962 	qh->xacterrs = 0;
2963 	qh->qh_state = QH_STATE_LINKED;
2964 	/* qtd completions reported later by interrupt */
2965 
2966 	enable_async(fotg210);
2967 }
2968 
2969 /* For control/bulk/interrupt, return QH with these TDs appended.
2970  * Allocates and initializes the QH if necessary.
2971  * Returns null if it can't allocate a QH it needs to.
2972  * If the QH has TDs (urbs) already, that's great.
2973  */
qh_append_tds(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)2974 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2975 		struct urb *urb, struct list_head *qtd_list,
2976 		int epnum, void **ptr)
2977 {
2978 	struct fotg210_qh *qh = NULL;
2979 	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2980 
2981 	qh = (struct fotg210_qh *) *ptr;
2982 	if (unlikely(qh == NULL)) {
2983 		/* can't sleep here, we have fotg210->lock... */
2984 		qh = qh_make(fotg210, urb, GFP_ATOMIC);
2985 		*ptr = qh;
2986 	}
2987 	if (likely(qh != NULL)) {
2988 		struct fotg210_qtd *qtd;
2989 
2990 		if (unlikely(list_empty(qtd_list)))
2991 			qtd = NULL;
2992 		else
2993 			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2994 					qtd_list);
2995 
2996 		/* control qh may need patching ... */
2997 		if (unlikely(epnum == 0)) {
2998 			/* usb_reset_device() briefly reverts to address 0 */
2999 			if (usb_pipedevice(urb->pipe) == 0)
3000 				qh->hw->hw_info1 &= ~qh_addr_mask;
3001 		}
3002 
3003 		/* just one way to queue requests: swap with the dummy qtd.
3004 		 * only hc or qh_refresh() ever modify the overlay.
3005 		 */
3006 		if (likely(qtd != NULL)) {
3007 			struct fotg210_qtd *dummy;
3008 			dma_addr_t dma;
3009 			__hc32 token;
3010 
3011 			/* to avoid racing the HC, use the dummy td instead of
3012 			 * the first td of our list (becomes new dummy).  both
3013 			 * tds stay deactivated until we're done, when the
3014 			 * HC is allowed to fetch the old dummy (4.10.2).
3015 			 */
3016 			token = qtd->hw_token;
3017 			qtd->hw_token = HALT_BIT(fotg210);
3018 
3019 			dummy = qh->dummy;
3020 
3021 			dma = dummy->qtd_dma;
3022 			*dummy = *qtd;
3023 			dummy->qtd_dma = dma;
3024 
3025 			list_del(&qtd->qtd_list);
3026 			list_add(&dummy->qtd_list, qtd_list);
3027 			list_splice_tail(qtd_list, &qh->qtd_list);
3028 
3029 			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3030 			qh->dummy = qtd;
3031 
3032 			/* hc must see the new dummy at list end */
3033 			dma = qtd->qtd_dma;
3034 			qtd = list_entry(qh->qtd_list.prev,
3035 					struct fotg210_qtd, qtd_list);
3036 			qtd->hw_next = QTD_NEXT(fotg210, dma);
3037 
3038 			/* let the hc process these next qtds */
3039 			wmb();
3040 			dummy->hw_token = token;
3041 
3042 			urb->hcpriv = qh;
3043 		}
3044 	}
3045 	return qh;
3046 }
3047 
submit_async(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3048 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3049 		struct list_head *qtd_list, gfp_t mem_flags)
3050 {
3051 	int epnum;
3052 	unsigned long flags;
3053 	struct fotg210_qh *qh = NULL;
3054 	int rc;
3055 
3056 	epnum = urb->ep->desc.bEndpointAddress;
3057 
3058 #ifdef FOTG210_URB_TRACE
3059 	{
3060 		struct fotg210_qtd *qtd;
3061 
3062 		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3063 		fotg210_dbg(fotg210,
3064 				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3065 				__func__, urb->dev->devpath, urb,
3066 				epnum & 0x0f, (epnum & USB_DIR_IN)
3067 					? "in" : "out",
3068 				urb->transfer_buffer_length,
3069 				qtd, urb->ep->hcpriv);
3070 	}
3071 #endif
3072 
3073 	spin_lock_irqsave(&fotg210->lock, flags);
3074 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3075 		rc = -ESHUTDOWN;
3076 		goto done;
3077 	}
3078 	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3079 	if (unlikely(rc))
3080 		goto done;
3081 
3082 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3083 	if (unlikely(qh == NULL)) {
3084 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3085 		rc = -ENOMEM;
3086 		goto done;
3087 	}
3088 
3089 	/* Control/bulk operations through TTs don't need scheduling,
3090 	 * the HC and TT handle it when the TT has a buffer ready.
3091 	 */
3092 	if (likely(qh->qh_state == QH_STATE_IDLE))
3093 		qh_link_async(fotg210, qh);
3094 done:
3095 	spin_unlock_irqrestore(&fotg210->lock, flags);
3096 	if (unlikely(qh == NULL))
3097 		qtd_list_free(fotg210, urb, qtd_list);
3098 	return rc;
3099 }
3100 
single_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3101 static void single_unlink_async(struct fotg210_hcd *fotg210,
3102 		struct fotg210_qh *qh)
3103 {
3104 	struct fotg210_qh *prev;
3105 
3106 	/* Add to the end of the list of QHs waiting for the next IAAD */
3107 	qh->qh_state = QH_STATE_UNLINK;
3108 	if (fotg210->async_unlink)
3109 		fotg210->async_unlink_last->unlink_next = qh;
3110 	else
3111 		fotg210->async_unlink = qh;
3112 	fotg210->async_unlink_last = qh;
3113 
3114 	/* Unlink it from the schedule */
3115 	prev = fotg210->async;
3116 	while (prev->qh_next.qh != qh)
3117 		prev = prev->qh_next.qh;
3118 
3119 	prev->hw->hw_next = qh->hw->hw_next;
3120 	prev->qh_next = qh->qh_next;
3121 	if (fotg210->qh_scan_next == qh)
3122 		fotg210->qh_scan_next = qh->qh_next.qh;
3123 }
3124 
start_iaa_cycle(struct fotg210_hcd * fotg210,bool nested)3125 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3126 {
3127 	/*
3128 	 * Do nothing if an IAA cycle is already running or
3129 	 * if one will be started shortly.
3130 	 */
3131 	if (fotg210->async_iaa || fotg210->async_unlinking)
3132 		return;
3133 
3134 	/* Do all the waiting QHs at once */
3135 	fotg210->async_iaa = fotg210->async_unlink;
3136 	fotg210->async_unlink = NULL;
3137 
3138 	/* If the controller isn't running, we don't have to wait for it */
3139 	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3140 		if (!nested)		/* Avoid recursion */
3141 			end_unlink_async(fotg210);
3142 
3143 	/* Otherwise start a new IAA cycle */
3144 	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3145 		/* Make sure the unlinks are all visible to the hardware */
3146 		wmb();
3147 
3148 		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3149 				&fotg210->regs->command);
3150 		fotg210_readl(fotg210, &fotg210->regs->command);
3151 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3152 				true);
3153 	}
3154 }
3155 
3156 /* the async qh for the qtds being unlinked are now gone from the HC */
3157 
end_unlink_async(struct fotg210_hcd * fotg210)3158 static void end_unlink_async(struct fotg210_hcd *fotg210)
3159 {
3160 	struct fotg210_qh *qh;
3161 
3162 	/* Process the idle QHs */
3163 restart:
3164 	fotg210->async_unlinking = true;
3165 	while (fotg210->async_iaa) {
3166 		qh = fotg210->async_iaa;
3167 		fotg210->async_iaa = qh->unlink_next;
3168 		qh->unlink_next = NULL;
3169 
3170 		qh->qh_state = QH_STATE_IDLE;
3171 		qh->qh_next.qh = NULL;
3172 
3173 		qh_completions(fotg210, qh);
3174 		if (!list_empty(&qh->qtd_list) &&
3175 				fotg210->rh_state == FOTG210_RH_RUNNING)
3176 			qh_link_async(fotg210, qh);
3177 		disable_async(fotg210);
3178 	}
3179 	fotg210->async_unlinking = false;
3180 
3181 	/* Start a new IAA cycle if any QHs are waiting for it */
3182 	if (fotg210->async_unlink) {
3183 		start_iaa_cycle(fotg210, true);
3184 		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3185 			goto restart;
3186 	}
3187 }
3188 
unlink_empty_async(struct fotg210_hcd * fotg210)3189 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3190 {
3191 	struct fotg210_qh *qh, *next;
3192 	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3193 	bool check_unlinks_later = false;
3194 
3195 	/* Unlink all the async QHs that have been empty for a timer cycle */
3196 	next = fotg210->async->qh_next.qh;
3197 	while (next) {
3198 		qh = next;
3199 		next = qh->qh_next.qh;
3200 
3201 		if (list_empty(&qh->qtd_list) &&
3202 				qh->qh_state == QH_STATE_LINKED) {
3203 			if (!stopped && qh->unlink_cycle ==
3204 					fotg210->async_unlink_cycle)
3205 				check_unlinks_later = true;
3206 			else
3207 				single_unlink_async(fotg210, qh);
3208 		}
3209 	}
3210 
3211 	/* Start a new IAA cycle if any QHs are waiting for it */
3212 	if (fotg210->async_unlink)
3213 		start_iaa_cycle(fotg210, false);
3214 
3215 	/* QHs that haven't been empty for long enough will be handled later */
3216 	if (check_unlinks_later) {
3217 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3218 				true);
3219 		++fotg210->async_unlink_cycle;
3220 	}
3221 }
3222 
3223 /* makes sure the async qh will become idle */
3224 /* caller must own fotg210->lock */
3225 
start_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3226 static void start_unlink_async(struct fotg210_hcd *fotg210,
3227 		struct fotg210_qh *qh)
3228 {
3229 	/*
3230 	 * If the QH isn't linked then there's nothing we can do
3231 	 * unless we were called during a giveback, in which case
3232 	 * qh_completions() has to deal with it.
3233 	 */
3234 	if (qh->qh_state != QH_STATE_LINKED) {
3235 		if (qh->qh_state == QH_STATE_COMPLETING)
3236 			qh->needs_rescan = 1;
3237 		return;
3238 	}
3239 
3240 	single_unlink_async(fotg210, qh);
3241 	start_iaa_cycle(fotg210, false);
3242 }
3243 
scan_async(struct fotg210_hcd * fotg210)3244 static void scan_async(struct fotg210_hcd *fotg210)
3245 {
3246 	struct fotg210_qh *qh;
3247 	bool check_unlinks_later = false;
3248 
3249 	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3250 	while (fotg210->qh_scan_next) {
3251 		qh = fotg210->qh_scan_next;
3252 		fotg210->qh_scan_next = qh->qh_next.qh;
3253 rescan:
3254 		/* clean any finished work for this qh */
3255 		if (!list_empty(&qh->qtd_list)) {
3256 			int temp;
3257 
3258 			/*
3259 			 * Unlinks could happen here; completion reporting
3260 			 * drops the lock.  That's why fotg210->qh_scan_next
3261 			 * always holds the next qh to scan; if the next qh
3262 			 * gets unlinked then fotg210->qh_scan_next is adjusted
3263 			 * in single_unlink_async().
3264 			 */
3265 			temp = qh_completions(fotg210, qh);
3266 			if (qh->needs_rescan) {
3267 				start_unlink_async(fotg210, qh);
3268 			} else if (list_empty(&qh->qtd_list)
3269 					&& qh->qh_state == QH_STATE_LINKED) {
3270 				qh->unlink_cycle = fotg210->async_unlink_cycle;
3271 				check_unlinks_later = true;
3272 			} else if (temp != 0)
3273 				goto rescan;
3274 		}
3275 	}
3276 
3277 	/*
3278 	 * Unlink empty entries, reducing DMA usage as well
3279 	 * as HCD schedule-scanning costs.  Delay for any qh
3280 	 * we just scanned, there's a not-unusual case that it
3281 	 * doesn't stay idle for long.
3282 	 */
3283 	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3284 			!(fotg210->enabled_hrtimer_events &
3285 			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3286 		fotg210_enable_event(fotg210,
3287 				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3288 		++fotg210->async_unlink_cycle;
3289 	}
3290 }
3291 /* EHCI scheduled transaction support:  interrupt, iso, split iso
3292  * These are called "periodic" transactions in the EHCI spec.
3293  *
3294  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3295  * with the "asynchronous" transaction support (control/bulk transfers).
3296  * The only real difference is in how interrupt transfers are scheduled.
3297  *
3298  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3299  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3300  * pre-calculated schedule data to make appending to the queue be quick.
3301  */
3302 static int fotg210_get_frame(struct usb_hcd *hcd);
3303 
3304 /* periodic_next_shadow - return "next" pointer on shadow list
3305  * @periodic: host pointer to qh/itd
3306  * @tag: hardware tag for type of this record
3307  */
periodic_next_shadow(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3308 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3309 		union fotg210_shadow *periodic, __hc32 tag)
3310 {
3311 	switch (hc32_to_cpu(fotg210, tag)) {
3312 	case Q_TYPE_QH:
3313 		return &periodic->qh->qh_next;
3314 	case Q_TYPE_FSTN:
3315 		return &periodic->fstn->fstn_next;
3316 	default:
3317 		return &periodic->itd->itd_next;
3318 	}
3319 }
3320 
shadow_next_periodic(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3321 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3322 		union fotg210_shadow *periodic, __hc32 tag)
3323 {
3324 	switch (hc32_to_cpu(fotg210, tag)) {
3325 	/* our fotg210_shadow.qh is actually software part */
3326 	case Q_TYPE_QH:
3327 		return &periodic->qh->hw->hw_next;
3328 	/* others are hw parts */
3329 	default:
3330 		return periodic->hw_next;
3331 	}
3332 }
3333 
3334 /* caller must hold fotg210->lock */
periodic_unlink(struct fotg210_hcd * fotg210,unsigned frame,void * ptr)3335 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3336 		void *ptr)
3337 {
3338 	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3339 	__hc32 *hw_p = &fotg210->periodic[frame];
3340 	union fotg210_shadow here = *prev_p;
3341 
3342 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3343 	while (here.ptr && here.ptr != ptr) {
3344 		prev_p = periodic_next_shadow(fotg210, prev_p,
3345 				Q_NEXT_TYPE(fotg210, *hw_p));
3346 		hw_p = shadow_next_periodic(fotg210, &here,
3347 				Q_NEXT_TYPE(fotg210, *hw_p));
3348 		here = *prev_p;
3349 	}
3350 	/* an interrupt entry (at list end) could have been shared */
3351 	if (!here.ptr)
3352 		return;
3353 
3354 	/* update shadow and hardware lists ... the old "next" pointers
3355 	 * from ptr may still be in use, the caller updates them.
3356 	 */
3357 	*prev_p = *periodic_next_shadow(fotg210, &here,
3358 			Q_NEXT_TYPE(fotg210, *hw_p));
3359 
3360 	*hw_p = *shadow_next_periodic(fotg210, &here,
3361 			Q_NEXT_TYPE(fotg210, *hw_p));
3362 }
3363 
3364 /* how many of the uframe's 125 usecs are allocated? */
periodic_usecs(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe)3365 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3366 		unsigned frame, unsigned uframe)
3367 {
3368 	__hc32 *hw_p = &fotg210->periodic[frame];
3369 	union fotg210_shadow *q = &fotg210->pshadow[frame];
3370 	unsigned usecs = 0;
3371 	struct fotg210_qh_hw *hw;
3372 
3373 	while (q->ptr) {
3374 		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3375 		case Q_TYPE_QH:
3376 			hw = q->qh->hw;
3377 			/* is it in the S-mask? */
3378 			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3379 				usecs += q->qh->usecs;
3380 			/* ... or C-mask? */
3381 			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3382 					1 << (8 + uframe)))
3383 				usecs += q->qh->c_usecs;
3384 			hw_p = &hw->hw_next;
3385 			q = &q->qh->qh_next;
3386 			break;
3387 		/* case Q_TYPE_FSTN: */
3388 		default:
3389 			/* for "save place" FSTNs, count the relevant INTR
3390 			 * bandwidth from the previous frame
3391 			 */
3392 			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3393 				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3394 
3395 			hw_p = &q->fstn->hw_next;
3396 			q = &q->fstn->fstn_next;
3397 			break;
3398 		case Q_TYPE_ITD:
3399 			if (q->itd->hw_transaction[uframe])
3400 				usecs += q->itd->stream->usecs;
3401 			hw_p = &q->itd->hw_next;
3402 			q = &q->itd->itd_next;
3403 			break;
3404 		}
3405 	}
3406 	if (usecs > fotg210->uframe_periodic_max)
3407 		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3408 				frame * 8 + uframe, usecs);
3409 	return usecs;
3410 }
3411 
same_tt(struct usb_device * dev1,struct usb_device * dev2)3412 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3413 {
3414 	if (!dev1->tt || !dev2->tt)
3415 		return 0;
3416 	if (dev1->tt != dev2->tt)
3417 		return 0;
3418 	if (dev1->tt->multi)
3419 		return dev1->ttport == dev2->ttport;
3420 	else
3421 		return 1;
3422 }
3423 
3424 /* return true iff the device's transaction translator is available
3425  * for a periodic transfer starting at the specified frame, using
3426  * all the uframes in the mask.
3427  */
tt_no_collision(struct fotg210_hcd * fotg210,unsigned period,struct usb_device * dev,unsigned frame,u32 uf_mask)3428 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3429 		struct usb_device *dev, unsigned frame, u32 uf_mask)
3430 {
3431 	if (period == 0)	/* error */
3432 		return 0;
3433 
3434 	/* note bandwidth wastage:  split never follows csplit
3435 	 * (different dev or endpoint) until the next uframe.
3436 	 * calling convention doesn't make that distinction.
3437 	 */
3438 	for (; frame < fotg210->periodic_size; frame += period) {
3439 		union fotg210_shadow here;
3440 		__hc32 type;
3441 		struct fotg210_qh_hw *hw;
3442 
3443 		here = fotg210->pshadow[frame];
3444 		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3445 		while (here.ptr) {
3446 			switch (hc32_to_cpu(fotg210, type)) {
3447 			case Q_TYPE_ITD:
3448 				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3449 				here = here.itd->itd_next;
3450 				continue;
3451 			case Q_TYPE_QH:
3452 				hw = here.qh->hw;
3453 				if (same_tt(dev, here.qh->dev)) {
3454 					u32 mask;
3455 
3456 					mask = hc32_to_cpu(fotg210,
3457 							hw->hw_info2);
3458 					/* "knows" no gap is needed */
3459 					mask |= mask >> 8;
3460 					if (mask & uf_mask)
3461 						break;
3462 				}
3463 				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3464 				here = here.qh->qh_next;
3465 				continue;
3466 			/* case Q_TYPE_FSTN: */
3467 			default:
3468 				fotg210_dbg(fotg210,
3469 						"periodic frame %d bogus type %d\n",
3470 						frame, type);
3471 			}
3472 
3473 			/* collision or error */
3474 			return 0;
3475 		}
3476 	}
3477 
3478 	/* no collision */
3479 	return 1;
3480 }
3481 
enable_periodic(struct fotg210_hcd * fotg210)3482 static void enable_periodic(struct fotg210_hcd *fotg210)
3483 {
3484 	if (fotg210->periodic_count++)
3485 		return;
3486 
3487 	/* Stop waiting to turn off the periodic schedule */
3488 	fotg210->enabled_hrtimer_events &=
3489 		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3490 
3491 	/* Don't start the schedule until PSS is 0 */
3492 	fotg210_poll_PSS(fotg210);
3493 	turn_on_io_watchdog(fotg210);
3494 }
3495 
disable_periodic(struct fotg210_hcd * fotg210)3496 static void disable_periodic(struct fotg210_hcd *fotg210)
3497 {
3498 	if (--fotg210->periodic_count)
3499 		return;
3500 
3501 	/* Don't turn off the schedule until PSS is 1 */
3502 	fotg210_poll_PSS(fotg210);
3503 }
3504 
3505 /* periodic schedule slots have iso tds (normal or split) first, then a
3506  * sparse tree for active interrupt transfers.
3507  *
3508  * this just links in a qh; caller guarantees uframe masks are set right.
3509  * no FSTN support (yet; fotg210 0.96+)
3510  */
qh_link_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3511 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3512 {
3513 	unsigned i;
3514 	unsigned period = qh->period;
3515 
3516 	dev_dbg(&qh->dev->dev,
3517 			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3518 			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3519 			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3520 			qh->c_usecs);
3521 
3522 	/* high bandwidth, or otherwise every microframe */
3523 	if (period == 0)
3524 		period = 1;
3525 
3526 	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3527 		union fotg210_shadow *prev = &fotg210->pshadow[i];
3528 		__hc32 *hw_p = &fotg210->periodic[i];
3529 		union fotg210_shadow here = *prev;
3530 		__hc32 type = 0;
3531 
3532 		/* skip the iso nodes at list head */
3533 		while (here.ptr) {
3534 			type = Q_NEXT_TYPE(fotg210, *hw_p);
3535 			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3536 				break;
3537 			prev = periodic_next_shadow(fotg210, prev, type);
3538 			hw_p = shadow_next_periodic(fotg210, &here, type);
3539 			here = *prev;
3540 		}
3541 
3542 		/* sorting each branch by period (slow-->fast)
3543 		 * enables sharing interior tree nodes
3544 		 */
3545 		while (here.ptr && qh != here.qh) {
3546 			if (qh->period > here.qh->period)
3547 				break;
3548 			prev = &here.qh->qh_next;
3549 			hw_p = &here.qh->hw->hw_next;
3550 			here = *prev;
3551 		}
3552 		/* link in this qh, unless some earlier pass did that */
3553 		if (qh != here.qh) {
3554 			qh->qh_next = here;
3555 			if (here.qh)
3556 				qh->hw->hw_next = *hw_p;
3557 			wmb();
3558 			prev->qh = qh;
3559 			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3560 		}
3561 	}
3562 	qh->qh_state = QH_STATE_LINKED;
3563 	qh->xacterrs = 0;
3564 
3565 	/* update per-qh bandwidth for usbfs */
3566 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3567 		? ((qh->usecs + qh->c_usecs) / qh->period)
3568 		: (qh->usecs * 8);
3569 
3570 	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3571 
3572 	/* maybe enable periodic schedule processing */
3573 	++fotg210->intr_count;
3574 	enable_periodic(fotg210);
3575 }
3576 
qh_unlink_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3577 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3578 		struct fotg210_qh *qh)
3579 {
3580 	unsigned i;
3581 	unsigned period;
3582 
3583 	/*
3584 	 * If qh is for a low/full-speed device, simply unlinking it
3585 	 * could interfere with an ongoing split transaction.  To unlink
3586 	 * it safely would require setting the QH_INACTIVATE bit and
3587 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3588 	 *
3589 	 * We won't bother with any of this.  Instead, we assume that the
3590 	 * only reason for unlinking an interrupt QH while the current URB
3591 	 * is still active is to dequeue all the URBs (flush the whole
3592 	 * endpoint queue).
3593 	 *
3594 	 * If rebalancing the periodic schedule is ever implemented, this
3595 	 * approach will no longer be valid.
3596 	 */
3597 
3598 	/* high bandwidth, or otherwise part of every microframe */
3599 	period = qh->period;
3600 	if (!period)
3601 		period = 1;
3602 
3603 	for (i = qh->start; i < fotg210->periodic_size; i += period)
3604 		periodic_unlink(fotg210, i, qh);
3605 
3606 	/* update per-qh bandwidth for usbfs */
3607 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3608 		? ((qh->usecs + qh->c_usecs) / qh->period)
3609 		: (qh->usecs * 8);
3610 
3611 	dev_dbg(&qh->dev->dev,
3612 			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3613 			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3614 			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3615 			qh->c_usecs);
3616 
3617 	/* qh->qh_next still "live" to HC */
3618 	qh->qh_state = QH_STATE_UNLINK;
3619 	qh->qh_next.ptr = NULL;
3620 
3621 	if (fotg210->qh_scan_next == qh)
3622 		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3623 				struct fotg210_qh, intr_node);
3624 	list_del(&qh->intr_node);
3625 }
3626 
start_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3627 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3628 		struct fotg210_qh *qh)
3629 {
3630 	/* If the QH isn't linked then there's nothing we can do
3631 	 * unless we were called during a giveback, in which case
3632 	 * qh_completions() has to deal with it.
3633 	 */
3634 	if (qh->qh_state != QH_STATE_LINKED) {
3635 		if (qh->qh_state == QH_STATE_COMPLETING)
3636 			qh->needs_rescan = 1;
3637 		return;
3638 	}
3639 
3640 	qh_unlink_periodic(fotg210, qh);
3641 
3642 	/* Make sure the unlinks are visible before starting the timer */
3643 	wmb();
3644 
3645 	/*
3646 	 * The EHCI spec doesn't say how long it takes the controller to
3647 	 * stop accessing an unlinked interrupt QH.  The timer delay is
3648 	 * 9 uframes; presumably that will be long enough.
3649 	 */
3650 	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3651 
3652 	/* New entries go at the end of the intr_unlink list */
3653 	if (fotg210->intr_unlink)
3654 		fotg210->intr_unlink_last->unlink_next = qh;
3655 	else
3656 		fotg210->intr_unlink = qh;
3657 	fotg210->intr_unlink_last = qh;
3658 
3659 	if (fotg210->intr_unlinking)
3660 		;	/* Avoid recursive calls */
3661 	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3662 		fotg210_handle_intr_unlinks(fotg210);
3663 	else if (fotg210->intr_unlink == qh) {
3664 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3665 				true);
3666 		++fotg210->intr_unlink_cycle;
3667 	}
3668 }
3669 
end_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3670 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3671 {
3672 	struct fotg210_qh_hw *hw = qh->hw;
3673 	int rc;
3674 
3675 	qh->qh_state = QH_STATE_IDLE;
3676 	hw->hw_next = FOTG210_LIST_END(fotg210);
3677 
3678 	qh_completions(fotg210, qh);
3679 
3680 	/* reschedule QH iff another request is queued */
3681 	if (!list_empty(&qh->qtd_list) &&
3682 			fotg210->rh_state == FOTG210_RH_RUNNING) {
3683 		rc = qh_schedule(fotg210, qh);
3684 
3685 		/* An error here likely indicates handshake failure
3686 		 * or no space left in the schedule.  Neither fault
3687 		 * should happen often ...
3688 		 *
3689 		 * FIXME kill the now-dysfunctional queued urbs
3690 		 */
3691 		if (rc != 0)
3692 			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3693 					qh, rc);
3694 	}
3695 
3696 	/* maybe turn off periodic schedule */
3697 	--fotg210->intr_count;
3698 	disable_periodic(fotg210);
3699 }
3700 
check_period(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)3701 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3702 		unsigned uframe, unsigned period, unsigned usecs)
3703 {
3704 	int claimed;
3705 
3706 	/* complete split running into next frame?
3707 	 * given FSTN support, we could sometimes check...
3708 	 */
3709 	if (uframe >= 8)
3710 		return 0;
3711 
3712 	/* convert "usecs we need" to "max already claimed" */
3713 	usecs = fotg210->uframe_periodic_max - usecs;
3714 
3715 	/* we "know" 2 and 4 uframe intervals were rejected; so
3716 	 * for period 0, check _every_ microframe in the schedule.
3717 	 */
3718 	if (unlikely(period == 0)) {
3719 		do {
3720 			for (uframe = 0; uframe < 7; uframe++) {
3721 				claimed = periodic_usecs(fotg210, frame,
3722 						uframe);
3723 				if (claimed > usecs)
3724 					return 0;
3725 			}
3726 		} while ((frame += 1) < fotg210->periodic_size);
3727 
3728 	/* just check the specified uframe, at that period */
3729 	} else {
3730 		do {
3731 			claimed = periodic_usecs(fotg210, frame, uframe);
3732 			if (claimed > usecs)
3733 				return 0;
3734 		} while ((frame += period) < fotg210->periodic_size);
3735 	}
3736 
3737 	/* success! */
3738 	return 1;
3739 }
3740 
check_intr_schedule(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,const struct fotg210_qh * qh,__hc32 * c_maskp)3741 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3742 		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3743 {
3744 	int retval = -ENOSPC;
3745 	u8 mask = 0;
3746 
3747 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3748 		goto done;
3749 
3750 	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3751 		goto done;
3752 	if (!qh->c_usecs) {
3753 		retval = 0;
3754 		*c_maskp = 0;
3755 		goto done;
3756 	}
3757 
3758 	/* Make sure this tt's buffer is also available for CSPLITs.
3759 	 * We pessimize a bit; probably the typical full speed case
3760 	 * doesn't need the second CSPLIT.
3761 	 *
3762 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3763 	 * one smart pass...
3764 	 */
3765 	mask = 0x03 << (uframe + qh->gap_uf);
3766 	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3767 
3768 	mask |= 1 << uframe;
3769 	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3770 		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3771 				qh->period, qh->c_usecs))
3772 			goto done;
3773 		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3774 				qh->period, qh->c_usecs))
3775 			goto done;
3776 		retval = 0;
3777 	}
3778 done:
3779 	return retval;
3780 }
3781 
3782 /* "first fit" scheduling policy used the first time through,
3783  * or when the previous schedule slot can't be re-used.
3784  */
qh_schedule(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3785 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3786 {
3787 	int status;
3788 	unsigned uframe;
3789 	__hc32 c_mask;
3790 	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
3791 	struct fotg210_qh_hw *hw = qh->hw;
3792 
3793 	qh_refresh(fotg210, qh);
3794 	hw->hw_next = FOTG210_LIST_END(fotg210);
3795 	frame = qh->start;
3796 
3797 	/* reuse the previous schedule slots, if we can */
3798 	if (frame < qh->period) {
3799 		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3800 		status = check_intr_schedule(fotg210, frame, --uframe,
3801 				qh, &c_mask);
3802 	} else {
3803 		uframe = 0;
3804 		c_mask = 0;
3805 		status = -ENOSPC;
3806 	}
3807 
3808 	/* else scan the schedule to find a group of slots such that all
3809 	 * uframes have enough periodic bandwidth available.
3810 	 */
3811 	if (status) {
3812 		/* "normal" case, uframing flexible except with splits */
3813 		if (qh->period) {
3814 			int i;
3815 
3816 			for (i = qh->period; status && i > 0; --i) {
3817 				frame = ++fotg210->random_frame % qh->period;
3818 				for (uframe = 0; uframe < 8; uframe++) {
3819 					status = check_intr_schedule(fotg210,
3820 							frame, uframe, qh,
3821 							&c_mask);
3822 					if (status == 0)
3823 						break;
3824 				}
3825 			}
3826 
3827 		/* qh->period == 0 means every uframe */
3828 		} else {
3829 			frame = 0;
3830 			status = check_intr_schedule(fotg210, 0, 0, qh,
3831 					&c_mask);
3832 		}
3833 		if (status)
3834 			goto done;
3835 		qh->start = frame;
3836 
3837 		/* reset S-frame and (maybe) C-frame masks */
3838 		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3839 		hw->hw_info2 |= qh->period
3840 			? cpu_to_hc32(fotg210, 1 << uframe)
3841 			: cpu_to_hc32(fotg210, QH_SMASK);
3842 		hw->hw_info2 |= c_mask;
3843 	} else
3844 		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3845 
3846 	/* stuff into the periodic schedule */
3847 	qh_link_periodic(fotg210, qh);
3848 done:
3849 	return status;
3850 }
3851 
intr_submit(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3852 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3853 		struct list_head *qtd_list, gfp_t mem_flags)
3854 {
3855 	unsigned epnum;
3856 	unsigned long flags;
3857 	struct fotg210_qh *qh;
3858 	int status;
3859 	struct list_head empty;
3860 
3861 	/* get endpoint and transfer/schedule data */
3862 	epnum = urb->ep->desc.bEndpointAddress;
3863 
3864 	spin_lock_irqsave(&fotg210->lock, flags);
3865 
3866 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3867 		status = -ESHUTDOWN;
3868 		goto done_not_linked;
3869 	}
3870 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3871 	if (unlikely(status))
3872 		goto done_not_linked;
3873 
3874 	/* get qh and force any scheduling errors */
3875 	INIT_LIST_HEAD(&empty);
3876 	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3877 	if (qh == NULL) {
3878 		status = -ENOMEM;
3879 		goto done;
3880 	}
3881 	if (qh->qh_state == QH_STATE_IDLE) {
3882 		status = qh_schedule(fotg210, qh);
3883 		if (status)
3884 			goto done;
3885 	}
3886 
3887 	/* then queue the urb's tds to the qh */
3888 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3889 	BUG_ON(qh == NULL);
3890 
3891 	/* ... update usbfs periodic stats */
3892 	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3893 
3894 done:
3895 	if (unlikely(status))
3896 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3897 done_not_linked:
3898 	spin_unlock_irqrestore(&fotg210->lock, flags);
3899 	if (status)
3900 		qtd_list_free(fotg210, urb, qtd_list);
3901 
3902 	return status;
3903 }
3904 
scan_intr(struct fotg210_hcd * fotg210)3905 static void scan_intr(struct fotg210_hcd *fotg210)
3906 {
3907 	struct fotg210_qh *qh;
3908 
3909 	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3910 			&fotg210->intr_qh_list, intr_node) {
3911 rescan:
3912 		/* clean any finished work for this qh */
3913 		if (!list_empty(&qh->qtd_list)) {
3914 			int temp;
3915 
3916 			/*
3917 			 * Unlinks could happen here; completion reporting
3918 			 * drops the lock.  That's why fotg210->qh_scan_next
3919 			 * always holds the next qh to scan; if the next qh
3920 			 * gets unlinked then fotg210->qh_scan_next is adjusted
3921 			 * in qh_unlink_periodic().
3922 			 */
3923 			temp = qh_completions(fotg210, qh);
3924 			if (unlikely(qh->needs_rescan ||
3925 					(list_empty(&qh->qtd_list) &&
3926 					qh->qh_state == QH_STATE_LINKED)))
3927 				start_unlink_intr(fotg210, qh);
3928 			else if (temp != 0)
3929 				goto rescan;
3930 		}
3931 	}
3932 }
3933 
3934 /* fotg210_iso_stream ops work with both ITD and SITD */
3935 
iso_stream_alloc(gfp_t mem_flags)3936 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3937 {
3938 	struct fotg210_iso_stream *stream;
3939 
3940 	stream = kzalloc(sizeof(*stream), mem_flags);
3941 	if (likely(stream != NULL)) {
3942 		INIT_LIST_HEAD(&stream->td_list);
3943 		INIT_LIST_HEAD(&stream->free_list);
3944 		stream->next_uframe = -1;
3945 	}
3946 	return stream;
3947 }
3948 
iso_stream_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct usb_device * dev,int pipe,unsigned interval)3949 static void iso_stream_init(struct fotg210_hcd *fotg210,
3950 		struct fotg210_iso_stream *stream, struct usb_device *dev,
3951 		int pipe, unsigned interval)
3952 {
3953 	u32 buf1;
3954 	unsigned epnum, maxp;
3955 	int is_input;
3956 	long bandwidth;
3957 	unsigned multi;
3958 
3959 	/*
3960 	 * this might be a "high bandwidth" highspeed endpoint,
3961 	 * as encoded in the ep descriptor's wMaxPacket field
3962 	 */
3963 	epnum = usb_pipeendpoint(pipe);
3964 	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3965 	maxp = usb_maxpacket(dev, pipe, !is_input);
3966 	if (is_input)
3967 		buf1 = (1 << 11);
3968 	else
3969 		buf1 = 0;
3970 
3971 	maxp = max_packet(maxp);
3972 	multi = hb_mult(maxp);
3973 	buf1 |= maxp;
3974 	maxp *= multi;
3975 
3976 	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3977 	stream->buf1 = cpu_to_hc32(fotg210, buf1);
3978 	stream->buf2 = cpu_to_hc32(fotg210, multi);
3979 
3980 	/* usbfs wants to report the average usecs per frame tied up
3981 	 * when transfers on this endpoint are scheduled ...
3982 	 */
3983 	if (dev->speed == USB_SPEED_FULL) {
3984 		interval <<= 3;
3985 		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3986 				is_input, 1, maxp));
3987 		stream->usecs /= 8;
3988 	} else {
3989 		stream->highspeed = 1;
3990 		stream->usecs = HS_USECS_ISO(maxp);
3991 	}
3992 	bandwidth = stream->usecs * 8;
3993 	bandwidth /= interval;
3994 
3995 	stream->bandwidth = bandwidth;
3996 	stream->udev = dev;
3997 	stream->bEndpointAddress = is_input | epnum;
3998 	stream->interval = interval;
3999 	stream->maxp = maxp;
4000 }
4001 
iso_stream_find(struct fotg210_hcd * fotg210,struct urb * urb)4002 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
4003 		struct urb *urb)
4004 {
4005 	unsigned epnum;
4006 	struct fotg210_iso_stream *stream;
4007 	struct usb_host_endpoint *ep;
4008 	unsigned long flags;
4009 
4010 	epnum = usb_pipeendpoint(urb->pipe);
4011 	if (usb_pipein(urb->pipe))
4012 		ep = urb->dev->ep_in[epnum];
4013 	else
4014 		ep = urb->dev->ep_out[epnum];
4015 
4016 	spin_lock_irqsave(&fotg210->lock, flags);
4017 	stream = ep->hcpriv;
4018 
4019 	if (unlikely(stream == NULL)) {
4020 		stream = iso_stream_alloc(GFP_ATOMIC);
4021 		if (likely(stream != NULL)) {
4022 			ep->hcpriv = stream;
4023 			stream->ep = ep;
4024 			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4025 					urb->interval);
4026 		}
4027 
4028 	/* if dev->ep[epnum] is a QH, hw is set */
4029 	} else if (unlikely(stream->hw != NULL)) {
4030 		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4031 				urb->dev->devpath, epnum,
4032 				usb_pipein(urb->pipe) ? "in" : "out");
4033 		stream = NULL;
4034 	}
4035 
4036 	spin_unlock_irqrestore(&fotg210->lock, flags);
4037 	return stream;
4038 }
4039 
4040 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4041 
iso_sched_alloc(unsigned packets,gfp_t mem_flags)4042 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4043 		gfp_t mem_flags)
4044 {
4045 	struct fotg210_iso_sched *iso_sched;
4046 	int size = sizeof(*iso_sched);
4047 
4048 	size += packets * sizeof(struct fotg210_iso_packet);
4049 	iso_sched = kzalloc(size, mem_flags);
4050 	if (likely(iso_sched != NULL))
4051 		INIT_LIST_HEAD(&iso_sched->td_list);
4052 
4053 	return iso_sched;
4054 }
4055 
itd_sched_init(struct fotg210_hcd * fotg210,struct fotg210_iso_sched * iso_sched,struct fotg210_iso_stream * stream,struct urb * urb)4056 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4057 		struct fotg210_iso_sched *iso_sched,
4058 		struct fotg210_iso_stream *stream, struct urb *urb)
4059 {
4060 	unsigned i;
4061 	dma_addr_t dma = urb->transfer_dma;
4062 
4063 	/* how many uframes are needed for these transfers */
4064 	iso_sched->span = urb->number_of_packets * stream->interval;
4065 
4066 	/* figure out per-uframe itd fields that we'll need later
4067 	 * when we fit new itds into the schedule.
4068 	 */
4069 	for (i = 0; i < urb->number_of_packets; i++) {
4070 		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4071 		unsigned length;
4072 		dma_addr_t buf;
4073 		u32 trans;
4074 
4075 		length = urb->iso_frame_desc[i].length;
4076 		buf = dma + urb->iso_frame_desc[i].offset;
4077 
4078 		trans = FOTG210_ISOC_ACTIVE;
4079 		trans |= buf & 0x0fff;
4080 		if (unlikely(((i + 1) == urb->number_of_packets))
4081 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4082 			trans |= FOTG210_ITD_IOC;
4083 		trans |= length << 16;
4084 		uframe->transaction = cpu_to_hc32(fotg210, trans);
4085 
4086 		/* might need to cross a buffer page within a uframe */
4087 		uframe->bufp = (buf & ~(u64)0x0fff);
4088 		buf += length;
4089 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4090 			uframe->cross = 1;
4091 	}
4092 }
4093 
iso_sched_free(struct fotg210_iso_stream * stream,struct fotg210_iso_sched * iso_sched)4094 static void iso_sched_free(struct fotg210_iso_stream *stream,
4095 		struct fotg210_iso_sched *iso_sched)
4096 {
4097 	if (!iso_sched)
4098 		return;
4099 	/* caller must hold fotg210->lock!*/
4100 	list_splice(&iso_sched->td_list, &stream->free_list);
4101 	kfree(iso_sched);
4102 }
4103 
itd_urb_transaction(struct fotg210_iso_stream * stream,struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4104 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4105 		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4106 {
4107 	struct fotg210_itd *itd;
4108 	dma_addr_t itd_dma;
4109 	int i;
4110 	unsigned num_itds;
4111 	struct fotg210_iso_sched *sched;
4112 	unsigned long flags;
4113 
4114 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4115 	if (unlikely(sched == NULL))
4116 		return -ENOMEM;
4117 
4118 	itd_sched_init(fotg210, sched, stream, urb);
4119 
4120 	if (urb->interval < 8)
4121 		num_itds = 1 + (sched->span + 7) / 8;
4122 	else
4123 		num_itds = urb->number_of_packets;
4124 
4125 	/* allocate/init ITDs */
4126 	spin_lock_irqsave(&fotg210->lock, flags);
4127 	for (i = 0; i < num_itds; i++) {
4128 
4129 		/*
4130 		 * Use iTDs from the free list, but not iTDs that may
4131 		 * still be in use by the hardware.
4132 		 */
4133 		if (likely(!list_empty(&stream->free_list))) {
4134 			itd = list_first_entry(&stream->free_list,
4135 					struct fotg210_itd, itd_list);
4136 			if (itd->frame == fotg210->now_frame)
4137 				goto alloc_itd;
4138 			list_del(&itd->itd_list);
4139 			itd_dma = itd->itd_dma;
4140 		} else {
4141 alloc_itd:
4142 			spin_unlock_irqrestore(&fotg210->lock, flags);
4143 			itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4144 					&itd_dma);
4145 			spin_lock_irqsave(&fotg210->lock, flags);
4146 			if (!itd) {
4147 				iso_sched_free(stream, sched);
4148 				spin_unlock_irqrestore(&fotg210->lock, flags);
4149 				return -ENOMEM;
4150 			}
4151 		}
4152 
4153 		memset(itd, 0, sizeof(*itd));
4154 		itd->itd_dma = itd_dma;
4155 		list_add(&itd->itd_list, &sched->td_list);
4156 	}
4157 	spin_unlock_irqrestore(&fotg210->lock, flags);
4158 
4159 	/* temporarily store schedule info in hcpriv */
4160 	urb->hcpriv = sched;
4161 	urb->error_count = 0;
4162 	return 0;
4163 }
4164 
itd_slot_ok(struct fotg210_hcd * fotg210,u32 mod,u32 uframe,u8 usecs,u32 period)4165 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4166 		u8 usecs, u32 period)
4167 {
4168 	uframe %= period;
4169 	do {
4170 		/* can't commit more than uframe_periodic_max usec */
4171 		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4172 				> (fotg210->uframe_periodic_max - usecs))
4173 			return 0;
4174 
4175 		/* we know urb->interval is 2^N uframes */
4176 		uframe += period;
4177 	} while (uframe < mod);
4178 	return 1;
4179 }
4180 
4181 /* This scheduler plans almost as far into the future as it has actual
4182  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4183  * "as small as possible" to be cache-friendlier.)  That limits the size
4184  * transfers you can stream reliably; avoid more than 64 msec per urb.
4185  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4186  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4187  * and other factors); or more than about 230 msec total (for portability,
4188  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4189  */
4190 
4191 #define SCHEDULE_SLOP 80 /* microframes */
4192 
iso_stream_schedule(struct fotg210_hcd * fotg210,struct urb * urb,struct fotg210_iso_stream * stream)4193 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4194 		struct fotg210_iso_stream *stream)
4195 {
4196 	u32 now, next, start, period, span;
4197 	int status;
4198 	unsigned mod = fotg210->periodic_size << 3;
4199 	struct fotg210_iso_sched *sched = urb->hcpriv;
4200 
4201 	period = urb->interval;
4202 	span = sched->span;
4203 
4204 	if (span > mod - SCHEDULE_SLOP) {
4205 		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4206 		status = -EFBIG;
4207 		goto fail;
4208 	}
4209 
4210 	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4211 
4212 	/* Typical case: reuse current schedule, stream is still active.
4213 	 * Hopefully there are no gaps from the host falling behind
4214 	 * (irq delays etc), but if there are we'll take the next
4215 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4216 	 */
4217 	if (likely(!list_empty(&stream->td_list))) {
4218 		u32 excess;
4219 
4220 		/* For high speed devices, allow scheduling within the
4221 		 * isochronous scheduling threshold.  For full speed devices
4222 		 * and Intel PCI-based controllers, don't (work around for
4223 		 * Intel ICH9 bug).
4224 		 */
4225 		if (!stream->highspeed && fotg210->fs_i_thresh)
4226 			next = now + fotg210->i_thresh;
4227 		else
4228 			next = now;
4229 
4230 		/* Fell behind (by up to twice the slop amount)?
4231 		 * We decide based on the time of the last currently-scheduled
4232 		 * slot, not the time of the next available slot.
4233 		 */
4234 		excess = (stream->next_uframe - period - next) & (mod - 1);
4235 		if (excess >= mod - 2 * SCHEDULE_SLOP)
4236 			start = next + excess - mod + period *
4237 					DIV_ROUND_UP(mod - excess, period);
4238 		else
4239 			start = next + excess + period;
4240 		if (start - now >= mod) {
4241 			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4242 					urb, start - now - period, period,
4243 					mod);
4244 			status = -EFBIG;
4245 			goto fail;
4246 		}
4247 	}
4248 
4249 	/* need to schedule; when's the next (u)frame we could start?
4250 	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4251 	 * isn't free, the slop should handle reasonably slow cpus.  it
4252 	 * can also help high bandwidth if the dma and irq loads don't
4253 	 * jump until after the queue is primed.
4254 	 */
4255 	else {
4256 		int done = 0;
4257 
4258 		start = SCHEDULE_SLOP + (now & ~0x07);
4259 
4260 		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4261 
4262 		/* find a uframe slot with enough bandwidth.
4263 		 * Early uframes are more precious because full-speed
4264 		 * iso IN transfers can't use late uframes,
4265 		 * and therefore they should be allocated last.
4266 		 */
4267 		next = start;
4268 		start += period;
4269 		do {
4270 			start--;
4271 			/* check schedule: enough space? */
4272 			if (itd_slot_ok(fotg210, mod, start,
4273 					stream->usecs, period))
4274 				done = 1;
4275 		} while (start > next && !done);
4276 
4277 		/* no room in the schedule */
4278 		if (!done) {
4279 			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4280 					urb, now, now + mod);
4281 			status = -ENOSPC;
4282 			goto fail;
4283 		}
4284 	}
4285 
4286 	/* Tried to schedule too far into the future? */
4287 	if (unlikely(start - now + span - period >=
4288 			mod - 2 * SCHEDULE_SLOP)) {
4289 		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4290 				urb, start - now, span - period,
4291 				mod - 2 * SCHEDULE_SLOP);
4292 		status = -EFBIG;
4293 		goto fail;
4294 	}
4295 
4296 	stream->next_uframe = start & (mod - 1);
4297 
4298 	/* report high speed start in uframes; full speed, in frames */
4299 	urb->start_frame = stream->next_uframe;
4300 	if (!stream->highspeed)
4301 		urb->start_frame >>= 3;
4302 
4303 	/* Make sure scan_isoc() sees these */
4304 	if (fotg210->isoc_count == 0)
4305 		fotg210->next_frame = now >> 3;
4306 	return 0;
4307 
4308 fail:
4309 	iso_sched_free(stream, sched);
4310 	urb->hcpriv = NULL;
4311 	return status;
4312 }
4313 
itd_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct fotg210_itd * itd)4314 static inline void itd_init(struct fotg210_hcd *fotg210,
4315 		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4316 {
4317 	int i;
4318 
4319 	/* it's been recently zeroed */
4320 	itd->hw_next = FOTG210_LIST_END(fotg210);
4321 	itd->hw_bufp[0] = stream->buf0;
4322 	itd->hw_bufp[1] = stream->buf1;
4323 	itd->hw_bufp[2] = stream->buf2;
4324 
4325 	for (i = 0; i < 8; i++)
4326 		itd->index[i] = -1;
4327 
4328 	/* All other fields are filled when scheduling */
4329 }
4330 
itd_patch(struct fotg210_hcd * fotg210,struct fotg210_itd * itd,struct fotg210_iso_sched * iso_sched,unsigned index,u16 uframe)4331 static inline void itd_patch(struct fotg210_hcd *fotg210,
4332 		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4333 		unsigned index, u16 uframe)
4334 {
4335 	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4336 	unsigned pg = itd->pg;
4337 
4338 	uframe &= 0x07;
4339 	itd->index[uframe] = index;
4340 
4341 	itd->hw_transaction[uframe] = uf->transaction;
4342 	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4343 	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4344 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4345 
4346 	/* iso_frame_desc[].offset must be strictly increasing */
4347 	if (unlikely(uf->cross)) {
4348 		u64 bufp = uf->bufp + 4096;
4349 
4350 		itd->pg = ++pg;
4351 		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4352 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4353 	}
4354 }
4355 
itd_link(struct fotg210_hcd * fotg210,unsigned frame,struct fotg210_itd * itd)4356 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4357 		struct fotg210_itd *itd)
4358 {
4359 	union fotg210_shadow *prev = &fotg210->pshadow[frame];
4360 	__hc32 *hw_p = &fotg210->periodic[frame];
4361 	union fotg210_shadow here = *prev;
4362 	__hc32 type = 0;
4363 
4364 	/* skip any iso nodes which might belong to previous microframes */
4365 	while (here.ptr) {
4366 		type = Q_NEXT_TYPE(fotg210, *hw_p);
4367 		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4368 			break;
4369 		prev = periodic_next_shadow(fotg210, prev, type);
4370 		hw_p = shadow_next_periodic(fotg210, &here, type);
4371 		here = *prev;
4372 	}
4373 
4374 	itd->itd_next = here;
4375 	itd->hw_next = *hw_p;
4376 	prev->itd = itd;
4377 	itd->frame = frame;
4378 	wmb();
4379 	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4380 }
4381 
4382 /* fit urb's itds into the selected schedule slot; activate as needed */
itd_link_urb(struct fotg210_hcd * fotg210,struct urb * urb,unsigned mod,struct fotg210_iso_stream * stream)4383 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4384 		unsigned mod, struct fotg210_iso_stream *stream)
4385 {
4386 	int packet;
4387 	unsigned next_uframe, uframe, frame;
4388 	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4389 	struct fotg210_itd *itd;
4390 
4391 	next_uframe = stream->next_uframe & (mod - 1);
4392 
4393 	if (unlikely(list_empty(&stream->td_list))) {
4394 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4395 				+= stream->bandwidth;
4396 		fotg210_dbg(fotg210,
4397 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4398 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4399 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4400 			urb->interval,
4401 			next_uframe >> 3, next_uframe & 0x7);
4402 	}
4403 
4404 	/* fill iTDs uframe by uframe */
4405 	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4406 		if (itd == NULL) {
4407 			/* ASSERT:  we have all necessary itds */
4408 
4409 			/* ASSERT:  no itds for this endpoint in this uframe */
4410 
4411 			itd = list_entry(iso_sched->td_list.next,
4412 					struct fotg210_itd, itd_list);
4413 			list_move_tail(&itd->itd_list, &stream->td_list);
4414 			itd->stream = stream;
4415 			itd->urb = urb;
4416 			itd_init(fotg210, stream, itd);
4417 		}
4418 
4419 		uframe = next_uframe & 0x07;
4420 		frame = next_uframe >> 3;
4421 
4422 		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4423 
4424 		next_uframe += stream->interval;
4425 		next_uframe &= mod - 1;
4426 		packet++;
4427 
4428 		/* link completed itds into the schedule */
4429 		if (((next_uframe >> 3) != frame)
4430 				|| packet == urb->number_of_packets) {
4431 			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4432 					itd);
4433 			itd = NULL;
4434 		}
4435 	}
4436 	stream->next_uframe = next_uframe;
4437 
4438 	/* don't need that schedule data any more */
4439 	iso_sched_free(stream, iso_sched);
4440 	urb->hcpriv = NULL;
4441 
4442 	++fotg210->isoc_count;
4443 	enable_periodic(fotg210);
4444 }
4445 
4446 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4447 		FOTG210_ISOC_XACTERR)
4448 
4449 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4450  * and hence its completion callback probably added things to the hardware
4451  * schedule.
4452  *
4453  * Note that we carefully avoid recycling this descriptor until after any
4454  * completion callback runs, so that it won't be reused quickly.  That is,
4455  * assuming (a) no more than two urbs per frame on this endpoint, and also
4456  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4457  * corrupts things if you reuse completed descriptors very quickly...
4458  */
itd_complete(struct fotg210_hcd * fotg210,struct fotg210_itd * itd)4459 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4460 {
4461 	struct urb *urb = itd->urb;
4462 	struct usb_iso_packet_descriptor *desc;
4463 	u32 t;
4464 	unsigned uframe;
4465 	int urb_index = -1;
4466 	struct fotg210_iso_stream *stream = itd->stream;
4467 	struct usb_device *dev;
4468 	bool retval = false;
4469 
4470 	/* for each uframe with a packet */
4471 	for (uframe = 0; uframe < 8; uframe++) {
4472 		if (likely(itd->index[uframe] == -1))
4473 			continue;
4474 		urb_index = itd->index[uframe];
4475 		desc = &urb->iso_frame_desc[urb_index];
4476 
4477 		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4478 		itd->hw_transaction[uframe] = 0;
4479 
4480 		/* report transfer status */
4481 		if (unlikely(t & ISO_ERRS)) {
4482 			urb->error_count++;
4483 			if (t & FOTG210_ISOC_BUF_ERR)
4484 				desc->status = usb_pipein(urb->pipe)
4485 					? -ENOSR  /* hc couldn't read */
4486 					: -ECOMM; /* hc couldn't write */
4487 			else if (t & FOTG210_ISOC_BABBLE)
4488 				desc->status = -EOVERFLOW;
4489 			else /* (t & FOTG210_ISOC_XACTERR) */
4490 				desc->status = -EPROTO;
4491 
4492 			/* HC need not update length with this error */
4493 			if (!(t & FOTG210_ISOC_BABBLE)) {
4494 				desc->actual_length =
4495 					fotg210_itdlen(urb, desc, t);
4496 				urb->actual_length += desc->actual_length;
4497 			}
4498 		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4499 			desc->status = 0;
4500 			desc->actual_length = fotg210_itdlen(urb, desc, t);
4501 			urb->actual_length += desc->actual_length;
4502 		} else {
4503 			/* URB was too late */
4504 			desc->status = -EXDEV;
4505 		}
4506 	}
4507 
4508 	/* handle completion now? */
4509 	if (likely((urb_index + 1) != urb->number_of_packets))
4510 		goto done;
4511 
4512 	/* ASSERT: it's really the last itd for this urb
4513 	 * list_for_each_entry (itd, &stream->td_list, itd_list)
4514 	 *	BUG_ON (itd->urb == urb);
4515 	 */
4516 
4517 	/* give urb back to the driver; completion often (re)submits */
4518 	dev = urb->dev;
4519 	fotg210_urb_done(fotg210, urb, 0);
4520 	retval = true;
4521 	urb = NULL;
4522 
4523 	--fotg210->isoc_count;
4524 	disable_periodic(fotg210);
4525 
4526 	if (unlikely(list_is_singular(&stream->td_list))) {
4527 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4528 				-= stream->bandwidth;
4529 		fotg210_dbg(fotg210,
4530 			"deschedule devp %s ep%d%s-iso\n",
4531 			dev->devpath, stream->bEndpointAddress & 0x0f,
4532 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4533 	}
4534 
4535 done:
4536 	itd->urb = NULL;
4537 
4538 	/* Add to the end of the free list for later reuse */
4539 	list_move_tail(&itd->itd_list, &stream->free_list);
4540 
4541 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4542 	if (list_empty(&stream->td_list)) {
4543 		list_splice_tail_init(&stream->free_list,
4544 				&fotg210->cached_itd_list);
4545 		start_free_itds(fotg210);
4546 	}
4547 
4548 	return retval;
4549 }
4550 
itd_submit(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4551 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4552 		gfp_t mem_flags)
4553 {
4554 	int status = -EINVAL;
4555 	unsigned long flags;
4556 	struct fotg210_iso_stream *stream;
4557 
4558 	/* Get iso_stream head */
4559 	stream = iso_stream_find(fotg210, urb);
4560 	if (unlikely(stream == NULL)) {
4561 		fotg210_dbg(fotg210, "can't get iso stream\n");
4562 		return -ENOMEM;
4563 	}
4564 	if (unlikely(urb->interval != stream->interval &&
4565 			fotg210_port_speed(fotg210, 0) ==
4566 			USB_PORT_STAT_HIGH_SPEED)) {
4567 		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4568 				stream->interval, urb->interval);
4569 		goto done;
4570 	}
4571 
4572 #ifdef FOTG210_URB_TRACE
4573 	fotg210_dbg(fotg210,
4574 			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4575 			__func__, urb->dev->devpath, urb,
4576 			usb_pipeendpoint(urb->pipe),
4577 			usb_pipein(urb->pipe) ? "in" : "out",
4578 			urb->transfer_buffer_length,
4579 			urb->number_of_packets, urb->interval,
4580 			stream);
4581 #endif
4582 
4583 	/* allocate ITDs w/o locking anything */
4584 	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4585 	if (unlikely(status < 0)) {
4586 		fotg210_dbg(fotg210, "can't init itds\n");
4587 		goto done;
4588 	}
4589 
4590 	/* schedule ... need to lock */
4591 	spin_lock_irqsave(&fotg210->lock, flags);
4592 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4593 		status = -ESHUTDOWN;
4594 		goto done_not_linked;
4595 	}
4596 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4597 	if (unlikely(status))
4598 		goto done_not_linked;
4599 	status = iso_stream_schedule(fotg210, urb, stream);
4600 	if (likely(status == 0))
4601 		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4602 	else
4603 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4604 done_not_linked:
4605 	spin_unlock_irqrestore(&fotg210->lock, flags);
4606 done:
4607 	return status;
4608 }
4609 
scan_frame_queue(struct fotg210_hcd * fotg210,unsigned frame,unsigned now_frame,bool live)4610 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4611 		unsigned now_frame, bool live)
4612 {
4613 	unsigned uf;
4614 	bool modified;
4615 	union fotg210_shadow q, *q_p;
4616 	__hc32 type, *hw_p;
4617 
4618 	/* scan each element in frame's queue for completions */
4619 	q_p = &fotg210->pshadow[frame];
4620 	hw_p = &fotg210->periodic[frame];
4621 	q.ptr = q_p->ptr;
4622 	type = Q_NEXT_TYPE(fotg210, *hw_p);
4623 	modified = false;
4624 
4625 	while (q.ptr) {
4626 		switch (hc32_to_cpu(fotg210, type)) {
4627 		case Q_TYPE_ITD:
4628 			/* If this ITD is still active, leave it for
4629 			 * later processing ... check the next entry.
4630 			 * No need to check for activity unless the
4631 			 * frame is current.
4632 			 */
4633 			if (frame == now_frame && live) {
4634 				rmb();
4635 				for (uf = 0; uf < 8; uf++) {
4636 					if (q.itd->hw_transaction[uf] &
4637 							ITD_ACTIVE(fotg210))
4638 						break;
4639 				}
4640 				if (uf < 8) {
4641 					q_p = &q.itd->itd_next;
4642 					hw_p = &q.itd->hw_next;
4643 					type = Q_NEXT_TYPE(fotg210,
4644 							q.itd->hw_next);
4645 					q = *q_p;
4646 					break;
4647 				}
4648 			}
4649 
4650 			/* Take finished ITDs out of the schedule
4651 			 * and process them:  recycle, maybe report
4652 			 * URB completion.  HC won't cache the
4653 			 * pointer for much longer, if at all.
4654 			 */
4655 			*q_p = q.itd->itd_next;
4656 			*hw_p = q.itd->hw_next;
4657 			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4658 			wmb();
4659 			modified = itd_complete(fotg210, q.itd);
4660 			q = *q_p;
4661 			break;
4662 		default:
4663 			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4664 					type, frame, q.ptr);
4665 			/* FALL THROUGH */
4666 		case Q_TYPE_QH:
4667 		case Q_TYPE_FSTN:
4668 			/* End of the iTDs and siTDs */
4669 			q.ptr = NULL;
4670 			break;
4671 		}
4672 
4673 		/* assume completion callbacks modify the queue */
4674 		if (unlikely(modified && fotg210->isoc_count > 0))
4675 			return -EINVAL;
4676 	}
4677 	return 0;
4678 }
4679 
scan_isoc(struct fotg210_hcd * fotg210)4680 static void scan_isoc(struct fotg210_hcd *fotg210)
4681 {
4682 	unsigned uf, now_frame, frame, ret;
4683 	unsigned fmask = fotg210->periodic_size - 1;
4684 	bool live;
4685 
4686 	/*
4687 	 * When running, scan from last scan point up to "now"
4688 	 * else clean up by scanning everything that's left.
4689 	 * Touches as few pages as possible:  cache-friendly.
4690 	 */
4691 	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4692 		uf = fotg210_read_frame_index(fotg210);
4693 		now_frame = (uf >> 3) & fmask;
4694 		live = true;
4695 	} else  {
4696 		now_frame = (fotg210->next_frame - 1) & fmask;
4697 		live = false;
4698 	}
4699 	fotg210->now_frame = now_frame;
4700 
4701 	frame = fotg210->next_frame;
4702 	for (;;) {
4703 		ret = 1;
4704 		while (ret != 0)
4705 			ret = scan_frame_queue(fotg210, frame,
4706 					now_frame, live);
4707 
4708 		/* Stop when we have reached the current frame */
4709 		if (frame == now_frame)
4710 			break;
4711 		frame = (frame + 1) & fmask;
4712 	}
4713 	fotg210->next_frame = now_frame;
4714 }
4715 
4716 /* Display / Set uframe_periodic_max
4717  */
show_uframe_periodic_max(struct device * dev,struct device_attribute * attr,char * buf)4718 static ssize_t show_uframe_periodic_max(struct device *dev,
4719 		struct device_attribute *attr, char *buf)
4720 {
4721 	struct fotg210_hcd *fotg210;
4722 	int n;
4723 
4724 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4725 	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4726 	return n;
4727 }
4728 
4729 
store_uframe_periodic_max(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)4730 static ssize_t store_uframe_periodic_max(struct device *dev,
4731 		struct device_attribute *attr, const char *buf, size_t count)
4732 {
4733 	struct fotg210_hcd *fotg210;
4734 	unsigned uframe_periodic_max;
4735 	unsigned frame, uframe;
4736 	unsigned short allocated_max;
4737 	unsigned long flags;
4738 	ssize_t ret;
4739 
4740 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4741 	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4742 		return -EINVAL;
4743 
4744 	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4745 		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4746 				uframe_periodic_max);
4747 		return -EINVAL;
4748 	}
4749 
4750 	ret = -EINVAL;
4751 
4752 	/*
4753 	 * lock, so that our checking does not race with possible periodic
4754 	 * bandwidth allocation through submitting new urbs.
4755 	 */
4756 	spin_lock_irqsave(&fotg210->lock, flags);
4757 
4758 	/*
4759 	 * for request to decrease max periodic bandwidth, we have to check
4760 	 * every microframe in the schedule to see whether the decrease is
4761 	 * possible.
4762 	 */
4763 	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4764 		allocated_max = 0;
4765 
4766 		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4767 			for (uframe = 0; uframe < 7; ++uframe)
4768 				allocated_max = max(allocated_max,
4769 						periodic_usecs(fotg210, frame,
4770 						uframe));
4771 
4772 		if (allocated_max > uframe_periodic_max) {
4773 			fotg210_info(fotg210,
4774 					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4775 					allocated_max, uframe_periodic_max);
4776 			goto out_unlock;
4777 		}
4778 	}
4779 
4780 	/* increasing is always ok */
4781 
4782 	fotg210_info(fotg210,
4783 			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4784 			100 * uframe_periodic_max/125, uframe_periodic_max);
4785 
4786 	if (uframe_periodic_max != 100)
4787 		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4788 
4789 	fotg210->uframe_periodic_max = uframe_periodic_max;
4790 	ret = count;
4791 
4792 out_unlock:
4793 	spin_unlock_irqrestore(&fotg210->lock, flags);
4794 	return ret;
4795 }
4796 
4797 static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
4798 		   store_uframe_periodic_max);
4799 
create_sysfs_files(struct fotg210_hcd * fotg210)4800 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4801 {
4802 	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4803 	int i = 0;
4804 
4805 	if (i)
4806 		goto out;
4807 
4808 	i = device_create_file(controller, &dev_attr_uframe_periodic_max);
4809 out:
4810 	return i;
4811 }
4812 
remove_sysfs_files(struct fotg210_hcd * fotg210)4813 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4814 {
4815 	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4816 
4817 	device_remove_file(controller, &dev_attr_uframe_periodic_max);
4818 }
4819 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4820  * The firmware seems to think that powering off is a wakeup event!
4821  * This routine turns off remote wakeup and everything else, on all ports.
4822  */
fotg210_turn_off_all_ports(struct fotg210_hcd * fotg210)4823 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4824 {
4825 	u32 __iomem *status_reg = &fotg210->regs->port_status;
4826 
4827 	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4828 }
4829 
4830 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4831  * Must be called with interrupts enabled and the lock not held.
4832  */
fotg210_silence_controller(struct fotg210_hcd * fotg210)4833 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4834 {
4835 	fotg210_halt(fotg210);
4836 
4837 	spin_lock_irq(&fotg210->lock);
4838 	fotg210->rh_state = FOTG210_RH_HALTED;
4839 	fotg210_turn_off_all_ports(fotg210);
4840 	spin_unlock_irq(&fotg210->lock);
4841 }
4842 
4843 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4844  * This forcibly disables dma and IRQs, helping kexec and other cases
4845  * where the next system software may expect clean state.
4846  */
fotg210_shutdown(struct usb_hcd * hcd)4847 static void fotg210_shutdown(struct usb_hcd *hcd)
4848 {
4849 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4850 
4851 	spin_lock_irq(&fotg210->lock);
4852 	fotg210->shutdown = true;
4853 	fotg210->rh_state = FOTG210_RH_STOPPING;
4854 	fotg210->enabled_hrtimer_events = 0;
4855 	spin_unlock_irq(&fotg210->lock);
4856 
4857 	fotg210_silence_controller(fotg210);
4858 
4859 	hrtimer_cancel(&fotg210->hrtimer);
4860 }
4861 
4862 /* fotg210_work is called from some interrupts, timers, and so on.
4863  * it calls driver completion functions, after dropping fotg210->lock.
4864  */
fotg210_work(struct fotg210_hcd * fotg210)4865 static void fotg210_work(struct fotg210_hcd *fotg210)
4866 {
4867 	/* another CPU may drop fotg210->lock during a schedule scan while
4868 	 * it reports urb completions.  this flag guards against bogus
4869 	 * attempts at re-entrant schedule scanning.
4870 	 */
4871 	if (fotg210->scanning) {
4872 		fotg210->need_rescan = true;
4873 		return;
4874 	}
4875 	fotg210->scanning = true;
4876 
4877 rescan:
4878 	fotg210->need_rescan = false;
4879 	if (fotg210->async_count)
4880 		scan_async(fotg210);
4881 	if (fotg210->intr_count > 0)
4882 		scan_intr(fotg210);
4883 	if (fotg210->isoc_count > 0)
4884 		scan_isoc(fotg210);
4885 	if (fotg210->need_rescan)
4886 		goto rescan;
4887 	fotg210->scanning = false;
4888 
4889 	/* the IO watchdog guards against hardware or driver bugs that
4890 	 * misplace IRQs, and should let us run completely without IRQs.
4891 	 * such lossage has been observed on both VT6202 and VT8235.
4892 	 */
4893 	turn_on_io_watchdog(fotg210);
4894 }
4895 
4896 /* Called when the fotg210_hcd module is removed.
4897  */
fotg210_stop(struct usb_hcd * hcd)4898 static void fotg210_stop(struct usb_hcd *hcd)
4899 {
4900 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4901 
4902 	fotg210_dbg(fotg210, "stop\n");
4903 
4904 	/* no more interrupts ... */
4905 
4906 	spin_lock_irq(&fotg210->lock);
4907 	fotg210->enabled_hrtimer_events = 0;
4908 	spin_unlock_irq(&fotg210->lock);
4909 
4910 	fotg210_quiesce(fotg210);
4911 	fotg210_silence_controller(fotg210);
4912 	fotg210_reset(fotg210);
4913 
4914 	hrtimer_cancel(&fotg210->hrtimer);
4915 	remove_sysfs_files(fotg210);
4916 	remove_debug_files(fotg210);
4917 
4918 	/* root hub is shut down separately (first, when possible) */
4919 	spin_lock_irq(&fotg210->lock);
4920 	end_free_itds(fotg210);
4921 	spin_unlock_irq(&fotg210->lock);
4922 	fotg210_mem_cleanup(fotg210);
4923 
4924 #ifdef FOTG210_STATS
4925 	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4926 			fotg210->stats.normal, fotg210->stats.error,
4927 			fotg210->stats.iaa, fotg210->stats.lost_iaa);
4928 	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4929 			fotg210->stats.complete, fotg210->stats.unlink);
4930 #endif
4931 
4932 	dbg_status(fotg210, "fotg210_stop completed",
4933 			fotg210_readl(fotg210, &fotg210->regs->status));
4934 }
4935 
4936 /* one-time init, only for memory state */
hcd_fotg210_init(struct usb_hcd * hcd)4937 static int hcd_fotg210_init(struct usb_hcd *hcd)
4938 {
4939 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4940 	u32 temp;
4941 	int retval;
4942 	u32 hcc_params;
4943 	struct fotg210_qh_hw *hw;
4944 
4945 	spin_lock_init(&fotg210->lock);
4946 
4947 	/*
4948 	 * keep io watchdog by default, those good HCDs could turn off it later
4949 	 */
4950 	fotg210->need_io_watchdog = 1;
4951 
4952 	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4953 	fotg210->hrtimer.function = fotg210_hrtimer_func;
4954 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4955 
4956 	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4957 
4958 	/*
4959 	 * by default set standard 80% (== 100 usec/uframe) max periodic
4960 	 * bandwidth as required by USB 2.0
4961 	 */
4962 	fotg210->uframe_periodic_max = 100;
4963 
4964 	/*
4965 	 * hw default: 1K periodic list heads, one per frame.
4966 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
4967 	 */
4968 	fotg210->periodic_size = DEFAULT_I_TDPS;
4969 	INIT_LIST_HEAD(&fotg210->intr_qh_list);
4970 	INIT_LIST_HEAD(&fotg210->cached_itd_list);
4971 
4972 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4973 		/* periodic schedule size can be smaller than default */
4974 		switch (FOTG210_TUNE_FLS) {
4975 		case 0:
4976 			fotg210->periodic_size = 1024;
4977 			break;
4978 		case 1:
4979 			fotg210->periodic_size = 512;
4980 			break;
4981 		case 2:
4982 			fotg210->periodic_size = 256;
4983 			break;
4984 		default:
4985 			BUG();
4986 		}
4987 	}
4988 	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4989 	if (retval < 0)
4990 		return retval;
4991 
4992 	/* controllers may cache some of the periodic schedule ... */
4993 	fotg210->i_thresh = 2;
4994 
4995 	/*
4996 	 * dedicate a qh for the async ring head, since we couldn't unlink
4997 	 * a 'real' qh without stopping the async schedule [4.8].  use it
4998 	 * as the 'reclamation list head' too.
4999 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
5000 	 * from automatically advancing to the next td after short reads.
5001 	 */
5002 	fotg210->async->qh_next.qh = NULL;
5003 	hw = fotg210->async->hw;
5004 	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
5005 	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
5006 	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
5007 	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
5008 	fotg210->async->qh_state = QH_STATE_LINKED;
5009 	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
5010 
5011 	/* clear interrupt enables, set irq latency */
5012 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5013 		log2_irq_thresh = 0;
5014 	temp = 1 << (16 + log2_irq_thresh);
5015 	if (HCC_CANPARK(hcc_params)) {
5016 		/* HW default park == 3, on hardware that supports it (like
5017 		 * NVidia and ALI silicon), maximizes throughput on the async
5018 		 * schedule by avoiding QH fetches between transfers.
5019 		 *
5020 		 * With fast usb storage devices and NForce2, "park" seems to
5021 		 * make problems:  throughput reduction (!), data errors...
5022 		 */
5023 		if (park) {
5024 			park = min_t(unsigned, park, 3);
5025 			temp |= CMD_PARK;
5026 			temp |= park << 8;
5027 		}
5028 		fotg210_dbg(fotg210, "park %d\n", park);
5029 	}
5030 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5031 		/* periodic schedule size can be smaller than default */
5032 		temp &= ~(3 << 2);
5033 		temp |= (FOTG210_TUNE_FLS << 2);
5034 	}
5035 	fotg210->command = temp;
5036 
5037 	/* Accept arbitrarily long scatter-gather lists */
5038 	if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5039 		hcd->self.sg_tablesize = ~0;
5040 	return 0;
5041 }
5042 
5043 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
fotg210_run(struct usb_hcd * hcd)5044 static int fotg210_run(struct usb_hcd *hcd)
5045 {
5046 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5047 	u32 temp;
5048 	u32 hcc_params;
5049 
5050 	hcd->uses_new_polling = 1;
5051 
5052 	/* EHCI spec section 4.1 */
5053 
5054 	fotg210_writel(fotg210, fotg210->periodic_dma,
5055 			&fotg210->regs->frame_list);
5056 	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5057 			&fotg210->regs->async_next);
5058 
5059 	/*
5060 	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5061 	 * be used; it constrains QH/ITD/SITD and QTD locations.
5062 	 * pci_pool consistent memory always uses segment zero.
5063 	 * streaming mappings for I/O buffers, like pci_map_single(),
5064 	 * can return segments above 4GB, if the device allows.
5065 	 *
5066 	 * NOTE:  the dma mask is visible through dev->dma_mask, so
5067 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5068 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5069 	 * host side drivers though.
5070 	 */
5071 	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5072 
5073 	/*
5074 	 * Philips, Intel, and maybe others need CMD_RUN before the
5075 	 * root hub will detect new devices (why?); NEC doesn't
5076 	 */
5077 	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5078 	fotg210->command |= CMD_RUN;
5079 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5080 	dbg_cmd(fotg210, "init", fotg210->command);
5081 
5082 	/*
5083 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5084 	 * are explicitly handed to companion controller(s), so no TT is
5085 	 * involved with the root hub.  (Except where one is integrated,
5086 	 * and there's no companion controller unless maybe for USB OTG.)
5087 	 *
5088 	 * Turning on the CF flag will transfer ownership of all ports
5089 	 * from the companions to the EHCI controller.  If any of the
5090 	 * companions are in the middle of a port reset at the time, it
5091 	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5092 	 * guarantees that no resets are in progress.  After we set CF,
5093 	 * a short delay lets the hardware catch up; new resets shouldn't
5094 	 * be started before the port switching actions could complete.
5095 	 */
5096 	down_write(&ehci_cf_port_reset_rwsem);
5097 	fotg210->rh_state = FOTG210_RH_RUNNING;
5098 	/* unblock posted writes */
5099 	fotg210_readl(fotg210, &fotg210->regs->command);
5100 	usleep_range(5000, 10000);
5101 	up_write(&ehci_cf_port_reset_rwsem);
5102 	fotg210->last_periodic_enable = ktime_get_real();
5103 
5104 	temp = HC_VERSION(fotg210,
5105 			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5106 	fotg210_info(fotg210,
5107 			"USB %x.%x started, EHCI %x.%02x\n",
5108 			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5109 			temp >> 8, temp & 0xff);
5110 
5111 	fotg210_writel(fotg210, INTR_MASK,
5112 			&fotg210->regs->intr_enable); /* Turn On Interrupts */
5113 
5114 	/* GRR this is run-once init(), being done every time the HC starts.
5115 	 * So long as they're part of class devices, we can't do it init()
5116 	 * since the class device isn't created that early.
5117 	 */
5118 	create_debug_files(fotg210);
5119 	create_sysfs_files(fotg210);
5120 
5121 	return 0;
5122 }
5123 
fotg210_setup(struct usb_hcd * hcd)5124 static int fotg210_setup(struct usb_hcd *hcd)
5125 {
5126 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5127 	int retval;
5128 
5129 	fotg210->regs = (void __iomem *)fotg210->caps +
5130 			HC_LENGTH(fotg210,
5131 			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5132 	dbg_hcs_params(fotg210, "reset");
5133 	dbg_hcc_params(fotg210, "reset");
5134 
5135 	/* cache this readonly data; minimize chip reads */
5136 	fotg210->hcs_params = fotg210_readl(fotg210,
5137 			&fotg210->caps->hcs_params);
5138 
5139 	fotg210->sbrn = HCD_USB2;
5140 
5141 	/* data structure init */
5142 	retval = hcd_fotg210_init(hcd);
5143 	if (retval)
5144 		return retval;
5145 
5146 	retval = fotg210_halt(fotg210);
5147 	if (retval)
5148 		return retval;
5149 
5150 	fotg210_reset(fotg210);
5151 
5152 	return 0;
5153 }
5154 
fotg210_irq(struct usb_hcd * hcd)5155 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5156 {
5157 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5158 	u32 status, masked_status, pcd_status = 0, cmd;
5159 	int bh;
5160 
5161 	spin_lock(&fotg210->lock);
5162 
5163 	status = fotg210_readl(fotg210, &fotg210->regs->status);
5164 
5165 	/* e.g. cardbus physical eject */
5166 	if (status == ~(u32) 0) {
5167 		fotg210_dbg(fotg210, "device removed\n");
5168 		goto dead;
5169 	}
5170 
5171 	/*
5172 	 * We don't use STS_FLR, but some controllers don't like it to
5173 	 * remain on, so mask it out along with the other status bits.
5174 	 */
5175 	masked_status = status & (INTR_MASK | STS_FLR);
5176 
5177 	/* Shared IRQ? */
5178 	if (!masked_status ||
5179 			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5180 		spin_unlock(&fotg210->lock);
5181 		return IRQ_NONE;
5182 	}
5183 
5184 	/* clear (just) interrupts */
5185 	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5186 	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5187 	bh = 0;
5188 
5189 	/* unrequested/ignored: Frame List Rollover */
5190 	dbg_status(fotg210, "irq", status);
5191 
5192 	/* INT, ERR, and IAA interrupt rates can be throttled */
5193 
5194 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5195 	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5196 		if (likely((status & STS_ERR) == 0))
5197 			COUNT(fotg210->stats.normal);
5198 		else
5199 			COUNT(fotg210->stats.error);
5200 		bh = 1;
5201 	}
5202 
5203 	/* complete the unlinking of some qh [4.15.2.3] */
5204 	if (status & STS_IAA) {
5205 
5206 		/* Turn off the IAA watchdog */
5207 		fotg210->enabled_hrtimer_events &=
5208 			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5209 
5210 		/*
5211 		 * Mild optimization: Allow another IAAD to reset the
5212 		 * hrtimer, if one occurs before the next expiration.
5213 		 * In theory we could always cancel the hrtimer, but
5214 		 * tests show that about half the time it will be reset
5215 		 * for some other event anyway.
5216 		 */
5217 		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5218 			++fotg210->next_hrtimer_event;
5219 
5220 		/* guard against (alleged) silicon errata */
5221 		if (cmd & CMD_IAAD)
5222 			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5223 		if (fotg210->async_iaa) {
5224 			COUNT(fotg210->stats.iaa);
5225 			end_unlink_async(fotg210);
5226 		} else
5227 			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5228 	}
5229 
5230 	/* remote wakeup [4.3.1] */
5231 	if (status & STS_PCD) {
5232 		int pstatus;
5233 		u32 __iomem *status_reg = &fotg210->regs->port_status;
5234 
5235 		/* kick root hub later */
5236 		pcd_status = status;
5237 
5238 		/* resume root hub? */
5239 		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5240 			usb_hcd_resume_root_hub(hcd);
5241 
5242 		pstatus = fotg210_readl(fotg210, status_reg);
5243 
5244 		if (test_bit(0, &fotg210->suspended_ports) &&
5245 				((pstatus & PORT_RESUME) ||
5246 				!(pstatus & PORT_SUSPEND)) &&
5247 				(pstatus & PORT_PE) &&
5248 				fotg210->reset_done[0] == 0) {
5249 
5250 			/* start 20 msec resume signaling from this port,
5251 			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5252 			 * stop that signaling.  Use 5 ms extra for safety,
5253 			 * like usb_port_resume() does.
5254 			 */
5255 			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5256 			set_bit(0, &fotg210->resuming_ports);
5257 			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5258 			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5259 		}
5260 	}
5261 
5262 	/* PCI errors [4.15.2.4] */
5263 	if (unlikely((status & STS_FATAL) != 0)) {
5264 		fotg210_err(fotg210, "fatal error\n");
5265 		dbg_cmd(fotg210, "fatal", cmd);
5266 		dbg_status(fotg210, "fatal", status);
5267 dead:
5268 		usb_hc_died(hcd);
5269 
5270 		/* Don't let the controller do anything more */
5271 		fotg210->shutdown = true;
5272 		fotg210->rh_state = FOTG210_RH_STOPPING;
5273 		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5274 		fotg210_writel(fotg210, fotg210->command,
5275 				&fotg210->regs->command);
5276 		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5277 		fotg210_handle_controller_death(fotg210);
5278 
5279 		/* Handle completions when the controller stops */
5280 		bh = 0;
5281 	}
5282 
5283 	if (bh)
5284 		fotg210_work(fotg210);
5285 	spin_unlock(&fotg210->lock);
5286 	if (pcd_status)
5287 		usb_hcd_poll_rh_status(hcd);
5288 	return IRQ_HANDLED;
5289 }
5290 
5291 /* non-error returns are a promise to giveback() the urb later
5292  * we drop ownership so next owner (or urb unlink) can get it
5293  *
5294  * urb + dev is in hcd.self.controller.urb_list
5295  * we're queueing TDs onto software and hardware lists
5296  *
5297  * hcd-specific init for hcpriv hasn't been done yet
5298  *
5299  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5300  * to a (possibly active) QH, and the same QH scanning code.
5301  */
fotg210_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)5302 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5303 		gfp_t mem_flags)
5304 {
5305 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5306 	struct list_head qtd_list;
5307 
5308 	INIT_LIST_HEAD(&qtd_list);
5309 
5310 	switch (usb_pipetype(urb->pipe)) {
5311 	case PIPE_CONTROL:
5312 		/* qh_completions() code doesn't handle all the fault cases
5313 		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5314 		 */
5315 		if (urb->transfer_buffer_length > (16 * 1024))
5316 			return -EMSGSIZE;
5317 		/* FALLTHROUGH */
5318 	/* case PIPE_BULK: */
5319 	default:
5320 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5321 			return -ENOMEM;
5322 		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5323 
5324 	case PIPE_INTERRUPT:
5325 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5326 			return -ENOMEM;
5327 		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5328 
5329 	case PIPE_ISOCHRONOUS:
5330 		return itd_submit(fotg210, urb, mem_flags);
5331 	}
5332 }
5333 
5334 /* remove from hardware lists
5335  * completions normally happen asynchronously
5336  */
5337 
fotg210_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)5338 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5339 {
5340 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5341 	struct fotg210_qh *qh;
5342 	unsigned long flags;
5343 	int rc;
5344 
5345 	spin_lock_irqsave(&fotg210->lock, flags);
5346 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5347 	if (rc)
5348 		goto done;
5349 
5350 	switch (usb_pipetype(urb->pipe)) {
5351 	/* case PIPE_CONTROL: */
5352 	/* case PIPE_BULK:*/
5353 	default:
5354 		qh = (struct fotg210_qh *) urb->hcpriv;
5355 		if (!qh)
5356 			break;
5357 		switch (qh->qh_state) {
5358 		case QH_STATE_LINKED:
5359 		case QH_STATE_COMPLETING:
5360 			start_unlink_async(fotg210, qh);
5361 			break;
5362 		case QH_STATE_UNLINK:
5363 		case QH_STATE_UNLINK_WAIT:
5364 			/* already started */
5365 			break;
5366 		case QH_STATE_IDLE:
5367 			/* QH might be waiting for a Clear-TT-Buffer */
5368 			qh_completions(fotg210, qh);
5369 			break;
5370 		}
5371 		break;
5372 
5373 	case PIPE_INTERRUPT:
5374 		qh = (struct fotg210_qh *) urb->hcpriv;
5375 		if (!qh)
5376 			break;
5377 		switch (qh->qh_state) {
5378 		case QH_STATE_LINKED:
5379 		case QH_STATE_COMPLETING:
5380 			start_unlink_intr(fotg210, qh);
5381 			break;
5382 		case QH_STATE_IDLE:
5383 			qh_completions(fotg210, qh);
5384 			break;
5385 		default:
5386 			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5387 					qh, qh->qh_state);
5388 			goto done;
5389 		}
5390 		break;
5391 
5392 	case PIPE_ISOCHRONOUS:
5393 		/* itd... */
5394 
5395 		/* wait till next completion, do it then. */
5396 		/* completion irqs can wait up to 1024 msec, */
5397 		break;
5398 	}
5399 done:
5400 	spin_unlock_irqrestore(&fotg210->lock, flags);
5401 	return rc;
5402 }
5403 
5404 /* bulk qh holds the data toggle */
5405 
fotg210_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5406 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5407 		struct usb_host_endpoint *ep)
5408 {
5409 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5410 	unsigned long flags;
5411 	struct fotg210_qh *qh, *tmp;
5412 
5413 	/* ASSERT:  any requests/urbs are being unlinked */
5414 	/* ASSERT:  nobody can be submitting urbs for this any more */
5415 
5416 rescan:
5417 	spin_lock_irqsave(&fotg210->lock, flags);
5418 	qh = ep->hcpriv;
5419 	if (!qh)
5420 		goto done;
5421 
5422 	/* endpoints can be iso streams.  for now, we don't
5423 	 * accelerate iso completions ... so spin a while.
5424 	 */
5425 	if (qh->hw == NULL) {
5426 		struct fotg210_iso_stream *stream = ep->hcpriv;
5427 
5428 		if (!list_empty(&stream->td_list))
5429 			goto idle_timeout;
5430 
5431 		/* BUG_ON(!list_empty(&stream->free_list)); */
5432 		kfree(stream);
5433 		goto done;
5434 	}
5435 
5436 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5437 		qh->qh_state = QH_STATE_IDLE;
5438 	switch (qh->qh_state) {
5439 	case QH_STATE_LINKED:
5440 	case QH_STATE_COMPLETING:
5441 		for (tmp = fotg210->async->qh_next.qh;
5442 				tmp && tmp != qh;
5443 				tmp = tmp->qh_next.qh)
5444 			continue;
5445 		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5446 		 * may already be unlinked.
5447 		 */
5448 		if (tmp)
5449 			start_unlink_async(fotg210, qh);
5450 		/* FALL THROUGH */
5451 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5452 	case QH_STATE_UNLINK_WAIT:
5453 idle_timeout:
5454 		spin_unlock_irqrestore(&fotg210->lock, flags);
5455 		schedule_timeout_uninterruptible(1);
5456 		goto rescan;
5457 	case QH_STATE_IDLE:		/* fully unlinked */
5458 		if (qh->clearing_tt)
5459 			goto idle_timeout;
5460 		if (list_empty(&qh->qtd_list)) {
5461 			qh_destroy(fotg210, qh);
5462 			break;
5463 		}
5464 		/* else FALL THROUGH */
5465 	default:
5466 		/* caller was supposed to have unlinked any requests;
5467 		 * that's not our job.  just leak this memory.
5468 		 */
5469 		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5470 				qh, ep->desc.bEndpointAddress, qh->qh_state,
5471 				list_empty(&qh->qtd_list) ? "" : "(has tds)");
5472 		break;
5473 	}
5474 done:
5475 	ep->hcpriv = NULL;
5476 	spin_unlock_irqrestore(&fotg210->lock, flags);
5477 }
5478 
fotg210_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5479 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5480 		struct usb_host_endpoint *ep)
5481 {
5482 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5483 	struct fotg210_qh *qh;
5484 	int eptype = usb_endpoint_type(&ep->desc);
5485 	int epnum = usb_endpoint_num(&ep->desc);
5486 	int is_out = usb_endpoint_dir_out(&ep->desc);
5487 	unsigned long flags;
5488 
5489 	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5490 		return;
5491 
5492 	spin_lock_irqsave(&fotg210->lock, flags);
5493 	qh = ep->hcpriv;
5494 
5495 	/* For Bulk and Interrupt endpoints we maintain the toggle state
5496 	 * in the hardware; the toggle bits in udev aren't used at all.
5497 	 * When an endpoint is reset by usb_clear_halt() we must reset
5498 	 * the toggle bit in the QH.
5499 	 */
5500 	if (qh) {
5501 		usb_settoggle(qh->dev, epnum, is_out, 0);
5502 		if (!list_empty(&qh->qtd_list)) {
5503 			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5504 		} else if (qh->qh_state == QH_STATE_LINKED ||
5505 				qh->qh_state == QH_STATE_COMPLETING) {
5506 
5507 			/* The toggle value in the QH can't be updated
5508 			 * while the QH is active.  Unlink it now;
5509 			 * re-linking will call qh_refresh().
5510 			 */
5511 			if (eptype == USB_ENDPOINT_XFER_BULK)
5512 				start_unlink_async(fotg210, qh);
5513 			else
5514 				start_unlink_intr(fotg210, qh);
5515 		}
5516 	}
5517 	spin_unlock_irqrestore(&fotg210->lock, flags);
5518 }
5519 
fotg210_get_frame(struct usb_hcd * hcd)5520 static int fotg210_get_frame(struct usb_hcd *hcd)
5521 {
5522 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5523 
5524 	return (fotg210_read_frame_index(fotg210) >> 3) %
5525 		fotg210->periodic_size;
5526 }
5527 
5528 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5529  * because its registers (and irq) are shared between host/gadget/otg
5530  * functions  and in order to facilitate role switching we cannot
5531  * give the fotg210 driver exclusive access to those.
5532  */
5533 MODULE_DESCRIPTION(DRIVER_DESC);
5534 MODULE_AUTHOR(DRIVER_AUTHOR);
5535 MODULE_LICENSE("GPL");
5536 
5537 static const struct hc_driver fotg210_fotg210_hc_driver = {
5538 	.description		= hcd_name,
5539 	.product_desc		= "Faraday USB2.0 Host Controller",
5540 	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5541 
5542 	/*
5543 	 * generic hardware linkage
5544 	 */
5545 	.irq			= fotg210_irq,
5546 	.flags			= HCD_MEMORY | HCD_USB2,
5547 
5548 	/*
5549 	 * basic lifecycle operations
5550 	 */
5551 	.reset			= hcd_fotg210_init,
5552 	.start			= fotg210_run,
5553 	.stop			= fotg210_stop,
5554 	.shutdown		= fotg210_shutdown,
5555 
5556 	/*
5557 	 * managing i/o requests and associated device resources
5558 	 */
5559 	.urb_enqueue		= fotg210_urb_enqueue,
5560 	.urb_dequeue		= fotg210_urb_dequeue,
5561 	.endpoint_disable	= fotg210_endpoint_disable,
5562 	.endpoint_reset		= fotg210_endpoint_reset,
5563 
5564 	/*
5565 	 * scheduling support
5566 	 */
5567 	.get_frame_number	= fotg210_get_frame,
5568 
5569 	/*
5570 	 * root hub support
5571 	 */
5572 	.hub_status_data	= fotg210_hub_status_data,
5573 	.hub_control		= fotg210_hub_control,
5574 	.bus_suspend		= fotg210_bus_suspend,
5575 	.bus_resume		= fotg210_bus_resume,
5576 
5577 	.relinquish_port	= fotg210_relinquish_port,
5578 	.port_handed_over	= fotg210_port_handed_over,
5579 
5580 	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5581 };
5582 
fotg210_init(struct fotg210_hcd * fotg210)5583 static void fotg210_init(struct fotg210_hcd *fotg210)
5584 {
5585 	u32 value;
5586 
5587 	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5588 			&fotg210->regs->gmir);
5589 
5590 	value = ioread32(&fotg210->regs->otgcsr);
5591 	value &= ~OTGCSR_A_BUS_DROP;
5592 	value |= OTGCSR_A_BUS_REQ;
5593 	iowrite32(value, &fotg210->regs->otgcsr);
5594 }
5595 
5596 /**
5597  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5598  *
5599  * Allocates basic resources for this USB host controller, and
5600  * then invokes the start() method for the HCD associated with it
5601  * through the hotplug entry's driver_data.
5602  */
fotg210_hcd_probe(struct platform_device * pdev)5603 static int fotg210_hcd_probe(struct platform_device *pdev)
5604 {
5605 	struct device *dev = &pdev->dev;
5606 	struct usb_hcd *hcd;
5607 	struct resource *res;
5608 	int irq;
5609 	int retval = -ENODEV;
5610 	struct fotg210_hcd *fotg210;
5611 
5612 	if (usb_disabled())
5613 		return -ENODEV;
5614 
5615 	pdev->dev.power.power_state = PMSG_ON;
5616 
5617 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5618 	if (!res) {
5619 		dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5620 				dev_name(dev));
5621 		return -ENODEV;
5622 	}
5623 
5624 	irq = res->start;
5625 
5626 	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5627 			dev_name(dev));
5628 	if (!hcd) {
5629 		dev_err(dev, "failed to create hcd with err %d\n", retval);
5630 		retval = -ENOMEM;
5631 		goto fail_create_hcd;
5632 	}
5633 
5634 	hcd->has_tt = 1;
5635 
5636 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5637 	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5638 	if (IS_ERR(hcd->regs)) {
5639 		retval = PTR_ERR(hcd->regs);
5640 		goto failed;
5641 	}
5642 
5643 	hcd->rsrc_start = res->start;
5644 	hcd->rsrc_len = resource_size(res);
5645 
5646 	fotg210 = hcd_to_fotg210(hcd);
5647 
5648 	fotg210->caps = hcd->regs;
5649 
5650 	retval = fotg210_setup(hcd);
5651 	if (retval)
5652 		goto failed;
5653 
5654 	fotg210_init(fotg210);
5655 
5656 	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5657 	if (retval) {
5658 		dev_err(dev, "failed to add hcd with err %d\n", retval);
5659 		goto failed;
5660 	}
5661 	device_wakeup_enable(hcd->self.controller);
5662 
5663 	return retval;
5664 
5665 failed:
5666 	usb_put_hcd(hcd);
5667 fail_create_hcd:
5668 	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5669 	return retval;
5670 }
5671 
5672 /**
5673  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5674  * @dev: USB Host Controller being removed
5675  *
5676  */
fotg210_hcd_remove(struct platform_device * pdev)5677 static int fotg210_hcd_remove(struct platform_device *pdev)
5678 {
5679 	struct device *dev = &pdev->dev;
5680 	struct usb_hcd *hcd = dev_get_drvdata(dev);
5681 
5682 	if (!hcd)
5683 		return 0;
5684 
5685 	usb_remove_hcd(hcd);
5686 	usb_put_hcd(hcd);
5687 
5688 	return 0;
5689 }
5690 
5691 static struct platform_driver fotg210_hcd_driver = {
5692 	.driver = {
5693 		.name   = "fotg210-hcd",
5694 	},
5695 	.probe  = fotg210_hcd_probe,
5696 	.remove = fotg210_hcd_remove,
5697 };
5698 
fotg210_hcd_init(void)5699 static int __init fotg210_hcd_init(void)
5700 {
5701 	int retval = 0;
5702 
5703 	if (usb_disabled())
5704 		return -ENODEV;
5705 
5706 	pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5707 	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5708 	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5709 			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5710 		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5711 
5712 	pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5713 			hcd_name, sizeof(struct fotg210_qh),
5714 			sizeof(struct fotg210_qtd),
5715 			sizeof(struct fotg210_itd));
5716 
5717 	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5718 	if (!fotg210_debug_root) {
5719 		retval = -ENOENT;
5720 		goto err_debug;
5721 	}
5722 
5723 	retval = platform_driver_register(&fotg210_hcd_driver);
5724 	if (retval < 0)
5725 		goto clean;
5726 	return retval;
5727 
5728 clean:
5729 	debugfs_remove(fotg210_debug_root);
5730 	fotg210_debug_root = NULL;
5731 err_debug:
5732 	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5733 	return retval;
5734 }
5735 module_init(fotg210_hcd_init);
5736 
fotg210_hcd_cleanup(void)5737 static void __exit fotg210_hcd_cleanup(void)
5738 {
5739 	platform_driver_unregister(&fotg210_hcd_driver);
5740 	debugfs_remove(fotg210_debug_root);
5741 	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5742 }
5743 module_exit(fotg210_hcd_cleanup);
5744